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Abstract. Certain nonlinear recurrence relations (of the real line) can
be studied within the framework of cluster algebra theory. For this
type of relations we develop the tools of Poisson and pre-symplectic
structures compatible with a cluster algebra, in order to understand
how these structures enable to reduce the recurrence relation to one of
lower order. Several examples are worked in detail.

1. Introduction

Cluster algebras have been introduced by Fomin and Zelevinsky in [FoZe02]
in order to create an algebraic and combinatorial framework to study total
positivity in matrix groups. Since then the theory of cluster algebras has
been applied to a wide range of subjects such as: representation theory
of quivers; commutative and non-commutative algebraic theory; discrete
dynamical systems, etc. In the recent monograph [GeShVa10] the authors
survey the advances made in the last decade on the interplay between some
cluster algebra structures and Poisson/pre-symplectic structures.

In this work we use the notions of Poisson and pre-symplectic structures
compatible with a cluster algebra to reduce the order of (nonlinear) recur-
rence relations which fit in the framework of cluster algebras. Notably, we
address the question of reducing the order of recurrence relations (of order
N) of the form

xn+Nxn = A+ + A−, n = 1, 2, . . . (1)
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where A+ and A− are monomials in the variables xi (with i ∈ I) and xj

(with j ∈ J) respectively, where I∪J = {n+1, . . . , n+N−1} and I∩J = ∅.
Moreover, the (nonnegative) exponents of the monomials A+ and A− form
an (N − 1)-tuple which is required to be palindromic. In the theory of
cluster algebras the initial vector x = (x1, x2, . . . , xN ) is called an initial
cluster and the xi’s are the cluster variables.

Examples of recurrence relations which can be treated in the context
of cluster algebra theory are the following famous Somos-4 and Somos-5
sequences

• Somos-4: xn+4xn = xn+1xn+3 + x2
n+2;

• Somos-5: xn+5xn = xn+1xn+4 + xn+2xn+3.

These sequences are obtained by iterating a map, which in the case of the
Somos-5 sequence is

ϕ : (x1, x2, x3, x4, x5) 7→

(

x2, x3, x4, x5,
x2x5 + x3x4

x1

)

.

There are advantages to study the Somos-4 and 5 sequences using clus-
ter algebra tools. A well known property of these sequences is that they
are sequences of integers whenever the N initial points are all equal to 1.
Although this property was noticed without using the cluster algebra ma-
chinery, it follows as a simple corollary of the famous Laurent phenomenon
for cluster algebras (any cluster variable is expressed as a Laurent polyno-
mial of the initial cluster variables with integer coefficients, see [FoZe02a]).
Also, using the procedure of reduction of order which will be developed
here, it is easy to see that the Somos-5 iteration map can be reduced to
a 2-dimensional iteration map belonging to the QRT family of integrable
maps (see [QRT] and [Duist10]).

In this work we study recurrence relations of the type (1) using Poisson
and pre-symplectic structures compatible with the respective cluster alge-
bra. In particular, we are interested in the question of reducing the order of
a given recurrence using either the Poisson approach or the pre-symplectic
approach. As we will see, besides the existence of compatible Poisson/pre-
symplectic structures with the cluster algebra associated to the sequence,
one needs also to take into account the iteration map. The comparison
between the Poisson and the pre-symplectic approaches (when both are
available) is addressed as well.

The plan of the paper is as follows. In Section 2 we review the essential
notions of cluster algebras needed in the following sections. The next two
sections are devoted to the study of Poisson and pre-symplectic structures
compatible with a given cluster algebra A(B). We suggest [LibMa] as a
general reference for Poisson and pre-symplectic structures. In Section 3 we
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characterize, in Proposition 1, Poisson structures compatible with a cluster
algebra A(B) defined by a skew-symmetric matrix B. This proposition ex-
tends Theorem 4.5 of [GeShVa10] (see also [GeShVa03]) to the case where
the matrix B is not of full rank. Propositions 2 and 3 establish the main
results needed to reduce the order of a recurrence relation via Poisson struc-
tures compatible with the cluster algebra associated to the recurrence. We
then apply these results to reduce the order of several recurrence relations
of order 6 (Example 4). Pre-symplectic forms compatible with a cluster
algebra are characterized in Proposition 4 of the following section, where
we obtain a similar result to that in [GeShVa05] (see also Theorem 6.2

of [GeShVa10]). We then use the constructive proof of a theorem of Élie
Cartan to explicitly reduce the order of recurrence relations.

2. Preliminaries

A cluster algebra (of geometric type) is described by a pair (B,x), called
a seed, where:

(1) B = [bij ] is an N×n (n ≥ N) matrix whose left N×N block BN is a
left-skew-symmetrizable matrix (i.e. there exists an N×N diagonal
matrix D such that DBN is skew-symmetric). The matrix BN is
called the exchange matrix and B the extended exchange matrix;

(2) The vector x = (x1, . . . , xN ) is called a (initial) cluster and x̃ =
(x1, . . . , xn) an extended cluster;

(3) Both B and x are subject to cluster transformations µk (or muta-
tions in direction k). These transformations are defined, for each
k = 1, . . . , N , by

µk(xi) = x′
i =







xi i 6= k
∏

j:bkj>0 x
bkj

j +
∏

j:bkj<0 x
−bkj

j

xk
, i = k.

