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ABSTRACT

Computed Tomography (CT) imaging is used in Radiation Therapy planning, where the treatment is
carefully tailored to each patient in order to maximize radiation dose to the target while decreasing
adverse effects to nearby healthy tissues. A crucial step in this process is manual organ contouring,
which if performed automatically could considerably decrease the time to starting treatment and
improve outcomes. Computerized segmentation of male pelvic organs has been studied for decades
and deep learning models have brought considerable advances to the field, but improvements are still
demanded.

A two-step framework for automatic segmentation of the prostate, bladder and rectum is presented:
a convolutional neural network enhanced with attention gates performs an initial segmentation,
followed by a region-based active contour model to fine-tune the segmentations to each patient’s
specific anatomy. The framework was evaluated on a large collection of planning CTs of patients
who had Radiation Therapy for prostate cancer.

The Surface Dice Coefficient improved from 79.41 to 81.00% on segmentation of the prostate,
94.03 t0 95.36% on the bladder and 82.17 to 83.68% on the rectum, comparing the proposed framework
with the baseline convolutional neural network. This study shows that traditional image segmentation
algorithms can help improve the immense gains that deep learning models have brought to the medical
imaging segmentation field.

1. Introduction

normal, healthy structures (16). CT is the only image modal-
ity that can determine tissue electronic densities calibrated to

Computed Tomography (CT) is widely used in modern
medical practice for screening, diagnosis, monitoring dis-
ease progression, cancer staging, treatment planning, and
follow-up after successful treatment (15; 10; 21; 16; 2). This
imaging modality is equivalent to taking hundreds of planar
X-rays from different angles and directions, which are then
reconstructed to generate the 3D image we are familiar with
(20).

One application of CT is in radiation therapy planning,
where the images are used as the base for three-dimensional
arrangement of radiation beams to target the desired struc-
tures while at the same time minimizing radiation dose to
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Hounsfield units (34), which is essential for the estimation
of dose absorption by the human body, and hence, why
it is used for radiotherapy planning (27). The first step in
the typical planning process is the manual contouring of
anatomical structures, mainly treatment targets and organs-
at-risk, performed by medical experts. This manual task
is very time-consuming, prone to intra- and inter-observer
variation and human error, typically taking 20-60 minutes
per patient by a trained expert (12; 9).

The theoretical benefit of an accurate and reliable au-
tomated method for organ segmentation is immense, with
specific advantages in radiotherapy planning, as it could al-
low faster time from first patient encounter to treatment start
and, possibly, increase treatment quality owing to systematic
observance of contouring guidelines (32). A computerized
segmentation aid that requires expert validation is of value as
the time for validation may be less than the time to perform
fully manual segmentation (11).
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Prostate cancer is the most prevalent non-cutaneous can-
cer and the second leading cause of cancer death in men.
It is estimated that about 1 in 9 men will be diagnosed
with prostate cancer in their lifetime (40). However, with
appropriate treatment, 5-year survival rate is 98.2% (31).

Computerized segmentation of the prostate in medical
images has been researched for several years, first with image
filters followed by intensity thresholding, then statistical and
active shape models and, more recently, with deep learning
(DL) models (19; 38). There have been several challenges
organized to allow for direct comparison between meth-
ods for prostate segmentation (23; 22). However, these are
focused on Magnetic Resonance Imaging (MRI), which is
more commonly used in clinical practice for diagnosis and
cancer staging rather than radiation therapy planning. Given
that the tissues of interest are mostly soft tissues, MRI offers
better image quality, with higher contrast between structures.
Hence, segmentation of pelvic organs on CT is considered
more challenging (43). Figure 1 depicts the low contrast
problem in unprocessed CT pelvic images.

Fig. 1: Example of a CT slice of the male pelvis, where the
bladder, prostate and rectum are labelled.

