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Abstract Stone masonry is one of the oldest and most worldwide used building tech-

niques. Nevertheless, the structural response of masonry structures is complex and the

effective knowledge about their mechanical behaviour is still limited. This fact is par-

ticularly notorious when dealing with the description of their out-of-plane behaviour under

horizontal loadings, as is the case of the earthquake action. In this context, this paper

describes an experimental program, conducted in laboratory environment, aiming at

characterizing the out-of-plane behaviour of traditional unreinforced stone masonry walls.

In the scope of this campaign, six full-scale sacco stone masonry specimens were fully

characterised regarding their most important mechanic, geometric and dynamic features

and were tested resorting to two different loading techniques under three distinct vertical

pre-compression states; three of the specimens were subjected to an out-of-plane surface

load by means of a system of airbags and the remaining were subjected to an out-of-plane

horizontal line-load at the top. From the experiments it was possible to observe that both

test setups were able to globally mobilize the out-of-plane response of the walls, which
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presented substantial displacement capacity, with ratios of ultimate displacement to the

wall thickness ranging between 26 and 45 %, as well as good energy dissipation capacity.

Finally, very interesting results were also obtained from a simple analytical model used

herein to compute a set of experimental-based ratios, namely between the maximum

stability displacement and the wall thickness for which a mean value of about 60 % was

found.

Keywords Out-of-plane � Seismic behaviour � Stone masonry � Airbag � Line-load �
Experimental testing

1 Introduction

Stone masonry is one of the oldest and most worldwide building techniques. Despite the

remarkable longevity of many of the buildings erected with such technique, it is a fact that

the great majority of this built heritage lacks of adequate seismic resistance, requiring

therefore urgent retrofitting interventions in order to both reduce their seismic vulnerability

and to cope with the increased requirements of recent European code standards (Ferreira

2015). However, if it is true that it can be considered as the simplest type of structural

system concerning its assemblage, it is undeniable that, at the same time, it is one of the

most complex construction materials in terms of mechanical properties and performance

assessment. In addition, the behaviour of such structures under seismic excitation is clearly

poor, calling into question both the preservation of a valuable heritage that should be

protected and safeguarded and the security of people and goods.

1.1 Seismic performance of stone masonry structures

As pointed out by Costa (2012), structural reasons for the bad behaviour of masonry

constructions during earthquakes are mainly due to its heterogeneity, anisotropic be-

haviour, negligible tensile strength and poor shear behaviour, which are further aggravated

with the decreasing quality of masonry material and its assemblage. The out-of-plane

damage or collapse mechanism is a widespread seismic failure mode in existing unrein-

forced masonry buildings, where insufficient or even no connection at floor levels is

observed (Ferreira et al. 2014). Moreover, as traditional constructions on unreinforced

masonry buildings possesses flexible diaphragms, it is not possible to take into account the

contribution of returning walls to the seismic resistance and, for this reason, exterior

masonry walls may behave independently on a cantilever mode, even for low seismic

intensities. As a matter of fact, the out-of-plane collapse of unreinforced masonry walls

Fig. 1 Unreinforced stone masonry buildings damaged after the 2009 L’Aquila earthquake
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tends to occur at lower intensities than those required to produce collapse or heavy damage

for in-plane response. Such fact, well known in the earthquake engineering community, has

been convincingly demonstrated in recent earthquakes damage surveys in Italy (Decanini

et al. 2004; Augenti and Parisi 2010; D’Ayala and Paganoni 2011), Spain (Romão et al.

2013), Turkey (Bayraktar et al. 2007a; b; Sayın et al. 2013, 2014) or in Pakistan (Maqsood

and Schwarz 2010). Figure 1 depicts some examples of damage on traditional unreinforced

stone masonry buildings, recorded after the magnitude 6.3 earthquake that struck L’Aquila

city centre (central Italy) on the 6th of April 2009.

Concerning multi storey buildings and, despite the main post-earthquake observations

shows that the out-of-plane collapse occurs mainly at the upper levels (due to dynamic

amplification of the seismic action), it is also important to study the behaviour of a

complete masonry wall. On insufficiently restrained very deformable masonry walls, the

cantilever behaviour of the complete façade may occur, as included in the failure

mechanisms presented by D’Ayala and Speranza (2003). For this reason, this work in-

cludes the study of lower level masonry walls of multi-storey masonry buildings to provide

all the required data to deeply characterize the out-of-plane behaviour of unreinforced

stone masonry walls.

1.2 Scope and motivation

The interest on such characterization has been increasing in recent years, namely with the

development of some experimental works either in laboratory environment or in field. Among

the various examples that could be cited here, a highlight for the recent experimental

laboratory campaign presented by Restrepo-Vélez et al. (2014) and Vaculik et al. (2014),

wherein a series of static 1:5 scale tests were performed on stone masonry walls with the aim

of verifying existing analytical expressions for the computation of their horizontal resistance,

and for the late in situ work of Costa et al. (2012b) in which a traditional two-storey masonry

building was tested by means of the application of quasi-static loads at the building top level

in the out-of-plane direction. Some further examples of relevant works were recently pub-

lished in this field namely by Costa et al. (2013a, b), D’Ayala and Shi (2011) and Griffith et al.

(2007). Nevertheless, the effective knowledge about the out-of-plane behaviour of masonry

walls under earthquake action is still limited and the currently available experimental tech-

niques are not completely stabilized and validated. In addition, a significant part of the

available experimental data was obtained from investigations on reduced scale specimens,

which may strongly influence some particular issues of the seismic resistance of real ele-

ments, or through testing schemes wherein the reproduction of existing materials or real

in situ conditions are, at least, questionable.

