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Abstract: Selectivity in separation science is defined as the extent to which a method can determine
the target analyte free of interference. Itis the backbone of any method and can be enhanced at various
steps, including sample preparation, separation optimization and detection. Significant improvement
in selectivity can also be achieved in the data analysis step with the mathematical treatment of
the signals. In this manuscript, we present a new approach that uses mathematical functions to
model chromatographic peaks. However, unlike classical peak fitting approaches where the fitting
parameters are optimized with a single profile (one-way data}, the parameters are optimized over
multiple profiles (two-way data). Thus, it allows high confidence and robustness. Furthermore,
an iterative approach where the number of peaks is increased at each step until convergence is
developed in this manuscript. It is demonstrated with simulated and real data that this algorithm is:
(1) capable of mathematically separating each component with minimal user input and (2) that the
peak areas can be accurately measured even with resolution as low as 0.5 if the peak’s intensities
does not differ by more than a factor 10. This was conclusively demonstrated with the quantification
of diterpene esters in standard mixtures.
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1. Introduction

Analytical separation techniques are one of the most potent tools to measure target
analytes in complex matrices. Multiple mechanisms can be used to separate structurally
similar compounds while quantifying hundreds of components quickly. The selectivity
of the analytical pipeline (“Selectivity of a method refers to the extent to which it can
determine particular analyte(s) in a complex mixture without interference from other
compoenents in the mixture” [1]) can be enhanced at various steps. Generally, three critical
points are considered, the sample preparation, the separation mechanism and optimization,
and the detection step. Each of these steps allows removing interferents.

Nevertheless, despite a plethora of tools, ad hoc performances for all analytes remains
challenging. Non-baseline separated peaks within the time domain is often observed,
resulting in lower precision and accuracy [2,3]. Often overlooked, enhanced selectivity
can also be obtained at no cost using mathematical and statistical algorithms [4,5], a step
refers as mathematical separation. Different approaches are possible, including peak fitting,
mathematical transformations of the signal, and multivariate approaches.

With peak fitting approaches, mathematical functions that approximate chromato-
graphic or electrophoretic peaks are used to model the profiles either with single or multiple
mixed peaks. In this technique, mathematical functions [6-9] that best describe the observed
profiles are fitted to the experimental signal. The best match is obtained by optimizing
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the fitting parameters using a minimizing function, such as the sum of squared residuals
(SSR) [10].

fend

2
SSR= ) ((Yx — Y fnlx, a1, a2, G50, - -)) ) (1)

X=tstart

where x is a specific time, Y, is the intensity of the profile at «, f;, is the mathematical func-
tion that described the peak n and a1 4, #24, 43 » are the fitting parameters to be optimized.
The number of fitting parameters will depend on the mathematical function. While peak
fitting is valuable to study secondary separation mechanisms [11], it has limited applica-
tion for the deconvolution of highly mixed peaks as often more than one combination of
fitting parameters or mathematical function is possible [12]. Many different mathematical
functions have been proposed [9,13], and it remains an active field of research [8]. How-
ever, polynomial modified Gaussian functions (PMG) have been often used as a good
compromise between low complexity and good flexibility [13,14].

With mathematical transformations of the signal, the original profile is transformed
or modified to increase efficiency and resolution. One of the most common approaches is
the first and second derivatives to detect co-migration and peaks limits better. In recent
work, Wahaba and co-workers increased the resolution using a derivative enhancement
method [15], allowing better precision with simulated and real data. The mathematically
meodified profile is a linear combination of the original and derivative of the signal. Another
interesting approach is the power transform of the profile that can significantly improve
the resolution with resolution as low as 0.8 [16,17].

With multivariate approaches, higher dimensions data (three or higher) are used. In
separation science, this is the case with hyphenated detectors (diode array, mass spectrom-
etry). Three-dimensional data can also be constructed by aligning results from multiple
analyses. Multivariate analyses assume that the matrix of data, X, can be expressed as
the product of two smaller matrices, the matrix of profiles P (or peaks) and the matrix of
response S.

