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Abstract 
Voids have a substantial impact on the mechanical properties of composite laminates and can 

lead to premature failure of composite parts. Optical microscopy is a commonly employed 

imaging technique to assess the void content of composite parts, as it is reliable and less 

expensive than alternative options. Usually, image thresholding techniques are used to parse 

the void content of the acquired microscopy images automatically; however, these techniques 

are very sensitive to the imaging acquisition conditions and type of composite material used. 

Additionally, these algorithms have to be calibrated before each analysis, in order to provide 

accurate results. 

This work proposes a machine-learning approach, based on a convolutional neural network 

architecture, with the objective of providing a robust tool capable of automatically parsing the 

void content of optical microscopy images, without the need of parameter tuning.  

Results from training and testing datasets composed of microscopy images extracted from 

three distinct types of laminates confirm that the proposed approach parses void content from 

microscopy images more accurately than a traditional thresholding algorithm, without the 

need of a previous calibration step. This work shows that the proposed approach is promising, 

despite sometimes lower than expected precision in individual void statistics. 
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Introduction 
Voids are created during manufacturing and can display different morphologies. Research 
suggests that these characteristics are dependent to the manufacturing process used, as well 
as the optimization degree of the process parameters [1–3]. Voids have a negative impact on 
the mechanical properties of composite laminates, especially those that are matrix dominated 
[4–7], as fatigue resistance and compression strength [7–11]. Therefore, void content 
assessment is an essential step to monitor the quality of manufactured parts, guaranteeing the 
reliability of the composite structure. 

Optical microscopy is the most commonly employed imaging technique to evaluate void 
content [1,4,12–17], since it provides reasonable accuracy and detail, and is simple. In order to 
avoid the time consuming task of evaluating the relative void content of micrography images 
manually [4,17], a commonly employed technique is automatic image segmentation by pixel 
intensity thresholding [1,13,18,19]. This technique relies on the different pixel intensities of 
the composite and the void and is usually user calibrated. However, despite the good results 
that can be achieved, this methodology can be very sensitive to the illumination conditions 
during the acquisition of the images as well as the type of material being analysed. Therefore, 
the calibration of the algorithm parameters (including the threshold value), is a necessary step 
before the analysis of a given set of images. 

Several methods exist to enable the assessment of void content in composite parts, namely 
density-based methods (acid digestion, matrix burn-off), optical or electron microscopy, 
ultrasonic testing, thermography, and X-Ray micro-CT. 

Non-destructive methods such as ultrasonic testing and thermography have the added 
advantage of preserving the part, while allowing to estimate void content. On the other hand, 
although X-ray micro-CT is not a destructive technique by nature, microscopy, X-ray micro-CT 
and density techniques usually require the partial or total destruction of the composite part in 
other to assess void content in smaller samples [20]. 

Another relevant issue in void analysis is the extraction of void characteristics, such as 
dimensions, shape, and number count. Such analysis requires a high level of detail, which not all 
analysis techniques can provide, especially when the intended voids are small enough to be 
located inside or in between the fibre tows. It is known that density-based techniques are not 
able to provide such data, whereas despite the advancements in ultrasound testing techniques, 
still ultrasound and thermography usually do not provide the ideal level of detail for such 
analysis [21,22]. 

Usually, microscopy and X-ray micro-CT techniques are reported to provide a good level of 
detail, which enables the accurate measurement and parametrization of void characteristics on 
the smaller length scales [20,22,23]. Due to its simplicity, lower cost and reasonable accuracy 
and detail, optical microscopy is still a commonly employed imaging technique to conduct void 
content analyses [1,4,12–17].  

In order to avoid the time-consuming task of evaluating the relative void content of micrography 
images manually [4,17], a commonly employed technique is automatic image segmentation by 
pixel intensity thresholding [1,13,18,19]. This technique relies on the different pixel intensities 
of the composite and the void and is usually user calibrated. However, despite the good results 
that can be achieved, this methodology can be very sensitive to the illumination conditions 
during the acquisition of the images as well as the type of material being analysed. Therefore, 
the calibration of the algorithm parameters (including the threshold value), is a necessary step 
before the analysis of a given set of images. 
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Another problem that can undermine thresholding approaches is the appearance of large 
voids in laminates. As void size increases, light coming from the microscope illumination can be 
reflected from the inside of the void cavities, which in turn originates lighter areas inside the 
dark ones. This translates to high pixel intensities, which should be classified as voids, that are 
mistakenly classified as matrix, due to its naturally higher pixel intensity. In turn, this renders 
the common thresholding approaches ineffective, as these techniques are not able to detect 
the void areas entirely (Figure 1). 