Bearing in mind the above referred limitations, the work presented in this paper focuses

on an experimental campaign carried out in laboratory environment in order to study the

out-of-plane behaviour of stone masonry walls. The tests took place at Laboratory of

Earthquake and Structural Engineering (LESE) of the Faculty of Engineering of the

University of Porto, Portugal, and involved the construction of six full-scale unreinforced

stone masonry walls, similar in terms of geometry and material characteristics, and their

subsequent out-of-plane tests through the application of two different quasi-static loading

schemes. The first loading scheme consisted of the application of a surface load resorting

to a system of nylon airbags, while the second one consisted of the application of a

horizontal line-load through a hydraulic actuator placed at the top of the masonry speci-

men. It is worth noting that these two loading schemes fall in the same research line of

previous experimental works presented by this research team (e.g. Costa et al. (2012a, b)
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and Ferreira et al. (2012)). Note that the choice for using two different loading schemes in

the experimental campaign reported herein has two main purposes: on one hand, the

discussion of the results on the basis of the direct comparison between both setups, and on

the other hand, the validation of these two schemes for in situ testing of stone masonry

walls. Furthermore, taking into account past laboratory campaigns presented in the lit-

erature, this work presents some worth noting features such as the fact that the stone

masonry specimens used were constructed by professional masons with stone material

collected from real masonry structures and with mortars manufactured according to the

traditional procedures. In addition, the analysis of the out-of-plane performance of the

specimens was preceded by a thorough characterization of their morphological, mechanic

and material properties.

2 Characterisation of the masonry specimens

De Felice (2011) highlighted that the out-of-plane behaviour of irregular stone masonry walls

is strongly influenced, not only by the mechanical characteristics of the elements which

compose the wall (stone units and infill material), but also by their geometrical character-

istics and by the arrangement and fabric of the wall’s section. Contrary to the Roman

cementa (Luigli 1957) wherein the monolithic behaviour of the wall is ensured by the

cohesion of the mortar, in sacco stone masonry the mortar is usually not strong enough to

provide sufficient bond to the wall assemblage. In fact, for this type of masonry, mortar is

used almost exclusively to fill the voids between stone units. For most of the masonry walls,

and particularly for multi-leaf masonry walls, a proper transversal bond should be provided

by good workmanship in order to improve the monolithic behaviour of the wall. Besides the

cited work of De Felice (2011), several works aiming to study the influence of the transverse

bonding on the out-of-plane strength capacity of masonry walls have been presented in the

last decades. Guiffrè (1990, 1996) was one of the authors that addressed this topic. In his so-

called opus quadratum model, the author carried out a series of numerical and experimental

studies where the influence of the number of header blocks on the out-of-plane strength

capacity was clearly highlighted. Such influence was demonstrated by an almost linear

decrease of the ratio between the real and the supposed monolithic wall, k0, when increasing

the s/t ratio between the vertical distance among headers (also known as through stones), s,

and the thickness of the wall, t. However, as later remarked by Trovalusci and Baggio

(2003), because the work resorted only squad stones, its application is somewhat limited due

to the variability and complexity of stone masonry sections that could never be completely

covered. Additionally, irregularities of stone units may induce more complex features of the

overall behaviour. Hence, taking into account the importance of all the above mentioned

parameters on the characterisation of the out-of-plane behaviour of rubble stone masonry

walls, a thorough characterisation of the six stone masonry walls used in this experimental

work, will be presented in the following sections taking into account their construction

process as well as type of stone, geometry and dynamic features.

2.1 Walls construction and geometric characterization

As noted above, the masonry test specimens were constructed by professional masons

under controlled laboratory conditions. The six masonry walls are 1.30 m long, 0.65 m

thick and 2.50 m high, leading to a slenderness ratio h/t of 3.85 and a volume of 2.11 m3
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each. Idealised and constructed to be representative of one of the traditional Mediterranean

masonry construction typologies, the specimens are composed of non-regular roughly

squared granite blocks and non-cohesive infill material. Figure 2 presents the construction

stage and the final aspect of some of the stone masonry walls.

Assuming that the out-of-plane seismic capacity of masonry walls is highly dependent

on the morphology of the wall section and stone laying technique, the following features

were taken into account: percentage of headers, stone shape and dressing, stone dimensions

and regularity of the mortar courses. Among them, particular care was taken in the survey

to classify the stones, according to their arrangement in the wall, as stretchers, when their

length lies longitudinally in the wall, or as headers, when their length is perpendicular to

the faces.

As already discussed, the presence and the number of headers clearly affect the

transversal bond of the wall. According to Swain (1927), ‘‘to bind the wall transversally,

there should be a considerable number of headers extending from the front to the back of

thin walls and from the outside to the inside of thick walls’’’. In consequence of this, the

author suggests a percentage of headers not less than 20 % of the area of the face. Thus, in

order to study the sectional characteristics of the masonry walls, each one of the six

specimens was discretized and reproduced in CAD by means of polygonal blocks which

depict the shape, the size and the arrangement of the stone elements of the walls’ sections.

The result of this survey is shown in Fig. 3. In order to highlight its presence and location,

the headers are presented with a hatched patterns.

Furthermore, Table 1 summarizes the number of headers present in each one of the

walls’ sections as well as the vertical distance among them and the ratio between the total

area of headers and the area of the wall’s face.

From the analysis of the values presented in Table 1, it is worth highlighting that two of

the six masonry walls (wall 2 and 3) present a ratio of the area of the headers to the area of

the cross-section lower than 20 % which is the minimum value recommended by (Swain

1927).

2.2 Materials characterization

As introduced in the previous section, the masonry walls are made of non-regular roughly

squared granite blocks and a non-cohesive infill material (small stone fragments and soil

type material binded with a traditional lime mortar). The granite blocks used were col-

lected from old masonry constructions located in North Portugal and the mortars, com-

posed of lime and clay (with 1:3 ratio), were formulated and prepared in laboratory

following the traditional procedures.

