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Abstract 

A study on the time development of local scour around a complex pier was 

developed using a small-scale model embedded in a sediment bed. A total of 15 

laboratorial tests were performed at the Hydraulics Laboratory of the Faculty of 

Engineering of the University of Porto. The duration of each experiment was 

previously established to progressively characterize the scour cavity. After each 

experiment, the flume was gradually emptied to facilitate the application of close -

range photogrammetry. The scour depth values resulting from the application of 

photogrammetry at the pile cap front agree well with the values obtained 

experimentally. The temporal development of the scour cavity is presented and 

discussed. Empirical formulas for the scour cavity time development and for the 

relation of scour depths to scour cavity volumes were obtained. The obtained three-

dimensional models can also be used for calibration and validation of numerical 

models.  
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Introduction 

Local scour around piers is the main cause of structural collapse of bridges, due to 

failure of piles foundations in riverbeds. In the recent decades, many researchers have 
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investigated the flow and the scour patterns around bridge piers. 

A large number of studies focused essentially in the prediction of the scour 

depth in the base of piers (Breusers et al. 1977; Breusers and Raudkivi 1991; Melville 

and Coleman, 2000). These studies were mostly done by experimental means, resulting 

in semi-empirical equations for the evaluation of the maximum scour depth (Dargahi, 

1990). For a better understanding of the flow field around piers, several researchers 

have studied the flow field around cylinders and piers (Dargahi, 1989; Graf and 

Yulistiyanto, 1998; Ettema et al. 2006; Dey and Raykar, 2007). Most of the mentioned 

studies have only analysed the local scour around single piers. However, bridge design 

commonly leads to the consideration of complex pier foundations, most usually 

integrating a bottom pile on the top of a pile group, in which the direct application of 

the results derived from single piers is most often unreliable (Landers and Mueller, 

1996). Researchers as Coleman (2005), Ataie-Ashtiani et al. (2010) and Moreno et al. 

(2012) have focused their studies on the prediction of the maximum scour depth around 

pile groups and complex piers. 

The prediction of in situ scour at bridge piers using empirical formulas should be 

done with caution since they were derived mainly from small-scale laboratory 

experiments. This led to the development of mathematical models capable of simulating 

the scouring process at bridge piers, known in the literature as Computational Fluid 

Dynamics (CFD) tools. Olsen and Melaaen (1993) developed a 3D model of scour 

around a circular single pier. A comparison with experimentally measured scour 

patterns revealed good agreement. Tseng et al. (2000) performed 3D calculations of the 

flow around a vertical wall-mounted cylinder using large-eddy simulation (LES), 

validating the results against Dargahi’s (1989) experimental data. Abdelaziz (2011) 

simulated the flow and the sediment transport around a circular pier to compare with the 



velocity fields and the topographic data experimentally obtained by Unger and Hager 

(2006).  

For a well-calibrated numerical model, good experimental data is essential. To 

the authors’ knowledge, there are no detailed time measurements of the scour cavity 

geometry development in the vicinity of a complex pier (see Figure 1).  

The main goal of the present study is the three-dimensional characterization of 

the scour evolution around a complex pier by close-range photogrammetric means. The 

application of photogrammetry in this field is still in the beginning (Rapp and Eder, 

2012), but it has proved to provide reliable insights into the whole scour cavity 

geometry, leading to a deeper understanding of such phenomena. It has mostly been 

used to measure the scour cavity around single piers (Pfleger et al. 2010; Eder et al. 

2011, Rapp et al. 2012). The proposed methodology will lead to an original 

experimental dataset as well as a set of empirical relations of the scour patterns to be 

later used as a useful input for numerical simulations.  

Experimental Setup 

Experimental apparatus 

The experiments were performed in a 32.2 m long and 1 m wide recirculation flume, 

located in the Hydraulics Laboratory of the Faculty of Engineering of the University of 

Porto (FEUP). Figure 2 illustrates a general longitudinal view of the experimental setup. 

The side-walls are made of glass to enable the visualization of the flow. The water is 

recirculated from a reservoir by means of a centrifugal pump group. The inflow 

discharge was manually regulated and controlled by means of two electromagnetic 

flowmeters at the channel entrance. In the upstream reach of the flume, some channel 

bed macrorugosities were designed to ensure a turbulent flow development. The flow 



depth was adjusted by means of an electric gate at the downstream end of the flume. 

The approach flow velocity (u = 0.327 ms-1) was set to be 97% of the critical flow 

velocity calculated by Neil’s formula (Neil, 1967). Therefore, a flow depth of 0.18 m 

and a flow discharge of 0.059 m3s-1 were imposed, guaranteeing clear-water flow 

conditions for the experiments performed. The flume bottom was built upon the original 

concrete flume bottom in order to obtain two sediment boxes: one, to create a sand pit 

where the complex pier was installed and, the other one to create a sand trap where the 

eroded sediments were retained (both sediment boxes 0.35 m deep and 3.40 m long). 

