
SAJaS: Enabling JADE-based Simulations

Henrique Lopes Cardoso1,2

1 Dep. Eng. Informática, Faculdade de Engenharia, Universidade do Porto,
Porto, Portugal

2 LIACC – Laboratório de Inteligência Artificial e Ciência de Computadores,
Porto, Portugal
hlc@fe.up.pt

Abstract. Multi-agent systems (MAS) are widely acknowledged as an
appropriate modelling paradigm for distributed and decentralized sys-
tems, where a (potentially large) number of agents interact in non-trivial
ways. Such interactions are often modelled defining high-level interaction
protocols. Open MAS typically benefit from a number of infrastructural
components that enable agents to discover their peers at run-time. On
the other hand, multi-agent-based simulations (MABS) focus on apply-
ing MAS to model complex social systems, typically involving a large
agent population. Several MAS development frameworks exist, but they
are often not appropriate for MABS; and several MABS frameworks ex-
ist, albeit sharing little with the former. While open agent-based applica-
tions benefit from adopting development and interaction standards, such
as those proposed by FIPA, MABS frameworks typically do not support
them. In this paper, a proposal to bridge the gap between MAS simula-
tion and development is presented, including two components. The Sim-
ple API for JADE-based Simulations (SAJaS) enhances MABS frame-
works with JADE-based features. While empowering MABS modellers
with modelling concepts offered by JADE, SAJaS also promotes a quicker
development of simulation models for JADE programmers. In fact, the
same implementation can, with minor changes, be used as a large scale
simulation or as a distributed JADE system. In its current version, SA-
JaS is used in tandem with the Repast simulation framework. The second
component of our proposal consists of a MAS Simulation to Development
(MASSim2Dev) tool, which allows the automatic conversion of a SAJaS-
based simulation into a JADE MAS, and vice-versa. SAJaS provides,
for certain kinds of applications, increased simulation performance. Val-
idation tests demonstrate significant performance gains in using SAJaS
with Repast when compared with JADE, and show that the usage of
MASSim2Dev preserves the original functionality of the system.

Keywords: Multi-agent systems, Multi-agent based simulation, Model
conversion, Standards

1 Introduction

The field of multi-agent systems (MAS) studies how to model complex systems
using agents – autonomous, intelligent entities exhibiting social abilities that



2 Lopes Cardoso, H.

enable them to interact with each other [21]. Agent-based applications are in
widespread use in multiple fields, both in research and industry. Such applica-
tions can be heterogeneous, often requiring interoperation between agents from
different systems. In order to make this possible, agent technologies have ma-
tured and standards have emerged to support the interaction between agents.

The specifications of the Foundation for Intelligent Physical Agents (FIPA)3

promote interoperability in heterogeneous agent systems. These standards define
not only a common Agent Communication Language (ACL), but also a group
of interaction protocols, recommended facilities for agent management and di-
rectory services [16].

Several frameworks exist [14, 2] that offer some level of abstraction for a
proper development of agent-based applications, allowing programmers to focus
on a more conceptual approach in MAS design. However, only a few of them sup-
port FIPA standards (the most notable being JADE [4]), making interoperation
between agents developed using different frameworks more difficult (although
some claim to be interoperable with JADE, e.g. Jason [5] and SeSAm [12]).

Multi-agent based simulations (MABS) focus on applying MAS to model
complex social systems, involving a large agent population. Simulations are some-
times used in the course of development of a full-featured MAS, for the purpose
of testing. However, most platforms for MAS development are not well suited
for MABS due to scalability limitations [13, 17]. Popular agent-based simulation
(ABS) frameworks, such as Repast [15] and NetLogo [19], lack support on ad-
vanced agent programming and multi-agent features, such as communication and
infrastructural components. Given their social sciences background, it could be
said that the kinds of agents such frameworks are best at modelling are not the
same kind of agents considered in the multi-agent systems research community.

Still, agent-based simulation frameworks are widely used for MABS, given
their support for large-scale simulations through the use of schedulers, environ-
ment spaces, data-collection and visualization facilities. In fact, there are poten-
tial gains in performance when running a MAS on top of a native simulation
framework, which enables efficient large-scale testing of specific MAS properties.

Given this state of affairs, there is a growing interest in solutions that provide
a richer set of programming tools for developing MABS, such as those typically
available in MAS development frameworks. At the same time, an opportunity
exists to partially automate the development of robust MAS from a previously
tested simulation [12]. This would comprise a “write once, simulate and deploy”
philosophy, where the same code could be used to run a large-scale simulation
and to deploy the MAS in a distributed way.

These two points are exactly the research directions taken in this paper.
We focus on two popular frameworks for MAS development and simulation,
respectively: JADE and Repast. These choices are related with the fact that both
of these frameworks are open-source, have a wide and lively user community and
extensive online support.

3 http://www.fipa.org/



SAJaS: Enabling JADE-based Simulations 3

JADE [4] is a FIPA-compliant, general-purpose (i.e. not focused on a single
domain) framework used in the development of distributed agent applications.
It is a very popular MAS development framework that allows the creation of
seamless distributed agent systems and complies with FIPA standards. It uses
an architecture based on agent containers which allows the abstraction from
the network layer, meaning that there is no difference, from the programmers
perspective, between interactions among agents running in the same or separate
machines. In terms of agent programming, JADE proposes the concept of be-
haviour as the building block for defining the tasks agents are able to execute.
However, experiments with JADE show that the platform’s scalability is limited
[13]. Its multi-threaded architecture falls short in delivering the necessary per-
formance to run a local simulation with a large number of agents, meaning that
JADE is not an appropriate tool to create MABS.