Fig. 2 Construction and preparation of the masonry walls
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According to EN 14580 (2005), (2006) and ASTM C 496-71 (2001), seventeen stone

samples (cylindrical with 100 mm diameter and 200 mm high) were tested under air dry

laboratory environment in order to evaluate their compressive strength, fcb, Elastic Mo-

dulus, Ecb, and tensile strength, ftb. It is important to note that these mortars are also used

on the scope of other experimental work carried out in LESE and that, for this reason, the

following results are also reported in Almeida (2013). In terms of average values (and

coefficient of variation, CoV), the following values were obtained: 43.83 MPa (15.96 %)

for the compressive strength, 13.85 GPa (24.49 %) for the Elastic Modulus and 3.37 MPa

(13.57 %) for the tensile strength. It is worth noting that these results are in the range of

those reported in similar studies [see (Augenti et al. 2012; Vasconcelos 2005)], though it is

very likely that the differences registered in the mechanical characteristics of the stone

blocks, evidenced by the obtained coefficients of variation, are sufficient to influence the

global strength of the masonry walls (Almeida et al. 2012).

In order to characterise the mechanical properties of the mortars, compressive and

flexural strength tests were performed on two sets of six prismatic mortar samples (with

160 9 40 9 40 mm) with a curing period of 90 days (see Fig. 4). The testing procedure

Wall 1 Wall 2 Wall 3

Wall 4 Wall 5 Wall 6

Fig. 3 Geometrical survey of the six masonry walls

Table 1 Characterisation of the cross-sections taking into account the presence of headers

Specimen Number of
headers

Distance among
headers (m)

Area of
headers (m2)

Percentage of
headers (%)

Distance from
foundation to first
headers (m)

East West East West East West East West East West

Wall 1 2 2 0.34 0.74 0.45 0.32 28 20 0.60 0.39

Wall 2 1 2 – 0.82 0.15 0.43 9 27 2.25 0.78

Wall 3 2 1 0.60 – 0.50 0.28 31 18 0.97 1.00

Wall 4 2 2 0.84 0.84 0.39 0.51 25 32 0.86 0.87

Wall 5 2 2 0.44 0.85 0.46 0.45 29 28 0.91 0.63

Wall 6 2 2 0.70 0.71 0.45 0.38 28 24 1.10 0.72
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adopted is in accordance with the standard (EN 1015-11 1999) and, as in the previous case,

the results herein presented for mortars are also already reported in Costa et al. (2013c).

The compressive strength and flexural strength values were similar in both sets of

samples, giving average values of 1.28 MPa (2.66 %) and 0.53 MPa (11.83 %), respec-

tively. Once again, it should be noted that such values are consistent with the expected

values for this type of mortar [see for example (Almeida 2013; Augenti et al. 2012;

Magalhães and Veiga 2009)].

2.3 Modal identification

In order to determine the natural frequencies and the modal response of each one of the six

masonry walls, a series of vibration tests was performed before the beginning of the tests.

Among other interesting outputs, the modal analysis of the specimens led to different

conclusions regarding some of their main mechanical properties in a non-tested state (for

example the Elastic Modulus). The goal of the following measurements consisted on

identifying the first two natural frequencies and corresponding mode shapes of the masonry

specimens, with the purpose of analytically estimating the Elastic Modulus value. This

approach may be particularly important for practical engineers when dealing with existing

masonry buildings.

The measurements of the dynamic behaviour of the masonry walls were performed

using LabVIEW SignalExpress software (National Instruments 2010) to log the data ac-

quired from five unidirectional accelerometers (see Fig. 5) in time frames with ap-

proximately 3 min, excited with ambient noise vibration. The modal analysis of the

specimens were subsequently performed by means of the peak picking and frequency

domain decomposition (FDD) techniques, implemented in the ARTeMIS Extractor soft-

ware (Structural Vibration Solution 2012), from which the first two natural frequencies,

vibration mode shapes and damping ratios were identified. Figure 5 shows the location of

the accelerometers and the mesh used to visualize the mode shapes.

Due to laboratory limitations, the measurements were performed at a time when the

setups for the out-of-plane tests were already assembled. As a result, the dynamic response

of the six masonry specimens was registered under two distinct support conditions, namely

cantilever (walls 1–3, Fig. 6) and fixed-pinned (walls 4–6, Fig. 7); which led to the con-

sideration of two different structural schemes on the analytical estimation of the Elastic

Modulus of the walls. The equivalent structural schemes used for the case of the cantilever

and fixed-pinned wall as well as the first two vibration mode shapes are depicted in

Figs. 6b and 7b, respectively.

Fig. 4 Mortar specimen: a flexural strength test; b compression strength test; c final aspect of the specimen
after the compression strength test
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As an example, Fig. 8 shows the power spectral density obtained from the measurement

performed in wall 1.

As aforementioned, the data obtained from the modal identification was therefore used

in the estimation of the Elastic Modulus of the walls. According to structural dynamics the

theory, the Elastic Modulus of a structural system can be estimated based on their fun-

damental frequencies. As given in Clough and Penzien (1975), the first fundamental an-

gular frequencies of a cantilever beam and a fixed-pinned beam can be determined using

Eqs. (1) and (2), respectively:

wc ¼ 1:8752
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EI=ml4
p

ð1Þ

wfp ¼ p2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EI=ml4
p

ð2Þ

where E is the Elastic Modulus, I is the moment of inertia of the wall cross-section in the

considered direction, m is the wall mass per unit length and l stands for the total height of

the wall. Table 2 presents the natural frequencies obtained with the monitoring scheme

Fig. 5 Location of the five accelerometers and mesh used in modal identification

Transversal mode

Cantilever structural scheme

(a) (b)

Longitudinal mode

Fig. 6 Cantilever walls: a experimental apparatus; b first two vibration mode shapes and equivalent
structural scheme
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presented in Fig. 5, as well as the values of the Elastic Modulus estimated using Eqs. (1)

and (2), considering a unit weight, c, of 21 kN/m3 (experimentally measured before the

out-of-plane tests).

