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Lie structure on the Hochschild cohomology of a family of
subalgebras of the Weyl algebra

Samuel A. Lopes and Andrea Solotar

Abstract. For each nonzero h € F[x], where F is a field, let A be the unital associative algebra
generated by elements x, y, satisfying the relation yx — xy = h. This gives a parametric family of
subalgebras of the Weyl algebra A1, containing many well-known algebras which have previously
been studied independently. In this paper, we give a full description of the Hochschild cohomology
HH®(Az,) over a field of an arbitrary characteristic. In case IF has a positive characteristic, the center
Z(A) of Ay is nontrivial and we describe HH®(A;) as a module over Z(A). The most interesting
results occur when I has a characteristic 0. In this case, we describe HH®(A;) as a module over the
Lie algebra HH! (Ap,) and find that this action is closely related to the intermediate series modules
over the Virasoro algebra. We also determine when HH® (A) is a semisimple HH1 (A)-module.

1. Introduction

The Weyl algebra became an object of interest in the 1920s, together with the development
of the quantum theories in physics. It has played an important role in -module theory. It
is well known that the Weyl algebra is the algebra of differential operators over the one-
dimensional affine space, where x acts by multiplication and y corresponds to the usual
derivative %. Of course, replacing this last action by 4 - % for any fixed polynomial
h(x) € F[x] also corresponds to a derivation. If 7 = 0, the derivation would annihilate
everywhere, so we will not consider this case. Precisely, the algebras we consider are
Ore extensions of the polynomial algebra in one variable, whose only other possible Ore
extensions — here we allow 4 = 0 — are a quantum plane or a quantum Wey] algebra.

Given a field F and a nonzero polynomial /(x) € F[x], let A, be the unital associative
[F-algebra with two generators x and y, subject to the relation yx — xy = h. There is
an embedding of Ay in A; given by x — x, y — yh, as in [2, Lem. 3.1]. We will thus
henceforth take y = yh and consider A; as the unital subalgebra of the Weyl algebra A;
generated by x and y = yh, where [y, x] = 1 and [, x] = h.

The family A;, parametrizes many well-known algebras, which we study simultane-
ously. As previously said, for 7 = 1, we retrieve the first Weyl algebra A;. Other particular
cases have attracted attention, such as Ay, which is the universal enveloping algebra of the
two-dimensional non-abelian Lie algebra, and A, 2, known as the Jordan plane, which is a
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Nichols algebra of non-diagonal type. More generally, taking 7 = x” with n > 3 and set-
ting x in degree 1 and y in degree n — 1, then, as observed by Stephenson [12], Ax» is an
Artin—Schelter regular of global dimension two, although it does not admit any regrading
so that it becomes generated in degree one.

The aim of this article is to describe the structure — given by the Gerstenhaber bracket —
of the Hochschild cohomology spaces HH®(A,) as Lie modules over HH! (Ay,).

The Hochschild cohomology HH®(A) = €D,,- HH" (A;) can be made into a Lie mod-
ule for the Lie algebra HH! (Aj,) of outer derivations of Ay, under the Gerstenhaber bracket.
By the Hochschild—Kostant—Rosenberg theorem, under suitable assumptions, this bracket
is the generalization to higher degrees of the Schouten—Nijenhuis bracket. In our setting,
this is especially interesting in case char(IF) = 0 and ged(h, h") # 1 as then the description
of HH!(Ap,) is related to the Witt algebra and, as we shall see, the HH! (A,)-Lie module
structure of HH?(A) can be described in terms of the representation theory of the Witt
algebra.

The paper is organized as follows. In Section 2, we prove a few technical lemmas
about commutators, while in Section 3, we construct the minimal resolution of Ay as an
Ap-bimodule. Since it has length 2, HH! (A;) is zero for i greater than 2. In particular, this
resolution allows us to give an explicit description of HHZ(A) in a positive characteristic.
The aim of Section 4 is to complete the construction of a contracting homotopy for the
minimal resolution, and in Section 5, we recall the method developed by Sudrez-Alvarez
[13] to compute the brackets [HH! (A4), HH" (4)] for any associative unital algebra A. This
allows us to obtain in Section 6 the main results of this article: the description, in a char-
acteristic zero, of the Lie structure of HH®(Ay,) as an HH! (Aj,)-Lie module.

Below we summarize, in simplified form, the main results of the paper.

Theorem A (Theorem 3.24). Assume that char(F) = p > 0 and let Z(Ay) denote the
center of Ay. Then, HH2(Ay,) is a free Z(Ap)-module if and only if gcd(h, ') = 1. In this
case, HH%(Ay,) has rank one over Z(Ay,) and, moreover, HH® (Ap,) is a free Z(Aj,)-module.

In a positive characteristic, an explicit description of HH?(Ay,) is given in Theorem 3.21,
although this is a bit involved. On the other hand, in a characteristic zero, HHZ(Ah) can be
presented as a space of polynomials.

Theorem B (cf. Corollary 3.11 and Remark 3.13). Assume that char(F) = 0. There are
isomorphisms
HH?(A) = A/ ged(h, h')A, = D[],

where D = (F[x]/ ged(h, h')F[x]). In particular, HH?(Ay) = 0 if and only if h is a sepa-

rable polynomial; otherwise, HH?(Ay) is infinite-dimensional.

We also describe in detail HHZ(Az) as an HH!(A;)-Lie module. Please refer to Theo-
rem 6.2 below, or [1, Thm. 5.1, Prop. 5.9], for a detailed description of the structure of
HH!(A) as a Lie algebra.



Lie structure on the Hochschild cohomology of A, 1375

Theorem C (cf. Theorem 6.19). Assume that char(IF) = 0 and ged(h, h') # 1. Let my, +
1 be the largest exponent occurring in the decomposition of h in F[x] into irreducible
factors. The structure of HH?(Ay) as a Lie module, under the Gerstenhaber bracket, for
the Lie algebra HH(Ay) is as follows:

(a) there is a filtration of length my, by HHY(A)-submodules,

HH*(A)) = Py 2 P12 -+ 2 Pyt 2 Py, =0,

= =

such that each factor P;/ P; 41 is semisimple;

(b) the irreducible summands of each P;/P;jy1 can be naturally seen as obtained
from intermediate series modules for the Witt algebra, under a suitable finite field
extension of F;

(c) HH2(Ay) has a finite composition length, equal to the number of irreducible fac-
tors of ged(h, h'), counted with multiplicity;

(d) HH2(Ap) is a semisimple HH (Ay)-module if and only if h is not divisible by the
cube of any non-constant polynomial.

It is noteworthy that in case [ is of a characteristic O and algebraically closed (so
that each irreducible factor of % is linear and the corresponding factor algebra of F[x]
is isomorphic to ), then from Theorem C and the previous results obtained in [1] we
can recover the number of irreducible factors appearing in / and the corresponding multi-
plicities. More specifically, let A(%) denote the partition encoding the multiplicities of the
irreducible factors of 4. We can conclude that if A(#) and A(g) are different partitions,
then Ay, is not derived equivalent to Ag.

We now fix some definitions and notation. Given an associative algebra A and elements
a,b € A, we use the commutator notation [a, b] = ab — ba. The center of A and the
centralizer of an element a € A will be denoted by Z(A) and Cy4(a), respectively. An
element ¢ € A is normal if cA = Ac (an ideal of A). We remark that the set of normal
elements of A forms a multiplicative monoid.

Given a two-sided ideal I of A, we will write a = b (mod ') to mean thata — b € I.
This yields an equivalence relation on A with the usual stability properties under addition
and multiplication. If J is another ideal such that J C I, then obviously a = b (mod J)
implies that @ = b (mod I). In case I = c A for some normal element ¢ € A, we also use
the notation a = b (mod ¢).

Unadorned ® will always mean ®p. For any set E, 1 g will denote the identity map
on E. Given f € F[x], f® stands for the k-th derivative of f with respect to x, which
we also denote by f/ and f” in case k = 1, 2, respectively. If f, g € F[x] are not both
zero, then we tacitly assume that gcd( £, g) is monic.

An infinite-dimensional Lie algebra which plays an important role in the description of
HH!(A) is the Witt algebra. A confusion with terminology may arise here, since the term
Witt algebra has been used in the literature to mean two different things: the complex
Witt algebra is the Lie algebra of derivations of the ring C[z%1], with basis elements
w, = z"t! %, for n € Z; while over a field K of a characteristic p > 0, the Witt algebra
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is defined to be the Lie algebra of derivations of the ring K[z]/(z?), spanned by w,, for
—1 <n < p — 2. Here, we are considering a subalgebra of the first one (defined over the
field IF):

W = spang{w; | i > —1}, (1.1)

equipped with the Lie bracket [wy,, w,] = (n — M)Wy 4+p, for m,n > —1. It is easy to
check that if char(IF) = 0, then W is a simple Lie algebra (cf. [1, Lem. 5.19]). For the sake
of simplicity and in accordance with the usage in [1], we will abuse the terminology and
refer to the algebra W defined above as the Witt algebra. To make the distinction clear, we
will call the Lie algebra of derivations of IF [z*1], with basis {w; };cz, the full Witt algebra.

A related Lie algebra of the utmost importance in theoretical physics is the Virasoro
algebra, denoted by Vir. It has basis {w; | i € Z} U {c} over I, with bracket

. m3 —m
[c,Vil=0 and [wy,w,] =0 —m)Wytn + 8m+"’OTC’

for all m,n € Z. We will see in (6.21) that the composition factors of HH?(A) can be natu-
rally embedded into irreducible modules for the Virasoro algebra. These are the so-called
intermediate series modules and it is a result of Mathieu [9] that a Harish-Chandra module
for Vir is either a highest weight module, a lowest weight module or an intermediate series
module.

2. Some technical results on commutators

In this short section, we gather some technical lemmas about commutators in Ay,. We will
need several additional results on centralizers and commutators in Ay from [2], which for
convenience we combine below.

Proposition 2.1 (cf. [2, Lem. 3.4, 5.2, 6.1, 6.3; Prop. 5.5, 6.2; Thm. 5.3]). Let§ : F[x] —
IF [x] be the derivation defined by 5(f) = f'h forall f € F|x].
(a) One has the following formula for computing in Ay:

o f = 2(7)81' (9" (2.2)
j=o/

(b) Ay, is a free left F[x]-module with basis {h' y'};o.

(¢) Ifchar(F) =0, then Z(Ay) = F; if char(F) = p > 0, then Z(Ay,) is the polynomial
algebra in the variables xP and h? y?.

(d) The centralizer Cy, (x) is generated by F[x] and Z(Ap,).