Repast [6, 15] is an agent-based modelling and simulation system that allows
creating simulations using rich GUI elements and real time agent statistics. It
can easily handle large numbers of agents in a single simulation. The former
“flavour” of Repast – Repast 3 [6] – is still, for its higher simplicity, widely
used, in particular by skilled Java programmers. The current Repast suite in-
cludes Repast Simphony [15], which comprises a significantly different approach
to develop agent-based simulations, including visual tools for non-programmers,
and ReLogo and Java APIs.Unlike JADE, though, Repast lacks much of the
infrastructure for multi-agent management and interaction. Furthermore, pro-
gramming agents in Repast is a task that starts from basic Java objects, without
any conceptual support for agent development.

The main motivation for this work is thus to facilitate the development of
rich multi-agent based simulations taking advantage of agent-based simulation
frameworks. In the end, it should be straightforward to produce a simulation
of a MAS more complex than those typically developed with such frameworks.
Furthermore, code written for the simulation should be portable to the full-
featured version of the underlying MAS.

In order to develop an integrated solution for bridging the domains of simu-
lation and development of MAS, two main goals were pursued:

1. First, the creation of an adapter or API that allows MAS developers to
abstract from simulation framework features and use familiar ones present
in MAS development frameworks, thus creating “MAS-like MABS”.

2. Second, the development of a MABS-MAS conversion tool. Having a MABS
that is close to its underlying MAS makes it feasible and straightforward to
engineer a tool that performs automatic conversion of MABS into equivalent
MAS and vice-versa.

Given our choice for JADE, this solution is particularly useful for JADE
developers who need to create a simulation of their already-developed MAS. By
converting their code, the developer can run simulations and perform tests and
fixes, later converting the simulation back to a MAS, preserving all changes.
JADE developers can also create multi-agent simulations from scratch, using



4 Lopes Cardoso, H.

frameworks such as Repast, but taking advantage of familiar JADE-like features.
Such simulations would then be converted to full-featured JADE MAS. Finally,
the approach is also of interest to Repast developers who desire to expand their
knowledge of MAS development using more complex frameworks. We are aware
that this kind of facilities is only valuable for true multi-agent based simulation,
and not in general for any agent-based modelling and simulation approach (for
which Repast is primarily suited).

The rest of this paper is structured as follows. Section 2 presents related work,
mainly devoted at bridging the gap between MAS simulation and development
tools. Section 3 provides an overview of the whole solution proposed in this paper,
presenting SAJaS and MASSim2Dev. Sections 4 and 5 describe the developed
contributions – SAJaS and MASSim2Dev – in more detail, including their design
choices and use cases. Section 6 explains how both tools have been validated.
Section 7 presents some conclusions and Section 8 points lines of future work.

2 Related Work

Closing the gap between simulation and development of multi-agent systems
has been identified as an important research direction. In a more comprehen-
sive approach (as compared with the work reported in this paper), the fields
of agent-oriented software engineering, on one hand, and agent-based modelling
and simulation, on the other, can fruitfully be integrated, as suggested in the
survey by Fortino and North [9].

The opportunity for applying multi-agent simulation in domains other than
pure social simulation has been identified long ago. Davidsson [7] points out
this trend by highlighting some properties that make MABS appealing to other
domains, namely those requiring more sophisticated agent behaviours.

The idea of enriching agent-based simulation frameworks with multi-agent
features is not new. In their work on SeSAm [12], Klügl et al. propose using
agent-based modelling and simulation for software development. They focus on
designing agent systems whose validity and robustness is ensured by prior veri-
fication through simulation.

Several frameworks exist that offer support to the development of MAS or
MABS. Some are domain specific, meaning that their purpose was well defined
in their conception: MASeRaTi [1] and MATSim [3] are some examples of MABS
frameworks for traffic and transport simulations; PlaSMA [20] was designed for
the logistics domain. Other frameworks like Repast [6, 15], NetLogo [19] and
GALATEA [8] are considered general-purpose. This enumeration is not meant
to be exhaustive, including only a few examples of open-source tools.

A few attempts have been made in the direction of enriching simulation
platforms with (multi-)agent features. Sakellariou et al. [18] proposed extending
NetLogo with BDI agent programming, as well as FIPA-ACL-like communica-
tion. Their choice of NetLogo is based on its potential use as an educational
platform for simulation and multi-agent systems.



SAJaS: Enabling JADE-based Simulations 5

In the line of our own work, in the literature we can find a few proposals to
bridge the gap between MAS development and simulation by integrating JADE
with simulation features, either by extending this framework with a simulation
layer created from scratch, or by integrating it with an existing simulation frame-
work, such as Repast. Some of these are discussed in the next section.

2.1 JADE Simulation Extensions

MISIA [10] is a middleware whose goal is to enhance the simulation of intelligent
agents and to allow the visualization and analysis of agent’s behaviour. It is no
longer an active project, having evolved into other more specific tools.

MISIA’s approachconsists of using a middle layer that acts as the bridge
between two other layers that interact with JADE and Repast. By extending
the agents in Repast and JADE, communicating through a coordinator and
synchronizing their state, these agents work as a single one.

One of the challenges identified by the authors when re-implementing FIPA
interaction protocols was synchronizing them with the Repast tick-based simu-
lation model. Given JADE’s event-driven architecture, MISIA proposes the use
of a coordinator agent that informs the JADE-Agent when a tick has passed. It
also proposes its own implementation of the interaction protocols supported by
JADE, making them “tick-friendly”.

JRep [11] proposes integrating JADE and Repast Simphony in a way that
combines the macro and micro perspectives of the system with an interaction
layer. JRep’s approach is not as complex as MISIA’s. By having the Repast
Simphony agent encapsulate a JADE agent representation, synchronization is
immediate and is assured without requiring an external coordinator. The two
agent representations take care of synchronizing any state changes.

Each agent takes care of interfacing its respective framework. The interac-
tion between agents in JRep is performed using FIPA ACL and the protocol
implementations are those provided by the JADE platform. Similarly to MISIA,
an Agent Representation Interface is used to introduce the concept of schedule
in the JADE agent.