From the values obtained for the Elastic Modulus and taking into account the mass

density of the walls, the values obtained are consistent with the masonry typology reported

in the Italian code (Consiglio Superiore dei lavori Pubblici 2009) (Table C8A.2.1) as

Transversal mode

Pinned-pinned structural scheme

(a) (b)

Longitudinal mode

Fig. 7 Pinned–pinned walls: a experimental apparatus; b first two vibration mode shapes and equivalent
structural scheme

Fig. 8 Wall 1: identification of spectral peaks

Table 2 Fundamental frequencies and Elastic Modulus in the transversal direction (yy)

Specimen Structural scheme Fundamental frequency (Hz) Elastic Modulus (GPa)

Wall 1 Cantilever 8.39 0.53

Wall 2 7.42 0.42

Wall 3 7.25 0.40

Wall 4 Pinned-pinned 21.34 0.44

Wall 5 24.59 0.58

Wall 6 24.66 0.59

Mean value 0.49 GPa

Coef. variation 17.1 %
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‘‘ashlar masonry with internal core’’, wherein the range of the main mechanical parameters

for this masonry typology, i.e. compressive strength, shear strength, elastic modulus, shear

modulus and mass density, can be consulted.

3 Test programme and loading procedure

As already introduced, this experimental campaign aimed at characterizing the out-of-

plane behaviour of six full-scale masonry walls resorting to quasi-static loads applied by

means of two different testing setups and under three distinct pre-compression states. The

first test setup consisted of the application of a uniformly distributed surface load using a

system of three nylon airbags (with 1600 mm height, 700 mm width and 350 mm thick),

which reacts against a backing frame. The latter is connected to a reaction structure

composed of a set of HEB steel beams, connected to the reaction wall of the laboratory

with mechanical anchors (Figs. 6a and 9). The level of pressure inside the airbags and the

top displacement of the specimen, used as control displacement during the tests, were

continuously acquired through a data acquisition system. For easy interpretation, the three

airbag tests were denominated respectively as OP PA1, OP PA2 and OP PA3 where the

prefix OP stands for Out-of-plane and the suffix PA(i) refers to the setup used (PA for

airbag testing) and the number of the test (i = 1–3).

The second test setup consisted on the application of a horizontal line-load by means of

a displacement-controlled hydraulic actuator. In order to avoid an eventual torsional re-

sponse of the specimen, the actuator was horizontally centred at the top of the back surface

of the masonry wall. The actuator reaction is provided by a stiff steel structure, anchored to

the test slab of the laboratory, Fig. 9b. In accordance with what has been said for the airbag

tests, the three line-load tests were denominated as OP PF1, OP PF2 and OP PF3 wherein

PF refers to the concentrated force test setup.

Concerning the foundations of the specimens, it is worth mentioning that these

traditional masonry constructions usually do not include any special foundation ele-

ment, being simply settled on soil with some layered bottom stones right below the

ground level. This situation is naturally more common in low-rise buildings, which

usually do not need very deep and large foundations. Consequently, aiming at full

control the boundary condition of the experiments, all the masonry walls were tested on

Fig. 9 Lateral view of the test setups with the application of a vertical pre-compression force. a Airbag
testing, b Line-load testing
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a cantilever structural scheme, settled on a concrete footing, independently from the

pre-compression level and the test setup. Note that, even in the most unfavourable case,

i.e. with no axial compression force, the friction between the concrete footing and the

first layer of granitic stones is sufficient to guaranty that no sliding will occur at the

base of the wall. This issue was also monitored during the experiments with a dis-

placement transducer between the bottom of the wall and the concrete footing, and no

sliding occurred.

In order to apply the vertical load, a hydraulic actuator was installed at the top of the

masonry wall, reacting against a steel frame connected to the foundation through hinged

steel rods in which load cells were used to measure the imposed force. Figure 9 presents

the apparatus of both test setups with the application of a vertical pre-compression force.

The pre-compression force was chosen to reproduce a realistic vertical load according to

the specifications presented in Table 3. Such values were determined considering a unit

weight for masonry c = 21 kN/m3 and two additional loads of 1.2 and 1.5 kN/m2, dis-

tributed with a tributary length of 2.0 m in order to simulate respectively the roof and

floors weight of a traditional Mediterranean house.

As the vertical hydraulic actuator used is not force-controlled and consequently a

significant variation of vertical compression was observed during the experimental tests,

as depicted in the time history of vertical loading shown in Fig. 10a. This non-negligible

load variation was due to the absence of oil volume correction inside the hydraulic

actuator to compensate the uplifting and the vertical deformation of the specimen. The

peaks in the plots of Fig. 10a refer to the wall uplift, whereas the clear global decreasing

trend is due to the average compressive deformation for which no correction was pro-

vided on the total axial force. It is important to note that this variation on the vertical

force was taken into account in the treatment of the experimental data, through the

consideration of a variation factor, DN, which can be obtained for each rotation instant by

means of Eq. (3):

DN hð Þ ¼ N � 1 � coshð Þ ð3Þ

where N represents the applied axial pre-compression force and h is the wall rotation at

each instant of time, experimentally measured by means of an inclinometer placed on the

top of the wall. Evaluated the variation of the axial pre-compression force, the final

corrected force, F, is given by Eq. (4):

Table 3 Overburden conditions used in the tests

Specimen Test Overburden conditions Corresponding wall in real buildings

N (kN) rbase

(kPa)
Wa

Wall 1 OP PA1 0 52.5 0 Single-storey load-bearing wall

Wall 4 OP PF1

Wall 2 OP PA2 52 113.3 1.17 Load-bearing ground storey wall of a 2-storey
buildingWall 5 OP PF3

Wall 3 OP PA3 140 227.5 3.15 Load-bearing ground storey wall of a 4-storey
buildingWall 6 OP PF3

a Overburden ratio: ratio of axial load to wall weight
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F hð Þ ¼ Fm � Nsinhð Þ � DN � t

2h
ð4Þ

where Fm is the measured force, i.e. the value obtained directly from the data acquisition

system, and t and h are respectively the thickness and the height of the wall.