(2)

and the transformed matrix B′ = µk(B) = [b′ij ] is given by

b′ij =

{
−bij, (k − i)(l − k) = 0

bij + 1
2 (|bik|bkj + bik|bkj|) , otherwise.

(3)

Also, if one of the products in (2) is taken over an empty set, then
its value is assumed to be 1. We note that µk is an involution (i.e.
µk(µk(B)) = B and µk(µk(x)) = x);

(4) The variables xN+1, . . . , xn are not transformed by µk, and so are
called frozen, or stable, variables.

Given an initial seed (B,x) we can apply a transformation µk to produce
another seed, and then apply another transformation to this seed to produce
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another, etc. A cluster algebra (of geometric type) A(B) is a subalgebra of
the field of rational functions in the cluster variables x1, . . . , xn, generated
by the union of all clusters.

In this work, the matrix B is assumed to be skew-symmetric (so n = N).
In particular we are not considering the existence of frozen variables, that
is we are only considering what is called a coefficient free cluster algebra.

An N × N skew-symmetric matrix B may be seen as representing a
quiver (oriented graph) Q with N nodes without loops and 2-cycles, being
its entries bij equal to the number of arrows from i to j. For instance, the
following matrix

B =








0 −r s s −r
r 0 −r(1 + s) −s(r − 1) s
−s r(1 + s) 0 −r(1 + s) s
−s s(r − 1) r(1 + s) 0 −r
r −s −s r 0








(4)

represents the quiver in Figure 1.

5

1

2

r(1 + s)

r(1 + s)

s(r − 1)

s

s
s s

r

r r

3
4

Figure 1. Quiver corresponding to the matrix (4) and to
the recurrence relation (10).

In terms of the diagram representing the quiver Q, a mutation at the node
k corresponds to reversing all the arrows that either originate or terminate
at the node k, and all the other arrows are transformed as follows: suppose
that in Q there are r arrows from a node i to node j, p arrows from node
i to node k and q arrows from node k to node j, then in Q′ = µk(Q) we
add pq arrows going from node i to node j to the r arrows already there,
removing at the same time any two-cycles which might have been created.
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Here we consider a particular type of quivers representing recurrence
relations of the real line. These quivers were studied in [FoMa] and are
designated by quivers of period 1 (or 1-periodic). A quiver Q is said to be
of period m if it satisfies the following chain of mutations

Q(1)
µ1
→ Q(2)

µ2
→ Q(3) · · ·

µm−1

→ Q(m)
µm
→ Q(m + 1) = ρmQ(1),

where ρ : (1, 2, . . . , N) 7→ (N, 1, 2, . . . , N − 1). We remark that if a quiver
with N nodes is a period 1 quiver, then it is preserved by the composition
µN ◦ · · · ◦ µ1, i.e. µN ◦ · · · ◦ µ1(Q) = Q.

The matrices B representing quivers of period 1 were classified in [FoMa],
where it is shown that B is determined by its first row (or column, since B
is skew-symmetric) according to the following:

1. The first row (0, b12, b13, . . . , b1N ) of B must be palindromic, that is

b1,p+1 = b1,N−p+1 for p = 1, . . . N − 1; (5)

2. The other entries of B are given recursively from the entries of the
first row by

bij = bi−1,j−1 + ǫi−1,j−1, for all i < j (6)

ǫi,j =
1

2
(b1,i+1 |b1,j+1| − |b1,i+1| b1,j+1) ; (7)

3. The matrix B is symmetric with respect to its anti-diagonal.

The matrix B representing a period 1 quiver with N nodes, also repre-
sents a recurrence relation of order N . More precisely, B represents the
sequence

xn+Nxn = A+ + A−, with A+ =
∏

m:b1m>0

xb1m
n+m, A− =

∏

m:b1m<0

x−b1m
n+m ,

(8)
whose iteration map is

ϕ : (x1, x2, . . . , xN ) 7→

(

x2, x3, . . . , xN ,
A+(x̂) + A−(x̂)

x1

)

, (9)

with x̂ = (x2, . . . , xN ).

For instance, the matrix B in (4) satisfies all conditions (5)-(7) and so
the quiver in Figure 1 is of period 1. Therefore, this quiver (and so the
respective matrix B) represents the recurrence relation

xn+5xn = xr
n+4x

r
n+1 + xs

n+2x
s
n+3. (10)

This sequence is precisely the Somos-5 sequence when r = s = 1.
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Example 1. Examples of recurrence relations of sixth order corresponding
to 1-periodic quivers are:

a) xn+6xn = xr
n+5x

p
n+3x

r
n+1 + xs

n+2x
s
n+4 with r, s, p ∈ N.

b) xn+6xn = (xn+5xn+1)
r + xs

n+2x
p
n+3x

s
n+4 with r, s, p ∈ N.