CT scans are composed of a series of planar images,
i.e., slices, forming a three-dimensional volume representing
the correct anatomy of the patient. In order to perform
accurate image segmentation, the use of a model which
can take the whole three-dimensional scan into account is
preferable. However, this can take very high computational
capability. Instead, many methods take each slice as a sep-
arate sample and perform segmentation on a 2D basis with
good results (39; 25; 26; 46). Alternatively, some authors
have experimented with so-called 2.5D frameworks where
the two immediately adjacent slices are also processed to
aid in the segmentation of the target (centre) slice (1; 41).
However, inserting the whole 2D CT scan into a DL model
is challenging due to the sheer size of the tensors, which
may not fit in the available computational memory, much
less using appropriate batch sizes. To avoid this problem,

some authors have performed segmentation on a fully three-
dimensional basis, using smaller 3D patches of the imaging
scans randomly sampled from the whole set (24; 17). This
offers performance gains compared to the earlier approaches,
and offers support to the hypothesis that a volume which
encompasses the whole region of interest could further im-
prove the segmentation results. The reasoning is intuitive:
the whole set of information is available for the model
to learn from and utilize during inference. An additional
strategy is to downsample the images, which is our approach
here.

In this study, a state-of-the-art DL model is used for the
main segmentation task, followed by a fine-tuning, i.e. refin-
ing, step using an active contour model based on the level-set
method: the Chan-Vese implementation. The fully convolu-
tional neural network uses CT scans that have been down-
sized to one-eighth the volume (half-size at each of the three
axes), thus avoiding computational memory limitations. The
fine-tuning step is performed on the full-resolution images
on a slice-by-slice basis, and offers considerable improve-
ment to the DL segmentation for the used dataset.

The contribution of this work is three-fold: collection of
the largest dataset of male pelvic CTs for organ segmentation
for radiotherapy planning; modification of the U2-net neural
network architecture with attention gates, which improves
the performance slightly; and use of a fine-tuning step after
the DL segmentation applied at full-resolution, with further
performance gains.

Following this introduction, section 2 details the devel-
oped approach, including the dataset that was newly col-
lected and the used preprocessing steps. Section 3 describes
the results of the performed experiments including a compar-
ison with the baseline U2-net DL architecture. A discussion
of those results is also provided in the same section, and
section 4 summarizes the contributions of this work and our
future planned work on this relevant field of medical image
analysis.

2. Methods

This section describes the dataset and the methods used
in the proposed fully automated framework for organ seg-
mentation. Image preprocessing is the first step, followed
by the use of a three dimensional fully convolutional neural
network, and finally the segmentation fine-tuning using an
active contour model: the Chan-Vese approach to a level-set
method.

2.1. Dataset
A new dataset of treatment planning CT scans of pa-
tients who underwent radiation therapy for prostate cancer
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between 2012 and 2020 in two accredited centers in Porto,
Portugal: Centro Hospitalar Universitario Sao Jodo and In-
stituto Portugués de Oncologia do Porto, was collected. The
full dataset is composed of nearly 4000 scans, of which 2266
were used in this study. This subset contains all patients
which performed definitive radiotherapy, meaning the im-
ages contain the prostate gland as they had not been subject
to surgical removal of the gland. Most of the remaining scans
comprise patients who underwent radiotherapy after surgical
removal of the prostate. We plan on using those for further
work.

The ground-truth manual segmentations were performed
and validated by radiation oncology specialists, and were the
same that were used for the actual treatment of these patients.
Both centers follow identical contouring guidelines (13), and
although individual variation is expected (as detailed in the
introduction), the relatively large amount of data can com-
pensate for it, particularly because the neural network can
perceive the common features from the data and implicitly
extract an ‘average’ between all experts.

The collected scans have varying sizes and resolutions:
pixel spacing varies between 0.937 and 1.269 mm, slice
thickness is 1.25, 2, 2.5 or 3 mm; number of slices varies
between 105 and 345. The manual segmentations include
femoral heads and penile bulb for most patients, but, for
this study, only the ground-truths for the prostate, bladder
and rectum were used. This decision was made after noting
that there was little consistency across different patients of
the manual segmentations of the penile bulb and femoral
heads, due to the scans coming from different institutions
and contoured by different experts which do not follow the
exact same guidelines. This does not happen in the case of
the prostate, bladder and rectum, which are also the most im-
portant organs for radiotherapy planning for prostate cancer.
The dataset was randomly divided into a training set of 2066
samples, for neural network training; a validation set of 150
samples, for DL hyperparameter search and to determine the
parameters for the Level-set fine tuning method; and a test set
of 50 samples for final metric evaluation. This split ensures
there is no adaptation of the model to the samples that will
be used for determining the final results and correctly assess
generalizability of the overall framework.

All patient-specific information was anonymized during
the data collection process. Approval for this project was
received from each of the centers’ ethical committees.