(e) Ay is free over Z(Ap) and over Cy, (x). If char(F) = p > 0, then

p—1 p—1
A= P zan)x iyl = @D Ca, ()R y7.
i,j=0 Jj=0

() [An, An] S hAp. If char(F) = 0, then [x, Ap] = [V, Ap] = [An, An] = hAp.
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Lemma 2.3. Forany 0 # h € F[x], [F[x], As] = [x, Ap].

Proof. If char(IF) = 0, then the claim follows from [x, Ay] = [A, Ax], by Proposition 2.1.
So assume that char(IF) = p > 0. By [2, Lem. 6.3] and Proposition 2.1, we know that

p—2 p—1
[x.An] = @ hCa, ()17 y7/ and Ay = EP Cu, ()17 y7.
j=0 Jj=0

Given that f € F[x], ¢ € Ca,(x),and 0 < j < p — 1, we have, using (2.2),

J . J .
P i i j N i J k), j—k _ J k—1 (k) j—k , j—k
h' y/ =ch’[y/ = hJE _hE h h .
[eh?y?, [1=ch’y?, f1=c (k)f y k=1(k)c J Y

k=1
So, [chiy7 . f] € @BFZg hCu, (x)h7 y7 = [x. Ay]. .
Now, we can characterize the subspace [x, As] + [7, Ay] in case char(F) = p > 0.
Lemma 2.4. Assume that char(F) = p > 0. The following hold:
(@) forallz € Z(Ay), f € F[x], and0 < j < p — 2, one has
0.2/ R yI] € [x,An] and [§,zf WP~ yP7! = zhf'RPT P

®) A+ [P Al =@y ZAhx Ryl
@ N#(p—1,p—1)
(©) hAw = ([x.An] + [9. An]) © hZ(Ap)xP~ AP~ 1 yP L,
Proof. For the first part of (a), it suffices to show that [§, fh/ y/] € [x,A] forall 0 < j <
p — 2, as the latter is clearly a Z(Ay)-module. Since § —hy = I’ € F[x] and [F[x], Ay] =
[x,Ap], we need to prove that [hy, fh’/y/] € [x, Ay]. Moreover,

[y, fh!y) = [hy, f1W)y7 + flhy b/ y7) = hf'hy7 + flhy, h' y7]

and i f'h’ yJ € [x,Ay], so we are left with showing that [iy, h/ y/] € [x, Aj]. This is clear
for j =0,1.For2 < j < p —2, we have, using (2.2),

Jj—1 .
[hy, b/ y/] = _Z(g i l)h'i_z_lh(j_“l)hﬂlyz.
=1

This proves that [§, zfh/ y/] € [x,Ap] forall z € Z(Ay), f € F[x],and0 < j < p —2.
Now, notice that, since h?, y? € Z(A;), then

hp_lyp_lﬁ — hp_lyph =hPy? = yhpyp_l — );hp—lyp—l’ (2.5)
so [§, h?~1yP~1] = 0. Thus, for z € Z(A;) and f € F[x], we have
[P, 2fRP yP7 ) = z[, fIRP T yP T = zhf TP P

which finishes the proof of (a).
Since Z(Ap)h - im(a‘,i—x)h"’_lyp_1 = @f’;oz Z(Ap)hx! hP~1yP~1 (b) s also established
and (c) follows from (b), by Proposition 2.1. ]
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3. Minimal free bimodule resolution of A,

For simplicity, throughout the remainder of this paper, we denote Ay, simply by A, reserving
the notation Ay, for situations in which we want to emphasize & or make particular choices
for h, e.g., when referring to the Weyl algebra A;.

In this section, we construct a free resolution of A as an A-bimodule or, equivalently,
as a left A°-module, where A° = A ® A% is the enveloping algebra of A and A°? is the
opposite algebra of A.

We will follow the approach in [4]. Let V= Fx & Fy be the vector subspace of A
spanned by x and y and let R = [Fr be a vector space of dimension 1. Consider the follow-
ing sequence of right A-module maps:

0 —3ARRDA L3 AQVRA 25 AgA Ly Ao 3.1)
S~ L JE Y fer--"
st S0 S—1

The maps w, do, and d; are in fact A-bimodule maps, whereas the maps s_j, sg, and sy
are just right A-module maps. We describe them all below, except for s;, which we discuss
only in Section 4:

e is the multiplication map;

e d(I®Vv®1)=v®1—-1Quvforallv eV,

e s1(H)=1x1;

o so(FF @) =Y @x @ xk IR 4 YUk @ 5 @ $471, with the
usual convention that an empty summation is null; in particular, so(1 ® 1) = 0;

e di(I®MPIN=1))Rx+7/R®xR1-10xR)—x@F®1—so(h ®1).
It is easy to check that

podo =0=dgody, (3.2)

so (3.1) is a complex of A-bimodules. In fact, we already know that (3.1) is exact, and
hence a free resolution of A, since its associated graded complex is exact (see [4]), but it
will be useful for further computations to have an explicit contracting homotopy.

We claim that the right A-module maps s_j, sp, and s; form the desired contracting
homotopy for (3.1), i.e., that the following hold:

l‘l‘oS_l = 1A7
s—10u +doosp = laga, (33)
sop 0 do + d; 051 = lagveas .

s1 0di = lagrea-
The first two equalities are easy to prove and are left as an exercise. So as not to stray from

the main ideas of this section, we will defer the construction of the map s; and the proof
of the last two relations in (3.3) until Section 4 (see Theorem 4.8).
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Applying the functor Hompe (—, A) to the resolution associated with (3.1), we get the
commutative diagram

d* d*
0 — Homae(A® A,A) —= Homae(AQ@V ® A,A) — Homp (A®@ R® A,A) — 0

N ;

0 s A i s ABA 92 s A s 0,

where d is right composition with d;, for i = 0, 1, and the vector space isomorphisms p;
are defined as usual by

po(f)=fA®1), p(H=(/0®x®1),f1®F®D)., pf)=/1Qr®1).

The maps ¢; and ¢, are given by

¢1 (Ol) = ([X, Ot]’ [yA’ Ol]) 3.4
and
$2(a, p) = [B. x] + [V, a] — Fu(h), (3.5)
for all o, B € A, where Fy : F[x] — Ais the linear map defined by
s—1
F,(x%) = eraxs_z_l, for s > 0, (3.6)
£=0

with the convention that F, (1) = 0.

Since F;q = zFy, for z € Z(A), the maps p; and ¢; are actually Z(A)-module maps. It
follows that, as a Z(A)-module, the Hochschild cohomology of A can be determined from
the maps ¢;:

e HHO(A) = Z(A) = ker¢1;
e HH!(A) = Derp(A)/ Inderp (A) == ker ¢/ im ¢1;
e HH2(A) = A/ im ¢, is the space of equivalence classes of infinitesimal deformations of

A (see [6]);

e HHI(A) =O0foralli > 3.
The degree zero cohomology HH?(A) has been computed in [2, Sec. 5], while the deriva-

tions and the Lie algebra structure of HH! (A) were determined in [1], both over arbitrary
fields.

Examples 3.7. Assume that char(IF) = 0.

o Ifh =1, then A; is the Weyl algebra and it is well known (see [11]) that HH®(A;) = F
and HH(A;) = O for all i > 0. In this case, A; is graded, setting deg(x) = 1 and

deg(y) = —1.



S. A. Lopes and A. Solotar 1380

e If h = x, then A, is the universal enveloping algebra of the two-dimensional non-
abelian Lie algebra. In this case, HHO(Ay) =F = HH'(Ay), by [1, Thm. 5.29]. We will
see shortly that HHZ(A;) = 0.

o If h = x2, then A, is the Jordan plane. In this case, A, is graded, setting deg(x) =
deg(7) = 1. Note that HH®(A,2) = F and by [1, Thm. 5.29], as a Lie algebra,
HH!(A,2) = Fc @ W, where c is central and W is the Witt algebra given in (1.1). We
will see that HH2(A2) = F[§] is naturally a simple module for W and that this module
can be embedded into a simple module for the Virasoro algebra.

Our main goal in this section will be to determine the image of ¢, and the quotient
Z(A)-module A/ im ¢». Later, we will determine the Lie action of HH! (A) on HH2(A) given
by the Gerstenhaber bracket. Towards that goal, we start out by studying the map F,, given
in (3.6). It will be convenient to introduce a mild generalization, so that F,, can be defined
for all & in the Weyl algebra A; D A. With this extension, the range of F,, becomes A, but
we will still use Fy to denote this map.

Lemma 3.8. For a € Ay, let F, : F[x] — Ay be the linear map defined by (3.6). The
following hold for all f, g € F|[x]:
(@) Fo(fg) = fFu(g) + Fu(f)g, i.e., Fyisaderivation;
(b) ifa € Cp (x), then Fu(f) = af’;
(¢) moreover, ifa € A then Fy(f) € f'a + [x, Al
Proof. To show (a), it suffices to consider f = x¥ and g = x%, with k, s > 0. Then,
k4s—1

Fa(fg) — Fa(xk-l-S) — Z xk—i—s—f—laxf
£=0

s—1 k—1

=x* Y e axt 4+ (Zx"‘e‘lax‘)xs = fFa(g) + Fu(f)g.

£=0 {=0

This proves (a); (b) is clear and we proceed to prove (c). Again, we need only consider
a€Aand f = xk, as above. We have

k—1 k—1 k—1
Fo(xb) = Zxk%*locxe = Zxkila + Zxki(ﬁl[a,x(]
£=0 £=0 £=0
k—1
= kx*la + Z[xk_z_la,xl] ckx* o + [F[x].Al = f'a + [x,Al. =
£=0

In case char(IF') =0, the following result completely describes the image of the map ¢,.

Proposition 3.9. The following hold:
(@) im¢y C ged(h, h')A;
(b) ifchar(IF) = 0, then im ¢, = ged(h, ')A
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Proof. 1tis convenient to write ¢, = (]521 @ ¢%, where
$a:A— A P3:A — A
a = [V.a] = Fu(h). B [B.x].

Since, by Lemma 3.8 (c),

(3.10)

¢y (—a) € Ka + [x,A] + [§,A] € h'A+ hA = ged(h, k')A,
for all o € A, it follows that
im@gy = im@y +im¢3 C ged(h, K')A + [x,A]  ged(h, ')A + hA = ged(h, ')A

Now, assume that char(lF) = 0. By Proposition 2.1, we know that [x, A] = [7,A] = hA
and thus im q&% = [x,A] = hA, which implies that #A C im ¢,. Hence, we proceed to show
that also 2’'A C im ¢,. For @ € A, we have seen that

$y(—a) — Ha € [a, ] + [x,A] C hA C im ¢s.