Using (5)-(7), the matrix B associated to these sequences is

a)

B =









0 −r s −p s −r
r 0 −r(1 + s) s −p− sr s
−s r(1 + s) 0 −r + s(p − r) s −p
p −s r − s(p − r) 0 −r(1 + s) s
−s p + sr −s r(1 + s) 0 −r
r −s p −s r 0









. (11)

b)

B =









0 −r s p s −r
r 0 −r(1 + s) s − pr p − sr s
−s r(1 + s) 0 −r(1 + s) s − pr p
−p −s + pr r(1 + s) 0 −r(1 + s) s
−s −p + sr −s + pr r(1 + s) 0 −r
r −s −p −s r 0









. (12)

3. Compatible Poisson Structures

Poisson structures compatible with a cluster algebra were introduced in
[GeShVa03] (see also [GeShVa10]) and have been applied, for instance, to
Grassmannians in [GeShStVa], to directed networks (in [GeShVa09] and
[GeShVa12]) and even to the theory of integrable systems (Toda flows in
GLn) in [GeShVa11].

A Poisson structure is compatible with a cluster algebra if in any set of
cluster variables, the Poisson bracket is given by the simplest possible kind
of homogeneous quadratic bracket.

Let (B,x) be an initial seed, where B is an N×N integer skew-symmetric
matrix and x = (x1, . . . , xN ). A (nontrivial) Poisson bracket {, } is com-
patible with A(B) if:

• it is of the form
{xi, xj} = cijxixj (13)

with C = [cij ] a (nontrivial) integer skew-symmetric matrix; and
for x′ = (x′

1, . . . , x
′
n) given by (2), one has again

{x′
i, x

′
j} = c′ijx

′
ix

′
j
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with C ′ = [c′ij ] an integer skew-symmetric matrix.

Note that any skew-symmetric matrix C defines a Poisson bracket through
(13). The matrix C is called the coefficient matrix of the bracket with re-
spect to the variables (x1, . . . , xN ).

In the cluster algebra literature, a Poisson bracket of the type (13) is
known as a log-canonical Poisson bracket (or the cluster variables are re-
ferred to as a log-canonical system of coordinates), since in coordinates
zi = log xi the Poisson bracket has the canonical form

{zi, zj} = cij .

Poisson brackets compatible with a cluster algebra A(B) were character-
ized in Theorem 4.5 of [GeShVa10] (see also [GeShVa03]) for the case of full
rank matrices B. The next proposition extends this theorem to any skew-
symmetric matrix B. We remark that singular matrices B are particularly
relevant in recurrence relations whose order can be lowered.

Proposition 1. Let (B,x) be an initial seed, with B an N × N integer
skew-symmetric matrix and x = (x1, . . . , xN ). Then a Poisson structure
(given by a matrix C) is compatible with the cluster algebra A(B) if and
only if BC is a diagonal matrix D.

In particular, if B is invertible then C can be chosen to be invertible.

Proof. Consider a Poisson structure given by (13) and a mutation in any
direction k. In the mutated variables (x′

1, . . . , x
′
N ) the Poisson structure

must satisfy

{x′
i, x

′
j} = c′ijx

′
ix

′
j

which is clearly true (with c′ij = cij) if i, j are both different from k. If

i = k (and j 6= k), then x′
j = xj and x′

i = x′
k = A+(x̂)+A−(x̂)

xk
, with

A+(x̂) =
∏

m:bkm>0

xbkm
m , A−(x̂) =

∏

m:bkm<0

x−bkm
m ,
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and x̂ = (x1, . . . , xk−1, xk+1, . . . , xN ). Then

{x′

k, x′

j} =

{
A+(x̂) + A−(x̂)

xk

, xj

}

= −
1

x2
k

(
A+(x̂) + A−(x̂)

)
{xk, xj}

+
1

xk

[
∑

l:bkl>0

bkl

xl

A+(x̂){xl, xj} −
∑

l:bkl<0

bkl

xl

A−(x̂){xl, xj}

]

= −ckjx
′

kx′

j +
x′

jx
′

k

A+(x̂′) + A−(x̂′)

[

A+(x̂′)
∑

l:bkl>0

bklclj − A−(x̂′)
∑

l:bkl<0

bklclj

]

.

Therefore, {x′
k, x

′
j} = c′kjx

′
kx

′
j if and only if

∑

l:bkl>0

bklclj = −
∑

l:bkl<0

bklclj ⇐⇒ (BC)kj − bkkckj = 0.

As B is skew-symmetric, the above condition is equivalent to (BC)kj = 0,
for j 6= k. Since k is arbitrary, this amounts to BC = D with D a diagonal
matrix.

If B is invertible then the condition BC = D is equivalent to C = B−1D,
with D diagonal. In particular we can choose D to be invertible and so will
be C. �

Remark 1. If the matrix B is singular, a compatible Poisson structure
might not exist. For instance, it is easy to see that the cluster algebra
defined by the matrix

B =

[
0 1 −1
−1 0 1
1 −1 0

]

(14)

(corresponding to a cyclic quiver of three nodes), does not admit a nontriv-
ial compatible Poisson structure.

Example 2. A cluster algebra A(B) can admit compatible Poisson struc-
tures of different ranks. For instance, for the following matrix B we get a
two parameter family of Poisson brackets with coefficient matrices Ca,b.

B =






0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0




 , Ca,b =






0 0 a 0
0 0 0 b
−a 0 0 0
0 −b 0 0




 . (15)

We also remark that the above matrix B corresponds to a quiver of
period 1, more precisely to what is called a primitive quiver (such quivers
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were used in [FoMa] as the building blocks of 1-periodic quivers). This
matrix B represents the sequence

xn+4xn = xn+2 + 1. (16)

3.1. Reduction of Order by Compatible Poisson Structures. For
the purpose of reduction of (8) to a lower order recurrence relation, it is
important to consider a special kind of compatible Poisson structures.