The sand material was characterized by a median diameter, D50, of 0.86 mm, a 

gradation coefficient of the sediment size distribution, σd, of 1.4 and a density, ρ, of 

2650 kgm-3. 

The geometric characteristics and the position relative to the initial river bed of 

the complex pier used in the performed experiments is depicted in Figure 3. The model 

was built for this purpose with the column and the pile cap made of acrylic glass and the 

four foundation piles of Polyvinyl chloride (PVC). The column and the pile cap have 

rounded edges. The studied pier was placed in the sand pit on the channel midplane and 

positioned in order to expose half of the pile cap height (0.029 m) to the flow current 

(the positive x-axis indicates the direction of the flow). In agreement with Teixeira 

(2013) the highest scour depths occurred for this configuration of the complex pier. 

According to Moreno et al. (2012), the contraction and wall effects were negligible to 

the scouring process, since ratios of B/Dpc ≥10 and B/h≥5 were guaranteed (B being the 

flume width, Dpc the pile cap diameter and h the flow depth).  

Experimental procedure 

The experimental tests required the following previous steps: (i) installation of the 

complex pier; (ii) filling of the box pit with sand until the adjacent concrete bed level 



was reached; (iii) coverage of the complex pier vicinity initial bed level area with thin 

geotextile, coupled to a metallic grid, to preclude undesirable scour at the beginning of 

the experiment; (iv) gradual opening of the valves until the desired water depth and 

inflow discharge was reached; and, (v) removal of the geotextile plaques with the aid of 

two lateral wires. Hence, the experiment was immediately initiated. In total, 15 

experiments were performed to characterize the scour cavity evolution. Each test 

corresponded to a previously designated time duration, in accordance to pre-defined 

time steps of the scouring process. Before each experiment run, the sand bed was 

adjusted and levelled at 0.029 m above the pile cap bottom. In every experiment, the 

tridimensional reconstruction of the scour hole was performed after the flow was 

stopped and the flume was slowly made empty.  

Experimental methodology 

The objectives of this investigation included the measurement of the scour depths at 

different positions and the characterization of the scour cavity geometry. The former 

was performed by means of a limnimeter, enabling to measure the scour depth at the 

pile cap front (cross in Figure 4), and by reading off the scale attached to each 

individual foundation pile; the latter was possible by close-range photogrammetric 

means, enabling the quantification of the spatial distribution of scour around the 

complex pier components.  

For the application of photogrammetry, the scour hole and the surrounding 

affected area were photographed with a single digital camera (Canon PowerShot SX 

160 IS), successively positioned in different spots to cover the whole area of interest. To 

enable the spatial reference accomplishment, a set of ground control points (circles in 

Figure 4) was considered.  



The camera captures were taken from a horizontal platform, relatively close to 

the sediment bed (at a distance of approximately 0.60 m), after each experiment. Due to 

the different duration of the experiments, the number of photos and the location of the 

ground control points were adjusted according to the areal extent and depth of the scour 

hole. The ground control points consisted in specific (and symmetrical) points on two 

lateral rulers (see Figure 4). The photogrammetric processing software, used in this 

research was Agisoft PhotoScan Professional, Version 1.0.4 (Agisoft 2014b).Unlike to 

traditional photogrammetry, this software neither requires the tridimensional location 

and orientation of the camera at image capture, nor the tridimensional location of the 

control points prior to the scene reconstruction. However, the control point coordinates 

are still required in post-processing to transform the model from relative to absolute 

coordinates (Westoby et al. 2012).  

The digital elevation models (DEMs) were extracted and imported into Global 

Mapper (Version 15.0), a GIS Data processing software. The Global Mapper software 

allowed to perform the calculation of the bed elevation and the measurement of the 

scour cavity volume as well as to perform a comparison with the scour depths directly 

read in the laboratory. 

Results and Discussion  

Figure 5 illustrates the development of the bed level configuration profiles along the 

centreline of the complex pier after 60 min., 8 hours, 24 hours, 72 hours, 8 days and 11 

days., normalized by the flow depth (constant, h=0.18 m). These profiles were obtained 

by photogrammetry; the cross dots refer to the scour depth measured by the limnimeter 

(at the pile cap front, for each of the experiments) and the circle dots denote the scour 

depths obtained by means of reading the ruler scales at the foundation piles (when 

possible). Significant conclusions can be drawn from the analysis of the upstream 



stretch of the bed profile time evolution (Figure 5) such as its maximum slope to 

compare with the angle of repose of the sand bed. The maximum slope of the upstream 

stretch reached a value of 74%, corresponding to an angle of 36.5°. This angle is about 

20% higher than the typical value of 30° for wet sand. Researchers as Roulund et al. 