2.2. Image Preprocessing

Prior to any computerized image processing and analy-
sis, a few preprocessing tasks ought to be performed, in order
to organize and standardize the imaging data and facilitate
the subsequent tasks.

As aforementioned, analysis of the dataset revealed a
range of pixel spacings and slice thicknesses. An isotropic
resampling method was employed to bring all scans to a
voxel resolution of 1x1x1 mm?3. This greatly improves DL
processing ability, as the tensor arrays that are input into
the neural network do not have spacing information, so the
model always works under the principle that every image has
the same resolution.

Because there is a fixed protocol of image acquisition
for treatment planning purposes, in any given patient the
prostate is always fairly close to the center of the acquisition
volume. Thus, the center region of the scan was cropped to
192x352x192 which was found to be large enough to capture
all organs in all samples of this dataset.

Intensity windowing, using the expertise developed by
radiologists for years, selects a window appropriate for
pelvic CT scans: between -140 and 210 Houndsfield units.
This maximizes the contrast between soft tissue structures,
such as skeletal and smooth muscle, fat, mucous mem-
branes and prostate gland tissue, important for this specific
task. There is also the presence of bone, which becomes
overwhelmingly white, but this does not present a problem
because it is not the focus in this study. This method reduces
the range of intensity values in each sample, facilitating
model convergence (18). Intensity normalization to zero
mean and unit variance is also performed to improve neural
network training.

Lastly, the scans are downscaled to half-size in each axis
resulting in a volume that is one-eighth the total size, avoid-
ing computational memory issues with DL model training.
Now the volumetric array, and corresponding ground-truth
segmentation mask, is ready for neural network processing.

2.3. Fully Convolutional Neural Network

A fully convolutional neural network was employed for
the second step in the proposed framework of automatic
segmentation. This is a three-dimensional model, based on
the U-net architecture, which was presented in 2015 by
Ronneberger et al. (37). The used model is the UZ2-net,
developed by Qin et al. (36), adapted to work with a 3D input,
and improved with attention gates similar to those proposed
by Oktay et al. for segmentation of the pancreas (33).

The UZ?-net is a clever evolution of the U-net, where
each processing level is itself a mini-U-net, so this network
can be thought of as many U-nets inside a large U-net, as
shown in Figure 2. Besides this, it makes use of dilated con-
volutions (8) and deep supervision (4; 7). This architecture
was selected because it is at the state-of-the-art for image
segmentation, with numerous applications from salient ob-
ject detection (36), to human portrait drawing (44) and also
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Fig. 2: Diagram of the baseline U2-net (36).

medical imaging segmentation at the Thyroid Nodule Seg-
mentation and Classification in Ultrasound Images challenge
in MICCAI2020 (42). The developed implementation was
adapted to a 3D architecture with 3D convolutional layers,
as well as 3D MaxPooling and UpSampling layers.

In addition to the powerful features that the baseline net-
work boasts, one found that the implementation of Attention
Gates in the skip connections that bridge the transfer of infor-
mation from the encoder to the decoder arms was beneficial.
Figure 3 details the implemented attention gates. This adds a
matricial sieve to focus the decoder arm’s processing power
on relevant regions of the imaging scan, as opposed to other
less relevant regions. This is similar to having a weighted
filter for the general location of the relevant organs, so that
the network would assign more importance to those regions.
The advantage of having the attention gate as designed is that
it has learnable parameters that the network can tune during
the training phase, by decreasing the weights of irrelevant
background structures during the gradient backpropagation
step (33).

In practical terms, as shown in Figure 3, the image
encodings at each level of the left side of the U-net archi-
tecture are passed to an attention gate as x* and is multiplied
element-wise by the attention coefficients (a), to yield the
output of the attention gate (/). The attention coefficients
are produced by an element-wise addition of the tensors x

and g, the latter of which is the image encoding at the lowest
level of the network, i.e. more processed and thus, with a
better semantic representation of the image. Elements that
are aligned will result in larger weights while the opposite
results in a near cancelation of the weights. These are passed
through a sigmoid activation layer producing the attention
coefficients appropriately scaled between 0 (zero) and 1
(one). The Resampler layer ensures the sizes of the tensors
match so that element-wise multiplication is possible.