Let ϕ be the iteration map (9) corresponding to the recurrence relation
(8). To reduce (8) to a recurrence relation of order k < N it is important
to find a set of k functions, y1, . . . , yk, which is invariant under ϕ, meaning
that

yi ◦ ϕ = Fi(y1, . . . , yk), i = 1, . . . , k.

This can be achieved if:

• ϕ is a Poisson map, i.e, for all functions f and g

{f ◦ ϕ, g ◦ ϕ} = {f, g} ◦ ϕ;

• each yi is a Casimir, that is its bracket with any other function
vanishes:

{yi, f} = 0, i = 1, . . . , k.

In such case the set of Casimirs will be invariant under ϕ.

The next proposition characterizes compatible Poisson structures with
the cluster algebra A(B) for which the iteration map ϕ is a Poisson map.

Proposition 2. Consider the recurrence relation (8) and the matrix B
representing it. Let

{xi, xj} = cijxixj

be a Poisson bracket which is compatible with the cluster algebra A(B) (i.e.,
BC is diagonal). Then the iteration map ϕ in (9) is a Poisson map if and
only if:

• C = [cij ] is a band matrix (in the sense cij = ci+1,j+1)
• C satisfies

ciN = c1,i+1 −
∑

l:b1l>0

b1lcl,i+1, i ∈ {1, . . . , N − 1}. (17)

Proof. ϕ is a Poisson map if and only if

{xi, xj} ◦ ϕ = {xi ◦ ϕ, xj ◦ ϕ}, ∀i, j ∈ {1, . . . , N}.

If i 6= N and j 6= N then

{xi, xj} ◦ ϕ = (cijxixj) ◦ ϕ = cijxi+1xj+1

{xi ◦ ϕ, xj ◦ ϕ} = {xi+1, xj+1} = ci+1,j+1xi+1xj+1,

São Paulo J.Math.Sci. 6, 2 (2012), 1–23



10 I. Cruz and M. E. Sousa-Dias

so necessarily cij = ci+1,j+1 for all i, j ∈ {1, . . . , N − 1}. This means that
C is a band matrix.

If j = N , then we must impose

{xi, xN} ◦ ϕ = {xi ◦ ϕ, xN ◦ ϕ}, i ∈ {1, . . . , N − 1}. (18)

In this case

{xi, xN} ◦ ϕ = ciNxi+1
A+(x̂) + A−(x̂)

x1
,

whereas

{xi ◦ ϕ, xN ◦ ϕ} =

{

xi+1,
A+(x̂) + A−(x̂)

x1

}

= −
A+(x̂) + A−(x̂)

x2
1

{xi+1, x1}

+
1

x1

[
∑

k:b1k>0

b1k

A+(x̂)

xk

{xi+1, xk} −
∑

k:b1k<0

b1k

A−(x̂)

xk

{xi+1, xk}

]

= −ci+1,1xi+1

A+(x̂) + A−(x̂)

x1

+
xi+1

x1

[

A+(x̂)
∑

k:b1k>0

b1kci+1,k − A−(x̂)
∑

k:b1k<0

b1kci+1,k

]

= −ci+1,1xi+1

A+(x̂) + A−(x̂)

x1

+
xi+1

x1

[

−A+(x̂)
∑

k:b1k>0

b1kck,i+1 − A−(x̂)
∑

k:b1k>0

b1kck,i+1

]

.

In the last identity we used skew-symmetry of C and the fact that BC
is diagonal, which translates into

∑

k:b1k<0

b1kck,i+1 = −
∑

k:b1k>0

b1kck,i+1.

Finally (18) holds if and only if

ciN = c1,i+1 −
∑

k:b1k>0

b1kck,i+1, i ∈ {1, . . . , N − 1}. (19)

�

We remark that the condition of ϕ being a Poisson map imposes strong
conditions on the number of Poisson structures compatible with A(B). For
example, for the recurrence relation (16), ϕ is a Poisson map for Ca,b in
(15) if and only if a = b.
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Example 3. Consider the recurrence relation (10) with r = s = 1, corre-
sponding to the Somos-5 sequence. The corresponding matrix B has rank
2 and there is just one (up to a constant) compatible Poisson bracket for
which the iteration map is Poisson. The respective coefficient matrix of
this bracket is

C =








0 1 2 3 4
−1 0 1 2 3
−2 −1 0 1 2
−3 −2 −1 0 1
−4 −3 −2 −1 0








. (20)

Example 4. Consider the recurrence relations given in Example 1.

a1) The matrix B in Example 1-a) with p = 4, r = 2 and s = 6 has rank
two, and there are two compatible Poisson brackets for which the
map ϕ is a Poisson map. These brackets are given by the matrices

C1 =









0 −1 0 1 0 −1
1 0 −1 0 1 0
0 1 0 −1 0 1
−1 0 1 0 −1 0
0 −1 0 1 0 −1
1 0 −1 0 1 0









, C2 =









0 0 −1 −3 −7 −18
0 0 0 −1 −3 −7
1 0 0 0 −1 −3
3 1 0 0 0 −1
7 3 1 0 0 0
18 7 3 1 0 0









.