X=PS+E (2)

where E is the matrix of error. In the case of hyphenated data, the target spectra in §
may be known; in this case, P can be readily obtained and then analyzed using classical
chromatographic approaches [18].

P=Xxs ! (3)

where XS 1 is the least-squares solution to the system of equations X-x = S. However,
in many cases, both matrixes are unknown. Multivariate curve resolution (MCR) aims
to obtain chemically plausible estimates of both matrices when knowing the number of
components and using specific constraints [4,19-21]. While MCR has been successfully
applied to chromatographic data [22], it is a complex approach requiring users” input
and control.

This manuscript proposes a new multivariate approach where the matrix P is esti-
mated using chromatographic mathematical functions and optimized to three-dimensional
data. The complexity of the matrix P (the number of peaks) is iteratively increased until
convergence is reached. The approach is validated using simulated and real data and
compared with MCR. Two mathematical functions to described peaks were tested, the
classical Gaussian function and a polynomial-modified function with one (PMG1) or two
(PMG2) additional fitting parameters [23].

2. Results
2.1. Theory

MATLAB functions can be used with first and second-order chromatographic data [24].
The second-order could be due to a hyphenated detecter or the alignment of multiple sam-
ples to a common axis. In this manuscript, a channel refers to a first-order chromategraphic
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profile. Three different mathematical functions to describe chromatographic peaks can be
used: Gaussian, PMG1 and PMG2 [25], with the PMG function defined as [14]
)

so+6 (E—tr)+ep(i—ty

h (t) = Hype 4)

where Hj is the height at the peak maximum, { is the time at the peak maximum, s is

the standard deviation of the symmetric component and s; and s, described the peak

distortion [23]. With PMGI, s» is set to zero, while with PMG2 both s1 and s> can vary.
The iterative multivariate peaks fitting algorithm is described below:

0. Initialization step. The average of the signal Yav(f) as a function of time is calculated
by averaging all the channels. Next, the time at the maximum response for Y, and
the variance assuming a single peak is measured. In the first column, the matrix
P is populated with a constant (constant baseline drift), and in the second column,
the initial peak profile. Finally, the starting matrix P is estimated using the initial
measured position and variance with the selected mathematical function (by default
PMG1). Additional fitting parameters, if any, are set to their minimum values. All
columns in P are normalized to one (Hy = 1 in Equation (4)).

1.  Optimization step. The minimization function is obtained by estimating X, Xeg
using:

Xet = P@ 1% (5)

The minimization function is the mean sum squared residual (MSSR) between X and
Xegt in each channel. Fitting parameters are optimized using either the Simplex method [26]
{fininsearch function in MATLAB [27]) or the Quasi-Newton method [28] (fminnunc function
in MATLAB [29]). The goodness of the fit is assessed via the MSSR.

2. Iteration step. The average residua between X and Xest are measured. Then, a new
column is added to P corresponding to a new peak. The position of the peaks depends
on the residual, while its shape is the average of all other peaks.

3.  Optimization and termination conditions. Before optimization, and to avoid local
minima, the variance of all peaks is decreased by a set factor. The optimization (step 1)
is repeated, and the termination conditions are tested. If validated, the routine is
stopped; otherwise, the algorithm loops to step 2.

Different termination conditions can be used. The algorithms will be terminated if
(1) the MSSR obtained in step 3 does not decrease by more than a set value (by default
5%) in comparison to the previous value obtained with one peak less, the maximum
intensity of the new peak is less than x% of the most intense peak (by default 5%), or
(2) the minimum reselution is less than a set value (by default 0). Because local minima can
be reached, variations in the initial conditions are possible at step 2. Optimizations will be
run simultaneously, and the result with the lowest MSSR will be used.

A short tutorial is available in Appendix A.