ReLU (o)) Sigmoid (6>)

Resampler

ol W, Lxlal

F; x Hix Wyx Dy

Fig. 3: Diagram of an Attention Gate as used in this work (33).

The network was implemented in Python using the Ten-
sorflow package and trained for 100 epochs for a total time of
17.9 hours with a batch size of 2 and a learning rate of 3x10™*
using the Adam optimizer. The loss function was based on
the soft volumetric Dice coefficient, which is differentiable
(28), added to the categorical crossentropy loss. Training
was performed on an NVIDIA DGX station with a V100
GPU with 32Gb of RAM and a 20-core Intel Xeon CPU.
As stated above, the input samples were downscaled so the
resulting segmentation masks were half the size at each axis.
These had to be rescaled back to the original full-resolution
in order to be used as the starting point for the level-set
method.

2.4. Level-set method

In order to fine-tune the segmentation performed by
the deep neural network on the coarse images to the fine
detail of the full-resolution scans of each patient, a level-set
method was implemented based on the Chan-Vese model,
which is established as an energy minimization problem,
applied to a level-set formulation. Being an active contour
model, it relies on the evolution of a curve to define the
segmentation, but does not depend on an edge-function to
stop (3). Hence, it can segment objects whose edges do not
have a clear gradient, and can have very smooth boundaries
or a very noisy image, which are commonly seen in medical
images, and for which the classical active contour models
usually fail. Its stopping term is based on the Mumford-Shah
functional (29). The basic idea is the minimization of a fitting
term, which is positive for all points outside the target object
and also for all points inside it, such that the only set of points
to perfectly minimize the term is the correct boundary of the
object of interest. The active curve will evolve towards that
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| | Prostate | Bladder | Rectum |

v 0.05
M 160
A 1.0
dt 1.5
iterations 6

0.20 0.25
140 135
1.0 1.0
0.5 1.5
8 3

Table 1

Best parameters found for the Chan-Vese method based on the validation set of 150 patients for each of the organs
segmented. (. corresponds to the curve length parameter; )\, is the difference from the average weight parameter
for the values inside the region-of-interest, and A, is the same for values outside the region-of-interest; dt is a
multiplication factor applied at each iteration to the energy function.)

set of points in a sequence of iterations (45). There are also
some regularizing terms, which correspond to the length of
the curve and the area of the region inside the object, which
help add stability to the method (3).

This model requires an initial segmentation, which typi-
cally consists of a basic geometric form, such as a circle on
the center of the input image, and greatly influences the end
result (45). In our case, by using the segmentation resultant
of the DL model, one of the problems of implementing a
level-set method in practice is overcome. This initialization
also helps with the problems of stability and convergence,
as all that is required of the level-set method is a small fine-
tuning step, adjusting the already high quality DL segmen-
tation to the organ boundaries evident in the full-resolution
scans.

The Chan-Vese model was applied on a slice-by-slice
basis, to each organ separately, using the neural network
segmentation as starting point. The slices were then joined
to rebuild the finished volumetric segmentation. The Chan-
Vese method takes several parameters, which were found
by successive trial experimentation, using the validation
set composed of 150 samples. For each organ, in order to
maximized the target metrics, a different set of parameters
was found, which are shown in Table 1.

2.5. Evaluation metrics

For a comparison between segmentation masks, i.e. seg-
mentation results, to be possible, useful and representative
metrics that can be easily measured are needed. In this
study, the segmentation quality was evaluated using four
metrics, to capture a robust picture of the performance of
the proposed method. However, for validation purposes, in
order to select the best parameters, only one metric can be
used, because some small parameter changes can benefit
one metric, but worsen others. For this, the Surface Dice-
Sgrensen Coefficient (DSC) suggested in (30) was chosen.

This surface DSC metric is tailored to the boundary of
the segmented object, ignoring the voxels that are clearly

inside or outside the volume. We found this to be much
more aligned with our own qualitative evaluation of the
segmentations for this particular problem, since the edges
are the most important feature, but also because all organs
are filled (as opposed to hollow) and there is no influence by
the overall size and shape of the organ, unlike other metrics;
e.g., the volumetric Dice-Sgrensen Coefficient favors large
round objects such as the bladder over long and thin ones
such as the rectum. Furthermore, the surface DSC allows for
the use of a tolerance factor, which determines an acceptable
deviation from the ground-truth, only penalizing deviations
larger than that tolerance, as shown in Figure 4. Often a
small deviation in the boundary of an organ is not clinically
significant, although it can have a large impact on volumetric
DSC if the organ is small; and the opposite can also happen
where a relatively large deviation in the boundary can have
little effect on volumetric DSC if the organ is large, but it can
have a significant impact in clinical terms. In this study, a
tolerance of 2 mm was used, as this corresponds to the voxel
resolution of the downsampled images used for the neural

network training.

