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Abstract: Highly ordered anodic hafnium oxide (AHO) nanoporous or nanotubes were synthesized
by electrochemical anodization of Hf foils. The growth of self-ordered AHO was investigated
by optimizing a key electrochemical anodization parameter, the solvent-based electrolyte using:
Ethylene glycol, dimethyl sulfoxide, formamide and N-methylformamide organic solvents. The
electrolyte solvent is here shown to highly affect the morphological properties of the AHO, namely
the self-ordering, growth rate and length. As a result, AHO nanoporous and nanotubes arrays were
obtained, as well as other different shapes and morphologies, such as nanoneedles, nanoflakes and
nanowires-agglomerations. The intrinsic chemical-physical properties of the electrolyte solvents
(solvent type, dielectric constant and viscosity) are at the base of the properties that mainly affect the
AHO morphology shape, growth rate, final thickness and porosity, for the same anodization voltage
and time. We found that the interplay between the dielectric and viscosity constants of the solvent
electrolyte is able to tailor the anodic oxide growth from continuous-to-nanoporous-to-nanotubes.

Keywords: anodic hafnium oxide; HfO2; anodic oxide; anodization; nanotubes; nanoporous; organic
solvent; dielectric; viscosity

1. Introduction

Advances in nanoscience and nanotechnology are interconnected with the development of new
platforms where the physical properties of materials/structures, like size, porosity, geometry and
surface functionalization can be controlled at the nanoscale. In this way, the potential of applications is
created for a large number of areas [1–4], and thus, are pushing fast the research on the topic. As an
example, metal-oxide nanostructures, such as nanotube arrays, have been instigating great interest,
due to their demand for optoelectronics, microelectronics, energy storage, solar cells, catalysis or
biomedical applications [1–6].

Hafnium oxide (HfO2) with its high thermal, chemical and mechanical stability, as well as its high
refractive index and dielectric constant is remarkably appealing for new nanostructure architectures
like nanoporous or nanotube (NT) arrays and a large range of applications [5–12]. Having into account
the emerging application of anodic TiO2 nanotubes in DSCs, the question arises about the applicability
of self-ordered arrays of anodic HfO2 for the same purpose. The truth is that the use of an HfO2
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compact layer on dye-sensitized solar cells (DSCs) results in improved photovoltaic performance of
66%, compared to DSCs with a conventional sol-gel processed TiO2 layer [8].

Self-organized porous anodic hafnium oxide (AHO) layers were first successfully obtained by
Schmuki et al. via the electrochemical anodization of hafnium foils [13]. Using 50 V in a 1 M
H2SO4 +0.2 wt% NaF electrolyte at room temperature, high-aspect-ratios AHO nanoporous templates
with several tens of micrometers in thickness were obtained. The pore diameter increased with the
anodization potential, where the latter was a factor that affected the morphology and the structure
of the porous oxide. On the other hand, highly ordered HfO2 NT arrays were successfully realized
through electrochemical anodizations in NH4F and ethylene glycol-based electrolytes [14,15]. Such
realization largely benefited from the developments obtained in the production of self-ordered TiO2

NTs arrays.
Recent developments in electrochemical anodization techniques allow us to prepare a variety of

self-organized metal oxide nanotube arrays directly from substrates of value metals, such as hafnium
oxide. After the first generation of anodic TiO2 NT arrays produced using an aqueous HF based
electrolyte, the NT fabrication process has come a long way [16]. The pioneer work of Grimes et al.,
introducing a variety of organic electrolytes, including ethylene glycol (EG), dimethyl sulfoxide (DMSO),
formamide (FA) and N-methylformamide (NMF), was the key to achieve long (hundreds of microns)
and ordered TiO2 NT arrays [17,18]. The use of organic electrolytes results in a reduced propensity to
form an oxide and leads to longer NT arrays. Furthermore, the action of organic-electrolytes lowers
the anodic oxide film relative permittivity, and thus, increases its dielectric breakdown voltage and
the attainable range of anodization potentials [19]. By mimicking the electrolyte used in TiO2 NTs,
Qiu et al. obtained self-ordered nanoporous anodic hafnium oxide (AHO) NTs [introducing ethylene
glycol (with NH4F) based electrolytes] [14,15].