Unlike the two previous frameworks, the PlaSMA [20] system is based solely
on the JADE platform. The distributed simulation is synchronized by entities
called “Controllers” who communicate with the “Top Controller”, keeping the
pace of the simulation and handling agent lifecycle management as well. Unlike
MISIA and JRep, PlaSMA is still an active project.

2.2 Limitations

Distributed simulation of multi-agent systems brings non-desirable scalability
issues, mainly due to synchronization overheads [17]. Furthermore, scenarios
with a high communication-to-computation ratio [13], which are typical in many
multi-agent applications, are largely affected by network connectivity, bringing
large communication overheads. If it is often the case that agents remain idle



6 Lopes Cardoso, H.

until a message is received, no real advantage is attained from having a dis-
tributed simulation. For this reason, general-purpose multi-agent platforms with
multi-threading support, while being useful for deploying MABS on distributed
resources, are not a viable approach for large-scale simulations.

JADE is a rich and powerful platform. As pointed out before, however, for
many multi-agent simulation scenarios its overhead has a significant impact on
simulation performance [13]. Repast Simphony is a very efficient simulation plat-
form. However, it lacks support for agent programming concepts and multi-agent
features, such as high-level communication and infrastructural components.

Even though both MISIA and JRep attempt to integrate the best of JADE
and Repast, they still rely on JADE to run the agents themselves. As far as
Repast simulations are concerned, JADE’s multi-threaded infrastructure affects
performance very significantly. This would be the main drawback of these ap-
proaches. The same is true for PlaSMA, naturally.

As we will describe in the following sections, the distinguishing feature of
our approach is the possibility of using Repast with JADE features, without the
need to interface with the JADE runtime system. In order to do that, we replace
the JADE Agent class with a Repast-friendly one, whose scheduled execution
we are able to control directly.

3 Bridging JADE-based Simulation and Development

As mentioned in Section 1, this work aims at enabling the development of rich
multi-agent based simulations, capturing features available in a MAS develop-
ment framework – JADE in our case. Besides taking advantage of a simulation
infrastructure (such as Repast) to run the simulation proper, we also aim at
using the same developed code both for the simulated run and for the actual
deployment of the MAS (an approach that has been also suggested in [12]).

The contributions reported in this paper are two-fold:

– The Simple API for JADE-based Simulations (SAJaS) is an adapter
API that enables running JADE-like simulations, connecting the underlying
MAS with a simulation framework. Our rationale was to be as surgical as
possible, seeking to take advantage of most JADE features which do not
directly affect simulation performance.

– The MAS Simulation to Development (MASSim2Dev) code conver-
sion tool is an Eclipse plug-in that offers a seamless automatic conversion
between JADE and SAJaS (and vice versa). In order to do that, a mapping
between JADE classes and their equivalent in SAJaS is provided, making
the tool mostly independent of those two APIs.

SAJaS is an API meant to be used with simulation frameworks, enrich-
ing them with JADE-based features, such as behaviour-based agent program-
ming, interaction protocols and agent management services. For this reason,
only runtime-specific JADE classes have been replaced by new versions that en-
able the simulation framework to take control over agent execution. SAJaS own



SAJaS: Enabling JADE-based Simulations 7

classes are very similar to their JADE counterparts, in order to facilitate code
conversion with MASSim2Dev. More importantly, this allows proficient JADE
developers to create SAJaS-based simulations using a familiar JADE-based API.

SAJaS was initially created to be used with Repast Simphony. However, SA-
JAs design choices consider its straightforward integration with other simulation
frameworks, as we will illustrate later.

MASSim2Dev currently provides programmers with two possible actions: (i)
given a JADE-based project, convert it to a SAJaS-based project; (ii) given a
SAJaS-based project, convert it to a JADE-based project.

3.1 FIPA Specifications

The need to extend simulation frameworks with multi-agent features is best ad-
dressed if we take into consideration agent technology standards, such as those
proposed by FIPA. Since JADE is a FIPA-compliant platform, basing our ap-
proach on its implementation of FIPA standards allows us to inherit these multi-
agent systems development features.

Through JADE, SAJaS includes FIPA standards divided into two broad cat-
egories: Agent Management and Agent Communication.

FIPA Agent Management specifications include the Directory Facilitator
(DF) and the Agent Management Service (AMS). The DF is a component that
provides a yellow page service. It endows agents with run-time register and search
facilities that enables agents to announce themselves to the rest of the MAS and
to find out about other agents in the system. The AMS is meant to manage
the agent platform, namely creating and terminating agents. Agent registration
in the AMS is mandatory, and results in the assignment of an agent identified
(AID), needed e.g. for communication purposes. Communication is supported
by a Message Transport System (MTS).

FIPA Agent Communication specifications include the notions of ACL
Message, Communicative Acts and Interaction Protocols. An ACL message in-
cludes an “envelope” that contains several fields with communication details.
Exploiting those fields, message templates may be used to filter incoming mes-
sages, allowing an agent to process them selectively. A communicative act is a
central part of an ACL message, and is meant to disclose the communicative
intention of the sender. FIPA Interaction Protocols typify communication in-
teractions among agents by specifying two roles: initiator (the agent starting
the interaction) and responder (a participant in the interaction). Each protocol
defines precisely which messages are sent by each role and in which sequence.

3.2 JADE and Repast

Given our choices on JADE and Repast as target frameworks, we need to prop-
erly understand the main features and differences among them. As Table 1 shows,
JADE agents execute in separate threads, which enables distributing agents
among different machines. The downsize of this approach is its impact on per-
formance when running locally a significant number of agents, which is a typical



8 Lopes Cardoso, H.

scenario in simulation. In fact, experiments with JADE have shown that the
platform’s scalability is limited: the global system performance drops quickly for
large numbers of agents [13]. This further strengthens the idea that using JADE
or a JADE-Repast hybrid, as described in Section 2.1, is not the best course of
action if performance is an important issue.