As presented in Fig. 10b, the horizontal loading history used in both test setups con-

sisted on performing two complete displacement controlled cycles, alternated by two

smaller cycles with half the amplitude of the previous, before increasing the amplitude by

25 mm. This load history was defined so as to make it possible to observe the hysteretic

behaviour of the masonry walls caused by the unloading/reloading in the same direction. In

this sense, two small initial cycles of 6 mm were used to analyse the linear elastic be-

haviour, while two cycles of 25 mm peak intended to reach the maximum strength on the

wall without significant damage.

Fig. 10 Loading histories. a Vertical pre-compression force. b Horizontal top displacement protocol

Fig. 11 Monitoring scheme
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In both test setups, the masonry walls’ response was monitored with a set of 27 linear

variable displacement transducers (LVDTs) positioned to measure the deflected wall

profile, the global vertical deflections, the joint opening-closing between stone units and

the out-of-plane movement, see Fig. 11. As also depicted in Fig. 11, five accelerometers

were used to record the natural frequencies of the masonry specimen during the out-of-

plane tests.

4 Results and data interpretation

4.1 Experimental evidences

The results obtained from the experiments are presented and discussed in the present

section. However, before going into the discussion, it is important to highlight that the

values of overturning moments presented were computed on the basis of the force resul-

tants acting on the walls, which are schematically depicted in Fig. 12.

Thus, the experimental data obtained from the airbag tests and in the line-load tests are

presented in Figs. 13 and 14, in the form of hysteretic curves and envelopes respectively.

In order to compare directly the results obtained from each test setup, they are both plotted

in the form of overturning moment versus rotation and also in terms of force versus relative

rotation. It is worth stressing that, in the case of the airbag tests, the force values presented

in the right axis of Fig. 13a correspond to the force resultant obtained from the surface

pressure measured directly during the tests (Fig. 12). Moreover, these airbag test results

were corrected using a correction factor that takes into account the effective pressure,

correlated to the airbags insufflation. However, despite the importance of this aspect, its

discussion is out of the scope of this paper, but further considerations can be found in

Gomes et al. (2013). The key issues from the experimental tests are summarized and

compared in Table 4.

As it is possible to observe from Fig. 13, for the same level of axial load, the results are

rather consistent both in terms of elastic stiffness and maximum overturning moment; see

Table 4 where Kini and Keff represents the initial and the effective stiffness of the wall,

obtained respectively from 10 to 40, and 70 % of the maximum experimental overturning

moment, Mmax. In addition, Mmin(hMu) is the overturning moment corresponding to the

minimum ultimate rotation attained (in this case hMu(OPPF1)) and Mu is the overturning

moment corresponding to the maximum experimental rotation (or displacement).

Fig. 12 Force resultants acting
on the wall, including the
horizontal component of the
force exerted by the actuator and
P-D effects. a Airbag testing,
b Line-load testing
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Average values of initial stiffness, Kini, of 3640, 4015 and 4745 kN/m were obtained for

the tests with axial load of 0 kN (OP PA1 and OP PF1), 52 kN (OP PA2 and OP PF2) and

140 kN (OP PA2 and OP PF3), respectively. In general terms, the walls exhibited sub-

stantial displacement capacity with ratios of ultimate displacement to wall thickness, dMu/t,

ranging between 26 and 42 %. As also presented in Table 4, all the experiments were

carried out until a strength decrease (Mu/Mmax) of at least 40 % was reached, because the

out-of-plane behaviour of masonry walls may be seen as nonlinear elastic. It is worth

mentioning that displacements were imposed until one of the following stopping criteria

was satisfied: (1) strength degradation of 20 % relative to the maximum measured strength

exhibited (attained in all tests); or/and (2) the limit stability or safety conditions could be

ensured.

The height wise horizontal displacement’ profiles during the tests are presented in

Fig. 15.

From the height wise horizontal displacement profiles, it is possible to see that the

imposition of a concentrated load did not lead to damage concentration at the top of the

wall during its outward movement. In fact, the walls subjected to the line-load scheme

were found to be globally mobilized with this test setup. However, it is important to

Fig. 13 Overturning moment versus rotation: hysteretic curves for airbag (a) and line-load tests (b)

Fig. 14 Overturning moment versus rotation envelopes for airbag (a) and line-load tests (b)
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highlight that, due to the effective connection of the horizontal actuator to the wall, some

more damage was observed when it was been pushed in the inward direction, particularly

for higher displacements. This fact occurs because, contrary to what happens in the case of

the airbags setup where, although the system is uncharged at the end of each loading cycle,

the wall always exhibits some residual top displacement, in the case of the line load setup,

the hydraulic actuator always forces the wall to return to its initial position (D = 0), thus

imposing damage in that direction. As shown in Fig. 15b, this issue is particularly evident

for those cases where the level of axial compression is low, and only in the range of large

displacements (OP PF1). In general terms, and as mentioned latter, this fact is due to a

lower flexural resistance of the mortar bed joints for low levels of axial stress. In addition,

some base slip effect is also notable in the base of the walls’ horizontal displacement

profiles.