HfO2 nanostructures (nanoporous or nanotubes) show promising applications in several fields,
such as nanofluidics and electrical engineering systems [20], sensor applications, particularly in
real-time bio-sensing [21], as a gate dielectric in place of/or in combination with SiO2 in electronic
devices, such as field effect transistors [22] or has due to its high melting temperature and excellent
physical, electronic and chemical properties or has multifunctional data storage medium [7].

In this work, we investigated the growth of self-ordered AHO nanoporous/nanotubes templates
synthesized by the electrochemical anodization of Hf foils. Several organic solvents (EG, DMSO, FA
and NMF), combined with fluoride ions, were used to understand the influence of the solvent in the
fabrication process of AHO. The electrolyte solvent was found to be a key factor in the morphology
and final layer thickness of AHO. Vertically oriented nanoporous and NT arrays were obtained,
together with other different shapes and morphologies. We found that the organic solvent used in the
electrolyte plays a main role in morphology, and thus, we can engineer different structures, from pores
to tubes and also tune the regularity of the self-ordered structures. Additionally, the length of such
oxide structures was found to depend on the solvent type, leading to thicknesses of several tens of
micrometers. Moreover, a detailed analysis of the growth mechanism and formation stages of such
structures was extracted through the anodization (density current vs. anodization time), barrier layer
thickness vs. anodization time and charge curves.

2. Materials and Methods

Prior to the anodization, Hf foils (0.127 mm thick, 99.99% purity from AlfaAesar (Heysham, United
Kingdom) were cut into 1 cm2 pieces, and ultrasonically cleaned—first in ethanol and after in deionized
water, 10 min each stage. Afterwards, the foils were electrochemically anodized (as-rolled, without any
pre-treatment on the surface) in an in-house made anodization cell (two-electrodes), where Hf acted as
the anode and an inert Pt mesh as the cathode [23]. The time evolution of the current density [j(t)] was
monitored during the anodization process using a Keithley 2004 Sourcemeter (Solon, United States)
remotely controlled by a LabView (National Instruments, Austin, United States) application (using a
100 ms acquisition step for the first 5 min). The electrochemical anodization was carried out in four
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different samples in freshly prepared electrolyte solutions containing NH4F (0.3 wt%) (to provide
fluoride ions), H2O (2 wt%) and different organic solvents: Ethylene glycol (EG), formamide (FA),
N-methylformamide (NMF) and dimethyl sulfoxide (DMSO). All the anodizations were performed
under a constant potential of 60 V for 1 h, at room temperature with mechanical stirring [18,24]. After
the anodization, the as-prepared samples were immediately cleaned with ethanol. From now on, the
samples prepared with different electrolyte solvent will be referred to as EG, FA, NMF and DMSO. The
NTs morphology was evaluated by an FEI Quanta 400FEG Field Emission (Hillsboro, United States)
Scanning Electron Microscopy (SEM) using cross-sections (for the AHO length calculation) and surface
top views.

3. Results and Discussion

3.1. Growth Mechanism: Anodization Curves with Different Organic Solvents

The main mechanisms responsible for the formation of NTs by an Hf anodization processes are:
(i) The electric field-assisted oxidation at the metal/oxide interface, forming an HfO2 continuous layer;
(ii) the field-assisted dissolution of the oxide layer (at the oxide/electrolyte interface); and (iii) the
chemical dissolution of the oxide by F− ions at the metal/oxide and electrolyte/oxide interfaces (Figure 1).
The electrochemical equations for HfO2 formation are:

Hf + 2H2O→ HfO2 + 4H+ + 4e− (1)

and
HfO2 + 6F− + 4H+

→ [HfF6]2− + 2H2O (2)

for the oxidation (1) and dissolution (2) reactions, respectively (Figure 1). The reactions occurring at
the anode are oxidation of the metal, that releases Hf4+ ions and electrons:

Hf→ Hf4+ + 4e− (3)

whereas, in the electrolyte one has the dissociation of water:

H2O→ OH− + H+ (4)

OH−→ O2−+ H+ (5)
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Differently from the Al metal anodization case [25,26], where a steady-state condition is achieved
(oxidation rate is balanced with the dissolution rate), the Hf anodization case (as that of Ti anodization)
consists in a non-steady state anodization process with higher oxidation than dissolution rates [24].
Such effect severely compromises the HfO2 NTs length and growth [24]. There are also additional
chemical dissolution effects during the anodization that affect the oxidation/dissolution equilibrium
and limit NTs growth.