2.2. Validation with Simulated Data
2.2.1. Exploration of Data

The datasets consist of four matrices with four components with known profiles and
concentrations. The data can be visualized in Figure 1, with Figure 1A,C,E,G being the
superposition of the signals from all channels for D1nh, D2nh, D3nh and D4ng, respectively,
and with Figure 1B,D,EH being the averaged profiles for each cemponent for D1nh, D2nh,
D3nh and D4nh, respectively. The minimal resolution between two successive peaks is
0.19, 0.06, 0.21 and 0.42 in D1nh, D2nh, D3nh and D4nh, respectively.
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Figure 1. Simulated HPLC-DAD datasets: (A,C,E,G) superposition of the signals from all channels for D1nh, D2nh, D3nh
and D4nh, respectively; (B,D,F H) profiles for each component for DInh, D2nh, D3nh and D4nh, respectively. Refer to the
Materials and Methods section for additional information.
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2.2.2. First-Order vs. Second-Order Iterative Peak Fitting

D1nh was used to compare first and second-order iterative peak fitting. For first order,
the intensities from all channels were averaged. The Simplex method (fininsearch) was used
to optimize the fitting parameters. The iterative process was stopped when adding an
additional peak does not decrease the MSSR by more than 5% compared to the previous
iteration. Results are presented in Figure 2.
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Figure 2. Dlnh experimental data (black crosses), fitted signals (red lines) and deconvelved components using the
iterative multivariate peak fitting approach: (A.LB.LC.I) first-order data (mean profile) fitted with a Gaussian, PMG1 and
PMG2 mathematical functions. (A.I1B.IL,C.II) second-order data fitted with a Gaussian, PMG1 and PMG2 mathemati-

cal functions.
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With first-order data, convergence was obtained with two peaks with a Gaussian
model (Figure 2A 1), one peak with a PM(1 model (Figure 2B.1) or twe peaks with the
PMG2 model (C.I). While proper fitting of the experimental profile can be observed in all
cases, the four expected components were not mathematically separated. It was not the
case when using the second-order data. Independently of the function used, similar results
were obtained, with the four components separated. Slightly better results were obtained
with PMG2 (Figure 2C.II, MSSR of 648), followed by PMG1 (Figure 2B.II, MSSR of 654)
and Gaussian models (Figure 2A.II, MSSR of 656). However, the computation time varied
from 9.5, 37.8 and 85.7 s for Gaussian, PMG and PMG2 models, respectively. It should
be emphasized that first-order peak fitting is highly dependent on the channels. When
selecting specific channels rather than averaging the signals, different results (including
number of peaks) were obtained in Figure 2A I-C 1. Second-order peak fitting, provide
robust deconvolution as the optimization involve all channels.

The true vs. deconvolved intensities at every channel for the four components after
iterative fitting are presented in Figure 3. Good agreement was obtained with #* of 0.950,
0972, 0.977 and 0.951 for component 1 (Figure 3A), 2 (Figure 3B), 3 (Figure 3C) and 4
(Figure 3D) respectively.

10*
(A) oG
$ 10000 Py
© ®
> >
Q @
2 5000 21 ;
0 et ! ' ) 0 hwees C '
0 1 2 3 4 0 0.5 1 15 2 25 3
deconvolved value <104 deconvolved value «10%
4
=10 15000
(€) (D)
3ot S 10000}
© @
> >
(] @
e1 , 2 5000
L e .
Q Lot 0
0 5000 10000 15000 20000 0 5000 10000 15000
deconvolved value deconvolved value

Figure 3. True vs. deconvolved intensities at every channel obtained after itMPF of the D1nh dataset, with (A-D) plots of
the true vs. deconvolved values for the first, second, third and fourth component in Dinh dataset respectively.

The iterative multivariate peak fitting (itMPF) was then used, with the PMGI function,
with the other three datasets. The results can be seen in Figure 4.

While the four components in D2nh (Figure 4A) and D3nh (Figure 4B) were not
mathematically separated, itMPF was successful with Ddnh (Figure 4C). Moreover, better
agreements were obtained than with D1nh between measured and true intensities (+ of
0.989, 0.973, 0.970 and 0.984, respectively).