(2005) also reported that during the development of a scour cavity, some areas at the 

upstream side show higher local bed slopes than the angle of repose. Two main reasons 

were identified to explain this phenomenon: the backward flow at the base of the pile 

eroding the foot of the upstream slope of the scour cavity, and the continuous sediment 

supply of sediments into the scour cavity. 

Regarding the time duration required for the series’ end experiment, the criterion 

of Melville and Chiew (1999) was used. It corresponds to the time at which the rate of 

increase of scour does not exceed 5% of the foundation pile length and the flow depth in 

a 24 hours period (in the present case, 0.05 m and 0.18 m, respectively). In the present 

case, the end scour stage was reached after 264 hours (11 days) with a maximum scour 

depth of 19.8 cm at the front of the first foundation pile (Figure 6). It should be referred 

that the foundation piles were numbered from upstream (pile 1) to downstream (pile 4). 

As stated before, only the scour measurements at the pile cap front could (and were) 

performed at the beginning of each experiment. The scour measurements at the 

foundation piles were only registered as soon as the process of the scour cavity 

development reached the front of each of the piles, where a ruler was glued. A reduction 

of the scour depth rate after approximately 50 hours (pile 1 in Figure 6) may be 

explained by a potential sliding of the upstream slope of the scour cavity. On the present 

study, the scour depths measured after eleven days were: 19.48 cm along the pile cap 

front alignment, 19.8 cm at the first foundation pile front, 13.1 cm                                            

at the second and 7.5 cm and 6.2 cm at the third and fourth, respectively. This same 



complex pier configuration had been studied by Teixeira (2013). This author computed 

the values suggested for this configuration by two scour depth prediction methods 

referenced in the literature, Richardson and Davis (2001) and FDT (2010). The former 

suggests a maximum scour depth of around 19.8 cm while the latter gives a value of 

20.5 cm. These values are very close to the experimental ones obtained in this work. 

Figure 7 compares the scour depth temporal development for the end of the 

series experiment (duration = 11 days) with the scour depth achieved for each of the 

other (14) experiments (referred to as “other tests”), obtained by limnimeter 

measurements and by means of photogrammetry at the pile cap front. 

The graph suggests that the interruption of the experimental tests and the 

emptying of the flume (for the photogrammetry application) do not interfere with the 

scouring process since it yielded a good agreement between the three set of points 

represented in Figure 7.   

In order to study the generation and time evolution of the scour cavity, digital 

elevation models were produced after each experimental run and adequately treated. 

The corresponding graphs to the instants considered in Figure 5 are presented in Figure 

8 as a function of bed elevation-to-flow depth ratio. The bed elevation with respect to 

the x-y-plane appears in a grey-scale range depending on the level of each point 

(normalized with the flow depth – h=0.18 m).  

Although many studies were dedicated to investigate the temporal evolution of 

the scour depth in the vicinity of a complex pier, very few studies have addressed the 

three-dimensional characterization of the scour cavity. To achieve this goal, the digital 

elevation model results were used to compute the volume of the scour cavity. Figure 9 

shows the cavity’s scour rate volume temporal evolution with respect to the time 

duration of the end of the series experiment (te=11 days). 



As expected, considerable transport of sediments occurred during the first time 

steps of the scouring process (with scour rates of 63.4 and 54.4 cm3min-1, for the first 

two points on the far left in Figure 9). Then, the scour rate decreased asymptotically to a 

value of 4 cm3min-1 at the final scour stage. The cavity’s volume scour rate (S) time 

development data, represented in Figure 9, could fit with a high correlation coefficient 

(r2=0.9668) to an exponential function (Equation 1): 

        𝑆 = 𝜆 (
𝑡

𝑡𝑒
)

−0.336

     (1) 

where λ assumes the value of 3.43 in the present study. Figure 10 shows the 

relation of the scoured cavity volume, V, with the maximum scoured depth, ds, at any 

scouring stage. These variables were normalized with respect to the corresponding end 

stage, Ve and dse. The curve, expressed by equation (2), confirms that the scoured 

volume is proportional to the power of 3 of the scour depth, as verified by many 

experiments. 
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From Figure 10, it is clear that the maximum scour depth approaches much 

faster the corresponding end stage than the cavity volume. The same parameters are 

plotted in Figure 11 with respect to the time normalized with the duration of the final 

series experiment (t/te); the corresponding graphs enhance the previous 

conclusion.Besides the scour cavity volume considerations another important analysis 

performed concerns the geometric characterization of the scour cavity. By the end of 

each experiment, for the scour cavity obtained, three different length and width 

measurements were conducted: four of them in specific locations (l1, l2, w1 and w2) 

and the other two at the locations where the maximum width and length occurred (lmax 

and wmax). These variables are schematically represented in Figure 12 in accordance 



with the typical cavity areal configuration; the corresponding values are presented in 

Table 1.  