The evaluation of the mechanisms that lead to the formation and growth of self-ordered HfO2

nanoporous/nanotubes, can be studied using current density [j(t)] curves (Figure 2) [23–27]. The
evolution of the HfO2 barrier layer thickness (δb) at the bottom of the NTs (Figure 1) was also estimated
from the j(t) curves (Figure 3) [27]. According to the high-field conduction theory [28], the current
density (j) is related to the voltage (V) drop across the barrier layer as follows:

j = αe
β V
δb (6)

where α and β are electrolyte and material-dependent constants and the (V/δb) ratio is the effective
electric-field across δb [27,28]. From Equation (6) we obtain,

δb =
βV

ln
( j
α

) (7)

during the anodization [24,27]. It was considered the material constants, α = 2.4 × 10−9 mA·cm−2 and
β = 27.98 nm·V−1 (at room temperature), determined previously for TiO2 [27], and due to the physical
similarities between these oxides here are also considered. Figure 3 shows the evolutions of δb along
the anodization time calculated from the Equation (7).
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j(t) curves for all the samples (EG, FA, NMF and DMSO; Figure 2 and corresponding inset) present
the transient anodization characteristic of the successful formation of nanopore/nanotube arrays (as in
the Al or Ti cases [23–27]). After applying 60 V, a continuous HfO2 layer is rapidly formed that leads to
a resistance increase [rapid j decrease (inset of Figure 2) and δb increase (Figure 3)]. The following slight
j decrease marks the initiation of pore nucleation, likely on the surface valley-type irregularities where
the electric field enhances the oxide dissolution and promotes hole formation (i.e., the dissolution
promoted by F− ions in favorable spots of the HfO2 surface) [21,24]. Consequently, the HfO2 layer
thickness starts to increase, while the pores/tubes formation accelerates. This is evidenced by the
increase of j until a maximum is reached. A barrier layer, with thickness δb, forms at the pores/tubes
bottom (Figures 1 and 3). Afterwards, the emerging porous structure will mechanically adjust and
compete with each other in a self-organization process.

The differences between j(t) transient periods of each sample (inset of Figure 2) clearly reveals
the decisive importance of the electrolyte solvent in promoting effective nucleation spots. In fact,
comparing the j(t) transient period of each sample, we can observe three main aspects: (i) The lower j(t)
values; (ii) the earlier emergence of NT nucleation; and (iii) the smaller nucleation time are attributed
to samples FA, NMF, EG and DMSO, respectively.

As the anodization process evolves, j(t) of samples FA and EG present similar trends with the
typical j(t)-decay of Ti anodization in fluoride-based electrolytes with EG [23–27]. This behavior arises
from the non-equilibrium in the oxidation/dissolution processes, being the HfO2 dissolution lower
than its formation, resulting in a slow decay of j(t) during the anodization. As a result, a progressive
increase of δb of the NTs’ occurs, as shown in Figure 3. Consequently, the ionic migration path
along the oxide barrier [27,29] significantly extends, inhibiting the transport of F−, Hf4+ and O2− ions
across δb (Hf4+ and O2− for oxidation, F− for dissolution) which subsequently limits a further NTs
growth (Figure 1). Additionally, chemical effects, such as local pH decrease, occur throughout the
anodization leading to the chemical dissolution of the NTs wall preferentially at the NTs tops (V-shape
NTs) [17,18,27,29,30]. The NMF j(t) curve presents a large decay up to 8 min, similar to EG and FA, but
then an overall constant j(t) emerges, although with some singularities during the anodization.

On the other hand, in the case of the DMSO, the j(t) curve remains approximately constant
throughout the anodization, indicating a more optimized anodization for NTS growth, with balanced
oxidation/dissolution processes that lead to a constant oxide growth rate (similar with Al nanoporous
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anodization were no limit in length is imposed [25,26]). Additionally, the DMSO j(t) transient curve
shows an extended nucleation period of time (indication of low-rate pore nucleation) [24] with fairly
smaller j(t) values over such region [indicating a thinner δb (Figure 3)] when comparing with other
samples (FA or EG) [24,27].