The adoption of machine-learning algorithms to do automatic detection of voids has been 
reported in the literature for several void assessment techniques, such as X-ray micro-CT [24–
26], thermography [27] and ultrasound testing [28]. Luo et al. used a deep learning framework 
based on DeepLabV3+, which achieved good void segmentation results in optical microscopy 
images [23]. However, their results show that the segmentation accuracy of a thresholding 
algorithm is very close to the one obtained by the deep learning algorithm. In turn, it is 
plausible to infer that the images present in their dataset might not have the complexity that is 
added when large pixel intensity scattering exists due to the presence of large voids and 
reflections. This increased complexity could produce larger differences between thresholding 
and machine-learning results than the ones Luo reported. 

In this work, a machine vision algorithm based on machine-learning was developed, to analyse 
microscopy images for void detection, in order to overcome the shortcomings of common 
thresholding approaches, which reliability is greatly affected by the pixel intensity variability. 

For that matter, a machine learning approach based on convolutional neural networks was 
used to analyse microscopy images and obtain the corresponding void contents. 

This article is organized as follows: Section one presents a brief introduction to convolutional 
neural networks is given. Section two describes the methodology used to create the machine 
learning framework. Section three shows the results obtained with the proposed model. 
Finally, section four presents the conclusions taken from this study. 

 

 

 

Figure 1 – Microscopy image with light reflecting voids (on the left) and poor performance of thresholding based 
segmentation method (on the right). 

 

Convolutional neural networks 
In an artificial neural network, a set of inputs is mapped to an output, by means of a 

mathematical function [29]. If the inputs are mapped directly to an output, it is denominated 
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as a single-layer neural network. On the contrary, if the inputs are mapped to an output 

through a succession of subsequent (hidden) layers, the neural network is denominated as of 

the multi-layer type [29,30]. The universal approximation theorem states that a neural 

network with at least one hidden layer can be used to approximate any function well, provided 

that the network has enough hidden units [29,30]. 

Similarly to traditional artificial neural networks, the architecture of convolutional neural 
networks is built upon layers, which are connected in a logical sequence. In analogy to neural 
networks and the universal approximation theorem, a convolutional neural network can be 
used to approximate any continuous function to a desired non-zero amount of error, provided 
that the depth of the convolutional neural network is large enough [31]. 

However, unlike traditional artificial neural networks, convolutional neural networks can 
possess different types of layers: fully connected layers, convolutional layers and pooling 
layers. 

Fully connected layers are a type of layer in which every neuron is connected each neuron of 
the previous layer by a distinct set of weights, which are the layer trainable parameters:  

 
𝑧𝑙 =  ∑ 𝑤𝑖𝑗

𝑙−1 𝑥𝑖
𝑙−1

𝑛

𝑗=1

+ 𝑏𝑙−1 (1) 

 

where 𝑧 is the vector containing the input node values to layer 𝑙, 𝑤𝑖𝑗 is the connection weight 

between neurons, 𝑥𝑙−1 is the activated neuron value of the previous layer, and 𝑏 is the bias 
vector (omitted in Figure 2 for conciseness). 

 

 

Figure 2 – Example of a fully connected layer 

Fully connected layers are the staple of traditional artificial neural networks, which are only 
comprised by a succession of this type of layers. However, in convolutional neural networks, 
this type of layers can be commonly found in the ending layers of the network [32–34]. 

Convolutional layers implement the convolution operation, which for two-dimensional tensors 
can be written as: 
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𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) =  ∑ ∑ 𝐼(𝑚, 𝑛)𝐾(𝑖 − 𝑚, 𝑗 − 𝑛) 

𝑛𝑚

(2) 

where 𝐼 is the two-dimensional tensor being convolved, 𝐾 is a two-dimensional kernel and 𝑆 is 
the resulting tensor. 

