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Finite Element Prediction of Fatigue Damage Growth in Cancellous Bone 

 
 
 
Abstract 

Cyclic stresses applied to bones generate fatigue damage that affects the bone stiffness and its elastic 

modulus. This paper proposes a finite element model for the prediction of fatigue damage 

accumulation and failure in cancellous bone at continuum scale. The model is based on continuum 

damage mechanics and incorporates crack closure effects in compression. The propagation of the 

cracks is completely simulated throughout the damaged area. In this case, the stiffness of the broken 

element is reduced by 98% to ensure no stress carrying capacities of completely damaged elements. 

Once a crack is initiated, the propagation direction is simulated by the propagation of the broken 

elements of the mesh. The proposed model suggests that damage evolves over a real physical time 

variable (cycles). In order to reduce the computation time, the integration of the damage growth rate 

is based on the cycle blocks approach. In this approach, the real number of cycles is reduced 

(divided) into equivalent blocks of cycles. Damage accumulation is computed over the cycle blocks 

and then extrapolated over the corresponding real cycles. The results show a clear difference between 

local tensile and compressive stresses on damage accumulation. Incorporating stiffness reduction also 

produces a redistribution of the peak stresses in the damaged region, which results in a delay in 

damage fracture.  
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1. Introduction 

Bone resorption has been suggested as the primary failure mode of femoral prostheses. All prostheses 

are supported by cancellous bone, and it is well admitted that medium-term migration of implants 

may be due to the failure of cancellous bone caused by cyclic stress (McNamara et al., 1997, Taylor 

and Tanner, 1997). Cyclic loading accelerates failure in cancellous bone, leading to bone resorption. 

As a result, the rate of migration will vary with the ability of vascularised cancellous bone to repair 

damage (McNamara et al., 1997, Taylor and Tanner, 1997). If damage exceeds repair, then it is likely 

that migration will continue, although at a slower rate than during the initial phase. Also, it will cease 

if repair equals or exceeds the rate of tissue damage. 

The adaptation of bone to cyclic fatigue loads involves a complex physiological response that is 

targeted to local sites of microdamage. The mechanisms that regulate this process are complex and 

not well understood. However, it has been suggested that osteocytes produce a signal proportional to 

mechanical loading by sensing strain and fatigue microcracks and transmit signals activating 

remodelling to remove bone where the damage is excessive. 

Accurate assessment of microdamage is important to evaluate bone remodelling (Burr, 1993; Burr 

and Hooser, 1995; McNamara and Prendergast, 2007b; Prendergast and Taylor, 1994; Hambli et al., 

2009; Hambli, 2011a, b), osteoporotic therapeutics (Hirano et al., 1997) and implant migration and 

loosening (McNamara et al., 1997; Taylor and Tanner, 1997). 

When the loading cycles have been determined, the fatigue analysis of bone can be performed. The 

methods for fatigue analysis are most frequently based on the relation between deformations, stresses 

and number of loading cycles, and are usually modified to fit the nature of the stress cycle (Sobelman 

et al., 2004; Zioupos et al., 1996). The number of stress cycles required for a fatigue crack to appear 

can be determined iteratively with the strain–life method N−ε . 

For purely elastic behaviour, various uncoupled models have been developed to describe the fatigue 

life. In general, the more complex combined shear and normal strain/stress parameters using critical 

plane analysis for non-proportional loading are the most effective (Burr, 1993; Burr and Hooser, 

1995; McNamara and Prendergast, 2007a; Prendergast and Taylor, 1994). 
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In their work, Sobelman et al. (2004) fatigued 20 beams of femoral cortical bone from elderly men 

and women in load-controlled four-point bending with a strain range of 3000 or 5000 microstrains. 

They proposed an experimental Manson-Coffin type relationship between the specific deformation 

and the number of loading cycles. 

In order to simulate the initiation and propagation of microcrack fatigue in cancellous bone, a new 

finite element model has been developed here. The proposed model is based on continuum damage 

mechanics that describes in a fully coupled way the damaging process as a result of cyclic strains 

applied to bone up to the appearance of microcracks.  