In JADE, agents are distributed across containers. Each host machine can
contain multiple containers, and JADE allows agents in different containers and
hosts to interact with each other through message exchange. In each JADE
instance, a main container exists where some special agents reside (namely, the
Agent Management System and the Directory Facilitator), which help in the
management and address resolution of the agents. JADE agents can even hop
into another container.

While not having an equivalent infrastructure, Repast Simphony does include
the notion of context that indexes all scheduled objects. Because Repast does not
support distributed applications, there is no need for address resolution services.

JADE agent actions can be executed during setup and takedown, but most
are encapsulated in objects called behaviours. JADE has many different kinds of
behaviours that function in different ways, such as running one single task once
or running cyclically. Other behaviours implement FIPA interaction protocols,
which agents can use to interact with other agents. Together with ontology
support, this comprises one of the most useful features of JADE when developing
MAS. Given this strong support for communication, agents can be said to execute
in an event-driven way in scenarios that rely strongly on interaction among them.

In Repast Simphony, agent execution is scheduled explicitly. Any class added
to Repast’s context can contain Java annotations that indicate which methods
should be called and when (for instance, in every simulation tick or from time to
time). Alternatively, an explicit scheduler may be used to define which actions
to execute throughout simulation. While this approach is very flexible, more
complex structures supporting agent development are non-existent in Repast.
There is also no support to agent communication, which must be programmed
through direct method invocations.

3.3 Usage Scenarios

The rationale behind the design of SAJaS and MASSim2Dev foresees a number
of possible usage scenarios. Figure 1 illustrates the scenarios where this system
is expected to be useful.

One possible scenario concerns a JADE developer who wishes to perform
some tests and simulations of his JADE-based MAS, by running the system
in a local and controlled environment. The developer can use MASSim2Dev
to convert the MAS into a SAJaS MABS. Eventually, the application can be
converted back if changes were introduced while performing tests.

A second possible scenario could be one where a developer intends to create
a MABS with the goal of later converting it to a full-featured MAS. The devel-
oper could be fluent in Repast, desiring to create agent simulations that take
advantage of communication and agent management tools (present in JADE and



SAJaS: Enabling JADE-based Simulations 9

Table 1. Comparison of JADE and Repast features.

JADE Repast

Distributed Yes No

Simulation Tools No Yes

Scalability Limited High

Open Source Yes Yes

Agent Execution Behaviours Scheduler
Multi-thread Single-thread
Event-driven Tick-driven
Asynchronous Synchronous

Interaction FIPA ACL Method calls
Shared resources

Ontologies Yes No

SAJaS); the developed could also be experienced in JADE, intending to create
Repast simulations using familiar JADE-like tools.

A third scenario may consist of a researcher that simply wants to create a
complex agent-based, FIPA-compliant simulation. In this case, there is no need
for a code conversion tool, but SAJaS can be used as a standalone library.

The next sections describe in detail both the SAJaS API and the MAS-
Sim2Dev conversion tool.

4 SAJaS

As its name implies, the Simple API for JADE-based Simulations has been
design by taking the most advantage of MAS development features offered by
JADE, with the aim of providing a simulation development experience that
is comfortable for JADE experienced programmers. From the point of view of
the MAS programmer, working with the SAJaS API feels the same as working
with JADE, although with some (minor) limitations, as we will later explain in
Section 4.2. To achieve this result, only the components related with the JADE
runtime infrastructure have been replaced to enable the simulation framework
to control agent execution. Even so, the few core SAJaS classes are API-wise
equivalent to their JADE counterparts. This facilitates usage from the point of
view of the programmer and conversion through MASSim2Dev.

The most evident feature that is not supported in SAJaS is JADE’s network
layer that enables the creation of distributed MAS. This is, in fact, the one
feature that we consider to negatively affect communication-intensive large-scale
simulation performance.

Figure 2 shows a basic class diagram of SAJaS, where for clarity not all
dependencies are visible. Apart from their package distribution (which follows
JADE very closely), SAJaS classes can be grouped as follows:



10 Lopes Cardoso, H.

Fig. 1. Possible work flows for SAJaS/MASSim2Dev users (“SJ” and “JS” represent
conversion from SAJaS to JADE and the reverse, respectively).

– Core classes: The need to reimplement the Agent class arose from the fact
that in SAJaS each agent is no longer an independent thread. We thus
need control over each agent’s execution. Apart from that, most of JADE’s
own implementation of this class was kept. The reason for not extending
jade.core.Agent is due to non-public method declarations that we needed
to override. The new AID class, which extends the JADE version, provides a
means to properly set and use a platform name.

– Runtime infrastructure: These classes have the purpose of launching the sys-
tem, creating containers and agents, and starting agent execution: Runtime,
PlatformController, ContainerController and AgentController.

– FIPA services: Classes FIPAService, AMSService, DFService and DFAgent

correspond to FIPA services available in any JADE MAS. In particular,
DFAgent is our implementation of the yellow page service agent, which nat-
urally extends sajas.core.Agent. FIPA services had to be reimplemented
due to the blocking approaches available in the JADE API, which do not
work in SAJaS given its single thread nature (more on this in Section 4.2).

– Agent dependencies: As a consequence of having a new Agent class, every
class in the JADE API that makes use of it had to be included in SAJaS as
well, simply to redirect references to the SAJaS Agent class – this includes
behaviour (sajas.core.behaviours) and protocol (sajas.proto) classes.
Naturally, the same redirection was needed in the previous groups of classes.

– Simulation interface: This group of classes is specific of SAJaS, and repre-
sents its connection with the simulation infrastructure. The AgentScheduler
interface allows agents to be added to the simulation scheduler; the specific



SAJaS: Enabling JADE-based Simulations 11

scheduler to use is set statically in the Agent class. This approach makes
it easy to integrate SAJaS with different simulation frameworks. Currently,
two of them are included: Repast 3 and Repast Simphony. For the latter,
classes RepastSLauncher and AgentAction implement the needed Repast
Simphony interfaces (also shown in Figure 2): RepastSLauncher is respon-
sible for building the simulation context and setting the agent scheduler,
after which application-specific JADE-related code is invoked (an abstract
method is declared for that purpose); AgentAction implements the actual
execution of scheduled agents. A similar pair of classes exists for Repast 3
(whose dependencies are omitted in Figure 2).