Figure 16 presents the direct comparison between the height wise horizontal dis-

placement profiles for three distinct displacement levels: 6 mm (corresponding to the

initial load cycle), 100 mm (corresponding to the intermediate load cycle) and

175/200 mm (corresponding to the final load cycle).

Fig. 15 Height wise horizontal displacement’ profiles with position of the displacement transducers.
a Airbag tests, b Line-load tests
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4.2 Influence of the vertical pre-compression on the peak and post-peak
capacity

In general, specimen comparisons showed that the higher the vertical pre-compression is

applied, the larger displacement capacity is reached. Likewise, both the peak and post-peak

overturning moment capacity of walls with vertical pre-compression outperformed walls

without pre-compression (refer Table 4). Concerning the first increment of axial load (level

1 to level 2), there was an average increase of 106 % in Mmax and 73 % in Mmin(hMu), as a

result of a 60.8 kPa stress increase due to axial pre-compression (Table 3). Following the

same trend, with the second axial pre-compression increment of 114.2 kPa (level 2 to level

3), there was an average increase of 70 and 83 % in Mmax and Mmin(hMu), respectively. The

improvement of peak and post-peak capacity of masonry walls with the application of

vertical pre-compression is a well-known phenomenon which has been observed and

discussed in several past works (for example in Griffith et al. (2007)). Moreover, the

increase of the maximum overturning moment is strongly affected by the static equilibrium

due to the increase of stabilization forces.

4.3 Energy dissipation capacity

The capacity of the masonry elements to dissipate energy is one of their key structural

properties, mainly when they are subjected to seismic load. Therefore, the hysteretic

energy dissipation was evaluated for all tests considering the area of each load cycle and

the results’ evolution in terms of both cumulative dissipated energy and individual cycle

energy are presented in Fig. 17a, b, respectively.

It was already noted that the hysteretic loops presented in Fig. 13 show that all spe-

cimens underwent plastic deformation and dissipated a significant amount of energy.

Moreover, from the analysis of the cumulative dissipated energy results shown in Fig. 17a,

it is clear that for the same rotation levels, the energy dissipation capacity of the walls

increases with the pre-compression force. In general terms, the individual cycle energy

curves presented in Fig. 17b stress the conclusions pointed out from the analysis of

Figs. 13 and 17a underlining the more regular behaviour of the walls tested resorting to

airbags in terms energy dissipation. Notwithstanding this fact, the walls tested with the

point load setup clearly present more energy dissipation capacity (see Fig. 17a).

Fig. 16 Comparison between height wise horizontal displacement profiles obtained
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Figure 18 presents the sectional displacement curves built from the relative movements in

the cross-sections, which were obtained on the basis of the displacement directions shown in

Fig. 18a. As evidenced by these results, the behaviour of the walls tested with airbags is mainly

in rocking, presenting a slight component of bending, while the walls tested with the line-load

behaved in bending, also exhibiting some shear. These two distinct responses are demonstrated

by the configuration of the displacement curves shown in Fig. 18 as well as by the cracking

patterns observed at the end of the tests (see Fig. 21). Additionally, and as expected, the bending

behaviour is more significant with the increase of the axial pre-compression state.

In order to characterize the hysteretic behaviour during the tests, Fig. 19 presents the

evolution of the equivalent hysteretic damping computed by Eq. (5), which was initially

presented by Shibata and Sozen (1976):

neqð%Þ ¼ 100 � Ah

2p � Fm � dm

ð5Þ

where Ah refers to the area inside one loop, while Fm and dm are, respectively, the max-

imum force and maximum displacement achieved in the same loop.

The equivalent hysteretic damping evolution during the out-of-plane tests is interesting

(Fig. 19a). Even though the results exhibit some trend, evidenced by the linear fitting

included in Fig. 19b, the evolution of the equivalent hysteretic damping is quite irregular,

Fig. 17 Energy dissipation capacity: a cumulative dissipated energy; and b individual cycle energy

Fig. 18 Displacements on the transversal section of the walls: a OP PA1 versus OP PF1; b OP PA2 versus
OP PF2; and c OP PA3 versus OP PF3
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particularly concerning the results obtained from the line-load tests. Considering average

values, the equivalent hysteretic damping of the walls range between 2.2 and 4.6 %. This

range, together with the shape of the curves presented in Fig. 19a, with no hysteretic

damping plateau, suggests that the total capacity of these walls, in terms of energy dis-

sipation capacity, might not have been experimentally reached.

4.4 Analysis of frequencies decay during the tests

On the basis of the study of frequency decay over the tests, some relevant conclusions

about the progress of the out-of-plane tests over time are discussed, both in terms of the

capacity of the masonry specimens and the damage level. As depicted in Fig. 20a, b which

presents the frequencies measured during the airbag tests and the line-load tests respec-

tively, the transversal frequencies’ decay does not present a constant drop and well defined

linear trend. However, it is worth noting that the changes of the decay slope of the curves

are associated with the development of damage in the masonry specimens, which is re-

sponsible for the degradation of their global mechanical properties.

As summarized in Table 5, the difference between the frequencies measured before the

tests and the frequencies found after the tests were on the average -20.19 % for the airbag

tests and about -23.96 % for the line-load tests, which correspond to a decay of about

-0.0033 and -0.109 Hz per cycle, respectively.

Fig. 19 Rotation versus equivalent hysteretic damping: a evolution during the tests; b linear fitting from the
equivalent hysteretic damping results

Fig. 20 Frequency decay over tests, in the out-of-plane direction. a Airbag tests, b Line-load tests
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Note that the proximity found between both of the results corroborate the fact that both

of the experimental setups used in the tests herein presented are able to globally mobilize

the out-of-plane response of this type of masonry elements, providing important infor-

mation on their out-of-plane behaviour. Notwithstanding this fact, it is worth adding that

from the analysis of the decay values it is also quite evident that the quantity of damage

developed, per cycle, in the wall, expressed here in terms of Hz/cycle, is significantly

higher in the walls tested with the line-load setup.