Figure 3 – Example of a convolution operation. 

Unlike fully connected layers, which can only accept an input of a predetermined size, 
convolutional layers do not have this restriction, as the learnable parameters are embedded in 
the kernel, which size is independent of the input tensor (feature map). 

One characteristic outcome of convolutions (observable in Figure 3) is the reduction of the size 
of the feature map, whose extent depends on the size of the kernel. In case this behaviour is 
not desirable, and if one intends to maintain the size of the feature map, padding can be 
added to the feature map before the convolution operation. This is done by adding an outer 
layer of values, usually in the form of zeros, an operation commonly designated as zero-
padding (Figure 4). Moreover, if enough padding is added to the input feature map, one can 
obtain a bigger output than the original input, leading to a transposed convolution (also known 
as up-convolutions or deconvolutions). This increase of the size of the feature map, commonly 
designated as up-sampling, can be useful in certain network architectures, such as 
autoencoders [29].  

Figure 4 – Example of a padded convolution. 
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At the end of each convolutional layer or fully connected layer, a non-linear activation function 
can be commonly found. These functions have been found to allow the network to learn more 
complex features in data, compared to linear activation functions [29]. An activation non-
linearity commonly used in convolution neural networks is the Rectified Linear Unit (ReLU), 
which is a piece-wise linear function that will output the received input, in case it is positive, 
otherwise the output is zero. This activation function is particularly relevant for deep learning 
(neural network architectures with several layers), as it better preserves the gradient 
information across several layers deep, compared to the logistic, or commonly designated 
sigmoid activation function, which can suffer from saturation for large activation values (Figure 
5) [30]. The ReLU activation can be written as: 

 𝑓(𝑥) =  {
𝑥  ∀ 𝑥 > 0
0  ∀ 𝑥 ≤ 0

 (3) 

 

The logistic, or sigmoid, activation function (Figure 6) can be written as: 

 𝑓(𝑥) =  
1

1 + 𝑒−𝑥
 (4) 

 

 

Figure 5 - ReLU activation function. 

 

Figure 6 - Sigmoid activation function. 

 

 

The last staple in a convolutional neural network structure is the pooling layer. Pooling layers 
can either extract the maximum, minimum or average value inside a sliding window with a 
predetermined size and stride (Figure 7). No trainable parameters exist in this type of layers, as 
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their objective mostly relies in reducing the size of the feature map, an operation commonly 
designated as down-sampling. However, alike the convolutional layers, pooling layers are not 
constrained to an input of a predetermined size, as the pooling window slides throughout the 
entire tensor with a defined stride, independently of the tensor size. 

 

Figure 7 – Example of a maximum pooling operation. 

 

 

 

 

 

 

In the field of machine vision, images are interpreted as a collection of pixel intensity values, 
which is represented as a tensor with varying depth, depending on the encoding of the image 
colours. A greyscale image can be therefore represented as a two-dimensional tensor, which 
dimensions match the resolution of the image, whereas an RGB encoded image can be 
represented as a three-dimensional tensor, for example, with a depth equal to three, 
representing the red, green and blue channels.  

When the neural network processes an image, the number of inputs in the network will match 
the resolution of the image, multiplied by the number of channels it possesses. The number of 
inputs can be therefore substantially large. As convolutional neural networks consist mainly of 
convolutional and pooling layers, in which trainable parameters are not dependent on the size 
of the input tensor, this type of networks allow the design of deeper network architectures 
allied with a faster training, without recurring into memory and computational overloads, 
compared to traditional artificial neural networks [30]. Consequently, the field of machine 
learning applied to computational vision has seen important performance gains with the 
intensification of research around convolutional neural networks (CNNs) [29,35]. As a result, 
different research branches were created to solve problems such as image classification 
(assignment of a single class per image) [34], or problems which require a pixel-level type of 
inference, such as semantic segmentation (segmentation based on the classes existing) [36], as 
well as of instance segmentation (segmentation based on instances of each class present in the 
image) [37]. In the scope of this work, the automatic segmentation of microscopy images, for 
subsequent determination of relative void content, is a semantic segmentation problem. 
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U-net architecture 
The U-net is a semantic segmentation model architecture proposed by Ronneberger et al. [38], 
which is built upon the previous fully convolutional network model for semantic segmentation 
[36], making the U-net architecture a fully convolutional network, itself (Figure 8). As 
mentioned in the former section, from the image segmentation point of view, as fully 
convolutional networks do not contain fully connected layers, they present the added 
advantage of being able to process images with a variable size, while reducing the 
computational overhead, due to connection sparsity and parameter sharing [30]. 