Additionally, Figure 3 shows that by changing the electrolyte medium, we obtain different final δb.
Furthermore, for each sample, the capacitance density (C) at the oxide barrier was also calculated from
the j(t) curves [Supporting Information (SI) - Figure S3 and Table S1]. At the end of the anodization
(1 h), we can extract the final δb and C for each sample (SI - Table S1). It shows that the FA/EG samples
led to thicker δb (and lower C) and DMSO/NMF led to thinner δb (and higher C).

Moreover, we perform additional anodizations with the same conditions as for the samples EG,
FA, NMF and DMSO during 17 h (SI - Figure S1). In this case, j(t) of the sample NMF rapidly decays
after 444 min. This corresponds that a complete conversion on the Hf foil into HfO2 has occurred at
this time (444 min), as observed by SEM cross-section images (SI - Figure S2).

3.2. Growth Rate with Different Organic Solvents

Figure 4 shows the charge curves Q(t) obtained from the integration of the j(t) data. The Q(t)
curves describe the growth rate along the anodization [24]. Until the first 13 min both Q(t) slopes of
NMF and FA samples are higher than those of the DMSO and EG. Although the NMF sample presents
a higher charge over time for the entire anodization period (comparing to the rest of the samples), Q(t)
of the DMSO sample overcomes that of the FA sample at the end of the anodization period (close to
50 min). Higher Q(t) curve indicates higher charge transfer, leading to a higher growth rate. The
charge transferred during the anodization process can then be related to the solvent characteristics
and Q(t) values. Additionally, the Q(t) curves present different slope’s trend: Whereas, in NMF and
DMSO samples the slope is fairly linear, providing an almost constant AHO growth rate, that is not
the case for the EG and FA samples, where Q(t) has a non-linear slope and presents two distinct
growth rate regimes. After 11 min and 13 min of anodization time, for EG and FA, respectively, the
growth rate slows down. With these electrolytes, the δb increases during the anodization, leading to a
constant Q(t) over time [and significantly lower final Q(t) values]. As discussed before, the δb increase
is related to the unbalanced oxidation-dissolution rate reactions, being the HfO2 dissolution smaller
than its formation, ultimately limiting the NTs growth and length [24,27]. δb(t) curves (Figure 3) of
NMF/DMSO samples present thinner δb, while EG/FA samples shows thicker δb. One can observe
the similar Q(t) trend of the two groups of samples EG/FA and NMF/DMSO. EG and FA presents the
transition of two regimes at 11 min and 13 min, respectively. After these anodization times, δb greatly
increases (Figure 3) and the growth rate slows down. On the other hand, NMF/DMSO samples show
a Q(t) linear slope, corresponding to a constant δb over time (Figure 3). At the end, EG/FA samples
presents thicker δb than NMF/DMSM samples.

3.3. Morphology and Layer Thickness

Figures 5–8 shows SEM cross-section, and top view images of the AHO templates for all samples
after 1 h of anodization. Comparing the different samples, one sees that the electrolyte solvent has a
critical impact on the AHO morphology, growth rate and layer thickness. From the top view images,
we can see that FA leads to a self-ordered nanoporous template (Figure 5), while EG and DMSO
lead to highly self-ordered NT arrays with hexagonal closely packed distribution (Figures 6 and 7,
respectively). For the NMF samples (Figure 8), instead of homogeneous NTs or nanoporous structures,
we obtained different morphologies, ranging from Figure 8a a continuous oxide layer, Figure 8b
nanoporous, Figure 8c nanoneedles, Figure 8d nanoflakes or Figure 8e agglomerated nanowires.
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Figure 8. SEM images of the AHO nanostructures after 1 h of anodization for the NMF sample.
Cross-section images showing (a) the thick oxide layer that contains (b) nanoflakes at the layers’ top and
(c) self-ordered nanoporous structures (zone areas where (b,c)) images where extracted from (a) images
are indicated; top view shows (d) nanoneedles (inset at higher magnification) (e) nanoflakes (inset at
higher magnification) and (f) nanowires-agglomerations (inset at higher magnification), all present in
this sample.