Fig. 2. A simplified UML class diagram of SAJaS.

4.1 Agent Execution and Interaction

JADE execution is concurrent and parallel, since JADE supports multi-threaded
and distributed agent systems. Agent tasks are encapsulated in behaviours,
which are executed in a sequential round-robin fashion. Multiple agents can be
executing their behaviours simultaneously. It is up to the programmer to ensure
that the application does not rely on the actual order of execution.

Execution in simulation frameworks like Repast, on the other hand, is not
concurrent. Repast uses a time-share type of execution, granting each agent, in
sequence but in no particular order, the right to perform its tasks. Scheduled



12 Lopes Cardoso, H.

methods (e.g. agent executions) typically run consecutively but with variable
execution order. Again, it is up to the simulation designer to ensure that simu-
lation results do not depend on the order of execution. We thus have a different
scheduling granularity: while in JADE each agent schedules its own behaviours,
in Repast it is the agents that are scheduled in a shared execution thread.

Given the lack of support in Repast for agent communication, the typical way
of implementing this kind of agent interaction is through method calls or shared
resources. Albeit feasible, this approach brings additional challenges when con-
sidering the implementation of complex interaction protocols, such as the risk
of stagnation if agents engage in a “long conversation”. By taking advantage of
JADE features, however, we are able to maintain its asynchronous communica-
tion mode. This enables the use of conceptually concurrent interactions among
agents. In JADE (and in SAJaS), each agent has a message queue to which
messages are delivered by the messaging service, and processes such messages
by consuming them in appropriate behaviours.

Looking from a different perspective, we can also say that while simula-
tions in Repast usually depend on the synchrony of the environment, by using
message-waiting behaviours we are able to maintain a synchronous execution,
while simulating an asynchronous one. With this approach, we can easily define
protocol-based milestones that can be exploited in the course of a simulation.

To better demonstrate the differences between agent execution in both frame-
works, Figures 3 and 4 represent a scenario where two agents send a message to
a third one, who replies. In SAJaS single-threaded execution (Fig. 3), messages
are delivered to agent C’s message queue, and are processed only when it is C’s
turn to execute in the shared thread4. In JADE (Fig. 4), messages can arrive
concurrently. Their arrival triggers an event and they are processed right away
in the receiving agent’s thread. In this case, agent C handles the messages as
they arrive and issues the respective replies.

4.2 Current Limitations

As mentioned before, SAJaS takes a near-full advantage of JADE’s features. The
following are a couple of exceptions regarding the current version of SAJaS.

Handling time. The FIPA ACL message structure specification includes an
optional “reply-by” parameter, to be filled-in with the latest time by which the
sending agent would like to receive a reply. This parameter may be of particular
use in interaction protocols, by halting waiting for the next sequential message
when the indicated time has elapsed. Given the simulation bias of SAJaS, it is
not clear yet to which time this should refer to. Accelerating simulation execu-
tion means that we should not use reply-by values larger than strictly necessary,
which typically depends on the application in mind. Translating such times-
tamps to simulation ticks is probably the way to go, but enough simulation ticks

4 This scenario is merely hypothetical; relevant is the variable agent execution order.



SAJaS: Enabling JADE-based Simulations 13

Fig. 3. Communication in SAJaS, in a shared execution thread.

Fig. 4. Communication in JADE, each agent running in parallel.

should be allowed for responding agents to process the message and respond
accordingly. This, in turn, requires having a mechanism that interfaces properly
with simulation scheduling.

Two specific JADE behaviours are also hindered by the transition from JADE
to SAJaS, and should thus be avoided. A WakerBehaviour specifies a task to
be executed after a specific amount of time has elapsed. A TickerBehaviour

specifies a periodic task to be executed in regular time intervals.

Blocking approaches. Although discouraged by JADE, programmers may
use so-called blocking approaches when interacting with each other. The effect
of these approaches is that certain methods in JADE’s API will only return
after a message is received by the agent (or even after a complete protocol has
terminated). This is achieved through a blockingReceive operation defined in
JADE’s Agent class, or indirectly by making use of doFipaRequestClient in
the FIPAService class. Given the single-threaded approach of SAJaS, or more
precisely of the simulation frameworks (such as Repast) it may be aligned with,
it comes to no surprise that blocking approaches do not work. Another typi-
cal usage of blocking approaches concerns (de)registering and searching the DF



14 Lopes Cardoso, H.

(JADE’s yellow page service), for which a number of blocking methods are avail-
able in the DFService class. Although the same effects may be obtained using
non-blocking approaches (by establishing a communication with the DF agent),
in SAJaS we opted to reimplement the available blocking methods in DFService,
making sure they do not block, while achieving the desired functionality.

5 MASSim2Dev

There are multiple ways to tackle the problem of code transformations. The brute
force approach would be to parse the source code, create an abstract syntax tree
(AST) which represents all code constructions in a program, perform certain
transformations in the tree, and finally generate back the code from the new
AST. Fortunately, there are free and open source projects that developers can
use to do exactly this with significantly reduced effort.

The Eclipse Java Development Tools (JDT)5 used to develop MASSim2Dev
is a group of tools integrated in the Eclipse IDE. Some of its most interesting
features include automatic project cloning, handling of classes, imports, methods
and fields as objects, as well as the possibility of doing complex manipulation
tasks without parsing the code. It does, however, allow the use of a high level
AST for a more direct manipulation of the source code. JDT is accessible to
plugin developers from within Eclipse.