 

Figure 8 - Original U-Net architecture model [38]. 

The U-net architecture possesses a contracting path (encoder), where the initial feature-map 
(input image) is reduced in size, while the number of feature channels increases. This is done 
through a series of convolution layers followed by pooling layers, as in a regular CNN. The 
relevant features of the image (context) are intended to be captured in this portion of the 
network. The second portion of the network is an expansive path (decoder), where the size of 
feature-map is up-sampled and the number of feature channels is reduced. During the up-
sampling procedure, the feature-map is concatenated with its corresponding pair of the 
contracting path. This strategy ensures that the network captures with more refinement the 
locations of the relevant features in the image. This forces the network to have an 
approximately symmetric architecture. The up-sampling of the feature map is achieved 
through transposed convolutions (or up-convolutions), followed by regular convolution layers. 
This portion of the network is thus intended to capture the location of the relevant features, to 
make a refined reconstruction of the image. Due to this network architecture strategy, the 
model can be trained with smaller datasets and higher learning rates than other convolutional 
neural network models [38]. Because of this, several follow-through model architectures have 
been proposed with the objective of enhancing the accuracy of the segmentation results 
mainly for specific biomedical imaging problems [39–42], as well as segmentation of aerial and 
satellite imagery [43,44]. 

 

Methodology 
 

Network architecture 
The implemented network architecture follows much of the original U-Net architecture 

proposed by Ronneberger et al. [38], with a contracting path composed by successive 3x3 

convolution layers, each followed by a rectified linear unit (ReLU) (Figure 9). The down-

sampling is achieved by 2x2 pooling layers after each pair of convolution layers. A feature that 



9 
 

can increase both the accuracy and reliability of the results, is adapting the pooling layers to 

the natural appearance of voids in micrographs, which translates to generally lower pixel 

intensity values. Hence, voids, which are the relevant features of the image under analysis, can 

be better captured during the down-sampling operation. This means that one can substitute 

the original maximum pooling layers by minimum pooling layers or, instead, invert the pixel 

intensities of the image (voids become lighter and matrix darker) and maintain the maximum 

pooling layers. In this work, the latter option was chosen, due to the lack of a minimum 

pooling layer implementation in the framework used. Batch normalization layers are added 

before each ReLU activation layer, as batch normalization is reported to increase both the 

stability and speed of the learning process [45]. 

As in the original U-net, the expansive path is constituted by four similar blocks, containing a 

set of different layers. These blocks start with 2x2 transposed convolution layers, which are 

responsible for up-sampling the feature map. In order to enhance the capacity of the network 

to capture more precisely the location of the relevant features (voids), after the transposed 

convolution layer, the resulting feature map is concatenated with its corresponding pair of the 

contracting path. The resulting concatenation is fed to a pair of 3x3 convolution layers, each 

followed by batch normalization and a ReLU activation. 

The eight components of the remaining feature vector are mapped to the desired number of 

classes, adding a 1x1 convolution layer to the end of the network. As the intended pixel 

labelling is binary (void or matrix), the 1x1 convolution layer maps to a single tensor, where a 

final sigmoid activation translates the values obtained into values in the range ]0, 1[. These 

values can be seen as probabilities of the pixel belonging to the void class. After applying a 

probability threshold to the obtained values, pixels with a value of 1 (one) are considered 

voids, whereas pixels with a value of 0 (zero) are considered matrix. 