Also, ¢% (—a) € im ¢y, so it follows that A’ € im ¢,. Hence, gcd(h, h')A = W'A + hA C
im ¢, and the equality holds, by (a). ]

Corollary 3.11. Assume that char(IF) = 0. There are isomorphisms
HH2(A) = A/ ged(h, h)A = D[7], (3.12)

where D = (F[x]/ ged(h, h')F [x]). In particular, HH?(A) = 0 if and only if gcd(h, 1)) = 1,
i.e., if and only if h is a separable polynomial; otherwise, HH?(A) is infinite-dimensional.

Remark 3.13. In case A/ gcd(h, h')A is graded, (3.12) is an isomorphism of graded vector
spaces.

Let us now consider the case char(IF) = p > 0. Suppose first that 4 € F[x?], a cen-
tral polynomial. This is a particularly interesting case, not only because it includes the
Weyl algebra A; but also since Ay, is Calabi—Yau if and only if % is central. Indeed, more
generally, Ay is twisted Calabi—Yau with Nakayama automorphism satisfying x — Xx,
y + ¥ + k', a fact which can be derived from [8, Rem. 3.4, (2.10)].

Although we can retrieve the following result from Theorem 3.21 below, we think
this particular case helps set the stage for our general result and offers a more concrete
example.

Proposition 3.14. Assume that char(F) = p > 0 and 0 # h € F[xP]. Then, im ¢, =
[x,A] + [7,A]. Thus,
p—1
HH2(A) = P (z(An)/ hz(An))x" B y/ @ Z(A)xP 1 hP =ty Pt
i,j=0
@ ))#(p—1,p—1)

as Z(A)-modules.
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In particular, in case h = 1, we obtain HH?(Ay) = Z(Ay)x?~ 1 y?~ 1 a rank-one module
over Z(Ay) = F[x?, y?].

Proof. We continue to use the maps ¢, and ¢3 defined in (3.10). For & € A, we have
¢5 (@) = [J.a] = Fo(h) = [, 0] = h'a — Oy = [§.a] — O, (3.15)

for some O € [x,A] = im ¢3. Thus, im¢1 < [x,A] + [J, A] and there are inclusions
[x,A] Cim¢, =im¢p) +im¢p3 C [x,A] + [, A]. Conversely, by (3.15) we also have that
[P.a] = ¢1(a) + Oy € ime) + imp3 = im¢s, so [J,A] C im ¢, yielding the equality
img@> = [x,A] + [V, Al

The expression for A/ im ¢, then comes from Lemma 2.4 (b) and Proposition 2.1. m

We now tackle the general case for 0 # h € [F[x], which is a bit more intricate than
the particular case studied above. Consider the decomposition A = I & ¢, where

p—2
I =Cu(x)h?'yP7! and ¢ = @CA(x)hjyj. (3.16)
j=0

Thus, im @3 = im¢i |7 + impl|4. Also, by [2, Lem. 6.3 (b)], imp3 = [x,A] = hd.
We wish to show that

img,lg +im¢s = hg +h'g = ged(h, 1) . (3.17)

Let @ € ¢. Then, [§,a] € [x,A] = hg, by Lemma 2.4 (a). As in (3.15), ¢i(a) =
[§,a] — Wa — O4 for some O € [x,A] = hg. Thus, im¢plig € hg + h'g; moreover,
Wa = —¢l(@) + [§,a] — Of € impl|g + im @2, and (3.17) is established.

So it remains to determine the image of ¢21| 1. Let o € I. Without loss of gener-
ality, we can assume that o = zfh?~1yP~! with z € Z(A) and f € F[x]. Then, using
Lemma 2.4 (a), we have

¢y () = [§.2fh? 1y~ — Fyu(h)
=zf hh?P~YyP~ 1 —zp fRP 1Pl @,
=z(f'h=h IR yP~! — Oy, (3.18)

with ®, € [x,A] = hg.
Define the map

w=up :Flx] > F[x], »x(g)=g'h—hg. (3.19)

By [1, Lem. 4.28 (d)], we know that ker x = F[x?](h/o}), where g, is the unique monic
polynomial in F[x?] of maximal degree dividing % (see [1, Def. 2.14] for a detailed
description of ). Since x is clearly F[x?]-linear and F[x] is free of rank p over the
hereditary algebra F[x?], we conclude that KX := im x is a free [F[x?]-submodule of F [x]
of rank p — 1.



Lie structure on the Hochschild cohomology of A, 1383

From the above and (3.18), we can conclude that
img, |z +imp3 = hg & Z(A)KhPyP™!
and finally that
imgo = ged(h, h')§ ® Z(A) KhP~1yP~1, (3.20)

Thence, we obtain a description of HH?(A) in a positive characteristic.

Theorem 3.21. Assume that char(F) = p > 0. Then, the image of the map ¢, defined in
(3.5) isim¢y = ged(h, W) g ® Z(AKhP~1yP~L where & and x are given in (3.16) and
(3.19), respectively, and K is the image of x. Thus,

HH?(A) = ¢/ ged(h. I g @ (Ca(x)/Z(R)K )P~ yP 7,
as Z(A)-modules. In particular, HH? (A) is nonzero for all 0 # h € F|[x].

Remark 3.22. Suppose that in Theorem 3.21, we take 0 £ h € F[xP]. Then, ged(h, ') =
hand X = him 4 =~ =@ IF[xI’ Jhx?, so that
p—2
imgy = hg & P zhx'h?~ y?~! = [x. Al +[§. Al
i=0

by Lemma 2.4 (b), in agreement with the statements in Proposition 3.14.

Examples 3.23. Let char(F) = p > 0.

(a) Incase h = 1, then A; is the Weyl algebra and, as observed in Proposition 3.14,
HH2(A1) = Z(A;)x?~1yP~1 is a rank-one free module over Z(A;) = F[x?, y?].
It was shown in [1, Thm. 3.8] that HH! (A;) is a rank-two free module over Z(A;).
(b) Incase h = x, then A, is the universal enveloping algebra of the two-dimensional
non-abelian Lie algebra. We have ged(h, h’) = 1 so that ¢/ ged(h, h')§ = 0. By
computing the image under x of the F[x?]-basis {x’ |0 <i < p — 1} of F[x],

we easily see that
p—1
Z(A)K = Z(Ax) ® P Z(Ar)x".
i=2
Hence, Theorem 3.21 yields

HHZ(Ax) = Z(Ax)xpyp_l,
again a free rank-one module over Z(Ay) = F[x?, xPyP].

(c) Assume that 4 = x2. Then, A,2 is the Jordan plane. We distinguish between two
cases:
e Casel: p=2.
In this case, x2 is central and we use Proposition 3.14 to obtain the isomor-
phism
HH2(A,2) = D @ Dx @& Dx2y @ Z(A2)x>y,
where Z(A,2) = F[x2, x*y?] and D = Z(A,2)/x%Z(A2).
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e Case2: p>2.
In this case, x2 is not central and we use Theorem 3.21. Since ged(h, h') = x
and Cp , (x)/xCa , (x) = Z(Ay2)/xPZ(Ay2), we can conclude that

S

o
9/ gcd(h,h')g =~ (Z(Ag2)/xPZ(A2))h! y7 .
0

~

Finally, as in the case & = x, it is easy to see that

2 p
Z(A2) K = P z(A2)x" & @ z(Ac2)x'
i=1 i=4
where the last summand is zero in case p = 3. Hence, Theorem 3.21 gives

HH?(Ay2) = D @ Dx%y @ Z(A,2)x*y?,

in case p = 3, and

()

o
HH?(A2) = @D Dx? y/ @ Dx2P VP! @ 7(A,2)x 2P+ yP !

NS
[
=)

Dx y/ @ Z(Ay2)x2PTyP7L

-
Il
(=]

for all primes p > 3, where Z(A,2) =F [x?,x?? yP]and D=Z(A,2)/xPZ(A,2).
Notice that in all cases, HH?(A,2) is not a free module over Z(A,2), although it is
composed of a torsion summand and a free summand of rank one.

We have seen in the examples that, in general, HH?(A) is not a free module over Z(A).
The next theorem provides a necessary and sufficient condition for HHZ(A) to be free.

Theorem 3.24. Assume that char(F) = p > 0. Then, HH?(A) is a free Z(A)-module if and
only ifged(h, h') = 1. In this case, HH?(A) has rank one over Z(A) and, moreover, HH® (A)
is a free Z(A)-module.

Proof. The last statement follows from the first by [1, Thm. 6.29], so we need only focus
on HH2(A).

The condition ged(h, h') = 1 is necessary, as otherwise, &/ gcd(h, h')§ would be
nonzero and annihilated by the central element (gcd(h, h'))?. Next, we prove that it is
sufficient.

Suppose that ged(h, h’) = 1. Then, HH?(A) 2= (Ca(x)/Z(A)K)hP~1yP~1 and, since
Ca(x) = Z(A)F [x], it suffices to prove that X is a direct summand of F[x], as [F [x?]-mod-
ules. The latter is equivalent to showing that IF [x]/JK is torsion free, for then the canonical
epimorphism F[x] —F[x]/K will yield the decomposition F[x] = K @ F[x?]&, for some
rank-one free IF[x”]-submodule F[x?]. It will follow that HH?(A) = Z(A)EhP~1yP~1 a
free Z(A)-module of rank one.
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Claim. The F[x?]-module F[x]/ K is torsion free.

Proof of the claim. Recall that x is defined in (3.19) and K is the image of x. Let 0 #
w € F[xP] and f € F[x] be such that wf € K, say wf = x(g). It needs to be shown
that f € K. For such, it is enough to show that there exist ¢ € F[x] and r € F[x?] so
that g = wq + rh. Indeed, if this is the case, then w f = wx(q) + rx(h) = wx(g) and it
follows that f = x(q) € K.

Subclaim 1. g € wF[x] + AF[x].

Proof of Subclaim 1. Lett = gcd(w, h). Then, wF[x] + AF [x] = ¢tF[x] and the equality
of = g’h — I g implies that h'g € tFF[x]. But ¢ is a divisor of & and ged(h,h') = 1 so it
follows that g € ¢IF[x], as required. |

Take ¢, r € F[x] with g = wq + rh. Applying x to this equality, we obtain x(g) =
wx(q) + x(rh) and thus o divides x(rh). So it suffices to prove that if @ divides »(rh),
then rh € wlF[x] + AF[x?]. In other words, we may assume without loss of generality
that g = rh.