2.3. Validation with HPLC-DAD Separation of Diterpene in Coffee

The peak fitting approach was applied to the simultanecus analysis of diterpene esters
in coffee by HPLC-DAD. Typical separations are presented in Figure 5A, with, in black
(a) the separation of a standard mixture of (1) kahweol oleate, (2) cafestol cleate, (3) kahweol
palmitate and (4) cafestol palmitate. The profile is obtained by averaging the intensity of all
wavelengths. The profiles in red (b) and green (c) correspond to the separation of a coffee
sample obtained either by averaging the intensities at all wavelengths (b: 200-400 nm) or
using a range selective to kahweol esters (c¢: 286-294 nm).

ItMPF was first used with standard mixtures of the four esters. The superposition
of the profile at each wavelength is presented in Figure 5B. As a significant fluctuation
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of noise can be observed [30], data were normalized by the noise, estimated as the stan-
dard deviation, measured between 18 and 18.5 min of the lowest concentrated standard

(Figure 5C).
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Figure 4. Deconvolution of the four components by itMPF with (A) D2nh, (B) D3nh and (C) D4nh.
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Figure 5. (A} Typical chromatograms; (a} standard mixture, (b} coffee analyzed using the full
wavelength range, (c) coffee analyzed at 290 + 4 nm; (1) kahweol oleate, (2) cafestol oleate,
(3) kahweol palmitate and (4) cafestol palmitate. (B) Superposition of all channels corresponding to
the target compounds between 18 and 22 min. {C) noise normalized intensities.

The four peaks between 18 and 22 min in the standards were separated using itMPF
with the PMG1 function. The ability of the software to measure the area correctly was
assessed by the figures of merits (FOM) of the linear calibration. Those can be compared
in Table 1 using fminsearch (simplex method) and fminnunc (quasi-Newton method) op-
timization algorithm. As a reference, the kahweol oleate and palmitate were quantified
free of cafestol esters interferences by using the wavelength range 290 + 4 nm [18,31]
(see Figure 5A (c). Peak areas were measured using the trapezoid rule [32].

While the best results for KO and KP were obtained using classical approaches, itMPF
gave good results for quantifying the four diterpene esters is with an average resolution
between peaks of 0.83 (min 0.77, max 0.92). With those data, slightly better results were
obtained using the fminnunc optimization algorithm.

It should be emphasized that at low concentrations, more than four components are
obtained. Additional components are used to better fit the baseline drift. Such an example
can be seen in Figure 6. In panel A, the real data is presented with the superposition of the
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profile and each wavelength. Panel B shows the superposition of the fitted channels, and
panel C shows the peak profiles extracted by itMPF to model the experimental data. While
peaks 1 to 4 correspond to the four expected diterpene esters, an extra peak is obtained to
describe the baseline better. This peak can easily be recognized due to its substantial peak
variance (760 min? vs. 0.023 & 0.001 (n = 4) min?® for peaks 1 to 4).

Table 1. Figures of merits (FOM) of the calibration curves using (A) itMPF with fminsearch used as
optimization algorithms, (B} itMPF with fminnunc used as optimization algorithms, (C) classical
approach with detection at 290 & 4 nm. Standards were made by mixing the four diterpenes at
different concentrations.

Method FOM KO? co?’ KP4 cp’
A 7 0.99990 0.99991 0.99997 0.99980
LOQ ' (mg/L) 5.5 5.0 3.8 7.6
B 2 0.99979 0.99991 0.99996 0.99972
LOQ (mg/L) 7.7 5.0 5.0 8.9
c 2 0.99995 NA 0.99998 NA
LOQ (mg/L) 37 NA 3.1 NA

I Limit of quantification, calculated at ten times Oy /x- 2 KO, kahweol oleate; 3 CO, cafestol oleate; * KB kahweol
palmitate; 5 CP, cafestol palmitate.
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Figure 6. (A} experimental data, (B) fitted data and (C} model peaks obtained with itMPE. All
diterpene esters were injected at 5 mg/mlL. (1) Kahweol oleate, (2} cafestol oleate, (3) kahweol
palmitate, (4) cafestol palmitate and (5) additional peak to better describe the baseline drift.