The analysis of Table 1 reveals that the shape of the cavity at the initial bed level 

surface (cavity “mouth”) varies very strongly in the first few hours of the scouring 

process, as expected. After a period corresponding to about 20% of the end experiment 

this pattern changes to an asymptotic behaviour. Although few similarities, a striking 

discrepancy between the time cavity “mouth” width and length characteristics does 

occur: while the length continues to grow with time, the width reaches much more 

rapidly a state of stability, with a value almost constant after 25% of the time 

correspondent to the end experiment. This could be very helpful to define the area of 

influence of the scouring around a pier, in the direction transversal to the flow. 

Conclusions  

A set of 15 laboratory experiments were conducted to characterize the temporal 

evolution of the scour cavity around a complex bridge pier. The analysis comprised the 

determination of the maximum scour depth and the geometric parameters of the scour 

cavity with close-range photogrammetric means, for determined instants. 

The present paper proved that the interruption of the inlet flow and the gradual 

emptying of the flume after each run in order to enable the application of close-range 

photogrammetry, did not influence the scouring process significantly since it yielded 

good agreement. For each experiment, a direct but intrusive technique was also used, 

allowing the validation of the scour depth values obtained by photogrammetric means; a 

good agreement was found. The data derived from the successful implementation of the 

close-range photogrammetry revealed significant insights for an extensive 

characterization of the scour cavity around bridge piers. 



Empirical relations for sediment transport rates, scoured volume rates and scour 

depths were derived for the complex pier under study.  

A complete dataset of the geometrical characteristics of the scour cavities was 

constructed, which will be a good basis for further investigations. Therefore, the study 

of scour around complex piers is still ongoing, being the next task the implementation 

of a numerical model to evaluate the same scour patterns here analysed. The numerical 

simulations will be validated and calibrated using the presented results.  
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Table 1: Geometrical characterization of the scour cavities (dimensions in meters). 

Test Duration w1 w2 wmax l1 l2 lmax 

1 5 min. 0.224 - 0.229 0.054 0.092 0.180 

2 10 min. 0.227 - 0.258 0.072 0.127 0.212 

3 30 min. 0.236 - 0.280 0.089 0.170 0.267 

4 60 min. 0.285 - 0.332 0.095 0.273 0.364 

5 120 min. 0.295 - 0.369 0.101 0.321 0.524 

6 4 h 0.320 - 0.378 0.104 0.376 0.487 

7 8 h 0.305 0.200 0.420 0.120 0.460 0.598 

8 12 h 0.410 0.400 0.447 0.140 0.612 0.561 

9 24 h 0.452 0.450 0.492 0.165 0.674 0.627 

10 36 h 0.523 0.495 0.584 0.183 0.775 0.682 

11 48 h 0.540 0.550 0.618 0.204 0.905 0.853 

12 72 h 0.653 0.750 0.752 0.223 0.995 0.888 

13 5 d 0.695 0.760 0.791 0.248 1.020 0.953 

14 8 d 0.845 0.850 0.946 0.275 1.222 1.020 

15 11 d 0.860 0.960 1.000 0.285 1.470 1.503 

 

 

 

 

 

 

 

 

 



 

Figure 1: Flow pattern around a complex pier: 1- approach flow; 2 - downflow; 3 - horseshoe vortex; 4 - wake vortex 
(adapted from Moreno et al., 2012). 

 

 

Figure 2: Side view of the experimental setup (dimensions in meters). 
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Figure 3: Geometric characteristics and position relative to the initial riverbed of the complex pier (dimensions in 
meters). 

 

 

Figure 4: Scheme of the experimental data collection. Camera positions (square boxes), ground control points 
(circles) and limnimeter measuring point (cross). 
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Figure 5: Bed profile configuration time evolution along the complex pier centreline. 
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Figure 6: End experiment (11 days): Scour depth evolution at the pile cap front and at the piles front.  

 

 

Figure 7: Comparison of the experimental approaches: scour depths at the pile cap. 
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Figure 8: Digital elevation models. 



 

Figure 9: Cavity’s volume scour rate time evolution. 

 

 

Figure 10: Relation between the scour depth and volume rates for each experiment. 

 



 

Figure 11: Relation between maximum scour depth and volume rates to the end experiment. 

 

 

Figure 12: Scheme of the typical scour cavity and characteristic geometric dimensions. 
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