4.5 Cracking patterns

In general terms, the walls tested with airbags presented typical cracking patterns for a

behaviour mainly governed by rocking, whereas the walls tested with line-load presented a

cracking pattern more befitting with a response governed by bending (see Fig. 21).

Thus, over the course of the experiments, it was observed the opening of a single

vertical crack along the interleaf bond up to a height defined by the dimension of the pivot

stone block placed on the base section (in the case of the OP PA tests) and by the vertical

height of the first header (in the case of the OP PF tests). As depicted in Fig. 22, such

vertical crack is followed by the opening of a horizontal crack from which the relative

interleaf displacement is more pronounced.

Table 5 Frequency and Elastic Modulus decay over the out-of-plane tests

Test Fundamental frequency Elastic Modulus

Finitial

(Hz)
ffinal (Hz) drop Einicial

(GPa)
Efinal

(GPa)
drop

(%) (Hz/cycle) (%) (GPa/cycle)

OP PA1 8.39 6.82 -18.71 -0.0449 0.53 0.35 -33.96 -0.0051

OP PA2 7.42 5.89 -20.62 -0.0333 0.42 0.27 -35.71 -0.0033

OP PA3 7.25 5.71 -21.24 -0.0335 0.40 0.25 -37.50 -0.0033

OP PF1 21.34 14.27 -33.13 -0.2828 0.44 0.20 -54.55 -0.0096

OP PF2 24.59 19.15 -22.12 -0.1876 0.58 0.35 -39.66 -0.0079

OP PF3 24.66 20.56 -16.62 -0.1414 0.59 0.41 -30.51 -0.0062

OP PA1 OP PA2 OP PA3

OP PF1 OP PF2 OP PF3

Fig. 21 Cracking patterns observed at the end of the out-of-plane tests
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It is important to highlight that no unit fail has occurred during the tests, with all failures

occurring at the unit-mortar bonds (stepped cracking).

5 Analytical study of the experimental results

As stated by Tomaževič (1999), for analysis and design purposes the values of sectional

forces, stresses and strains are usually determined based on the gross cross-sectional

geometrical characteristics of the walls and assuming the elastic, homogeneous and

isotropic global properties of masonry as structural material. According to this assumption,

it is possible to carry out analytical-based assessments, which can provide valuable results

for the development and calibration of new analytical approaches. Therefore, three dif-

ferent analysis are presented and discussed in this section:

1. The comparison between the elastic stiffness computed through Eq. (6) and both the

initial and the effective stiffness obtained from the experiments;

2. The comparison between the static overturning moment obtained on the basis of a

simplified static model and the maximum experimental overturning moment;

3. The analysis of the relation between the idealized ultimate displacement and the wall

thickness.

Starting with the analysis of the ratios obtained from the experimentally-obtained values

of stiffness, both the initial, Kini, and the effective stiffness, Keff (which the calculation was

already discussed in Sect. 4.1) and the elastic stiffness of the walls, Kel, evaluated resorting

to Eq. (6):

Kel ¼
3EI

h3
ð6Þ

where, E is the Elastic Modulus, I, represents the moment of inertia of the wall’s cross-

section and h is the total height of the wall. In this case, the Elastic Modulus value

considered in this analysis was the mean value obtained from the vibration tests addressed

in Sect. 2.3 (see Table 2). It is worth highlighting that the results obtained for ratio Kel/Kini

are quite interesting, presenting small variation ranges within each of the considered pre-

compression levels. In fact, as shown in Table 6, ratio Kel/Kini was found to be in average

77 % for the case of no pre-compression force, and 70 and 59 % for a pre-compression

force of 52 and 140 kN, respectively.

The analytical prediction herein performed is based on static equilibrium, considering

rigid-body flexural/rocking behaviour. The simplified model withal the internal and ex-

ternal forces that compose the static system is presented in Fig. 23.

Fig. 22 Horizontal crack with relative interleaf displacement (from OP PF2)
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From such model it is then possible to compute the analytical static overturning moment

of the wall, M0, based on the limit equilibrium of the system, in Eq. (7) (Ferreira et al.

2015):

M0 ¼ W � t

2
þ N t � XNð Þ ð7Þ

where N represents the vertical pre-compression force acting on the top of the wall and

W and t are respectively the total weight of the wall and its thickness. Finally, XN is the

distance between the interior edge of the wall and the application point of the resultant of

the vertical pre-compression force (Fig. 23).

The comparison between the maximum experimental overturning moment, Mmax,

summarised in Table 4, and the corresponding analytical static overturning moment, M0,

considering the three levels of pre-compression forces used in the out-of-plane tests (i.e.

N = 0 kN, N = 52 kN and N = 140 kN), is presented in Table 6 and graphically

schematized in Fig. 24.