Propagation of the cracks is completely simulated throughout the damaged area. In this case, the 

stiffness of the broken elements is reduced by 98% to ensure no stress carrying capacities of 

completely damaged elements. Once a crack has been initiated, the propagation direction is simulated 

by the propagation of the broken elements of the mesh. The proposed model suggests that damage 

evolves over a real physical time variable (cycles). In order to reduce the computational time required 

for the cyclic loading steps of the simulation, the cycle blocks approach was implemented. It consists 

in dividing the real number of cycles into equivalent cycle blocks. Damage accumulation is computed 

over the cycle blocks and then extrapolated over the corresponding real cycles. 

 

2.  Fatigue damage modelling 

Experimental investigations have linked bone adaptation to microdamage. It was suggested by Taylor 

and Tanner (1997) that microcrack detection is related to rupturing of the cellular material itself due 

to crack face displacements. Using specific cell staining techniques, it was confirmed that relative 

crack displacements are capable of tearing cell processes between neighbouring osteocytes. There are 

two possible ways in which cells may be fractured. Firstly, cells immediately ahead of the crack tip 

may experience an excessive strain which breaks them; secondly, the relative displacements of the 

crack faces may be sufficient to fracture cellular processes. Ruptured cell processes may directly 

secrete passive and active components in the extracellular matrix, triggering a repair response (Taylor 

and Tanner, 1997). 



 5 

Continuum Damage Mechanics (CDM) can be used to follow the bone damage process as results of 

cyclic strains applied to bone up to the appearance of microcracks. Lemaitre (1985) and Chaboche 

(1981) suggested that damage in CDM is a state variable that takes into account the degradation of 

material which results in stiffness reduction. The damage variable can also be related to the physical 

modifications in the material such as initiation and propagation of microcracks. 

Elasticity based damage models of high-cycle fatigue assume a decrease in elastic stiffness as the 

damage grows. This loss of stiffness can indeed be measured in bone and other materials. 

Taylor et al. (2002) presented a preliminary study to simulate the fatigue behaviour of cancellous 

bone based on the assumption that the fatigue behaviour of trabecular bone is similar to that of 

cortical bone using a combined CDM and Finite Element Modelling. They examined the influence of 

material property degradation on the overall fatigue behaviour of a trabecular bone segment. Briefly, 

their work suggested that for all but the simplest load cases, the accumulation of permanent strain 

plays an important role in reducing localised high stresses and redistributing the load to the 

surrounding tissue. 

Fatigue damage phenomena are localized at the trabeculae micro-scale and damage effects lead to the 

formation of microcracks which propagate during loading cycles till complete fracture of the 

trabeculae as shown in Figure 1. 

 

           
 

Figure 1. Microcracks in trabeculae (adapted from Fyhrie and Schaffler, 1994). 

 

 
 
 
 
 
 
 
 
 

Total area : A 

Cavities area : AD 
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In CDM (Figure 1), the isotropic damage variable (D ) is defined by the ratio between the total area 

of the microcracks and cavities ( DA ) and the overall sectional area of an elementary material-volume 

( A ): 

A
AD D= .            (1) 

 

3. Damage evolution law 

When dealing with loading histories composed of well-defined discrete cycles, an evolution law in 

terms of the number of cycles and their amplitudes is often considered more practical in the literature. 

The number of cycles ( N ) is then regarded as a continuous time variable and the growth of damage, 

which occurs during discrete time intervals within a cycle, is spread to a continuous evolution over 

the entire cycle. Such a cycle based formulation can be obtained in the form of: 
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where fN  denotes the cycle at failure. 

For high cycle fatigue under purely elastic strain without coupling between heat dissipation and 

mechanical dissipation, it is possible to write (Lemaitre, 1985): 
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where α  is a parameter depending mainly on the loading conditions, β  and M  are material 

parameters that can be obtained from experimental fatigue tests from S-N curves, and eqMσ  and σ  

are the equivalent maximum peak stress and the mean stress, respectively. 

The integration of Eq. (3) leads to Chaboche’s model expressed as (Chaboche, 1981): 
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Fatigue accumulation of bone depends on the loading conditions. Tension or compression loads 

generate two different damage evolutions due to static rupture of bone and crack closure of 

microcracks in compression. To take into account such effects, one way is to consider two different 

values for fN  that can be obtained from experimental laws. In this work, the following relations 

based on experimental investigations conducted by Martin et al. (1998) were implemented: 

3.102110479.1 −−×= εc
fN , for compressive loads,       (5a) 

1.143210630.3 −−×= εt
fN , for tensile loads,       (5b) 

where ε   is the amplitude of applied microstrain. 