EDS analyses showed (SI-Figure S5) that the anodic as-grown nanoporous (FA) nanotubes
(DMSO/EG) presents significant amounts of F, which is typical of anodic HfO2 or TiO2 structures [14,18].
Literature associates the F presence with the formation of hafnium oxyfluoride in the AHO. For the
sample NMF the same the F presence was obtained (SI - Figure S5d). Additionally, in NMF sample we
perform separated EDS analyses for bulk oxide (SI - Figure S5e: Z1 area), and surface top nanostructures
(flakes/needles; SI - Figure S5f: Z2 area) identifying the same chemical elements in both areas and are
in accordance with the other anodic hafnium oxide samples.

The pore diameter (Dp), and interpore distance (Dint) geometrical parameters were extracted
from the SEM image (100 pores analyzed) for the EG, FA and DMSO samples as shown in Table 1.
The average Dp and Dint (and standard deviation SD) were estimated from the histogram of the size
distribution, which were then fitted to a normal distribution (Figure 9).
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Table 1. AHO nanoporous and nanotubes geometrical parameters: pore diameter (Dp) interpore
distance (Dint) and Porosity (P) for the different samples.

Sample Dp(nm) Dint (nm) P%

FA 47.02 146.92 9.3

EG 35.23 78.89 18.1

DMSO 54.35 137.2 14.2
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Usually, the regularity of the geometrical patterns in self-ordered nanoporous/nanotubes of
anodic TiO2, Al2O3 or HfO2 is analyzed by a typical parameter—the porosity (P). For the well-defined
hexagonal porous structures, P of the anodic oxide layer is given by the equation proposed by
Nielsch et al.:

P =
2π
√

3

(
r

Dint

)2

, (8)

where r is the pore radius (r = Dp/2) [31]. For the hexagonal self-ordered nanoporous Al2O3, or TiO2

NT arrays the obtained porosities are close to 10% (10% porosity rule) when mild anodizations are
implemented (low anodization potentials). This rule assumes that a perfect hexagonal structure shows
a P of 10% and deviations from these values results in the imperfect ordering of the structures. Qiu et al.
presented a study of porosity for anodic HfO2 NTs (electrolyte with ethylene glycol as solvent) and
obtained porosity values of 10% when the anodizations were performed within the range of 10 to
40 V [14]. In this work, P was calculated for the samples FA, EG and DMSO, as shown in Table 1. For
the FA and DMSO samples, porosities closer to 10% (of ~9.3 and 14.2%, respectively) were obtained,
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consistent with the 10% rule. However, for the EG sample P clearly deviates from the 10% rule
(P~18.1%).

The resulting AHO layer thicknesses are shown in Table 2. The EG, FA and DMSO samples have
a mean AHO layer thickness (L) of approximately 8.0; 23.6 and 37.3 µm, respectively. On the other
hand, the NFM sample shows a rapid AHO growth rate with L = 94.8 µm, much larger than the other
samples. Notice that while previously discussing the Q(t) curves (Figure 3), the higher final Q(t) was
indicative of thicker L: L(NMF) > L(DMSO) > L(FA) > L(EG), as obtained [24].

Table 2. Solvent characteristics: Classification at room temperature, dielectric constant (κ) and viscosity
(η); AHO mean layer thickness L and the type of nanostructures obtained for the different samples.

Sample Classification κ η (cP) L (µm) Nanostructure

EG Polar protic 37.70 13.50 8 Nanotubes

FA Polar protic 109.5 3.302 23.7 Nanoporous

DMSO Polar aprotic 46.70 1.996 37.3 Nanotubes

NMF Polar protic 182.4 1.650 94.8 Several

3.4. Electrolyte Solvent as the Driven Factor behind AHO Morphology, Porosity and Growth

In this study, there are two relevant parameters in the electrolyte solvent: The viscosity (η) and
dielectric constant (κ) (Table 2). The Stokes-Einstein equation relates the diffusion constant (D) of a
macroscopic particle of radius r, undergoing a Brownian motion, to the viscosity η of the fluid in which
it is immersed [32]. Thus, at a constant temperature, the individual ions [O2−] or [F−] diffusion constant
will be inversely dependent on solvent η, limiting both oxidation and dissolution rates. On the other
hand, a high-κ solvent draws a higher electrolyte capacitance (for a constant potential) inducing the
formation of more charges at the oxide layer, thus, improving the extraction of the Hf4+ ions and
ultimately leading to a high oxidation rate [17,18]. Therefore, κ will be intimately related to the rate of
the oxidation processes [Equation (1)] at the oxide/metal interface (higher κ, higher oxidation rate).