/ ;

acceptable deviation 1 —

Fig. 4: Detail of the surface DSC metric focused on the surface
of the segmentation, with an 'acceptable deviation' parameter.
The metric only penalizes contour points which are far from the
ground-truth more than the acceptable tolerance. (Continuous
line: ground-truth; Dashed line: model segmentation; adapted
from (30).)

Almeida et al.: Preprint submitted to Elsevier

Page 5 of 11



Segmentation of male pelvic organs on Computed Tomography with a Deep Neural Network fine-tuned by a Level-set method

Nevertheless, for final test purposes and results report-
ing, the standard volumetric DSC was also calculated (6), as
is the case in most organ segmentation studies (39; 25; 24;
17; 4; 14):

2|A N Bj

B 1
v Y

Dice Sorensen Coef ficient =
where A and B are the segmented volumes to be compared.
The other metrics calculated are based on linear point
distances. The Average Boundary Distance, ABD, and
Hausdorff distance, H D, are computed as:

ABD= — 1 .
|Ag| + | Byl
(2)
Y minyep |la=bll+ Y miney lla=bll |,
aEAS beBs
HD = max,es (minyep_ |la—bl)), 3)

where A and B, are the surfaces of the segmented volumes
to be compared, and ||a — b|| is the Euclidean distance
between two points on A and B.

All metrics were calculated with the full-resolution
scans, i.e., upscaling the segmentation masks produced by
the models as needed.

3. Experimental results and discussion

Three segmentation methods were compared for their
performance on the test set: (A) the baseline U2-net as im-
plemented by its authors, available in (35); (B) the modified
neural network, with the addition of attention gates; and (C)
the overall framework, as described in Section 2. The same
preprocessing steps were performed for the three methods.

The achieved quantitative results are summarized in
Table 2. Both on average as well as for each organ indi-
vidually, the proposed combined framework produced the
segmentations that are closest to those of human experts.
On average, the performance gain from the modified network
architecture was not as large as that offered by the fine-tuning
step. Overall, the highest result was achieved for the bladder
and the prostate proved to be the most difficult. This can be
explained by the fact that a large region of the bladder is
usually surrounded by fatty tissue, which appears darker than
the organs, while the prostate is often touching the bladder
anteriorly and rectum posteriorly, which have approximately
the same intensity values.

The runtime for making segmentations on the downsized
scans with the trained DL model was 0.373 seconds per
patient (with GPU acceleration), while the level-set step took
1.399 seconds per patient. Although the level-set step adds
considerable time in relative terms to the overall framework,
it is negligible in terms of the typical time taken by medical
experts to perform segmentation of a radiotherapy case.
Even if it were to take much longer, it could be parallelized
with other tasks such as patient consultation.

The overlap metrics clearly show that the level-set step
improved the quality of the segmentation for each of the
three organs. The gains were slightly better in the case of
Surface DSC, which is explained by the fact that small
changes in the boundary position can have a larger effect
on this metric as opposed to volumetric DSC, which relies
on the size of the whole sets. This is also the reason why
volumetric DSC was slightly higher for any method and for
any organ, due to the large amount of overlapping voxels
in the middle of the segmentations. The Hausdorff distance
did not show a significant improvement, in fact it becomes
slightly worse for the prostate and rectum. This metric gives
the maximum distance of one set to the nearest point of the
other set, which is very influenced by the distances in the
top-down axis. While the scans were resampled to 1x1x1
mm? resolution, the ground-truth segmentation is capped at
a specific slice level, often causing the Hausdorff distance
to be on the top or bottom of the organ, overwhelming the
comparably smaller changes in the segmentations produced
by the level-set method in the anterior-posterior and lateral
axes. This is less noticeable in the case of the bladder, which
has more clearly defined top and bottom. To overcome this
limitation, the average boundary distance is used, which is
the average of the distances of all points in a surface to the
closest point in the reference surface. For this reason, this
metric better reflected a modest improvement for all three
organs with the use of the level-set method.