Write r = ro + r1, withrg € F[xP] and ry € @ip;l F[x?]xt. As x(rh) = x(rih), we
may assume that ry = 0. So, without loss of generality, we assume that r € @lp =_11 F[x?]x?.

Subclaim 2. o divides rh.

Proof of Subclaim 2. Note that »x(rh) = r'h?, so we need to show that if w divides r'h2,
then w divides rh. From this point on, our proof follows that of [1, Lem. 6.28 (iv)],
although the details are a bit more intricate and some modifications are needed. Thus,
we suspend the proof of the subclaim here and refer the interested reader to the proof of
[1, Lem. 6.28 (iv)]. [

By the above arguments, the claim is also established, thus proving the theorem. m

4. The contracting homotopies s_;, sy, and s;

Recall the definition of the right A-module maps s_; and sg, given at the beginning of
Section 3. In this section, we prove the two final relations in (3.3), together with a few
other useful identities. For the sake of brevity, we leave most of the details to the reader.

Lemma4.1. Let f € F[x], a,b € A, anda € ARV ® A. The following hold:
(@) so(fa®b)= fsola®b)+so(f ®ab);
(b) so(fdo(a)) = fso(do(a)).

Recall that we have fixed r as the basis element of the one-dimensional vector space R.
Consider the linear map G : F[x] - A ® R ® A defined by

k—1
G(:*) =Y ¥ @rox17 forallk >0, 4.2)
i=0
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with G(1) = 0. Also, recall that § denotes the derivation of F[x] defined by §(f) = f'h,
sothat [y, ] = 8(f), forall f € F[x].

Lemma 4.3. The map G is a derivation and, for any f € F[x],

dioG() =10V f—f®IV®1—s0(f ®Y)—50(8(f/)®1)+ Iso(f ®1).

Proof. The first statement follows from Lemma 4.1 (a) and the second one can be verified
through a computation, using the properties of sq. ]

We are finally ready to define the homotopy s; : AQ V® A — A ® R ® A. This is the
right A-module map defined inductively as follows, for f € F[x],a,b € A, and £ > 0:

¢« 55a®F®b)=0;
e si(fHfex®a)=fs1(*®x® Da;
e 51(1®x®1)=0;

e SR =95 @x®1) + Xi_ (§)(G 08/ (), where 5(f) =
f'h and G is the linear map given by (4.2).

Lemma 4.4. The map sy satisfies so o dg + d1 051 = laguea-

Now, we aim to prove the last relation in (3.3), namely, s; o d; = lagrea. We start
with a technical identity which just depends on the fact that G and § are derivations.

Lemma 4.5. Givenk > 1 andr > 0,
Z > Z( )( j)51'(x")G(af(x))S’—f—f(xk—"—l) = G(87(x5)).
i=0 j=0 t=0

Our next results concern the computation of s;.

Proposition 4.6. Forall £ > 0 and all f € F[x], the following identity holds:

5.3 so(f ® 1)) = F1 (Fso(f ® 1)) +Z( ) (5 ()5,

j=0
We are now able to determine the closed formulas for s;(3*T!so(f ® 1)) and
50T x®1).
Proposition 4.7. Forall £ > 0 and f € F[x], one has

—J

L
S so(f o) =Y Z( . ) G(8 ()7 *.
=0 k=0

In particular, taking [ = x, one obtains the following explicit formula for s, :

L—j

2::( )AkG (67 ()57 *.

L
SI(J;Z-H Rx® l) — Z
j=0
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Finally, we can prove the main result of this section.

Theorem 4.8. The right A-module maps s—1, so, and sy form a contracting homotopy for
(3.1).

Proof. Tt remains to prove the identity sy o dj = lagrea from (3.3), and it clearly suffices
to check this identity on elements of the form ¢ ® r ® 1, as s is also a left IF[x]-module
homomorphism. The case £ = 0 is straightforward, so assume that £ > 1. Then,

siPfdil @re 1))
=50 @x @ 1) =51 @ x @ )P —s1(Fs0(8(x) ® 1)),

Sl(dl(ﬁé Qr® 1))

and by Proposition 4.7, we have

r‘\

—J
(e k) G (87 (1) 5+,

¢
s(”1®x® =Z

Using adequate combinatorial identities, we obtain

sl(ﬁl+1®x®l)=z Z ( ));kG(gj(x))J;Z—J—k
- — J
j=1 k=0
¢ 0—j
—k—1Y\, : i
+Z ( 1 )ykG(S-’(x))ye ik
j=1 k=0 J
1
+ Z(K —k= l)ykG(SO(x))yf—k + 546G (x)
0
k=0
—1 t—j—1
—k—1\. ; i
= Z( . )y"G(afoc))yZ ik
j=0 k=0 J
—1 t—j—1
Sl it A Y P VS
+ i PG () +9erel
Jj=0 k=0 J

s10®@x® DF +51(Fs0(x) ® D)+ @r® 1,

which proves the desired identity. ]

5. The Gerstenhaber bracket: general remarks

The Hochschild cohomology HH®(A) = €P,,-., HH" (A) has a rich structure, including an
associative, graded-commutative product (reIative to homological degree), given by the
cup product, and also a graded Lie bracket [,] of (homological) degree —1; these are
related by the graded Poisson identity. In particular, the graded anti-symmetric property
of [,] means

[, B] = —=(=1)"DO=D[8 ] forall @ € HH™(A) and B € HH"(A),
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and there is a corresponding graded version of the Jacobi identity (see [5]). Under this
construction, HH®(A) becomes a Gerstenhaber algebra. In particular, the Jacobi identity
implies that HH®(A) is a Lie module for the Lie algebra HH!(A), extending the usual Lie
bracket of derivations on HH! (A). In case A is a smooth finitely generated I -algebra and F
is perfect, the Hochschild—Kostant—Rosenberg theorem gives an isomorphism of Gersten-
haber algebras between the Hochschild cohomology of A and the exterior algebra over A
of the k-linear derivations of A, as R. Hermann proved in [7], telling that, in this situation,
the Gerstenhaber bracket is the generalization to higher degrees of the Schouten—Nijenhuis
bracket.

The Gerstenhaber structure of Hochschild cohomology is particularly interesting for
us since in case char(IF) = 0 and ged(h, i) # 1, the description of HH!(A) involves the
Witt algebra W. In a prime characteristic, most of the computations of the Gerstenhaber
structure in Hochschild cohomology concern group algebras and tame blocks; see, for
example, [3, 10].

Although the Gerstenhaber bracket does not depend on the chosen bimodule projective
resolution of A, it is, in general, difficult to compute it on an arbitrary resolution other than
the bar resolution. In spite of this, we always have [D, z] = D(z) and [D, D’] = [D, D]
for D, D' € Derp(A) and z € Z(A), so it remains to compute [HH! (A), HH2(A)], which is
what we undertake in this section. Notice that, in our case, we already have the contracting
homotopy of the minimal resolution, from which the comparison maps can be obtained.
Nevertheless, we will use an easier method that, for the family of algebras we consider,
also needs the contracting homotopy.

To avoid cumbersome notation, we identify D € Derp(A) with its canonical image
D € HH'(A). We will often refer to the map [D, —] : HH! (A) — HHI (A) as the (Lie) action
of D € HH!(A) on HH! (A).

5.1. The method of Suirez-Alvarez for computing [HH! (A), —]

In this subsection, we will describe a method devised by Sudrez-Alvarez in [13] to com-
pute the Gerstenhaber bracket [HH! (A), —] in terms of an arbitrary projective resolution of
A as a bimodule. The reader is advised to consult [13] for further details and all the proofs.

Fix an [F-algebra B and a derivation y : B — B. Given a left B-module M, we say that
alinear map f : M — M satisfying f(bm) = bf(m) + v (b)m forallb e Bandm € M
is a Y-operator on M . Given a projective resolution

d. d
s P 2P L g S M0

of M, a -lifting of the y-operator f to P, is a sequence fo = (fi)i>0 of ¥-operators
fi  Pi — P; such that the following diagram commutes:

y P, 2, p AR Po € s M > 0
lfz lfl lfo lf
) 42 > Py 4 > Po < M s 0.
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It was shown in [13, Lem. 1.4] that every i-operator f admits a unique (up to B-module
homotopy) ¥ -lifting.

Given a y-operator f and a ¥-lifting f, of f to P,, define a sequence f.tt =( f,'#)izo
of linear maps fi’i : Homg(P;, M) — Homg(P;, M) by

@) = f(d() —(fi(p),

for ¢ € Homg(P;, M) and p € P;. In fact, f.’i is an endomorphism of the complex of
vector spaces Homg(Po, M) and the induced map on cohomology

V7 p, - H(Homg(Pe, M)) — H(Homg(Ps, M))

depends only on f and not on the choice of y-lifting f,. What is more, noticing that
H(Homg(P., M)) is canonically isomorphic to Extg(M, M), we obtain a canonical mor-
phism of graded vector spaces

Vi Extg(M, M) — Extg(M, M)

which depends only on f and not on the chosen projective resolution of M (see [13,
Thm. A]).

Returning to the problem at hand, which is the computation of the bracket [HH! (A), —]
in terms of a chosen bimodule projective resolution w : Po —> A of A, set B = A® and
M = A, so that i : Ps — A can be identified with a projective resolution of A as a left
B-module. Given a derivation D of A, construct a new derivation D¢ = D @ 1, + 1, ® D
of B. It can be readily seen that D is a D®-operator on A. Since Extg(A, A) is naturally
identified with the Hochschild cohomology HH®(A), the above construction yields a map
V}, 1 HH®(A) — HH®(A), which by [13, Sec. 2.2] turns out to be [D, —] and which can be
computed using any bimodule projective resolution of A, provided that a D¢-lifting D, of
D to the given resolution is found.

Going back to the case under study, with A = Ay, € = p (the multiplication map),
Py=ARA Pi=ARV®A,and P, =A® R® A, it can be checked that D o = o D*
and D¢ is trivially a D¢-operator on A ® A, so we can choose Dy = D*¢. Taking i = 2 and
using the map p, from Section 3 to identify HH?(A) with a homomorphic image of A, we
obtain the formula describing the Lie action of HH! (A) on HHZ (A):

[D,a] = D(a) — ya(D2(1®r® 1)), (5.1)

fora e Aand D € Derp(A), where y, € Hompe (AR R® A, A) is defined by y,(1®r® 1) =
a.

5.2. The D¢ -lifting of D to (3.1)

In order to make use of (5.1), it remains to determine the D€-lifting D, of D, which
we do in this subsection. We begin with a few general observations aimed at simplifying
computations; then, we determine the D¢-liftings D; and D,.