The parameter α   is calculated as: 

eqMu

DeqM

σσ
σσ

ηα
−
−

−= 1 ,         (6) 

where η  is a material parameter obtained from S-N experiments, eqMσ , Dσ  and uσ  are the equivalent 

maximum peak stress, the fatigue limit and the ultimate stress, respectively (Figure 2), and the 

operator ...  denotes: xx =  if 0≥x  and 0=x  if 0<x . 

 
 

 T 

 
 

Figure 2. Alternation of σeq during cycle loading. 
  

A major drawback of cumulative damage accumulation models is the computational cost associated 

with modelling every loading cycle. In order to reduce the computation time, the integration of the 

damage growth rate is based on the cycle blocks approach. In this approach, the real number of 

cycles is reduced (divided) into equivalent cycle blocks (Figure 3). Damage accumulation is 

computed over the cycle blocks and extrapolated over the corresponding real cycles. 
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Figure 3. Cycle block sets approach for damage accumulation computation. 

 

Within the framework of the cycle blocks approach, damage evolution can be obtained by: 

DDD npn Δ+=+ ,           (7) 

where pnD +  is the damage at iteration n p+ , with p  denoting the number of cycles in one block set, 

nD  is the damage at iteration n , and DΔ  is the damage increment computed for one jump of p  

cycles. 

Further, to compute the damage at every cycle, we extrapolate the damage state using: 

p
DDD nn

Δ+=+1 .            (8) 
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4. Finite element model  

In order to predict fatigue damage effects, a new finite element model has been developed and 

implemented in ABAQUS (Dassault Systèmes, USA) using the UMAT routine. Figure 4 shows the 

flowchart of the coupled analysis. 

If damage at an integration point reaches a critical value RD , the modulus is reduced by 98%. As a 

result, the resorption was simulated by setting the bone density at 0.08 g/cm3 (Hambli and Thurner, 

2013; Hambli, 2013). 

 
 

 

No 

Yes 

Bone Model 
(Geometry, properties, NTarget, cyclic 

loading) 

FEM Analysis of fatigue 
 

Results 
(σij, ε ij, damage) 

 

Damage accumulation 
 

?Dn+p= Dn+ ΔD 
Dn+1= Dn+ ΔD/p 
 

Update Bone Properties 

Converged 
N < NTarge t  

END 

Cycle N+1 

 
 

Figure 4.  Flowchart of coupled algorithm for predicting bone damage effects. 
 

To simulate the influence of fatigue, the finite element model is run in alternating load and unload 

increments. At each load increment, damage and bone material properties are updated at each 

integration point in every element. The simulation of every loading cycle of a long life fatigue 

problem would have been computationally expensive; therefore, a procedure was adopted to 

approximate many cycles with a single equivalent cycle. 
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The bone material parameters used in the present work are indicated in Table 1. 

 

Table 1. Bone parameter values used for fatigue finite element simulation. 

Parameter Notation Value 
Initial Elastic modulus  

0E  (MPa) 15000 

Poisson ratio  ν  0.3 
Initial density  ρ  (g/cm3) 1.0 
Fatigue parameter  η  0.7 
Fatigue exponent β 0.4 
Ultimate stress uσ (MPa) 133 
Fatigue limit 

Dσ (MPa) 60 

 
 

5.  Discussion  

 
 To qualitatively validate the proposed bone fatigue model, a local 2D simulation was 

performed corresponding to a micro trabecular bone shape as shown in Figure 5. 

 

 
 

Figure 5. Bone fatigue microcrack model. 
 

A mesh is generated using 5700 four-node second order plane-stress elements with an average 

mesh size of about 15 microns. 