 

 

Figure 9 - Proposed modified U-Net architecture. 
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Dataset 
The dataset used for this study is comprised by microscopy images captured at INEGI, under 

the polishing and image capturing conditions described in Table 1. The samples come from 

three different types of composite laminates (Figure 13): glass fibre and epoxy laminate 

processed by vacuum infusion (Type A laminates); carbon fibre and epoxy laminate processed 

by resin transfer moulding (Type B laminates); carbon fibre and epoxy laminate processed by 

vacuum infusion (Type C laminates). 

Laminate type Sandpaper grit (last polishing) Optical microscope 

A 2000 Olympus PMG3 w/ CCD camera 

B 1000 Olympus PMG3 w/ CCD camera 

C 1000 Olympus PMG3 w/ CCD camera 
Table 1 - Polishing and image acquisition conditions 

For each image in the dataset, a corresponding ground-truth mask was generated. The ground 

truth masks consist of binary 8-bit gray-scale images, where the pixels representing voids have 

a value of 255, whereas pixels representing matrix or fibers have a value of 0. Therefore, these 

ground-truth masks allow to determine inequivocally which pixels are voids (the object of 

interest), and which pixels are either matrix or fibres (no distinction is necessary in our study). 

The ground-truth masks were generated by running a thresholding-based in-house software, 

while further segmentation corrections were made manually, using GIMP open-source image 

processing software. From a total of sixty images in the dataset, thirty were used for training 

and the other half for validation. The selection of the images was random.  

 

In order to obtain a characterization of the dataset, for each type of laminate, void size and 

frequency were measured automatically, using the contours of the voids present in the ground 

truth masks. Contouring is a well-established method for the representation of the geometry 

of voids in binarized images, allowing sub-pixel accuracy [20,46]. In turn, the accuracy of the 

binarization process dictates the accuracy of the extracted void related data. Python methods 

available in the OpenCV library were used for automatic contour extraction and respective 

area calculation. The computation of the frequency measures was also carried by a Python 

script written for this purpose, while further statistical analysis was done in R statistical 

language. 

In turn the frequency measures were grouped into five bins with equal width. Mean pixel 

intensity and standard deviation were also determined, encoding the original image in 

greyscale format. The different backgrounds of the microscopy samples were expected to 

foment an increase in the reliability of the network inference results, due to a higher capacity 

for generalization. 

As it can be observed in Tables 2, 3 and 4, the size and frequency of voids varies significantly 

depending on the manufacturing process. Laminates manufactured by vacuum infusion (type A 

and type C) seem to possess a higher number of voids, as well as a higher variance in void 

sizes, compared to the laminates manufactured by resin transfer moulding (type B). This can 

be due to the lack of a mould packing procedure in vacuum infusion, whereas in resin transfer 

moulding, it is possible to do so by increasing resin injection pressure after mould filling, which 

in turn compacts the existent voids, therefore minimizing void content in the part [3]. 

However, conducting such type of quantitative analysis is out of the scope of this study. 



11 

Nevertheless, the void sizes obtained for all laminate types in our dataset are in agreement 

with the range of void sizes found in the literature [21,23]. Moreover, plotting the frequency 

measures of void sizes into an histogram, for each laminate type, it can be observed that the 

distribution of void sizes follows a Weibull distribution (Figures 10, 11, 12), which is also 

consistent with the reported literature [47]. For the sake of easiness of visualization, Figures 10 

and 12 only plot the frequency measures on the first bin of laminate types A and C, 

respectively, as the remaining bins have only residual frequency values. 

Void area bin [µm2] Number 
of voids 

Frequency Mean 
area 

Area standard 
deviation 

Coefficient 
of variation 

Mean pixel 
intensity 

Pixel intensity 
standard deviation 

22.72 - 104962.73 5932 99.48% 1303.43 5255.83 403% 62.34 35.93 

104962.73 - 209902.75 18 0.30% 138140.45 26567.77 19% 75.55 46.38 

209902.75 - 314842.76 9 0.15% 258181.69 22393.60 9% 98.34 52.08 

314842.76 - 419782.77 3 0.05% 359158.30 26297.97 7% 128.60 43.88 

419782.77 - 524722.79 1 0.02% 440786.31 0.00 0% 57.19 21.30 

Table 2 - Properties of type A laminates. 