MASSim2Dev is an Eclipse plugin that makes use of SAJaS. It acts as a trans-
lator that changes the MAS application/simulation dependencies on one frame-
work (JADE/SAJaS) to the equivalent classes in the other framework.When
converting, a new Eclipse Java project is created: if this is a JADE project (a
conversion from SAJaS to JADE), references to SAJaS classes are redirected to
their JADE equivalent. On the other hand, if the new project is a SAJaS-based
one (a conversion from JADE to SAJaS), references to JADE classes that have
been reimplemented in SAJaS are redirected to these new versions. Any other
references to JADE’s API are kept.

5.1 Plugin Execution

In its current version, MASSim2Dev simply includes a couple of buttons, acti-
vating the conversion of a JADE project to SAJaS, or of a SAJaS-based simu-
lation to JADE, respectively. When one of such buttons is pressed, the plugin
is activated, performing a sequence of actions. In the case of a SAJaS-to-JADE
conversion, the plugin:

1. Clones the selected project;
2. Changes all references to SAJaS classes into their JADE equivalent;
3. Removes the no longer needed SAJaS library from the new project;
4. Fixes hierarchies (e.g. classes that extended sajas.core.Agent must now

extend jade.core.Agent).

5 https://www.eclipse.org/jdt/



SAJaS: Enabling JADE-based Simulations 15

A similar sequence of actions is fired in the case of a JADE-to-SAJaS con-
version. In that case, the SAJaS library is added do the project’s build path.

In order to map class imports between JADE and SAJaS, a dictionary file is
included. This approach accommodates future SAJaS upgrades, or its interface
with further simulation frameworks, without having to change MASSim2Dev.

5.2 Handling JADE Updates

As mentioned in Section 4, when developing SAJaS we have tried to make
the smallest possible changes to JADE’s API, with the aim of incorporating
in SAJaS-based simulations all the features that JADE programmers have avail-
able. Given the continuous development of JADE, however, new releases of that
framework could imply a significant recoding of SAJaS.

It turns out that because of the generic mode of operation of MASSim2Dev,
we are able to use it to perform most of that recoding effort, by providing a
dictionary file that indicates which are the classes that need to be mapped. It
should be evident from Section 4 which are the classes requiring our attention.

6 Validation

In order to illustrate the validation of both SAJaS and MASSim2Dev, in this
paper we make use of two experimental scenarios that cover all relevant features.
All experiments have been run6 on three frameworks: JADE, SAJaS making use
of Repast 3, and SAJaS making use of Repast Simphony.

The first experimental scenario covers most JADE programming features,
and is described in Section 6.1, together with experimental runs and results.

The second experimental scenario starts from a JADE-based implementation
of the Risk board game, which was developed prior to the start of this project.
The Risk application is converted to SAJaS using MASSim2Dev. Section 6.2 de-
scribes this experimental scenario, together with experimental runs and results.

6.1 The Service Consumer/Provider Scenario

In this scenario, service consumers establish contract-net negotiations with ser-
vice providers. A protocol initiator (the consumer) starts a FIPA-CONTRACT-
NET by issuing a call-for-proposals (CFP) to all providers registered in the DF.
Each responder (provider) PROPOSEs a price. Finally, the consumer chooses
the cheapest proposal and replies with ACCEPT/REJECT-PROPOSALs ac-
cordingly. The execution of the service by the winning service provider may
succeed or fail, as there are good and bad service providers. When the provider
sees that it is going to fail, it may subcontract the service execution to another
service provider randomly chosen, by sending a REQUEST (thus initiating a

6 We have used a 64 bit Intel Core(TM)2 Duo CPU E8500, 3.16GHz, 6 GB RAM
machine.



16 Lopes Cardoso, H.

FIPA-REQUEST protocol); the subcontracted service provider may, again, suc-
ceed or fail. An INFORM or a FAILURE message is sent to the service consumer,
respectively. Some service consumers will be paying attention to service execu-
tion outcomes. In this case, they will start contract-net protocols only with a
number of the best providers in the market, according to their own experience.

This scenario exploits most features that a programmer may want to make
use of in JADE7, including:

– The yellow page service, used for registering, searching and subscribing.
– Several kinds of behaviours, including protocol-related ones, cyclic behaviours

and wrapper behaviours.
– Several kinds of protocols available in JADE, including FIPA-SUBSCRIBE

(to the yellow page service), FIPA-CONTRACT-NET and FIPA-REQUEST,
as well as responder dispatchers and register behaviour handlers.

– Languages and ontologies, used for the content of ACL messages.

We have run two sets of experiments based on this scenario. The first one
tries to show the similarity of results when using each of the three frameworks
(JADE, SAJaS+Repast3 and SAJaS+RepastS). While the exact scenario de-
tails are not determinant, we simply want to show that service consumers that
filter out bad service providers tend to get more successfully executed services.
In this experiment, we have 10 consumers negotiating with all providers, 10
consumers negotiating only with the five best providers, and 20 providers (half
good, half bad). Each service provider makes random proposals within a fixed
random range; furthermore, good providers have a 0.8 probability of success-
fully executing the service, while for bad providers this probability drops to 0.2.
In each experiment, each consumer establishes a sequence of 100 contract net
negotiations.

Figure 5 shows that the outcomes of simulation are similar for each of the
three frameworks. Values shown comprise average results from 5 simulation runs.
This proves that scenario conversion between JADE and SAJaS obtains equiv-
alent systems. In fact, experiments free from random factors (which are not
included in this paper) show identical results.

The second set of experiments compares execution times, for different num-
bers of agents. Figure 6 plots the results for each framework. The value of n
represents the number of consumers of each type, while the total number of
providers is 5 × n. Every thing else is configured as in the previous experiment.

It is clear that SAJaS, both when paired with Repast 3 or Repast Simphony,
outperforms JADE in terms of simulation performance.

6.2 The Risk Board Game Scenario

RISK is a multi-player strategy board game played in turns8. The game im-
plementation used for this experiment was developed with JADE before the

7 We point the reader to the JADE documentation for details on these features.
8 The reader can find details about Risk at http://en.wikipedia.org/wiki/Risk_

(game)



SAJaS: Enabling JADE-based Simulations 17

Fig. 5. Outcome comparison: thinner lines correspond to consumers negotiating with
all providers (AllProv), while thicker lines correspond to those negotiating with the
best providers only (ProvSel).