(21)
a2) The matrix B in Example 1-a) with p = 4, r = 2 and s = 3 has rank

four, and there is only one compatible Poisson bracket for which the
map ϕ is a Poisson map. The coefficient matrix for this bracket is
C1 defined in (21).

b1) In Example 1-b) with p = 4, r = 2 and s = 2, the matrix B has
rank two, and there are two compatible Poisson brackets for which
the map ϕ is a Poisson map. The respective coefficient matrices
are:

C′

1 =









0 1 0 3 4 9
−1 0 1 0 3 4
0 −1 0 1 0 3
−3 0 −1 0 1 0
−4 −3 0 −1 0 1
−9 −4 −3 0 −1 0









, C′

2 =









0 0 1 1 3 6
0 0 0 1 1 3
−1 0 0 0 1 1
−1 −1 0 0 0 1
−3 −1 −1 0 0 0
−6 −3 −1 −1 0 0









. (22)

Summarizing, for the recurrence relations

a1) xn+6xn = (xn+5xn+1)
2x4

n+3 + (xn+2xn+4)
6

a2) xn+6xn = (xn+5xn+1)
2x4

n+3 + (xn+2xn+4)
3

b1) xn+6xn = (xn+5xn+1)
2 + (xn+2xn+4)

2x4
n+3

we have

São Paulo J.Math.Sci. 6, 2 (2012), 1–23
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rankB rankC
a1) rankB = 2 rankC1 = 2 rankC2 = 4
a2) rankB = 4 rankC1 = 2
b1) rankB = 2 rankC ′

1 = 4 rankC ′
2 = 4

To lower the order of a recurrence relation one should now find Casimirs
for the compatible Poisson brackets. Laurent monomials which are Casimirs
can be computed directly from the matrix C as stated in the following
proposition.

Proposition 3. Let v = (v1, . . . , vN ) ∈ Z
N and xv = xv1

1 xv2

2 · · · xvN

N . Then
xv is a Casimir of the Poisson bracket

{xi, xj} = cijxixj

if and only if v ∈ ker C.

Proof. For any i ∈ {1, . . . , N} we have

{xi,x
v} =

N∑

k=1

vkcikx
vxi = xvxi

N∑

k=1

cikvk = xvxi (Cv)i .

Thus xv is a Casimir if and only if Cv = 0. �

Example 5. For the Somos-5 recurrence relation, the kernel of the matrix
C in (20) is

ker C = 〈(1,−2, 1, 0, 0), (0, 1,−2, 1, 0), (0, 0, 1,−2, 1)〉,

giving the following Casimirs

y1 =
x1x3

x2
2

, y2 =
x2x4

x2
3

, y3 =
x3x5

x2
4

.

These Casimirs satisfy the relations yi ◦ ϕ = yi+1 for i = 1, 2 and

y3 ◦ ϕ =
1 + y2y3

y1y
2
2y

2
3

,

showing that the fifth order recurrence relation can be reduced to a third
order relation whose iteration map is

ϕ̂(y1, y2, y3) =

(

y2, y3,
1 + y2y3

y1y
2
2y

2
3

)

. (23)
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Example 6. For the coefficient matrices in Example 4 we have

ker C1 = 〈(1, 0, 1, 0, 0, 0), (0, 1, 0, 1, 0, 0), (0, 0, 1, 0, 1, 0), (0, 0, 0, 1, 0, 1)〉
(24)

ker C2 = 〈(1,−3, 2,−3, 1, 0), (0, 1,−3, 2,−3, 1)〉 (25)

ker C ′
1 = 〈(1,−1,−2,−1, 1, 0), (0, 1,−1,−2,−1, 1)〉 (26)

ker C ′
2 = ker C ′

1. (27)

a1) Casimirs for the Poisson structure defined by C1 are

y1 = x1x3, y2 = x2x4, y3 = x3x5, y4 = x4x6. (28)

These Casimirs are such that yi ◦ ϕ = yi+1 for i = 1, 2, 3 and

y4 ◦ ϕ =
y3

y1

(
y2
2y

2
4 + y6

3

)
.

This shows that the sixth order recurrence relation can be reduced
to a fourth order relation whose iteration map is

ϕ̂(y1, y2, y3, y4) =

(

y2, y3, y4,
y2
2y3y

2
4 + y7

3

y1

)

. (29)

Using the Poisson structure defined by C2 instead of C1 we have
the Casimirs:

z1 =
x1x

2
3x5

x3
2x

3
4

, z2 =
x2x

2
4x6

x3
3x

3
5

.

As z1 ◦ ϕ = z2 and

z2 ◦ ϕ =
1 + z2

2

z1z
3
2

,

the reduced relation is now a second order relation whose iteration
map is given by

ϕ̃(z1, z2) =

(

z2,
1 + z2

2

z1z
3
2

)

. (30)

a2) Casimirs for C1 are given in (28), but now the reduced iteration
map is

ϕ̂(y1, y2, y3, y4) =

(

y2, y3, y4,
y2
2y3y

2
4 + y4

3

y1

)

. (31)

b1) Finally, the Casimirs for both Poisson structures defined by C ′
1 and

C ′
2 are

y1 =
x1x5

x2x
2
3x4

, y2 =
x2x6

x3x
2
4x5

.
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14 I. Cruz and M. E. Sousa-Dias

The reduced relation has iteration map given by

ϕ̂(y1, y2) =

(

y2,
1 + y2

2

y1y2

)

. (32)

Remark 2. It is worth noting that the fourth order relation (29) could be
further reduced to the second order relation (30). In fact, considering the
projection

π(y1, y2, y3, y4) =

(
y1y3

y3
2

,
y2y4

y3
3

)

we have

π ◦ ϕ̂ = ϕ̃ ◦ π.