Void area bin [µm2] Number 
of voids 

Frequency Mean 
area 

Area standard 
deviation 

Coefficient 
of variation 

Mean pixel 
intensity 

Pixel intensity 
standard deviation 

74.62 - 24913.59 42 73.68% 10430.46 8569.67 82% 45.86 6.56 

24913.59 - 49752.57 11 19.30% 32487.34 4695.19 14% 44.40 5.93 

49752.56 - 74591.54 1 1.75% 62479.84 0.00 0% 40.88 1.98 

74591.54 - 99430.52 0 0.00% -- -- -- -- -- 

99430.52 - 124269.50 3 5.26% 113349.23 7794.01 7% 47.57 10.07 

Table 3 - Properties of type B laminates. 

Void area bin [µm2] Number 
of voids 

Frequency Mean 
area 

Area standard 
deviation 

Coefficient 
of variation 

Mean pixel 
intensity 

Pixel intensity 
standard deviation 

29.21 - 93240.56 774 97.60% 3862.02 10122.17 262% 85.94 26.74 

93240.56 - 186451.90 5 0.63% 124782.00 28115.30 23% 104.63 12.34 

186451.90 - 279663.25 5 0.63% 262437.56 8067.09 3% 93.58 10.41 

279663.25 - 372874.60 5 0.63% 320011.96 25303.36 8% 83.79 10.31 

372874.60 - 466085.94 4 0.50% 449319.15 14296.00 3% 81.16 7.92 

Table 4 - Properties of type C laminates. 
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Figure 10 - Void size frequencies from the first bin in type A laminates and fitted weibull distribution (in red) 

 

 

Figure 11 - Void size frequencies from all bins in type B laminates and fitted weibull distribution (in red) 
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Figure 12 - Void size frequencies from the first bin in type C laminates and fitted weibull distribution (in red) 

 

 

 

 

 

 

 

Figure 13 – Microscopy samples of the used dataset: glass fibre laminate processed by vacuum infusion – Type A 
laminate (a); carbon fibre laminate processed by resin transfer moulding – Type B laminate (b); carbon fibre 
laminate processed by vacuum infusion – Type C laminate (c) 

 

 

 

(a)        (b)     (c) 
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Training 
 

To conduct the U-net training, each of the high-resolution training images was partitioned into 
a set of twenty grayscale 256x256 pixel smaller images. The benefits of this strategy were 
twofold: Firstly, this strategy allowed to increase the number of filters of the network without 
incurring in GPU memory overloads. Moreover, this strategy allowed each training batch to 
contain images of all types of laminates. As the network training is based on gradient 
optimization with an update of the network weights on a per-batch basis, this strategy allows a 
better estimation of the gradient, and therefore, a more efficient training. 

The network was trained using the Adam optimization algorithm [48] with an initial learning 
rate of 0.001, binary cross-entropy loss function and a batch size of 40 images, for a total of 
400 epochs. The number of batches per epoch was estimated to assure that theoretically all 
256x256 dataset images would be processed during a training epoch. The model was 
implemented in Keras, using Tensorflow and an Nvidia Quadro RTX6000 with 24GB of memory.  

 

 

Results 
Four different metrics were calculated for both the training dataset, as well as the validation 

dataset, using a probability threshold of 0.35: accuracy, precision, recall and intersection on 

union (IoU), to evaluate the performance of the proposed deep learning network. These 

metrics can be calculated from the confusion matrix, which stores the frequency measures for 

each true positive (TP), false positive (FP), false negative (FN) and true negative (TN) pixel 

classifications, as demonstrated in Figure 14. 

 

 

Figure 14 - Confusion matrix. 

 

Subsequently, accuracy, precision, recall and IoU can be calculated as: 

 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 +  𝐹𝑃 + 𝐹𝑁
 (5) 
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 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (6) 

 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (7) 

 

 𝐼𝑜𝑈 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (8) 

 

The use of different metrics allows one to obtain answers to different questions. Accuracy 

reflects the number of correctly classified pixels by the total number of pixels analysed. 