Fig. 6. Simulation performance for different numbers of agents (n consumers of each
type and 5 × n providers).

conception of the project described in this paper. The game is played automati-
cally by software agents, competing against each other for the conquest of a map
that loosely resembles a world map and its regions.

Playing agents have different playing skills and are classified as aggressive,
defensive, opportunistic or random. Communication occurs between the players
and the game agent using the FIPA-REQUEST protocol. The game also heavily
relies on custom Finite State Machine Behaviours (supported by JADE through
the FSMBehaviour class) to control game progress. To evaluate the performance
of the game, logging features were introduced to the original source code of the
application, in order to record the number of rounds executing in each second.
No other changes were made to the original code.

For this experiment, a match with five “random agents” was set up. Random
agents do not follow any particular strategy of attack, defence or soldier dis-
tribution; a game with random agents only is always never-ending. To analyse



18 Lopes Cardoso, H.

performance using different runtime frameworks, the game was converted from
JADE to SAJaS using MASSim2Dev.

The game was repeated 3 times. Average results are shown in Figure 7, for the
first 20 seconds of the game. As can be seen, SAJaS has a much better execution
performance in an initial simulation period, which we attribute to the much
faster setup phase as compared to JADE. Given the low number of agents that
are executing and the turn-based nature of the Risk game, the two frameworks
have a comparable execution performance after this first period. Although not
imposing a strong overhead in terms of parallel execution threads, the executing
behaviour of agents in Risk strongly relies on communication (agents are idle
most of the time), which explains the fact that the lines in Figure 7 are mostly
parallel from second 15 onwards.

Fig. 7. Performance of a Risk match with 5 random agents.

7 Conclusions

When developing multi-agent systems, it is useful to run simulations for the
purpose of testing. Most MAS development frameworks, however, are not well
suited for simulation, mainly due to scalability limitations. In fact, some of such
frameworks, such as JADE, focus instead on deployment features of the devel-
oped MAS, such as the possibility to run the system distributed among machines
– a crucial aspect if multi-agent systems are to be applied in real-world scenarios.

Agent-based simulation frameworks, on the other hand, do not offer signif-
icant support for agent and multi-agent programming, such as high-level com-
munication and agent building blocks, leaving the programmer with simple Java
objects to program with. Using simulation frameworks for simulating prelimi-
nary versions of multi-agent systems is thus a hassle, also because of the need
to recode a significant part of the simulation if it is to be later deployed as a
full-featured MAS.

Given the growing interest in solutions that provide a richer set of program-
ming tools for developing MABS, our proposal is meant to take advantage of the



SAJaS: Enabling JADE-based Simulations 19

best of both worlds, by providing a simulation engine-based infrastructure for
developing multi-agent systems. Two advantages are offered with SAJaS. First,
the MABS programmer has a rich set of multi-agent programming features of-
fered by JADE, while being able to explore simulation-related features offered by
the simulation infrastructure, such as Repast. Second, a same implementation
can to a great extent be used both for simulation and for deployment purposes.
The MASSim2Dev tool helps on automating this transition, in both directions.

Our experiments have shown the equivalence of a multi-agent implementation
when used for simulation and deployment. Furthermore, by using a simulation
infrastructure, JADE-based simulations become practical. Repast simulations
scale much better than those executed with the JADE runtime infrastructure.
A conscious effort was put in keeping a clear separation within SAJaS between
Repast-specific elements and the core of SAJaS API. This enables the future
integration of SAJaS with other simulation infrastructures.

It should be noted that simulation performance gains are not universal. The
application scenarios where MAS simulations are expected to obtain higher gains
by making use of SAJaS are those where agent interaction through communi-
cation plays a main role. If, on the other hand, communication overheads are
bearable and outbalanced by the benefits of having a distributed simulation in-
frastructure that enables a parallel execution of the agents in the MAS, then
SAJaS might not be the best approach. In such cases we can say that computa-
tion plays a more important role, and thus distributing it through a number of
cores is a more sensible approach.

8 Future Work

Some lines of future work on SAJaS and MASSim2Dev will be pursuit. Although
SAJaS is already strongly integrated with JADE, as mentioned in Section 4.2
it currently has at least two limitations. The notion of time is the most critical
in terms of correspondence between the simulation and deployment versions of
a multi-agent system. The fact that time is meaningful in a MAS is related to
potential network problems or computation time. These issues mostly disappear
when running a local simulation: no network problems can affect it, and in many
cases agent-based simulations assume simple agent behaviours, with minimal
computation times. It is therefore not clear how time-handling in JADE-based
communication should be ported to SAJaS, if not to simply ignore the possibility
of timeouts. This is something we intend to investigate.

The second limitation is related with JADE’s blocking communication ap-
proaches. Encompassing this feature in SAJaS may be justified for extending
the coverage of JADE features. But in any case, it is always possible to repro-
gram a MAS that makes use of these approaches to a version relying only on
non-blocking approaches.

Apart from the possibility of exploiting message-waiting behaviours to achieve
synchronisation, SAJaS does not include any other synchronization mechanism.
This is an important distinction as compared to other works, such as [10]. Given



20 Lopes Cardoso, H.

its reliance on the underlying simulation framework, however, it should not be
too difficult to implement a more robust synchronization approach, by upgrading
the sajas.core.Agent class with appropriate data members and methods.

The modularity of SAJaS allows future extensions without changing the API
and opens doors to future integration with simulation frameworks other than
Repast. Doing so may enlarge the community of SAJaS potential users.

One interesting feature in Repast is the ability to create real time visual-
izations of simulation data. This is possible in part because agents in Repast
are executed locally, so access to this data is facilitated9. It could be interest-
ing to include data collection and display tools that could be ported between
frameworks, taking advantage of MASSim2Dev.