4. Compatible Pre-symplectic Structures

Compatible pre-symplectic structures with a given cluster algebra can
also be used to reduce the order of recurrence relations of the form (8). They
were introduced in [GeShVa05] (see also [GeShVa10]) as an alternative tool
when there are no (nontrivial) Poisson structures compatible with A(B),
such as the case in Remark 1.

Let (B,x) be an initial seed, with B an N × N integer skew-symmetric
matrix and x = (x1, . . . , xN ). A closed 2-form ω (i.e., a pre-symplectic
structure) is compatible with A(B) if:

• it is of the form

ω =
∑

i<j

ωij
dxi

xi
∧

dxj

xj
, (33)

for some integers ωij;
• for x′ = (x′

1, . . . , x
′
N ) given by (2), one has again

ω =
∑

i<j

ω′
ij

dx′
i

x′
i

∧
dx′

j

x′
j

,

for some integers ω′
ij.

Such a pre-symplectic form is usually given by the integer skew-symmetric
matrix Ω = [ωij ], which is called the coefficient matrix of the form with re-
spect to the variables (x1, . . . , xN ).

Just as in the Poisson situation, a pre-symplectic form of the type (33)
is known as a log-canonical pre-symplectic structure since in coordinates
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zi = log xi it has the canonical form

ω =
∑

i<j

ωijdzi ∧ dzj .

The next proposition characterizes pre-symplectic forms compatible with
a cluster algebra. The contents of this proposition coincide with that of
Theorem 6.2 in [GeShVa10] when the matrix B has no zero rows.

Proposition 4. Let (B,x) be an initial seed, with B an N × N integer
skew-symmetric matrix and x = (x1, . . . , xN ).

Then a pre-symplectic structure (given by a skew-symmetric integer ma-
trix Ω) is compatible with the cluster algebra A(B) if and only if the kth

row of Ω is a multiple of the kth row of B, whenever the latter is nonzero.

In particular, if there is one row of B with N − 1 nonzero entries, then
Ω is a multiple of B.

Proof. Let ω be a pre-symplectic form given by (33) and consider a muta-
tion in any direction k. Then, with x̂ = (x1, . . . , xk−1, xk+1, . . . , xN ) and

A+(x̂) =
∏

m:bkm>0

xbkm
m , A−(x̂) =

∏

m:bkm<0

x−bkm
m ,

we have
dxi

xi
=

dx′
i

x′
i

for i 6= k, and

dxk

xk
= −

dx′
k

x′
k

+

α
︷ ︸︸ ︷

1

A+(x̂′) + A−(x̂′)



A+(x̂′)
∑

m:bkm>0

bkm
dx′

m

x′
m

− A−(x̂′)
∑

m:bkm<0

bkm
dx′

m

x′
m



,

so that
∑

i<j

ωij
dxi

xi
∧

dxj

xj
=

∑

k 6=i<j 6=k

ωij
dx′

i

x′
i

∧
dx′

j

x′
j

+
∑

i<k

ωik
dx′

i

x′
i

∧

(

−
dx′

k

x′
k

+ α

)

+

+
∑

j>k

ωkj

(

−
dx′

k

x′
k

+ α

)

∧
dx′

j

x′
j

.

If ω is compatible with A(B) then:

• for i < k: ω′
ik = −ωik

• for j > k: ω′
kj = −ωkj
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16 I. Cruz and M. E. Sousa-Dias

• for i < j < k:

ω′
ij = ωij +







A+(ωikbkj−ωjkbki)
A++A−

, if bki > 0, bkj > 0

−
A−(ωikbkj−ωjkbki)

A++A−
, if bki < 0, bkj < 0

A+ωikbkj+A−ωjkbki

A++A−
, if bki < 0, bkj > 0

−
A−ωikbkj+A+ωjkbki

A++A−
, if bki > 0, bkj < 0

These conditions define integers ω′
ij if and only if

ωikbkj − ωjkbki = 0, i < j < k (34)

• for i < k < j:

ω′
ij = ωij +







A+(ωikbkj+ωkjbki)
A++A−

, if bki > 0, bkj > 0

−
A−(ωikbkj+ωkjbki)

A++A−
, if bki < 0, bkj < 0

A+ωikbkj−A−ωkjbki

A++A−
, if bki < 0, bkj > 0

−
A−ωikbkj−A+ωkjbki

A++A−
, if bki > 0, bkj < 0

This amounts to the conditions

ωikbkj + ωkjbki = 0, i < k < j (35)

• for k < i < j:

ω′
ij = ωij +







A+(−ωkibkj+ωkjbki)
A++A−

, if bki > 0, bkj > 0

A−(ωkibkj−ωkjbki)
A++A−

, if bki < 0, bkj < 0

−
A+ωkibkj+A−ωkjbki

A++A−
, if bki < 0, bkj > 0

A−ωkibkj+A+ωkjbki

A++A−
, if bki > 0, bkj < 0

In this last case we have the conditions

ωkibkj − ωkjbki = 0, k < i < j. (36)
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Reduction of order of cluster-type recurrence relations 17

To conclude the proof we observe that, if the kth row of B is nonzero
then there is m 6= k such that bkm 6= 0. In this case conditions (34), (35)
and (36) guarantee that, for all i ∈ {1, . . . , N}

ωki = λkbki with λk =
ωkm

bkm

(the cases i = k and i = m are trivially satisfied). This is equivalent to the
kth row of Ω being a multiple of the kth row of B.