A statistical analysis was performed based on the paired
samples T-test which assesses the difference between the
means of two groups with measurements of the same subject,
in this case organ segmentations of the same patient. For
most of the metrics evaluated, statistical significance was
found, as shown in Table 2, which also indicates a significant
advantage with the level-set fine-tuning step compared to the
method that relies only on a neural network.

Another important quantitative result is the percentage
of patients in the test set whose segmentations improved
after the level-set method, which were 78%, 94% and 62%
for the prostate, bladder and rectum, respectively, based on
the surface DSC. Furthermore, in all but one of the 50
test set patients at least one of the organ segmentations
improved with the level-set method, compared to the U?-net
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\ | Prostate | Bladder | Rectum |  Average |
(A) 79.41 + 1.23 94.03 + 0.50 82.17 £ 0.78 85.20 + 0.65
Surface Dice Coefficient (%) (B) | 79.67 + 1.06 92.96 + 0.52 83.63 + 0.80 85.42 + 0.60
(C) | 81.00 + 1.02* | 95.36 + 0.36* | 83.68 + 0.74 | 86.68 + 0.53*
(A) 85.91 + 0.45 94.63 + 0.22 83.02 + 0.59 87.85 + 0.31
Volumetric Dice Coefficient (%) (B) | 85.98 +0.37 94.54 + 0.20 83.86 + 0.60 88.13 + 0.28
(C) | 86.21 + 0.36* | 95.55 + 0.19* | 84.44 + 0.59* | 88.73 + 0.28*
(A) | 460 =264 | 241+085 | 13.02+900 | 6.68 + 3.30
95% Hausdorff Distance (mm) (B) 4.59 + 2.41 2.61 + 0.96 10.61 + 8.68 594 + 3.11
Q) 4.63 + 2.43 2.39 + 1.10* 10.66 + 8.61 5.89 + 3.11
(A) 1.40 + 0.51 0.85 +0.23 1.92 +0.96 1.39 + 0.42
Average Boundary Distance (mm) (B) 1.38 + 0.40 0.87 +£0.23 1.73 +£ 0.96 1.33 +£ 0.39
(C) | 1.31 + 0.40* 0.66 + 0.22* 1.66 + 0.94 1.21 + 0.38*

Table 2

Comparative results of the frameworks under study using the test set: (A) Baseline U2-net; (B) U2-net with attention
gates; and (C) U2-net with attention gates followed by level-set fine-tuning at full resolution - the proposed method.
(Mean and standard deviation are presented; best values are in bold. * indicates statistical significance in the paired

samples T-test: p<0.05)

with attention gates alone; likewise, the segmentation was
improved for all three organs in 23 of the patients.

As for qualitative results, in Figure 5 it is depicted
that the level-set method can improve the segmentation
particularly in areas close to the bone where the DL model
does not respect bone surface limits (visible on the right
column images). One other important detail to note is as to
the anterior part of the bladder (on the top of the images):
because the level-set method uses the DL output as starting
point, it does not add the missing segmentation on the first
set of images (on the left column), adjusting only the part
closest to the center and, actually, worsening the simple 2D
Dice coefficient on this particular slice. However, in the
second set (on the centre column), the level-set improves
the segmentation quality by reducing the size of the part of
the bladder that was oversegmented by the neural network.
Overall, in these images, the fine-tuning step decreased the
segmentation quality in the first slice, but improved in the
others, 60.46 to 57.21%, 76.45 to 83.68% and 86.56 to
92.22%, respectively.

Similarly, on the images of the left column of Figure
6, the DL segmentation had a general shape typical of the
prostate shape for a slice at this level, but the level-set
adjustment was able to better adapt the prostate contour
to this particular patient, improving the evaluation metrics,
from 82.14 to 92.45%. On the images of the centre and right
columns, examples of slight oversegmentation by the DL
model on the rectum can be observed, which were corrected
by the fine-tuning step. The 2D Dice coefficient improved
from 80.12 to 85.12% and 78.56 to 95.53%, on the images
of the centre and right columns, respectively.

For a better representation of the achieved three-dimensional

segmentations, Figure 7 shows sagittal and coronal views of
the same cases shown in the axial slices for each of the three
organs.