3. Discussion

Iterative multivariate peak fitting is an attractive alternative to other multivariate
approaches for chromatographic data. It is relevant because the number of components
does not need to be known and allews quantifying individual peaks event with resolution
as low as 0.5. However, the minimal resolution for good accuracy will depend on the
relative intensity of the different signals and the variation of intensity along the extra
dimension. While fminnunc seems to offer slightly better performance than fminsearch as
optimization algorithms, computing time is a key issue. itMPF is fast when few peaks are
fitted to the signals (less than 1 min for three components or less) but become slow when
a higher number of peaks is used. For example, the algorithm took more than 40 min to
optimize the fitting of nine peaks with a PMGI function using the data from coffee samples.
The complexity and number of fitting parameters also have a strong influence. With a
Gaussian function, minimal MSSR was reached after 8 min with nine peaks. Nevertheless,
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this approach could be used to entire chromatograms by splitting the signals intoc smaller
parts with few peaks.

Omne of the key benefits of this approach is that the number of components is automati-
cally optimized from the data. Moreover, the baseline can be automatically detected and
fitted with an extra function that must be detected and removed. The toolbox should be
improved by using a more extensive set of functions.

The algorithm has been tested in multiple conditions and, most of the time, give
realistic results. However, in some examples, negative peaks have been obtained. To limit
their eccurrence, a penalization factor for negative intensities was introduced. This factor is
only used when calculating the MSSR. Constrained have also been intreduced te force all
peaks to have the same shape or limit the variation in peak variance within a set interval.
A short tutorial is available in Appendix A.

4, Materials and Methods
4.1. Simulated Data

The simulated HPLC-DAD non-trilinear data sets were obtained from [33]. The four
matrices were used (D1nh, D2nh, D3nh and D4nh). Each matrix has been generated
as D = ¢;s + noise where ¢; (51 x 4) is the matrix of profiles (four peaks, with different
positions and shapes in each dataset), s is the maltrix of spectra (4 x 96) corresponding to
each peak (s is the same in all datasets) and noise is the noise.

4.2, Real Data

Real data come from a published work measuring kahweol oleate, cafestol oleate,
kahweol palmitate and cafestol palmitate in coffee brew [18,31]. Briefly, coffee brews were
extracted using 5 mL of diethyl ether. The mixture was vortexed for 2 min, and after
centrifugation, the upper phase was transferred to a clean test tube. Next, the aqueous
solution was re-extracted using diethyl ether, and the combined ether phase was washed
with 5mL of 2 M NaCl solution followed by centrifugation (4000 rpm, 10 min. Finally, the
clean ether phase was dried under an azote stream. Samples were kept at —22 °C until
analysis using LC-DAD. Separation was achieved using a Purospher STAR LichroCART
RP 18 end-capped (250 x 4 mm, 5 yum) column attached. Before injection, the dried extract
was dissolved in 2.5 mL of acetonitrile and filtered through 0.45 pm filter membrane
(PTFE, VWR, Radnor, PA, USA). Twenty microliters of sample were injected, and the
separation was achieved using isocratic conditiens for 35 min with the mobile phase made
of acetonitrile/isopropanol (70:30, v/v) and pumped at 0.4 mL/min. A diode array detector,
in the range of 200-400 nm, was used. After each run, the acquisition software exported
data as a comma-separated-values format (EZChrom Elite 3.1.6).

For the calibration curves, mixtures of the four diterpenes esters at similar concen-
trations were used in the range of 2 to 200 mg/L. Eight samples were prepared and
run in duplicates. All data used in this work are available in the Zenodo repository
(https:/ /zenodo.org/record /5412345).