If the kth row of B is zero then the kth row of Ω is arbitrary because
(34), (35) and (36) hold trivially.

Finally observe that, if the kth row of B has only one zero entry (i.e.
bkk), then the skew-symmetry of both B and Ω assure that λi = λk for all
i 6= k and therefore Ω = λB.

�

Remark 3. Contrary to the Poisson situation, a pre-symplectic structure
compatible with A(B) always exists since we can choose Ω = B. This
choice for ω will be referred to as standard pre-symplectic structure. For
example, if B is the matrix (14) in Remark 1 then

ω =
dx1

x1
∧

dx2

x2
−

dx1

x1
∧

dx3

x3
+

dx2

x2
∧

dx3

x3

is the standard pre-symplectic structure compatible with A(B).

Example 7. Consider the matrix

B =






0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0




 .

Then the pre-symplectic form

ω = a
dx1

x1
∧

dx4

x4
+ b

dx2

x2
∧

dx3

x3

is compatible with A(B), for all a, b ∈ Z.

4.1. Reduction of Order by Compatible Pre-symplectic Structures.
Like in the Poisson approach, compatible pre-symplectic structures can be
used to lower the order of the recurrence (8). Again, in order to lower the
order of the recurrence it is important to find 2k < N functions y1, . . . , y2k
which form an invariant set under ϕ.

In [FoHo11] and [FoHo12], the standard pre-symplectic structure has
been used to lower the order of recurrence relations of the form (8) in the
case B has rank two. Here, however, we will follow a different strategy,
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18 I. Cruz and M. E. Sousa-Dias

which applies easily to the case where B has rank 2k > 2. To be more
precise we observe that, if

• ϕ preserves ω, i.e., ϕ∗ω = ω;
• y1, . . . , y2k are such that

ω = dy1 ∧ dy2 + · · · + dy2k−1 ∧ dy2k

then the set of functions y1, . . . , y2k is invariant under ϕ. The first of these
conditions is guaranteed to hold in the case ω is the standard pre-symplectic
structure, by Lemma 2.3 in [FoHo12]. The existence of y1, . . . , yk comes
from the following theorem of E. Cartan, whose constructive proof can be
found, for instance, in [LibMa].

Theorem 1 (E. Cartan). Let ω be a 2-form on a linear vector space V such
that rank (ω) = 2p. Then, there are linear coordinates f1, . . . , f2p ∈ V ∗ such
that

ω = f1 ∧ f2 + · · · + f2p−1 ∧ f2p. (37)

Proof. Let {e1, . . . , eN} be an arbitrary basis for V and denote by {e1, . . . , eN}
the linear coordinates on this basis. Then

ω =
1

2

∑

i,j

ωije
i ∧ ej , with ωji = −ωij.

Reordering if necessary the elements in the original basis we can assume
that ω12 6= 0. Define

f1 =
1

ω12

N∑

k=1

ω1ke
k, f2 =

N∑

l=1

ω2le
l, (38)

so that

f1 ∧ f2 = ω12e
1 ∧ e2 +

N∑

i=3

ω1ie
1 ∧ ei +

N∑

j=3

ω2je
2 ∧ ej + α

with α depending only on {e3, . . . , eN}.

The 2-form

ω̃ = ω − f1 ∧ f2

is a 2-form on the (N−2)-dimensional vector space with basis {e3, . . . , eN}.
Furthermore rank (ω̃) = 2p − 2.

If rank(ω) = 2 then ω̃ ≡ 0 and the proof is finished since ω = f1 ∧ f2.
Otherwise, the previous procedure is repeated now for ω̃ instead of ω. The
decomposition will be obtained in p steps. �
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Remark 4. The decomposition (37) is clearly not unique. For example, if
ω = f1 ∧ f2, then also ω = f1 ∧

(
f2 + af1

)
, a ∈ R. This fact will be used

in the reduction of the recurrence relations.

Example 8. Let us consider the Somos-5 sequence defined by the matrix
B in (4) with r = s = 1. That is,

B =








0 −1 1 1 −1
1 0 −2 0 1
−1 2 0 −2 1
−1 0 2 0 −1
1 −1 −1 1 0








.

Consider the (standard) pre-symplectic form Ω = B. Using (38) we get
directly from the 1st and 2nd rows of B:

ω = d




z2 − z3 − z4 + z5
︸ ︷︷ ︸

f1




 ∧ d




z1 − 2z3 + z5
︸ ︷︷ ︸

f2




 .

Replacing f2 by f2 − f1, we obtain

ω = d (z2 − z3 − z4 + z5) ∧ d (z1 − z2 − z3 + z4) .

Written in terms of the xi-coordinates we have

ω = d log

(
x2x5

x3x4

)

∧ d log

(
x1x4

x2x3

)

.