The DL model was able to accurately determine the
average shape of the organs required and exclude individual
particularities to learn the main characteristics of prostate,
bladder and rectum shapes, not too dependent on specific im-
age details, but taking into account the general location com-
pared to other anatomical landmarks independent of imaging
artifacts. However, it lacked in fine detail, often overflowing
into nearby bone structures (high intensity, lighter gray in
CT) or soft fatty tissue (low intensity, darker gray on CT).
The strength in the proposed combined approach stems from
the adjustment of the level-set method as a means of post-
processing, such that the final segmentation is better adapted
to the anatomy and fine details of each patient.

There is reason to believe that a fully end-to-end DL
framework on the full-resolution scans could surpass the
accuracy of the proposed hybrid model. However, it is
more computationally intensive, and more time-consuming
to fine-tune a neural network model and perform hyper
parameter search than to iterate on the level-set method used
in the proposed method. Likewise, a coarse DL network
followed by a fine DL network trained on a volumetric patch
of the full-size images could provide accurate results and
presents as an interesting avenue of research to pursue.

By performing the fine-tuning step on each organ indi-
vidually, the resulting segmentations have a few superposi-
tions between the organs, even if very limited because of the
non-overlapping starting points. While not impactful in the
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Fig. 5: Segmentation of the bladder in three slices of the same patient. Top row: Manual ground-truth; Middle row: U2-net with

attention gates; and Bottom row: full proposed framework.

quantitative metrics, this is not ideal in the clinical setting
as in this particular case there should be no overlaps be-
tween these organs. There may be computational algorithms,
namely adversary curve evolutions, to help overcome this
problem, which we plan to explore in future work.

The use of a specific set of parameters for the level-
set method can impact the generalizability of the overall
workflow, and it is why we performed the parameter search
in a randomly picked validation set, but finally assessing the
overall method on a different test set. This way we show that
these parameters are not only tuned to the specific images
for which they were chosen. Still, all CT scans come from
the same dataset, but even these come from two different
centers, and the ground-truths were contoured by more than
a dozen experts, with the inherent variation thereof. Besides,
the CT scans used for radiotherapy planning are specially
calibrated so that the Hausdorff units have some correlation
with the mass number of the cellular tissues, in order for
radiation absorption estimations to be made; this results in
more consistent images than typical CT scans for other uses
(5).

A limitation of the 2D approach implemented for the
level-set method is that it only adjusts the segmentation
performed by the DL model on a given slice, such that
it never decides to eliminate a segmentation from a given
slice, nor add a new one to an adjacent slice that was not

segmented by the DL model. This has an impact on the
calculated metrics, because any slice that has no ground-
truth segmentation, for the reason that the organ of interest is
not displayed on that slice, will have a DSC of 0 (zero), both
for the DL segmentation and after the level-set refinement.
This affected the rectum and was particularly noticeable in
the Hausdorff distance metric. Furthermore, in some scans
there was a lack of smooth continuity from slice to slice
after the final step of the proposed framework. This is not
sufficient to negate its benefits, but shows a pathway for
further improvements.

4. Conclusion

This article presented a combined framework to perform
organ segmentation on three-dimensional CT scans of the
male pelvis, where a DL model is compounded by a region-
based active contour method, which is able to fine-tune the
segmentation to the patient’s specific anatomy and improve
key metrics.

The framework was applied to a large dataset of radiation
therapy planning CTs whose breadth of anatomical varia-
tion helps validate the achieved results. The application of
attention gates to the U2-net architecture was successful for
this specific task, and improved the baseline by adding a
processing layer at the bridge between encoder and decoder
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Fig. 6: Segmentation of prostate (left column) and rectum (centre and right columns). Top row: Manual ground-truth; Middle
row: U2-net with attention gates; Bottom row: full proposed framework.

arms of the network. The Chan-Vese level-set method was
shown to perform an appropriate final adjustment to each
patient’s anatomy allowing for the DL model to be applied
to a lower resolution scan avoiding computational memory
issues and decreasing computational needs.

In essence, this study shows there is a pathway for
traditional image segmentation algorithms to help improve
the immense gains that DL neural networks have brought to
the medical imaging segmentation domain. As future work,
we plan on improving this framework by adding a method
to avoid superpositions of the different organs, and also
applying it to CT scans of patients who had the prostate sur-
gically removed before undergoing radiation therapy, where
the surgical bed is the target region.
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