Precision allows one to assess out of all pixels classified by the network as voids, how many are 

voids. Recall allows one to assess out of all pixels which are voids, how many were classified by 

the network as voids. Lastly, IoU evaluates out of the group composed by all the pixels 

classified as voids, as well as the pixels which are actually voids (union), how many pixels are 

actually correctly classified as voids by the network (intersection). One relevant matter for 

assessing metrics, is the fact that accuracy can be sensitive to unbalanced datasets (datasets in 

which one class is more representative than the others), possibly giving biased results. In the 

case of an unbalanced dataset, preference should be given to metrics such as IoU, as these are 

less sensitive to unbalances between the dataset classes. 

A physical interpretation of the segmentation results achieved by the network, was produced 

by frequency measures, which were computed for the different void sizes present in the 

validation dataset. In turn, these measures were compared to the ones obtained by the 

segmentation results of the network. Using the same confusion matrix analogy for void 

instance statistics, intersection on union was computed for each computed bin of void sizes. 

Tables 6, 7 and 8 contain the obtained results for each type of laminate under analysis. 

 

 

 

Metric Training Dataset Validation Dataset 

Accuracy (binary) 0.9970 0.9936 

Precision 0.9491 0.9299 

Recall 0.9907 0.9114 

Intersection on Union (IoU) 0.9650 0.9241 
Table 5 - Network performance evaluation. 

 

 

 

 

 

 



16 
 

Void area bin [µm2] Void nº Voids detected IoU 

22.72 - 104962.73 3188 2349 73.68% 

104962.73 - 209902.75 12 11 91.67% 

209902.75 - 314842.76 4 4 100% 

314842.76 - 419782.77 0 0 100% 

419782.77 - 524722.79 2 2 100% 

Table 6 - Segmentation results for type A laminate samples. 

 

Void area bin [µm2] Void nº Voids detected IoU 

381.92 - 20089.10 23 30 76.67% 

20089.10 - 39796.28 8 7 87.5% 

39796.28 - 59503.46 1 0 0% 

59503.46 - 79210.65 0 1 0% 

79210.65 - 98917.83 1 1 100% 

Table 7 - Segmentation results for type B laminate samples. 

 

Void area bin [µm2] Void nº Voids detected IoU 

29.21 - 93240.56 83 100 83% 

93240.56 - 186451.90 2 2 100% 

186451.90 - 279663.25 2 3 66.66% 

279663.25 - 372874.60 3 2 66.66% 

372874.60 - 466085.94 2 2 100% 

Table 8 - Segmentation results for type C laminate samples. 

 

 

 Mean void content error Error standard deviation 

Type A laminate dataset 0.66% 0.29% 

Type B laminate dataset 0.34% 0.27% 

Type C laminate dataset 0.50% 0.20% 
Table 9 - Error analysis of global void content detected in dataset images. 
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Figure 15 - Comparison of void content absolute estimation error between the proposed machine learning algorithm 
and a thresholding based algorithm 

Figure 16 - Comparison of void content relative estimation error between the proposed machine learning algorithm 
and a thresholding based algorithm 
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Figure 17 - Decreased capacity in void edge delineation, for voids containing fuzzy edges (laminate type B) 

 

 

Figure 18 – Overdetection of small voids (laminate type C) 

 

 

Figure 19 - Underdetection of void area, for big voids (laminate type A) 

 

 

From the results presented in Tables 6, 7 and 8, it can be seen that the network correctly 

identified the majority of voids present in the micrography images, whereas for the type B 

laminate dataset, the network had its worst performance. This lack of performance may be 

due to the slightly decreased capacity of the neural network in delineating edges of the voids, 

when these have fuzzy edges (as exemplified in Figure 17). In turn, the overall detected area of 

the void is smaller than in reality, leading to a biased detection of voids in the presented 

statistics. 

Additionally, the network performed worse in detecting smaller voids (first bin of void sizes for 

all laminate types), probably due to noise present in the images. This noise is composed by 

abrupt color changes, which may be due to small scratches in the matrix, or darker matrix 

features. In turn, as the convolutional neural network may have not learned entirely which set 



19 
 

of features is characteristic to smaller voids, it may be producing a slight difference in the 

predicted quantity of voids, as obtained in the current analysis where laminates type B and C 

have an overprediction of voids, whereas laminte A suffers from an undeprediction. An 

example can be seen in Figure 18. 