In the constitutive law of conventional continuum damage mechanics, there is no intrinsic 

material characteristic length, which means that crack propagation results are dependent on the mesh 

size (Tsouknidas et al., 2015). Several approaches were developed in the past to identify the optimum 

mesh density that would ensure accuracy of the results in terms of model verification (Viceconti et 

al., 2005). This is usually achieved with a mesh independent pattern, ensuring that coarsening of the 

mesh does not disturb the stress field by more than 2% (Tsouknidas et al., 2015). In the current work, 

when the damage parameter reaches a critical value inside an element, the element mechanical 
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contribution to the stiffness matrix is reduced by a factor of 98%, leading to redistribution of the 

stress state in the crack tip. Once a crack has been initiated, the propagation direction is simulated by 

the propagation of the broken elements of the mesh. The average crack length found in bones is 

typically 100 microns (Burr, 1993; Taylor and Lee, 2002). In the present model, this size corresponds 

to the mesh characteristic length at trabeculae level of a set of about 7 finite elements (15 

microns/element). Hence, to prevent mesh dependence that generally affects the damage propagation 

rate, numerical fatigue fracture occurs when the damage value reaches a critical value at a set of 7 

serial broken elements (a crack length of about 100 microns). The proposed mesh-dependency 

regularization method was successfully applied in previous work dealing with crack propagation, and 

ensures non-dependency of the fracture results on the finite element mesh (Hambli, 2011a, b).  

A cyclic force with an amplitude of 50 N was applied to generate fatigue damage during 200 

iterations (days); under these conditions, the local deformation exceeds 3500 µε in some elements. 

Figure 6 depicts the contour of fatigue damage obtained for different iterations. 

 

 
(a) Cycles =1.E+3 

 
(b) Cycles =1.E+4 

 
(c) Cycles =1.E+6 

 
(d) Cycles =1.E8 

 
Figure 6. Simulated contour of fatigue damage at different cycles. 

 

Figure 7 shows the crack initiation and propagation obtained by the simulation performed. 
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   (a) Cycles =1.E+6                            (b) Cycles =1.E+7                       (c) Cycles =1.E+8 

                               

     
    (d) Cycles =1.5E+8                    (e) Cycles =1.7E+8                          (f) Cycles =1.8E+8 
 

Figure 7. Simulated crack propagation at different cycles. 
 

The proposed model was able to predict the sites of bone fatigue microcrack growth located in 

the maximally damaged zones. The predicted fatigue damage of single trabeculae leads to crack 

initiation and propagation, which appears to be local, in agreement with experimental observations 

(Dendorfer et al., 2009). 

Figure 8b depicts the variation of damage versus x  (Fig. 8a) distance resulting from the 

simulation conducted. 

The results reveal that the maximum of damage is reached in tensile zones. This is due to the 

weakness of bone in tension. This damage variation causes a drop in stresses as can be observed in 

Figure 9. In distance corresponding to the highest damage value (x=75%), the stress drop is 

maximum. 
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(a)!Localized damage in tensile regions of the trabeculae (cycle = 1.E+05). 

  
(b)!Damage variation. 

 
Figure 8. Damage distribution in one trabecula versus x distance (cycle = 1.E+05).  

 

 
Figure 9. von Mises equivalent stress distribution in one trabecula 

 versus x distance (cycle = 1.E+07).  
 

It has been suggested that fatigue damage, in the form of microcracks, may act as a signal to 

regulate bone remodeling. These microcracks, which result in the disruption of osteocytic 

communication via the bone canalicular network (Hambli and Rieger, 2011; Hambli et al., 2015) 
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may, in fact, be an important stimulus, providing spatial regulation of the bone damage repair process 

(Burr, 1993; Taylor et al., 2007). The balance between local remodeling and the accumulation of 

trabecular bone fatigue microcracks is believed to play an important role in the maintenance of 

skeletal integrity. This occurs by the resorption of damaged bone by osteoclasts followed by new 

bone formation by osteoblasts. 

In general, bone fatigue damage modeling is investigated from two perspectives: (i) 

Mechanical/Material approaches that use the FE method to model and simulate fatigue damage 

accumulation and growth in the bone under applied cyclic loading leading to crack formation, and (ii) 

Bone remodeling approaches aimed at simulating the fatigue damage repair. 