Figure 10a,b shows the analyses of the features Dp, Dint and P as a function of the solvent physical
parameters, η and κ. Dp and Dint decrease as η increases (Figure 10a). The individual ions [O2−] or [F−]
diffusion constant will be inversely dependent on solvent η (according to Stokes-Einstein equation),
limiting both oxidation and dissolution processes rates. Increasing η, the diffusion of [O2−] or [F−] will
decrease, leading to smaller Dp (and Dint) (Figure 10a) and higher P (Figure 10b) (deviating from the
optimized 10% rule for optimized self-ordered regularity). On the other hand, by decreasing κ [or the
solvent conductivity (σ) SI: Table S1], P increases, also leading to deviations of 10% rule).
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Figure 11a,b displays the counterplots (color-maps) of the AHO L and P as a function of the
solvent physical parameters η and κ. We used the parameters for each sample, (η, κ, L) from Table 2
and (η, κ, P) from Tables 1 and 2, to perform a numerical estimation of 20 new data points by the
interpolation method of cubic Spline. By this interpolating method, we are able to create an estimation
of new values of L and P with certain conditions of the electrolyte (varying η and κ). The obtained
(η, κ, L) and (η, κ, P) arrays were then plotted in 3D counterplot in Figure 11a,b, respectively. One
can observe that thicker AHO is obtained for high κ and low η values. These anodization conditions
led to extremely fast oxidation rates as in the case of the NFM sample and demonstrated by the Q(t)
curve (Figure 4). The NFM sample shows a faulty structure without self-ordered nanoporous or tubes
[only small areas revealed a nanoporous structure; Figure 7c]. Indeed, much faster oxidation than
field-enhanced dissolution occurred during the anodization, being the process out of the steady-state
anodization conditions, which is mandatory for nanoporous/tubes upraise. We believe that, at the
initial anodization stages, already nanoporous/NTs formation occurred [see initial j(t) transient in
Figure 2 and SEM image in Figure 8c], but the NMF solvent high-κ (Table 2) led to a much faster
Hf4+ extraction, and thus, leaving no time to maintain the nanostructures self-organization regime,
i.e., to have a proper dissolution rate that would counter-balance the high oxidation rate. Additionally,
the NMF j(t) singularities observed during the anodization (Figure 2) can be related to the different
nanostructures morphologies obtained (Figure 8).
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interpolation (cubic Spline-20 points) of η, κ, L and P values.

Figure 11b shows the counterplot of P as a function of the solvent parameters η and κ. With this
analysis, we establish a range of P tunability. We can observe that porosities closer to the 10% rule can
be obtained for higher κ and lower η. However, it is also observed that the porosity clearly deviates
from the 10% rule for lower values of κ and higher η. Notice that moderate values of P (closer to 10%)
can be obtained with higher η values, but κ has to be at the higher value range. Contrarily to what is
usually presented in literature, that P depends exclusively on anodization parameters such, voltage,
(Dp, Dint) or water content, we demonstrate for the first time that the porosity also critically depends
on physical properties of the solvent (η, κ). These new results bring the possibility to mix the solvents
in order to tune the anodic oxides with a perfect hexagonal arrangement.