Taking

y1 =
x1x4

x2x3
, y2 =

x2x5

x3x4
,

the reduced iteration map is

ϕ̂(y1, y2) =

(

y2,
1 + y2

y1y2

)

.

We remark that ϕ̂ belongs to the QRT family of integrable maps (see
[QRT]). This same reduced iteration map has been obtained in [FoHo11]
by following a different procedure.

Example 9. Consider again the recurrence relation of Example 4-a1),
where

B =









0 −2 6 −4 6 −2
2 0 −14 6 −16 6
−6 14 0 10 6 −4
4 −6 −10 0 −14 6
−6 16 −6 14 0 −2
2 −6 4 −6 2 0









.
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20 I. Cruz and M. E. Sousa-Dias

We consider the pre-symplectic form Ω = 1
2B which is compatible with

A(B). This form is given in coordinates zi = log xi by

ω =
∑

i<j

bij

2
dzi ∧ dzj ,

and has rank 2. Using (38), the 1st and 2nd rows of Ω give again

ω = d




z2 − 3z3 + 2z4 − 3z5 + z6
︸ ︷︷ ︸

f1




 ∧ d




z1 − 7z3 + 3z4 − 8z5 + 3z6
︸ ︷︷ ︸

f2




 ,

or, replacing f2 by f2 − 3f1:

ω = d (z2 − 3z3 + 2z4 − 3z5 + z6) ∧ d (z1 − 3z2 + 2z3 − 3z4 + z5) .

Written in terms of the xi-coordinates this amounts to

ω = d log

(
x2x

2
4x6

x3
3x

3
5

)

∧ d log

(
x1x

2
3x5

x3
2x

3
4

)

,

producing, as in (30), a reduced recurrence relation whose iteration map is
the symplectic map

ϕ̂(y1, y2) =

(

y2,
1 + y2

2

y1y
3
2

)

where

y1 =
x1x

2
3x5

x3
2x

3
4

, y2 =
x2x

2
4x6

x3
3x

3
5

.

This reduced relation has also been obtained in [FoHo11].

The recurrence considered in Example 4-b1) is treated in a completely
analogous way, using the pre-symplectic form Ω = 1

2B. The respective
reduced iteration map is precisely (32).

We proceed with an example where B has rank four, as this situation
requires going one step further in Cartan’s decomposition.

Example 10. Consider the recurrence relation in Example 4-a2) given by

B =









0 −2 3 −4 3 −2
2 0 −8 3 −10 3
−3 8 0 4 3 −4
4 −3 −4 0 −8 3
−3 10 −3 8 0 −2
2 −3 4 −3 2 0









.
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Consider the pre-symplectic form Ω = 2B which in coordinates zi = log xi
is the form

ω =
∑

i<j

2bijdzi ∧ dzj .

Using (38) we arrive at

df1 = d

(

z2 −
3

2
z3 + 2z4 −

3

2
z5 + z6

)

,

df2 = d (4z1 − 16z3 + 6z4 − 20z5 + 6z6) .

Because rank (ω) = 4 we need to compute ω̃, which gives

ω̃ = ω−df1∧df2 = −15dz3∧dz4−15dz3∧dz6+15dz4∧dz5−15dz5∧dz6. (39)

This 2-form has rank 2, and so using again (38) we obtain

ω̃ = d




z4 + z6
︸ ︷︷ ︸

f3




 ∧ d




15z3 + 15z5
︸ ︷︷ ︸

f4




 .

Finally, the decomposition for ω is

ω = d (2z2 − 3z3 + 4z4 − 3z5 + 2z6) ∧ d (2z1 − 8z3 + 3z4 − 10z5 + 3z6) +

+d (z4 + z6) ∧ d (15z3 + 15z5) .

The corresponding set of invariant functions is obtained by recovering
the xi-coordinates

y1 =
x2

2x
4
4x

2
6

x3
3x

3
5

, y2 =
x2

1x
3
4x

3
6

x8
3x

10
5

, y3 = x4x6, y4 = x15
3 x15

5 .

However, the reduced recurrence can be improved by considering the new
set of invariant functions:

y′1 =
y

1/2
2 y

1/3
4

y
3/2
3

, y′2 =
y

1/2
1 y

1/10
4

y3
, y′3 = y

1/15
4 , y′4 = y3.

In fact the iteration map for the reduced relation is given in these variables
by

ϕ̂(y′1, y
′
2, y

′
3, y

′
4) =

(

y′2, y
′
3, y

′
4,

y
′2
2 y′3y

′2
4 + y

′4
3

y′1

)

,

which is (31).
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5. Conclusions

We used both compatible Poisson structures and compatible
pre-symplectic structures to reduce the order in recurrence relations of the
form (8). In the cases we considered these approaches produced equivalent
reduced relations, nevertheless we want to point out that:

(1) Compatible pre-symplectic structures always exist but compatible
Poisson structures may fail to exist if B is singular.

(2) If B has rank 2 then the pre-symplectic approach will produce a
reduced relation of order 2, which is the best we can expect.

(3) The Poisson approach can reduce the same recurrence to different
orders (which can not happen with the pre-symplectic approach). In
the example we studied (see Remark 2), the higher order reduction
can be seen as an intermediate step to the final reduction, which is
an interesting fact.
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