The proof of the lemma that follows is standard and is thus omitted.
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Lemma 5.2. Let B be an algebra, ¥ : B — B a derivation, M and N left B-modules,
X € M a generating set for M as a B-module, and Y C B a generating set for B as a
vector space.
(@) If X is a free B-basis for M, then for any function ' : X — M there is a unique
Y-operator f : M — M suchthat f|x = f'.
(b) Let¢p: M — N be a morphism of B-modules and let f : M — M andg: N — N
be Yr-operators. If g o p|lx = ¢ o f|x, then the following square commutes:

M—2 4N

S l lg

M—* N

©) If f: M — M is a linear map such that f(bm) = bf(m) + ¥ (b)m for all
beY CBandallm e X C M, then f is a y-operator.

Throughout the rest of this subsection, fix D € Derp(A) and let Dy = D¢ : A° — A°.
Next, we define a Dy-lifting D; :A®Q V® A — A ® V ® A in terms of the homotopy s.

Lemma 5.3. Let D1(a @ v ®b) = ase(D(v) ®b)+ D(@) @v®b +a v D(b),
foralla,b € Aand allv eV =TFx @ Fy. Then, extending linearly to AQV Q A, this rule
defines a Dy-operator such that Dy o dg = dg o Dj.

Proof. Define first D1(1 ®@ v ® 1) = so(D(v) ® 1) forv € {x, y}. Since {1l ® x ® 1,1 ®
y ® 1} is a free basis for A® V ® A as an A°-module, Lemma 5.2 (a) guarantees the exis-
tence of a unique Dy-operator, which we still denote by D, defined on A ® V ® A and
extending the above rule.

First, notice that by linearity of D and sg, one has D1 (1 ® v ® 1) = so(D(v) ® 1) for
all v € V. Given a, b € A, the definition of a Dg-operator implies that

Dia®v®b)=Di((a®b)(1®v®1))

(@®b)D1(1Qv®1)+ Do(a®@b)(1®@Vv®1)
aso(D) @ 1)b+ D) @v®b+a®@v® D(b).

As s is a right A-module map, this expression matches the one in the statement.

Now, by Lemma 5.2 (b), it suffices to check the equality Do o dy = dg o D on ele-
ments of the form 1 ® v ® 1. Thus, using the second identity in (3.3), we establish the
final claim:

dooDi(1®v®1) =do(so(D(v) ®1)) =D(v)® 1 —s_;opu(D(v)®1)
=DW)®1—-5-1(D(v)) =Dv)®1—-11 D(v)
=D0(U®1—1®U)=D00d0(1®v®1). | |

Before we proceed to define the Dy-lifting D,, we prove some auxiliary relations
which will simplify several expressions, including one for D,(1 ® r ® 1).
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Lemma 5.4. Letg € F[x], « cAQV®A b €A and k,{ > 0. The following hold:
@ si(ga) = gsi(@);
(b) s; 050 = 0;
(©) si(Pso(gy* @ b)) = G(g)ytb, where G is given in (4.2);
(d) sioDjosg(x¥®1)= Zf:ll s1(D(x") @ x ® xk~1=1) where this sum is under-
stood to be 0 in case k € {0, 1}.

Proof. Both (a) and (b) follow trivially from the definitions, so we proceed to prove (c).
As before, we can assume that b = 1. Furthermore, using (a), (b), Lemma 4.1 (a), the
definition of s, and Proposition 4.6, we get

si(Fso(g3 @ 1) =s1(F(g50(P* ® 1) + 50(g ® §9)))
=s1(gPs0(0* ® 1)) + ¢'hsi (5o (9 ® 1)) + s1(Iso(g ® 1) 5"
= gs1(Fso( ® 1)) + s1(Fso(g ® 1))
= G(g)7".
Finally, for the proof of (d), we have, using the definition of D1, parts (a) and (b), and
the definition of sq:

k—1

sy 0Dy oso(xk ®1)= Zsl o Dl(xi ® x ®xk_i_l)
i=0
k—1

= Zsl(D(xi) ® x @ xk7i71)
i=0

k—1
= ZSI(D(xi)(X)x@xk_i_l). (]
i=1

Motivated by Lemma 5.4 (c), we extend the map G linearly to A, by setting
G(f7Y = G(f)p*, forall f € F[x]andall £ > 0. (5.5)
Thus, we can rewrite Lemma 5.4 (c) as
s1(Pso(a ® b)) = G(a)b, foralla,b € A. (5.6)

We are now ready to define the Dg-operator D, in terms of D; and the homotopy s;.

Lemma 5.7. There is a unique Dg-operator D, : AQ RQ® A — A® R® A such that
D;(1®r®1)=s;0D;0di(1®r® 1). Then, D; ody = dy o D, and

Dy(1®r®1)=G(D(x) +s1(DP)@x®1) —sioDiosg(h@1).  (5.8)
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Proof. By Lemma 5.2 (a), there exists a unique Dg-operator D, defined on A ® R ® A and
such that D> (1®r®1) =51 0 D; od; (1 ®r® 1). The exact expression for D, (a ® r® b)
can be computed as in the proof of Lemma 5.3.

Now, using Lemma 5.4 and (5.6), we have

Dy(1®r®1) =s1(D1(1® @ x)) +s51(D1(I@x® 1)) —s51(D1(1 @ x ® 7))
— sl(Dl(x Ry ® 1)) — sl(Dl(so(h ® 1)))
=s1(s0(D(P) ® x)) +s1(1 ® J ® D(x)) + s1(Pso(D(x) ® 1))
+ sl(D(yA) RX® 1) — sl(so(D(x) ® )7)) — 51(1 RX® D()?))
—s1(xso(D(P)® 1)) —s1(D(x) ® ) ® 1) — 51 (D1 (so(h ® 1)))
=51 (Jso(D(x) ® 1)) +s51(D(P) @ x ® 1) —s1(D1(s0(h ® 1)))
=G(D(x)) +s51(D() ®x ® 1) —s1(Di1(so(h ® 1))).
Finally, by Lemma 5.2 (b), it is enough to show that D; odi(1 ® r® 1) = d; o
D>(1 ® r® 1), so we compute, using Lemma 4.4 and Lemma 5.3,
dioD(1®r®1)=djos;oDjodi(1®r®1)
=D;odi(1®r®1)—spodpoD;odi(1®r®1)
=Djodi(1®r®1)—spoDgodgodi(1®rx1)
—Diodi(1®r® 1),

an()Odlzo. |

5.3. Technical lemmas

We need to prove yet some more technical results which will allow us to simplify the
computation of the Gerstenhaber bracket given in (5.1). Although these will be particularly
useful in case char(IF) = 0, most statements hold over an arbitrary field, so we include
them here.

Following [1, Lem. 2.13], it will be useful to define, for 0 # f € F[x], the element
mr such that

(1) 7y € F[x] is monic;
2) ny = Wf;’f,), up to a nonzero scalar.

In particular, if f" =0, then 7y = 1.

In this subsection, we will mostly work over some homomorphic image of A and we
will extensively use the notations @ = b (mod /) and @ = b (mod ¢), defined in the intro-
duction to mean thata —b € I and a — b € cA = Ac, for a two-sided ideal I and a normal
element c, respectively. We remark that the monoid of normal elements of A was described
in [2, Thm. 7.2] and, in particular, any product of factors of / is normal in A.

Lemma 5.9. Let D € Derp(A), a € A, and k > 0. The following hold:
(@) D(h) € hAand D(x) € mpA;
(b) D(a*) = ka*~'D(a) (mod h);
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(¢) D(ged(h,h")) € ged(h, ')A
Proof. The defining relation for A implies that
D) = —[D(x),)?] - [x, D()?)] € [A,A] C KA.

So D(hA) C hA and D induces a derivation D : A/ hA — A/hA with D(a + hA) =
D(a) + hA. Since A/ hA is commutative, we have

D(a*) + hA = D((a + hA)*) = ka* ™' D(a) + hA,

which proves (b).

In particular, 0 = D (k) = i/ D(x) (mod &), and it follows that 2’ D(x) € hA. Since for
any f € F[x] we have that /i divides 4’ f if and only if 7;, divides f, we conclude that
D(x) € myA, finishing the proof of (a).

Let g = ged(h, h'). Up to a nonzero scalar, h = mj,g. Write D(x) = mpb for some
b € A. By (b),

D(g) € g'mpb + hA C g'mpA + hA.

Ash' = mpg' + ;g and g divides /', we deduce that g divides 75¢’, so D(g) € gA +
hA = gA. |
Lemma 5.10. Let v be a divisor of h, D € Derg(A), x € Homp(A® R® A, A), and [ €
F [x]. The following hold:

(A siVAQVRA+ARVR®VA) CVARRR®A+ARR® VA,

(b) YWVA®RQA+AQR® VA) C VA;

© xoG(f)= f'x(1®r® 1) (modh); in particular, y o G(hA) C ged(h, h')A;

(d) if char(IF) #£ 2, then y osy o Dy oso(f ® 1) € 7y, fA + hA; in particular,
xosyoDiosy(h®1) € ged(h, I)A;

) yosi(P*@x®1) =Ly(1®r® 1) (mod ged(h, 1)), for all £ > 0.
Proof. The claim in (a) is clear because v is normal, s;(VA® V® A) = vs;(AQ VR A) C

VA ® R ® A, by Lemma 5.4, and s; is a right A-module map. Claim (b) is proved similarly.
Take f = x*, with k > 0. Then,

k-1 k—1
2o GER) =Y i @re kT =3 i ere )
i=0 i=0

=kx*1y(1®r®1) (modh),
establishing the first claim in (c). Thus, for all £ > 0,
xoGhf3Y) = x(Ghf))F* e (W f +hf)x(1 ® r® 1)$* + hA S ged(h, I)A,

proving that y o G(hA) C ged(h, h')A.
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For (d), consider f = xk with k > 0. By Lemma 5.9, there is a € A such that
D(x) = mpa and D(x*) —ix'~'D(x) € hA, foralli > 0. Set §; = D(x’) —ix'~"1D(x).
By Lemma 5.4, we have

k—1
X©Ss10 D, OS()(Xk ® 1) = ZXQSI(D(xi) R x ®xk—i—1)
i=1

= Z xosi((ix''D(x) + 6;) ® x ® xk_i_l).