Taylor et al. (2007) discussed some issues related to the two approaches. The main concern is 

that many experimental studies performed in recent years show that damage can be linked to several 

factors such as reduced stiffness, ageing, osteoporosis and its treatment. Nevertheless, comprehensive 

theoretical fatigue models that take all these factors into consideration are still lacking. It has also 

been reported that mechanical properties. The histological evidence indicates that fatigue damage 

occurs at the microstructural level (microcracks) and at ultrastructural levels (Barkaoui and Hambli, 

2014; Barkaoui et al., 2015). 

Most theoretical and numerical studies of bone damage evolution at the macroscopic level 

have focused on the development of continuum approaches in which the total damage is a scalar 

quantity defined either as the normalized number of cycles or in terms of the changes in elastic 

modulus and residual strain during life (Burr, 1993; Taylor et al., 2002; Hernandez et al., 2006; 

McNamara and Prendergast, 2007; Kosmopoulos et al., 2008, Hambli et al., 2009, 2011a).  Fracture 

mechanics laws have also been applied to investigate crack growth in bone (Taylor and Lee, 2003). 

The limitation of fracture mechanics based approaches is that it is very difficult to predict the 

behavior of every crack explicitly in a large population of cracks.  

In spite of the large number of FE studies dealing with bone damage fatigue accumulation, 

there is still a lack of practical and simple FE models that simulate the complete and realistic 

behavior of bone fatigue considering both damaging processes leading to complete fracture. The 
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present model based on continuum damage mechanics advances previous ones by incorporating both 

fatigue damage accumulation and the fracturing process. In the proposed model, there is no 

difference between crack initiation and propagation. Both result from the failure of an element with a 

characteristic dimension (typical crack size). Thus, fatigue crack initiation and propagation are 

studied in a fully coupled way as a unified approach; the complete propagation of the fatigue cracks 

is simulated by the propagation of the completely damaged elements of the mesh.  In addition, the 

proposed numerical model is built such a way that the damage evolves over a real physical time 

variable (cycles) based on the cycle blocks approach. 

The results of the present study are in agreement with previous ones (Zioupos et al., 1996; 

Taylor et al., 2002). These studies examined cycles to failure vs. stress and damage vs. stress and 

showed that bone experiences mainly a loss in material stiffness and loss in strength.  

Micro-CT FE models applied to trabecular bone specimens (Homminga et al., 2004; 

Hernandez et al., 2006, Dendorfer et al., 2009) showed that microdamage initiation occurs prior to 

apparent yield at relatively low local principal strains in compression. The authors suggested that 

local tissue yielding can, in fact, initiate at very low apparent strains and that the apparent mechanical 

properties are degenerated through these localized effects. Morgan et al. (2005) suggested that 

relatively small amounts of microdamage have a major effect on the mechanical properties of bone. 

The results in Fig. 7 show that fatigue microcracks accumulate in regions of strain concentration 

within the trabeculae.   

This study showed that the current model is an enhanced, practical and simple one that can be 

applied to assess the effect of a given cyclic load on fatigue damage accumulation within bone. From 

a clinical point of view, the model may be applied as a diagnostic tool that can simulate the fatigue 

damage accumulation effects for individual patients in an early stage and investigate the 

consequences in terms of bone strength. Before potential clinical implementation, experimental 

validation by performing several experiments with different bone samples and boundary conditions is 

needed.  
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6. Conclusion 

A new finite element model has been proposed to predict fatigue damage and failure in cancellous 

bone at continuum scale. The model is based on continuum damage mechanics that describes the 

evolution of the damage process as a result of cyclic strains applied to bone up to the appearance of 

microcracks.  

The proposed model suggests that damage evolves over a real physical time variable (cycles). In 

order to reduce the computation time, the integration of the damage growth rate is based on the cycle 

blocks approach. The idea is that the real number of cycles is reduced (divided) into equivalent cycle 

blocks. Damage accumulation is computed over the cycle blocks and extrapolated over the 

corresponding real cycles. 

The results show a clear difference between local tensile and compressive stresses on damage 

accumulation. Incorporating stiffness reduction produces a redistribution of the peak stresses in the 

damaged region, which results in a delay of damage fracture.  

The proposed model can be applied to the development of simulation of the trabecular bone 

remodeling process incorporating strain and damage coupled effects and the assessment of implant 

migration and loosening generated by damage. 
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