Possible enhancements to the MASSim2Dev plugin include providing sup-
port for user configurations, such as the selection of the name and location of
the newly generated project, and the automatic creation of “stub launchers”
that would allow to quickly test if the generated project executes correctly. As
mentioned in Section 5.2, with proper configuration MASSim2Dev can also be
used to automatically generate new SAJaS versions triggered by JADE updates.

Finally, SAJaS and MASSim2Dev are being released10 to the academic com-
munity for further development, discussion and use.

Acknowledgments. The author would like to thank João Lopes for his initial
work on SAJaS and MASSim2Dev, and also João Gonçalves and Pedro Costa
for providing the source code of their JADE-based Risk game implementation.

References

1. T Ahlbrecht, J Dix, M Köster, P Kraus, and Jörg P Müller. A scalable runtime
platform for multiagent-based simulation. Technical report, Technical Report IfI-
14-02, TU Clausthal, 2014.

2. Rob Allan. Survey of Agent Based Modelling and Simulation Tools. Technical
Report DL-TR-2010-007, Science and Technology Facilities Council, Warrington,
U.K., 2010.

3. M Balmer, K Meister, M Rieser, K Nagel, Kay W Axhausen, Kay W Axhausen, and
Kay W Axhausen. Agent-based simulation of travel demand: Structure and compu-
tational performance of MATSim-T. ETH, Eidgenössische Technische Hochschule
Zürich, IVT Institut für Verkehrsplanung und Transportsysteme, 2008.

4. Fabio Luigi Bellifemine, Giovanni Caire, and Dominic Greenwood. Developing
multi-agent systems with JADE, volume 7. John Wiley & Sons, 2007.

5. Rafael H. Bordini, Jomi Fred Hübner, and Michael Wooldridge. Programming
Multi-Agent Systems in AgentSpeak using Jason. John Wiley & Sons, Ltd, 2007.

6. N Collier. Repast: An extensible framework for agent simulation. The University
of Chicagos Social Science Research, 36, 2003.

9 We did not take advantage of these features when collecting results from our exper-
iments, since they are not available in JADE.

10 http://web.fe.up.pt/~hlc/doku.php?id=SAJaS



SAJaS: Enabling JADE-based Simulations 21

7. Paul Davidsson. Multi agent based simulation: Beyond social simulation. In Scott
Moss and Paul Davidsson, editors, Multi-Agent-Based Simulation, volume 1979
of Lecture Notes in Computer Science, pages 97–107. Springer Berlin Heidelberg,
2001.

8. J Dávila and M Uzcátegui. Galatea: A multi-agent simulation platform. In Proceed-
ings of the International Conference on Modeling, Simulation and Neural Networks,
2000.

9. G. Fortino and M. J. North. Simulation-based development and validation of
multi-agent systems. J Simulation, 7(3):137–143, Aug 2013.

10. E Garćıa, S Rodŕıguez, B Mart́ın, C Zato, and B Pérez. Misia: Middleware infras-
tructure to simulate intelligent agents. In International Symposium on Distributed
Computing and Artificial Intelligence, pages 107–116. Springer Berlin Heidelberg,
2011.

11. J Gormer, G Homoceanu, C Mumme, M Huhn, and J Muller. Jrep: Ex-
tending repast simphony for jade agent behavior components. In Proc. 2011
IEEE/WIC/ACM Int. Conf. on Web Intelligence and Intelligent Agent Technol-
ogy, Vol. 02, pages 149–154. IEEE Computer Society, 2011.

12. Franziska Klgl, Rainer Herrler, and Christoph Oechslein. From simulated to real
environments: How to use sesam for software development. In Michael Schillo,
Matthias Klusch, Jrg Mller, and Huaglory Tianfield, editors, Multiagent System
Technologies, volume 2831 of Lecture Notes in Computer Science, pages 13–24.
Springer Berlin Heidelberg, 2003.

13. D Mengistu, P Troger, L Lundberg, and P Davidsson. Scalability in distributed
multi-agent based simulations: The jade case. In 2nd Int. Conf. on Future Gen-
eration Communication and Networking Symposia (FGCNS’08), volume 5, pages
93–99. IEEE, 2008.

14. C Nikolai and G Madey. Tools of the trade: A survey of various agent based
modeling platforms. J. of Artificial Societies & Social Simulation, 12(2), 2009.

15. M North, T Howe, Collier N., and R Vos. The repast simphony runtime system. In
Proceedings of the Agent 2005 Conference on Generative Social Processes, Models,
and Mechanisms, 2005.

16. P O’Brien and R Nicol. Fipatowards a standard for software agents. BT Technology
Journal, 16(3):51–59, 1998.

17. Dirk Pawlaszczyk and Steffen Strassburger. Scalability in distributed simulations
of agent-based models. In Winter Simulation Conference, WSC ’09, pages 1189–
1200. Winter Simulation Conference, 2009.

18. Ilias Sakellariou, Petros Kefalas, and Ioanna Stamatopoulou. Enhancing netlogo to
simulate bdi communicating agents. In John Darzentas, GeorgeA. Vouros, Spyros
Vosinakis, and Argyris Arnellos, editors, Artificial Intelligence: Theories, Models
and Applications, volume 5138 of Lecture Notes in Computer Science, pages 263–
275. Springer Berlin Heidelberg, 2008.

19. S Tisue and U Wilensky. Netlogo: A simple environment for modeling complexity.
In International Conference on Complex Systems, pages 16–21, 2004.

20. Tobias Warden, Robert Porzel, Jan D. Gehrke, Otthein Herzog, Hagen Langer,
and Rainer Malaka. Towards ontology-based multiagent simulations: The plasma
approach. In European Conference on Modelling and Simulation, ECMS 2010,
Kuala Lumpur, Malaysia, June 1-4, 2010, pages 50–56, 2010.

21. Michael Wooldridge. An Introduction to MultiAgent Systems. Wiley Publishing,
2nd edition, 2009.