The maximum stability displacement, Df, is another interesting and useful parameter for

describing the out-of-plane response of masonry walls. Although this value may be dif-

ficult to obtain directly from experimental tests, it is possible to idealise the final branch of

the decay curve and accordingly, the maximum stability displacement based on the en-

velope curves presented in Fig. 25a. The slope of the decay branches was defined here by

means of two experimentally-obtained points: the maximum experimental overturning

Table 6 Comparison between the experimental results and the analytical predictions

Test Kini

(kN/m)
Keff

(kN/m)
Keff/Kini

(%)
Kel

(kN/m)
Kel/Kini

(%)
Keff/Kel

(%)
Mmax

(kNm)
M0

(kNm)
Mmax/M0

OP PA1 3707 1986 53.58 5426.6 75.51 70.95 14.57 14.64 1.00

OP PF1 3575 1484 41.50 78.29 53.02 15.28 15.19 1.01

OP PA2 4137 2469 59.67 67.66 88.21 28.30 32.84 0.86

OP PF2 3893 1744 44.81 71.90 62.31 33.08 33.39 0.99

OP PA3 4712 2689 57.06 59.50 96.07 47.33 61.44 0.77

OP PF3 4769 2049 42.96 58.69 73.20 57.02 61.99 0.92

Mean value 49.93 68.59 73.96 0.93

Coef. variation (%) 15.64 11.92 21.60 10.30

(a) (b)

Fig. 23 Simplified analytical
model used. a At D = 0, b At
D = Df (incipient rocking)
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moment, Mmax, and the overturning moment corresponding to the maximum experimen-

tally imposed displacement, Mu. As can be observed in Fig. 25a and in Table 7, the

experimental decay branches present a good agreement regarding the value of the max-

imum stability displacement, Df, resulting in a range of values from 0.53 to 0.74. As also

shown in Table 7, the value of Df tends to decrease as the vertical pre-compression force is

increased. This fact, as well as the average value obtained for ratio Df/t, of about 60 %, are

both in good agreement with previous proposals found in literature, wherein Df is assumed

as about 2/3 of the wall thickness, t (Griffith et al. 2003).

Figure 25b depicts the idealised bilinear spines obtained for each pre-compression

level, computed from the average of the slopes and overturning results summarized in

Table 7.

Finally, one last note regarding the result of ratios M0
exp/M0, presented in Table 7, which

range between about 0.86 and 1.05, with an average value of 0.99 (7.14 % CoV).

Fig. 24 Correlation between a initial and effective stiffness and b static and maximum experimental
overturning moment

Fig. 25 Definition of the bilinear spines M0
exp - Df: a idealization of the experimental decay branches;

b bilinear spines obtained from the experimental results
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6 Final comments

This paper reports an experimental campaign carried out at the LESE of FEUP, Porto, in

order to study the out-of-plane behaviour of traditional stone masonry walls. Six full-scale

stone masonry specimens were constructed by professional masons and tested resorting to

two different loading techniques, under three distinct vertical pre-compression states.

Three of the specimens were subjected to an out-of-plane surface load resorting a system of

airbags and the remaining were tested by means of an out-of-plane horizontal line-load.

Before testing, a thorough characterisation of the masonry specimens was performed,

namely concerning their most important mechanic, geometric and dynamic features.

Subsequently, the principal results obtained from the six out-of-plane tests performed were

compared and discussed, and the paper is closed with an analytical study, carried out on the

basis of such experimental results, wherein a comparison between analytical and ex-

perimental stiffness, strength and displacement results is presented.

Among other relevant conclusions that were pointed out herein, this experimental

campaign allowed to observe that both the test setups (line load and airbags) were able to

globally mobilise the out-of-plane response of all the masonry walls. In general terms, it is

possible to state that the walls presented large displacement capacity, with ultimate dis-

placement over wall thickness ratios in the range between 26 and 42 %. Moreover, sub-

stantial energy dissipation capacity was also observed. As expected, the capacity of the

walls to dissipate energy was proved to be highly influenced by boundary conditions,

namely by their vertical pre-compression state. Last but not least, very interesting results

were obtained from the simple analytical model used for the identification of some ex-

perimental-based ratios. Among the discussed, the result obtained for ratio Df/t, of about

60 % (12.50 % CoV), is one of the most relevant findings, showing a good agreement with

some previous studies presented in literature (see for example Griffith et al. 2003). Finally,

it is important to note that, as also reported in Griffith et al. (2003), this ratio is also very

influenced by the vertical pre-compression state of the masonry walls.
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Table 7 Definition of ratios M0
exp/M0 and Df/t

Test M(h) = - K � h ? M0
exp M0

exp

(kNm)
�K
(kNm/rad)

M
exp
0

(kNm)

M0
exp/M0 hf (rad) Df/t

OP PA1 M(h) = 79.94 � h ? 15.36 15.36 88.54 15.57 1.05 0.174 0.74

OP PF1 M(h) = 97.14 � h ? 15.78 15.78 1.04 0.174 0.63

OP PA2 M(h) = 231.24 � h ? 31.56 31.56 229.48 32.81 0.96 0.190 0.53

OP PF2 M(h) = 227.71 � h ? 34.06 34.06 1.02 0.163 0.58

OP PA3 M(h) = 366.24 � h ? 53.08 53.08 390.91 57.40 0.86 0.265 0.56

OP PF3 M(h) = 415.56 � h ? 61.72 61.72 1.00 0.173 0.57

Mean value 0.99 0.60

Coef. variation (%) 7.14 % 12.50
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Gomes A, Arêde A, Ferreira TM, Costa AA (2013) An empirical correction factor for the rectification of
experimental out-of-plane tests results with airbag testing. LESE Report, Laboratory of Earthquake and
Structural Engineering, Faculty of Engineering, University of Porto, Portugal

Griffith MC, Magenes G, Melis G, Picchi L (2003) Evaluation of out-of-plane stability of unreinforced masonry
walls subjected to seismic excitation. J Earthq Eng 7:141–169. doi:10.1080/13632460309350476

Griffith MC, Vaculik J, Lam NTK et al (2007) Cyclic testing of unreinforced masonry walls in two-way
bending. Earthq Eng Struct Dyn 36:801–821. doi:10.1002/eqe.654

Luigli G (1957) La tecnica edilizia romana. Bardi, Rome (in Italian)
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Restrepo-Vélez LF, Magenes G, Griffith MC (2014) Dry stone masonry walls in bending—Part I: static

tests. Int J Archit Herit 8:1–28. doi:10.1080/15583058.2012.663059
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