The anodization conditions mandatory for the self-ordered nanoporous/tubes morphology to
arise are obtained decreasing κ, either with low or high η. The FA solvent has a relatively lower
κ, but a slightly higher η than those of NMF. This seems to be enough to establish the necessary
conditions of a more equilibrated oxidation/dissolution balance for the formation of structures with
self-organization (nanoporous structure; Figure 5). Additionally, under these conditions, moderate
L is obtained, as shown in the counterplot map (Figure 11a). On the other hand, the NT structure
arises when decreasing even more κ, either in low or high η regimes, although with thinner or thicker
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thicknesses, respectively. Both DMSO and EG samples showed an NT structure, but the DMSO sample
presented a higher L. Both own a similar κ value, albeit much smaller than the one from the previously
discussed samples. EG much higher viscosity, making F− ions more difficult to be replaced by new
ones at the NTs bottom. As a result, oxidation is faster than dissolution, leading to a j(t) decrease
during the anodization, indicating the progressive increase of δb. Thus, the ionic migration path along
the oxide barrier [29] significantly extends, inhibiting the transport of F−, Hf4+ and O2− ions across
δb (Hf4+ and O2− for oxidation, F− for dissolution) which subsequently limits a further NT growth
(Figure 1). On the other hand, from the dissolution reaction [Equation (2)] one can see that the failure
of F− leads to H+ excess, and thus, to additional chemical dissolution effects that also result in limited
NTs growth. DMSO showed a perfect balance between oxidation and dissolution, j(t) constant during
the anodization, just as in the Al anodization case [23,25,26]. The increased NT-array length when
using a DMSO electrolyte can also be attributed to the controlled chemical dissolution process effect.
Thus, the route to successfully obtain long NT arrays is to minimize the pH decrease promoted by H+

additional etching. The DMSO aprotic photophilic solvent accepts an H+ ion from NH4F and reduces
its activity, decreasing the chemical etching. Thus, allowing the DMSO NTs to grow deep into the
hafnium foil without any significant loss at the tube tops. The presence of DMSO modifies the space
charge region in the pores, thereby also avoiding the lateral etching and leading to a steady-state pore
growth and low chemical etching of the NT walls.

As expected, the same conclusions were obtained for the counterplots with the solvent conductivity
(σ) instead of using κ (SI - Figure S6).

In summary, the electrolyte solvent affects the morphology and length of anodic HfO2 (Figure 12).
Different nanostructures with different shapes of morphologies are obtained by changing the electrolyte
solvent physical characteristics. For instance, we can tailor the anodic oxide morphology from NTs (EG
and DMSO) to nanoporous (NPs; FA) to a thick oxide layer (NMF), by increasing the electrolyte κ, since
the oxidation rate is higher (Figure 11a (easier Hf4+ extraction). Additionally, with the κ increase the
porosity decreases (Figure 11a). On the other hand, increasing η, the L severally decreases (Figure 11b),
since the dissolution rate decreases because the ionic diffusion is limited. Overall, an accurate balance
between the electrolyte solvents’ κ and η is needed to obtain the desired morphology, porosity
and length.
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4. Conclusions

We investigated the growth of self-ordered anodic hafnium oxide (AHO) by using different solvent
base electrolytes: EG, FA, NMF and DMSO. We found that the solvents are a key factor for tunning the
possible morphology of the nanostructures of the AHO. EG and DMSO allow vertically oriented growth
in self-ordered NT arrays, due to low κ and high η (in the case of EG), and because the photophilic
character (in the case of DMSO) of the solvent. On the other hand, FA and NMF lead to nanoporous
AHO (for FA), due to their much higher κ, and to diverse nano-shapes (for NMF), including nanoflakes,
nanoneedles, nanotube-agglomerations and thick continuous oxide. Furthermore, the final layer
thickness of the AHO was also correlated with the electrolyte solvent type, and particular its κ and η

values. While κ determines a higher oxidation rate (out of the steady state regime), leading to thicker
HfO2 oxide layer (NMF) out of the self-organization anodization regime (nanoporous or nanotubes),
a lower κ combined with lower η lead to higher lengths, but in the self-ordered regime, and thus,
to hexagonally distributed NTs (DMSO). Additionally, porosities within the 10% self-ordered regime
were obtained for high κ and low η.

The detailed analyses of j(t), δb(t) and Q(t) anodization curves combined with morphology
analyses demonstrate that an accurate balance between the oxidation and dissolution rates during the
anodization is mandatory to obtain optimized self-ordered nanostructures. The anodization curves j(t)
and Q(t) for the different solvent electrolytes revealed different growth mechanism and growth rates
of AHO.

Overall, the κ and η constants from the solvent electrolyte directly affects the transition from
thick oxide-to-nanoporous-to-nanotubes (as κ decreases), the porosities and the growth of oxide layer
thickness, (as η increase). This study clearly reveals that the organic solvent is the main factor affecting
the transition from pores to tubes and the regularity of the structures, as well as the anodization
growth rates.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/2/382/s1,
Figure S1: Current density anodization curves during 17 h, Figure S2: SEM images of the NMF sample for 17 h of
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