By (a) and (b), Zf:l] x05s1(0; ® x ® x¥77~1) € hA. Thus, working modulo /A and using
the commutativity of A/ A and the hypothesis that char(IF) # 2, we obtain

k—1
xosioD; OSo(xk ®1l)= ZXOSI(ixi_lnha ® x ®xk—i—1)
i=1

—le max(si(a @ x ® 1))x k=il

k
= (2)xk_2nh)((sl(a ®x®1))
1
= (xk)"nhz)((sl(a ® x ® 1)) (mod h),
soindeed y osy o Dy oso(f ® 1) € f”mpA + hA. In particular,
xosioDiosg(h®1) € h”muA+ hA C ged(h, ')A

because ged(h, h') divides h" 7.
Lastly, we prove (e) by induction on £ > 0. As y os;(1 ® x ® 1) = 0, the base step
is established and we assume that

xosif@x@ ) =L(1@r® )i} (mod ged(h, h"))

holds for some £ > 0. Then, by the definition of sy, the commutativity of A/ gcd(h, k')A,
and part (c) above, as §/ (x) € hA for all positive j,

{
‘ .
rosa( @xe ) = jraG oo )+ Y( | )i )it
j=0

=lr(1®r® DJ* + x o G(x)p*
=01 ®r® D+ y(1®r® 1) (mod ged(h, 7). =

Lemma 5.11. Let y e Homae (AQR®A,A), f €F[x], and k > 0. Then, the following hold.

(@) Tph* YR R = (k + D By (K3 b W1 yR=1 (mod ). (Notice

that in case k = 0, the above expression still makes sense, as *& Ko __ Rk
h gcd(h I )

Flx].)
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(b) % = hky* (mod ged(h, 1')).
() XOG(fhkyk)Ef/X(] ®r®])yAk_(k‘2|'1)fh//X(1 ®r®l)y’\k—l (mod ng(h,h/))
Proof. Working modulo /A, we deduce (a):

k+1 k+1 . .
ﬂhhk_l[yk+l,l’l] — Z( J )ﬂhh(])hk_lyk+l_]
j=1

k+1
=(k + l)nhh/hk_lyk—}—( ;L )nhh”hk_lyk_l (mod h).

In particular, multiplying both sides of (a) by ged(h, ') = h/wy, we obtain
k+1
2

and it follows that ZX[yk+1 1] € ged(h, h')A.
We are now ready to prove (b) by induction on k > 0, the base case being trivial.
Supposing that (b) holds for a certain k > 0, we get

y'\k-l-l = hkyk+1h — hk-‘rlyk—i-l + l’lk[_)/k+1,h] = hk+1yk+1 (mod ng(l’l,h/))

Wy . = (k + l)h/hkyk—}—( )h”hkyk—l = (k+ D)A'h*y* (mod h), (5.12)

We also prove (c) by induction on k > 0. The case k = 0 is immediate from Lemma
5.10 (c). For the inductive step, assume that the congruence holds for k > 0. By (5.12), we
have

hk+1yk+1 — hkyk+1h —hk[yk+1,h] = hkykﬁ —(k + l)h’hkyk (mod h).
By Lemma 5.10 (¢),
xo G(fhk+1yk+1)
= x o G(fH* ) = (k + Dy o G(fH'H*y¥)

1
= raasreni - () e s it
k+1

—k+ DAY x1@r® D)J* + (k + 1)( 5

)fh/h/lx(l ® r® l))’}k—l

2
k+2
2

. k+1 . N
= 1 @re i - ( )fh”x(l ®r® D — (k+1) /1 11 @r@ 1)5*

= fyQ@re )ikt — ( )fh”)((l Rr® 1)pk (mod ged(h, h")).

6. The Gerstenhaber bracket

In this section, we determine the structure of HH?(A) as a module over the Lie algebra
HH!(A) under the Gerstenhaber bracket, always under the assumption that char(F) = 0.
We will prove some of the main results of this article. In the first subsection, we will
describe two different subspaces of the space of linear derivations of our algebra that will
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act on HHZ(A) in a very different way. Next, we will describe the action of the classes
of these derivations on HH?(A). Then, we achieve our goal of giving an explicit descrip-
tion of HH?(A) as an HH!(A)-Lie module. We finish the section by relating this action of
HH!(A) on HH?(A) with the representation theory of the Virasoro algebra, and then by dis-
cussing several special cases. More explicitly, we will describe the composition series of
HH2(A) as an HH! (A)-Lie module, whose length equals the maximum of the multiplicities
of the irreducible factors of # minus 1. The successive quotients associated to this com-
position series turn out to be completely reducible. Moreover, they decompose as direct
sums of intermediate series modules over a Witt algebra. The intermediate series modules
are naturally graded and the dimensions of the homogeneous components are uniformly
bounded.

6.1. The Lie algebra structure of HH! (A)

The Lie algebra structure of HH!(A) in case char(IF) = 0 is described explicitly in [1,
Sec. 5] and we briefly collect the results we need below.
There are two types of derivations of A, which together describe Derg (A) and HH! (A).

o Forany g € F[x], let D, be the derivation of A such that Dg(x) = 0 and Dg(y) = g.
Then, {Dg | g € F[x]} is an abelian Lie subalgebra of Derp (A) and Dg € Inderp (A) if
and only if g € hlF [x].

o Viewing, as usual, A = A, C A; with § = yh, define the elements a,, = m,h" "1 y" €
{u € A1 | [u,A] C A} (the normalizer of Ain A;), for all n > 1. It will also be convenient
to consider the element ag = 7,/ h = gcd(—}lw in the localization of A; at the Ore
set formed by the powers of 4. Then, adg,, € Derp(A) for all n > 0 and g € F[x].
Moreover, adg,, € Inderp(A) if and only if g € ged(h, h')F [x].

Next, we recall the definition in [1, Sec. 4.3] of the linear endomorphism §q : F[x] —

IF[x] given by

wph’
h 9

S0(g) = 8(gao) = (gmph™"Yh = (gmp) — g (6.1)

where §(f) = f’h. By [1, Lem. 4.14], adgq, = —Ds,(s)-
For notational simplicity, by [2, Thm. 8.2], we can assume that / is monic, say h =

u‘l"1 e u‘,x’, where uy, ..., u; are the distinct monic prime factors of %, with multiplicities
oy, ...,o:. Up to changing the order of the factors, we can further assume that there is
0 <k <tsuchthatog,...,of >2and a4y = --- = @; = 1. Moreover, if kK = 0, then

gcd(h, h') = 1 and in this case HHZ(A) = 0, so there is nothing to prove.
We have the following result (see also [1, Thm. 5.1, Prop. 5.9]).

Theorem 6.2. Assume that char(F) = 0. Then, there is a decomposition HH!(A) =
Z(HH!(A)) @ [HH!(A), HHY(A)]. Moreover, using the above notations, there are isomor-
phisms of Lie algebras:
(@) N = spanp{adgg, | g € u; - - uF[x], n > 0} is the unique maximal nilpotent
ideal of [HH(A), HH! (A)];
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(b) Z(HH'(A)) = {Dy | g € ged(h, h")F[x], degg < degh};
(c) [HH'(A),HH'(A)] = spanp{adgs, | g € F[x], degg < degged(h,h’), n > 0};

(d) [HHY(A),HHY(A)]/N = W; @ --- ® Wy, where W; = (F[x]/u;F[x]) ® W is a field
extension of the Witt algebra.

6.2. Formulas for the Gerstenhaber bracket [HH! (A), HH?(A)]

Recall that by Corollary 3.11, HH?(A) = A/ gcd(h, h')A can be identified with the polyno-
mial ring D[], where D = (IF[x]/gcd(h, h')F[x]). We will use (5.1) and also the identifica-
tion introduced there between A/gcd(h, h')A and Hompe (A ® R ® A, A)/ im d}, which asso-
ciates the element a € A with the map y, € Homae (AQR®A, A) defined by y,(1®r®1) =
a, and similarly for the corresponding homomorphic images.

Fix D € Derp(A) and let Dq be the lifting as in Lemma 5.3. Now, Lemma 5.10 (d)
implies that for all @ € A, the image of y, 0 s; o Dy o so(h ® 1) in HH2(A) is zero. Thus,
we have, using Lemma 5.7,

[D.a] = D(a) — xa(G(D(x))) — xa(s1 (D) ® x ® 1)), (6.3)

foralla € Aand D € Derp (A). Moreover, by Lemma 5.9 (c), the image of D(a) in HH?(A)
depends only on the class a + ged(h, A')A and similarly, x4 (G(D(x))) and y,(s1(D(}) ®
X ® 1)) depend only on the classes D(x) + hA and D(y) + ged(h, h')A, respectively, by
Lemma 5.10.

We will first consider the derivations of the form Dg, for g € F[x]. Fix g and let D =
Dg.Takea = p(x) ¥ for some p(x)€F[x]and k>0. Then, D(x)=0=s,(D(H)®xR1)
and by Lemma 5.9, D(p(x)5%) = p(x)D($*%) = kp(x) ¥ g = kgp(x) ¥~ (mod h).
Thus, [Dg, p(x)$¥] = kgp(x)7*~! (mod ged(h, 1')). So,

d .
[Dg,—] = gd_)? on D[J]. (6.4)

In particular, [Z(HH!(A)), HH?(A)] = 0, by Theorem 6.2 (b).
Now, we can turn our attention to the derivations of the form adg,,, with g € [F[x] and
n>0.

Lemma 6.5. Let D = adg,, anda = p(x)9% € A as above. Then,
(@) D(x) =nmpgh™ 'y" ! = nmpgy"! (mod ged(h, i'));
(b) D(J) = —do(g)y" (mod ged(h, h"));
(©) D(a) = (nmpgp'(x) — kp(x)80(2)) " T+~ (mod ged(h, ).
Proof. We have
D(x) = [mpgh™ 'y", x] = nmpgh™ 1 y" ! = napgd™ ! (mod ged(h, 1)),
where the last congruence comes from Lemma 5.11 (b). Also,

D($) = [mpgh" ' y". 5] = mpgh" ' y" T h — ympgh” y"
= mpgh"y" T+ pgh" [y B = mpgh" Y T — [y, agh]y"
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1
= (n+ Daph'gh" y" + (n ;_ )Jthgh”h”_ly”_1 — (wpgh™)' y™ (mod h)
= (n + Dmyh'gh" ' y" — (mpgh™)'y" (mod ged(h, h'))
= (n + V' gh" ' y" —nmpgh'h"~'y" — (mpg) B y™ (mod ged(h, 1))
= mph'gh" ' y" — (mpg) k" y" (mod ged(h, h'))

/
= (m’: g _ (nhg)')h"y" (mod ged(h, "))

= —80(g)p" (mod ged(h, 1)),
using Lemma 5.11 (a) and (b), the fact that gcd(h, ') divides h” 7, and (6.1).
Finally, using Lemma 5.9 (b),
D(a) = D(p(x))5* + p(x)D(*)
= p'()D(xX)F* + kp(x) D($)7*!
= (nmngp'(x) — kp(x)80(2)) 5" T*~" (mod ged(h, 1)) .
Hence, for D = adg,, anda = p(x)y¥ € A, we can now compute [D, a] as an element

of D[J], using (6.3), Lemma 5.10 (e), and Lemma 5.11 (c) and recalling that gcd(h, h’)
divides h” mrp,:

D(a) = (nmpgp’ (x) — kp(x)80(g)) 5"+~ (mod ged(h, ).
xa(G(D(x))) = xa(Gnmpgh™ ' y" 1))
) 1" () ) play 7
= n(mpg) p(x) "kt (mod ged(h, k")),
Xa(s1(D(P) @ x ® 1)) = =8o(Dya(s10" ® x @ 1))
= —ndo(g) p(x) " 1 (mod ged(h, h")).