4.3. Programming and Software

MATLAB R2020a (Mathworks, Natick, Massachusetts, USA) was used for this work;
functions were programmed and run using a PC equipped with an Intel Core i7 CPU
(2.80 GHz) and 18.0 GB RAM. The functions frtinsearch [27] and fminunc [29] from the
optimization toolbox were used. The functions fterativeMethodl_fminsearch and IHera-
tiveMethodl_fminunc were designed for this work and are available free of charge in the
GitHub repository: https://github.com/glerny/itMPF [34].

Author Contributions: Conceptualization, G.L.E.; methodology, G.L.E.,, A.A. and M.M.; software,
G.LE,; validation, G.L.E. and M.M,; formal analysis, M.M.; investigation, M.M,; resources, A.A; data
curation, M.M.; writing—original draft preparation, G.L.E.; writing—review and editing, G.L.E., A A,
and M.M.; visualization, G.L.E.; supervision, A.A.; project administration, A.A.; funding acquisition,
A.A. All authors have read and agreed to the published version of the manuscript.
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Appendix A

The toolbox should be downloaded from GitHub (https:/ /github.com/glerny /itMPF)
or MathWorks (https:/ /www.mathworks.com /matlabcentral / fileexchange /97217-itmpf).
The path of the downloaded files and folders should be added to the Mathlab path.

Both functions HerativeMethod1_fminunc and IterativeMethod1_fmin search use the same
input and output parameters:

[Model, FittedChannels, Stats, myModel, Options] = IterativeMethodl_fminsearch
{AxisX, Data, Options)

AxisX is a [nx1] vector that is the time axis, Data in a [nxm] matrix (m > 1) with the
first or second-order data. Options is a structure with the following information:

s Options.maxPeaks = 20; Termination condition for the number of peaks. If Op-
tions.maxPeaks is obtained, the function stops.

s Options.Function = ‘PMG1’; Mathematical function to be used (‘Gauss’, ‘PMG1’ or
PMG2).

*  Options.LoopMe = 5; Number of times fminserach or fminunc can be repeated until
convergence is reached.

s Options.RecursiveLoop = 0.95; Termination condition for the MSSR, the algorithm
will stop if MSSRn > Options.RecursiveLoop® if MSSRn-1, where MSSRn is the mean
sum squared residuals obtained with n peaks after optimization.

*  Options.InitialFactor = [1 0.7 0.4]; Multiplicative factor for the initial peak shape before
minimization. If Options.InitialFactor is not a single value, all values will be tested.

*  Options.MinResolution = 0; Termination condition. If two peaks have a resolution
lower than Options.MinResolution, the function stops.

*  Options.Penalisation = true; If Options. Penalizatlion is true, a penalization factor for
negative intensities is used before calculating the MSSR.
Options.PenalisationWeight = 1.5; Penalisation factor.
Options.Constrained.SharedParameters = ‘None”; Constrain on the peak shape: ‘None’,
‘Partial” or ‘Full’. If ‘None’ peak shapes are independ from each other, if ‘Full” all
peak shapes are the same, if ‘Partial’ peaks variance will fluctuate with a range set by
Options.Constrained. Limits.

s Options.Constrained.Limits = 1.5; Should be superior at 1, only used if Options.Con
strained.SharedParameters = ‘Partial’.

s Options.PointsPerPeaks = [25 75]; the average number of points per peak, used to
smooth the residual when adding a new peak and avoid spikes. More than one
value can be used to induce variations in the position of the new peaks and avoid
local minima.

s  Options MinMax = 0.05; Termination condition. If the maximum intensity of any
peak is lower than Options.MinMax time the intensity of the most intense peak the
function stops.

*  Options.Robust = false; If this option is used, an additional peak will still be tested
when a termination condition is true. If with additional peaks the termination is not
true anymore, the algorithms will continue.

In output, four elements are obtained:
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¢  Model.Peaks is a structure that contain the name of the mathematical function, the
fitting parameters, the intensity at each channel and the baseline intensity.
FittedChannels is a [mxkxn] matrix with the intensity as a function of time for each element.
Stats is a structure with the Options used, the computing time, the number of peaks
separated, the end conditions and the means sum square residual.

s  myModelis a [mxk] matrix with the normalized peaks model.
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