Finally, in certain large bubbles, the network still fails to capture the entire area of the bubble. 

This happens probably due to the high scattering of pixel intensities that can be found inside 

certain bubbles, which intensity values can reach close to the maximum, 255. However, this 

effect is localized in very small regions of the voids, compared to their global area, which in 

turn do not affect greatly their measured areas. This effect can be seen in Figure 19. 

The inference metrics appear to be better than the reported void detection results. A 

reasonable explanation is that inference metrics are measured on a by-pixel basis, which has 

no relation to void instance statistics. This means that although the pixel classification done by 

the network is good enough globally, the segmentation may not be entirely precise, due to the 

reasons delineated above. Nevertheless, this relative segmentation error is low enough as the 

mean absolute void content error is below 1%, independently of the laminate type (Table 9). 

This error is the mean of the estimated errors for each validation dataset (Equation 9). As 

expected, no error was obtained between void contents derived from the real images and the 

inference results of the training dataset.  

The global void content estimation error of the proposed algorithm was compared to the 

results obtained with a thresholding based algorithm developed prior to this study by the same 

authors. The thresholding parameters were optimized on a laminate type basis. Absolute and 

relative errors were derived for each algorithm type: 

 

 𝐸𝑟𝑟𝑜𝑟𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 = |𝑣𝑜𝑖𝑑𝑟𝑒𝑎𝑙 − 𝑣𝑜𝑖𝑑𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚| (9) 

 
 

  

 𝐸𝑟𝑟𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 =
|𝑣𝑜𝑖𝑑𝑟𝑒𝑎𝑙 − 𝑣𝑜𝑖𝑑𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚|

𝑣𝑜𝑖𝑑𝑟𝑒𝑎𝑙
 (10) 

 

 

From Figure 15, it can be seen that the absolute void content estimation errors associated with 

the proposed machine learning algorithm were lower than the ones obtained using the 

manually thresholding-based algorithm. No clear dependence between real void content and 

estimation error was detected; however, it can be observed that with the void content 

increased the standard deviation of the estimation errors also increases. Nevertheless, a 

cause-effect study is out of the scope of this study. Regarding relative estimation errors, 

plotted in Figure 16, it can be seen that the errors were proportionally higher for lower void 

contents. This was expected, independently of the segmentation algorithm, as the 

segmentation error does not reach an absolute null value. Therefore, as the void content 

approaches zero, since the estimation error does not drop accordingly, the relative error tends 

to rise. Nevertheless, the errors related to the proposed machine learning algorithm were 

lower than the errors related to thresholding alternative. 

It is important to emphasize that the results shown in this study should only be interpreted in 

the context of the dataset used. Convolutional neural networks, such as the U-Net, are 
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designed to make inferences based on the interpolation of several features present on the 

dataset provided. This means that the reliability of inference results outside the training and 

testing datasets may be greatly affected since these algorithms are not designed to make 

extrapolations outside the training data. Therefore, the generalization capability of such 

algorithms is linked to how general the dataset is itself. 

Figure 20 depicts the segmentation results for different types of microscopy images. 

 

 

Figure 20 - Segmentation results (on the right) for different microscopy images (on the left). 
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Conclusion 
 

It was successfully demonstrated that using machine learning techniques applied to 

computational vision, common micrography samples can be automatically segmented, in order 

to calculate their relative void content.  

The u-net architecture is a rather convenient machine learning approach for semantic 

segmentation, as it needed very few annotated images and training time. Using a microscopy 

image dataset built for this study, the segmentation results suggest that the network performs 

worse in detecting smaller voids, while the appearance of fuzzy void edges may also affect the 

accuracy of the segmentation. At last, pixel intensity variability can also be a factor for 

incomplete segmentation of the void area. Nevertheless, the achieved inference results are 

very promising as the obtained average void content error was below 1%, regardless of the 

laminate type. These results have surpassed a thresholding based algorithm manually 

calibrated for each laminate type dataset, thus proving the applicability of this methodology.  
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