It thus follows that, working in HH?(A) = A/ gcd(h, k')A and recalling (6.1),

[D.a) = n(mngp'(x) = (rag) p()) 3" + (1 = k) p(x)80(g) 5" 7

h
= (nmagp'(x) = ng o= p(x) — kdo(g)p(x) ) 3" " (mod ged(h. ).

Therefore, we have proved the main result of this subsection.

Theorem 6.6. Assume that char(F) = 0. The Lie action of HH'(A) on HH?(A) under the
Gerstenhaber bracket is given by the following formulas:

[z(HH'(A)), HH>(A)] = 0, (6.7)
n_1 d o d aph’ .,
[adga, =] = nmagd" " —— = o(2)9 5o "o (6.8)

forall g € F[x] andn > 0, where a, = mph™~1y™.
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6.3. The structure of HH2(A) as a Lie module over HH! (A)

Recall that & = u‘i“ _ u‘,x’ , where uy, ..., u; are the prime factors of &, ordered so that
o1,...,0 >2and gy =--- =0, = 1 for0 <k <t,asin Theorem 6.2. If k = 0, then
ged(h,h') = 1 and in this case, HH?(A) = 0. Thus, we suppose throughout this subsection
that Xk > 1. Then,

wh=upoup, ged(h ) = h/my = 0P T uE T Ty = un e g
Letusfixmp =max{o; —1|1<j <k} >1
We make the identification HH?(A) = D[J], where D = [F[x]/ ged(h, h’)F[x]. Since

a;i—1

u;

, 1 <i <k, are pairwise coprime,
D= Fx]/u' 'Flx] @ -+ @ Fx]/uf* ' Flx],

and there exist nonzero pairwise orthogonal idempotents e;,...,ex € D withe; + --- +
ex =1,D=De; @ --- P Deg, and De; = ]F[x]/u?"_I]F[x] (these isomorphisms are both as
algebras and as left IF [x]-modules). Define D; = De;. Then, HH?(A) = D [§] @ - - - @ Di[¥].

Let D = F[x]/u;y -+  ugF[x] = F[x]/u1F[x] @ --- & F[x]/ugF[x]. Then, by Theo-
rem 6.2 (d), we have

[HH'(A), HH'(A)] /N =D QW = W; @ - & W,

with W; = (F[x]/u; F[x]) ® W. As the notation suggests, the algebra D is a quotient of D
by the ideal uy ---ugD. Let ey, ..., e € D be the images of the idempotents ey, . ..,ex €D
under the canonical epimorphism. It is straightforward to see that these are still nonzero
pairwise orthogonal idempotents in D withey + --- 4+ e = 1,D = De; @ - -- @ Deg, and
De; = F[x]/u;F[x]. Denote this field De; = D; by D;. Then,

[HHY(A), HH' (A)] /N = (D1 @ W) ® -+ & (D ® W). (6.9)

Fori > 0, set
k
o min{a; —1,i}
®; = 1_[ uj .
Jj=1

Thus, ®¢ = 1, ®; = uy -+ Ux = T(h/x,) and for any i > my, ©; = ged(h, h'). Finally,
define
P; = ©;D[] € HH*(A).

We record a few useful facts below.

Lemma 6.10. Fori > 0, one has

(a) ®i+l = ®i(l_[aj2i+2 Uj),'
(b) m,®; =i0;m; (mod®;F[x]);
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(c) P; = ©;D[§]is a Lie HH' (A)-submodule of HH? (A) and there is a strictly decreas-
ing filtration

HH*(A) = Po 2 P1 2+ 2 Ppy—1 2 P, = 0. (6.11)

=

Proof. (a) is clear from the definition. The identity in (b) holds trivially for i = 0 and
we prove it by induction on i > 0. So assume that 7,®; = i®;7; + ;41 f, for some
f e Flx]. As ®i+1(najzi+2 u;) € ©;1,F [x], by (a), we have

oo 1 o) =est( 11 2)+me( 1,2

oj>i+2 a;j>i+2 a;j>i+2
/
(i®i7f;/,+®i+1f)( [1 Uj)+77h®i( [1 Uj)
aj>i+2 aj>i+2
U
i@in}’l( l_[ uj)+nh®,-( l_[ uj) (mod®i+2F[x])
a;>i+2

a;>i+2
’
. ’
l®i+1ﬂh+®i+1( 1_[ Uj)( 1_[ Uj)
lﬁoljfl'-l-l Otjzi-‘rZ
’
=i®i+17[}/l+®i+1(n’;l—( l_[ Uj) ( l_[ Uj))
1<ej<i+1 ajzi+2

= i®i+17T]/1 + ®i+1”}/1 (mod ®i+2IF[x]).

/

!
LACH

The fact that (6.11) is a decreasing filtration of vector spaces is clear because ®;
divides ®;1. Since the quotient l_[a;zi 15 U of these polynomials is not a unit, for 0 <
i < my — 1, by the definition of my, the filtration is strict. Thus, it remains to show that
[adgq,. Pi] € Pi, forall g € F[x] and n,i > 0. By (6.8), given f € F[x] and £ > 0,

[adga, . ®ifﬁe] = nﬂth)if')?”'M_l + f’lﬂhg@;f)?""_e_l

h/
— £80(2)®; f$" T — g ”2

which is in P; because 7,®; € ©;F[x]. |

@if);n-i-ﬁ—l

Set S; = P;/P;11, for 0 <i < mj — 1. We have seen that S; is a nonzero HH! (A)-
module under the action induced from the Gerstenhaber bracket. Noting that §o(g) =
g80(1) + g'my, (see [1, Lem. 4.14]) and 7;,©; € O;+1F[x], we see that this action is
completely described by the following computation in S;:

hl
[adga,. O f 3¢ = fg (nnh@; —£80(1)®; —n ”’;l @,-)y”’“—l,

h/
= fg®; (inn,;—eso(l)—n”hT)ﬁ"+‘—1 (mod Piy1).  (6.12)
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In particular, [adgg,, Si] = 0if g € uy -+ ugF[x] = ©F[x] because ©®10; € ©; 11 F[x].
So, [NV, S;] = 0 forall i > 0, where  is the unique maximal nilpotent ideal of [HH! (A),
HH!(A)], as in Theorem 6.2. It follows that S; is naturally an [HH! (A), HH! (A)] /¥ -module.

Note that S; =~ (©;D/®;4+1D)[y]. Then, the definitions of D, ®;, and mj, — 1, along
with Lemma 6.10 (a), imply that there is a natural isomorphism of vector spaces induced
by the natural map D — ©;D/®;1D:

D

[ —
(I 2i42 4D

[Fl= € Dj[f]. forall0<i <my—1. (6.13)
a;j>i+2
By the above isomorphisms, the element ©; f $¢ + ©; 11 D[§] € S; is identified with the

element 3, ;45 [t e De; i 12 Di 9]
Our next step is to describe the Lie algebra isomorphism (6.9). We will need the fol-
lowing.

Lemma 6.14. There is an element v € F[x], determining a unique class modulo ®1F [x],
such that v8y(1) = 1 (mod @ F[x]). For such an element, the following hold:
@ v, —1=v™" (mod ©F[x]);

(b) v, = ﬁ (mod u;F[x]), forall 1 < j <k.

o~ / o~
Proof. We have that 7, = Z§=1 up---U; -+ ugu; and % = Z§=1 ojup -+ Uj -+ - Uz Ul
s0, in particular,
k
wph’ ~
/ /
So(1) = 7 — B = ey eur Y (1 —eur T g

i=1
and gcd(§p(1), ®1) = 1. This shows the existence of v with v3p(1) = 1 (mod ©;F[x])

and also proves (a).
Fix 1 < j < k. Then,

T, = up---Uj - upd; (mod o, F[x]),

mph' _ ~ ;o ’

= =l = oy, (mod u; F[x]).
But, by (a), we also have vrr; — v”hTh/ =1 (modu;F[x]),so (1—a;)vm, =1 (modu;[F[x])
and (b) follows since o; > 2. [

Based on the proof of [1, Lem. 5.19] and the definition of Bq, we can deduce that under
the isomorphism (6.9), the element ge; ® wy, € Bq ® W is mapped to —adge vamy T N e
[HHl(A), HHI(A)]/N, forl <q <k, g e€F[x],andm > —1, where v is as in Lemma 6.14.
Using these identifications and those in (6.13), we have

(g%@wm)-( ) fe—fﬂ)
aj>i+2

= _[adgeqvaerl ,0; fﬁg]
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h/
= ®,~ng( —i(m + vmy, + Lvo(1) + (m + l)vﬂhT))?mH (mod P;41)

O fgeg((1 —i)(m + Dvx) + £ — (m + 1)) 7™ (mod P;41)
> fgegeg(t— (m+ D)(1— (1 —i)vmy)) 5"+

a;>i+2
| feeg(b = (m+ 1)1 — (1 —i)vmp))P Pl ifay >0 42,
0 ifog <i+1,

by (6.12) and Lemma 6.14, as ®; 1 divides ®; ®;. Moreover, we can use Lemma 6.14 (b)
since uge, = 0in Eq, yielding

(geg @ w ).( E f—Al) {fgeq( (m+1)§fq:i)””“ ifag =742,
q m . .
o« 2id2 0 ifoag <i+1.

The above shows that D, ® W acts trivially on D;[y] C S; except if j = g and oy >
i + 2. In the latter case, the action of D; ® W on D4[7] is given by

(887 @ wm) - (fg9") = feeg (z —(m + 1) i)y”"”. (6.15)

In particular, each D; [§] C S; in the decomposition (6.13) is an HH! (A)-submodule of S;.

Notice that in (6.15), the elements fe, and ge, are scalars in the field extension
Dy = F[x]/ugF[x] of F and the action (6.15) is D,-linear. This motivates the following
definition. Fix a scalar it € [F and let V,, = F[y]. Define an action of the Witt algebra W
on V,, by

W - Pt = (€ —(m+ Du)$™t,  forallm > —1and £ > 0. (6.16)

It can be verified that this indeed defines an action of W on V), for any i € IF (for u of

The module V), is related to the intermediate series modules for the Witt and Virasoro
algebras (compare (6.21), ahead). Next, we record irreducibility and isomorphism criteria
for these modules.

Lemma 6.17. For F an arbitrary field of a characteristic 0 and p € I, let V,, be the
W-module defined in (6.16). Then,

(@) V), isirreducible if and only if p # 0;
(b) Vy=Vyifandonlyifu = .

Proof. The proof is straightforward, so we just sketch it. First, if u = 0, then F$° is
a submodule of Vj, so Vj is reducible. Suppose now that p # 0. Let X be a nonzero
submodule of V. Since w - 7* = €159, it follows by the usual argument that 5° € X.
Taking into account that w,, - © = —(m + 1)uy™ € X for all m > 0 and pu # 0, we
deduce that X = V),. Thus, V), is irreducible and (a) is proved.
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The action of wg on V, is diagonalizable with eigenvalues {{ — jt}¢>0, with —u being
the unique eigenvalue such that —p — 1 is no longer an eigenvalue. Thus, the action of W
on V), determines j, which proves (b). ]

It follows from the above that for all 0 <i < mj — 1 and all j such that o; > i + 2,
the D; ® W-module D;[y] C §; is irreducible and it is isomorphic to D; ® V.
Hij = z’ :ll # 0. As the action depends on i, it is convenient to introduce i into the nota-
tion for this module. Thus, we henceforth denote this module by V;;:

where

Vij=D;1Cs; and Vi; =D; @ V.

forall 0 <i <mjy —1and j such that a; > i + 2. Moreover, Bq & W acts trivially on
V;j for g # j, so it follows by Theorem 6.2 and (6.9) that V; is an irreducible HH! (A)-
submodule of S; on which both Z(HH! (A)) and the nilpotent radical .V of [HH! (A), HH! (A)]
act trivially. As a result of this analysis, we conclude that S; is a completely reducible
HH! (A)-module with semisimple decomposition (cf. (6.13)):

Si= @ Vi (6.18)

We summarize these results in the following, which constitutes the main result of this
paper.
Theorem 6.19. Assume that char(F) = 0 and A = Ay, for 0 # h € F[x]. Let h = u{" - - - u}"
be the decomposition of h into irreducible factors with0 < k <t suchthatay,...,0 > 2
and a1 = -+ = a; = 1. Since HH?(A) # 0 if and only ifk > 1, assume that k > 1 and
setmp =max{o; —1|1<j <k}

The structure of HH?(A) as Lie module over the Lie algebra HH'(A) under the Ger-

stenhaber bracket is as follows.

(a) There is a filtration of length my, by HH' (A)-submodules

HH?(A) = Pp 2 P1 2 -+ 2 Pmy—1 2 P, = 0.

= =

(b) Foreach0 <i <my — 1, the factor module S; = P; / P; 11 is completely reducible

with semisimple decomposition S; = @a,- Sit2 Vij, where

(i)  the nilpotent radical Z(HH'(A)) @ N of HH!(A) acts trivially on S;, so S;
becomes a (D; ® W) @ --- & (D ® W)-module, where D; = F[x]/u;F[x]
and W = spang{w; | i > —1} is the Witt algebra;

(i) V=D ® Vi, where pi; = z}’—:; and the irreducible W-module V), is
described in (6.16);

(iii) Dy ® W acts trivially on V; for ¢ # j and D; ® W acts on V;; via (6.16),
under scalar extension;

(@iv) Vij o~ Vi/jz as HH! (A)-modules if and only if (i, j) = (i’, j').
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(c) HHZ(A) has finite composition length equal to Z?:l (aj — 1), the number of irre-
ducible factors of gcd(h, h') counted with multiplicity; the composition factors are
{V,- i1 0<i<mp—1,a; >i+ 2}, representing distinct isomorphism classes.

(d) HH2(A) is a semisimple HH (A)-module if and only if my, < 1, i.e., if and only if h
is not divisible by the cube of any non-constant polynomial.

Remark 6.20. It turns out that under the same conditions that ensure that HH?(A) is semi-
simple, both HH®(A) and HH! (A) are also semisimple HH! (A)-modules: since char(F) = 0,
HHO(A) = F is always simple and by [1, Cor. 5.22 (ii)], HH!(A) is a direct sum of its
center — a sum of trivial modules — and simple Lie ideals.

Proof. All of the above statements have been proved, except for (iv) and (d). We start with
@v). If 7,-]- &~ 7,-/]-/, then Bj ® W acts non-trivially on 7,-/]-/, so j = j/, by (iii). Thus, by
Lemma 6.17 (b), ;; = pi’j, which in turn implies that i = i’.

For the proof of (d), if /4 is not divisible by the cube of any non-constant polynomial,
then mj, = 1 and HH?(A) = Sy, which we have seen in (b) is semisimple. Conversely, if
my, > 2, then there is some i such that o; > 3, say i = 1. By (6.8),

t
[ady, uar - 901 = —ur - up D uy Ty - uguf & ged(h. h)F [x]

i=1

because u% divides ged(h, h’) but it does not divide [ady, ..y q, 7°]. But ady,..upa; € N
and N annihilates all the composition factors of HH2(A), by (i), so HH?(A) cannot be
semisimple in this case. |

Before we proceed to illustrate our result with some special cases, we first want to
establish a connection between the representations V;; and the Virasoro algebra. Recall
that the Virasoro algebra is the unique (up to isomorphism) central extension of the full
Witt algebra of derivations of IF [z*!]. This Lie algebra is defined as Vir = DiczF-w &
IF - ¢, where

. m3 —m
[c,Vil=0 and [wp,w,] =@ —m)Wyi, + 8m+n,0TC Vm,n € Z.
Define, for u € I, the Vir-module U, = F[p*!] with action
Wm - Pt == (m+ Dw)P™t and ¢-5* =0, Ve meZ. (6.21)

The module U, is an intermediate series module (see [9] for details).
The following can be readily checked by the reader:

(a) W is aLie subalgebra of Vir;

(b) formula (6.21) gives a well-defined action of Vir on U,,;

(©) V, € U, as W-modules;

(d) U, isirreducible as a Vir-module if and only if p # 0 and p # 1;
(e) U, = U, asVir-modules if and only if © = p'.
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6.4. Special cases

We end this section with a discussion of some examples of special interest. To avoid trivial
cases, in all examples, the polynomial / is assumed to be divisible by the square of some
non-constant polynomial. We continue to assume that char(F) = 0.

Example 6.22 (h = x™). Let’s consider the case where £ has a unique irreducible factor.
For the sake of simplicity, we will assume that this factor is x, that is, h = x" withn > 2;
the more general case of an irreducible factor of higher degree is entirely analogous. In
this case,

Z(HH'(Ax)) = FDyn-1,  where D1 (x) = 0 and Dyt () = x" 71,
N = spang{adyi, |1 <i<n-2,m>0},
[HH' (Ayn), HH' (Axn)] /N = W (the Witt algebra),
HH?(Ax») = D[§], where D = (F[x]/x""'F[x]).

ForO<i<n—1,let P; = x! D[7], so that we get the following filtration of HH! (Ayn)-
submodules of HH? (Axn):
HH?(Ayn) = Pp 2 P12+ 2 Pps 2 Py = 0.

=

Set S; = P;/Piy1 = F[y], fori <n —2. Then, D n1.HH?(Ayn) = 0and N.P; C
P;41,s0 S; is naturally a module for the Witt algebra W, with action

Wy - §E = (e — (m + 1)"—_’1)y”"+£, forallm > —1 and £ > 0.
n [—

Thus, S; =~ VnT—ti is simple and the composition factors {S; }o<i<n—2 of HH2(Ax») are pair-

wise non-isomorphic. In particular, HH? (A ) has length n — 1 as an HH! (A )-module,

with distinct composition factors.

The next example, a particular case of the previous one, focuses on the Jordan plane.

Example 6.23 (The Jordan plane). Taking 4 = x2, we obtain the algebra A2, known as
the Jordan plane, with homogeneous defining relation x = xJ + x2. The description
here is

HH!(A,2) =FD, ®W and HH?*(A.2) = F[J],

where Dy (x) = 0, Dx(¥) = x, and W is the Witt algebra.

It follows that HH?(A,2) is a simple HH!(A,2)-module annihilated by D, and such
that, as a W-module, HH?(A,2) == V5.

The Lie subalgebra Fw_; & Fwy & Fw; € W is isomorphic to sl,(IF), under the
identification e = w—_1, h = —2wyg, and f = —w;, where e = E15, f = Ez1,and h =
[e, f] are the canonical generators of sl,(IF). The restriction of the HH!(A,2)-module
structure of HHZ(A,2) = F[§] to s, (F) is determined by the relations

e- Pt =031 heyt =@ =205 f-pt=w@-0yt, ve=o.
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Whence, it is easy to see that L(4) := F3° @ Fy! @ F$2 @ F$> @ F$* is a simple
sl (F)-submodule of HHZ(A,2). In fact, L(4) is the simple sl,(F)-module of highest
weight 4 and the quotient module HH?(A,2)/L(4) = M(—6) is the irreducible Verma
module of highest weight —6.

Our last example deals with the case where HH?(A) is a semisimple Lie module.

Example 6.24 (% is cube free). By Theorems 6.2 and 6.19 (d), the following conditions
are equivalent:

e HH?(A) is a semisimple HH! (A)-module;

o N =0;

e HH!(A) is a reductive Lie algebra;

e his cube free.

Here, we study the case in which these conditions hold, so the decomposition of % into
irreducible factors is of the form h = u% .- uiuk“ -+-uy, forsome 1 < k <t. We have

dimg Z(HH'(A)) = degu; -+~ uy,
HH'(A) = Z(HH'(A)) & (D1 @ W) ® -+ B (D ® W),
HH?(A) = D1[§] @ - & Di[J,

where D; = F[x]/u;F[x] and W is the Witt algebra.

Then, Z(HH! (A)) acts trivially on HH?(A) and D; ® W acts trivially on D;[§],ifi # j.
Asa Dj ® W-module, D;[§] = D; ® V5. Thus, the irreducible summands of HH?(A) are
{Bj [P1}1<;j<k. they are pairwise non-isomorphic as HH' (A)-modules, and the composi-
tion length of HH2(A) is k.
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