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SUMMARY 
 
Transmission networks are facing very demanding challenges in Sub-Saharan Africa: African utilities 
are focused on rural electrification, as the access to power is limited to 32 % of the overall population; 
load increase rates are very high; the connection of renewables and new bulk generation requires 
interconnection to already existing transmission grids, in some situations thousands of kilometers 
long; interconnectivity among Southern Africa Power Pool (SAPP) systems is very weak; the existing 
infra-structure requires improvement and maintenance. As a result of all these concerns, SAPP has 
already identified transmission expansion as one of the most important issues to be addressed on the 
next years in Southern Africa. It is also important to recognize that the connection of new generation 
plays an important role on interconnectivity amongst Sub-Saharan African countries, as relevant 
energy sources are typically located very far from the main consumers, and are often located in 
different countries. This is a quite different paradigm from that what is normally found in other 
continents.  
 
Huge investment is needed to implement new transmission projects; and investors have to be 
identified outside the region. These investors require well established technical and stable legal 
frameworks. Both local stakeholders and investors need suitable dynamic tools to model the expansion 
of the systems. On these tools one has to take into account the complexity of the system on both space 
and time dimensions. Artificial intelligence based models, like Evolutionary Particle Swarm 
Optimization (EPSO) either real or discrete approach, have already been tested in real transmission 
networks, and may be also useful to plan the future Sub-Saharan transmission network. In this scope, 
this paper aims at describing a mathematical model to perform long term transmission expansion 
studies having a multiyear nature in order to identify the most adequate expansion plan while 
considering a number of criteria as the investment and operation costs, the reliability of operation and 
the uncertainties on loads.  
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1. Transmission networks and electricity market 
 

Economic growth forecast is usually considered as a relevant input for the investment on 
infrastructure. Sub-Saharan Africa economy doubled in size between 2000 and 2013, reaching a global 
GDP of $2.7 trillion. GDP per capitae increases slower, due to a relevant population growth, which is 
also one of the most relevant facts on infrastructure planning. The weakness of the Sub-Saharan 
energy system is considered as one of the main constraints for the economic development on a region 
under complex demographic and social challenges [1][2]. 
 
This region is rich in resources, with massive hydro potential in some countries, as DRC and 
Mozambique, excellent solar resource in vast areas, as in South Africa and Namibia, wind in coastal 
areas, and gas. In the last years the most important world gas discoveries occurred in Sub-Saharan 
Africa, with Mozambique appearing as a potential key player. The on-grid generation installed 
capacity in 2012 was 90 GW. The mix is dominated by coal (45%, mainly in South Africa) and hydro 
(22%). It is expected that gas penetration on the mix will increase during the next decade (with 
Nigeria, Angola and Mozambique). 
 
The electricity market, considering both the resources and the demand, is very appealing, but it is also 
complex, as its development requires accessible and reliable physical infrastructures, coherent legal 
framework and political stability. 
 
The main utilities of the region joint on the SAPP, Southern Africa Power Pool. The vision of the 
SAPP is to facilitate the development of a competitive electricity market in the SADC region. 
However, one has to keep in mind that South Africa is a dominant player on SAPP, as it accounts for 
80 % of overall power demand. 
 
One of the main electrical infra-structures in power systems are the transmission networks. These 
networks provide the physical support interconnecting distribution networks, big consumers and 
generation to the grid. They are also important when establishing electricity markets, as these are only 
possible to implement based on reliable and well-designed inter-country transmission networks.  

2. Transmission Expansion Planning (TEP) 

2.1. The importance of TEP modeling 
 
During the last 20 years, power systems all over the world went through a process of liberalization and 
restructuring that determined changes at different levels. Apart from peculiarities that characterized 
this process in different countries, and particularly in Europe, there are some relevant common 
aspects: The segmentation of the traditional vertically integrated utilities namely in generation, 
transmission, distribution and retailing; The advent of independent regulation; The increase of the 
number of agents namely in the generation and retailing activities between market functions, assigned 
to Market Operators; and The technical operation and monitoring functions assigned to System 
Operators. On the other hand, the nature of electricity and of the required investments, typically lead 
to regulated monopolies to provide transmission and distribution network services. 
 
This modification of traditional utilities also had important consequences in terms of tariffs as well as 
in operation and planning activities. Regarding tariffs, till the advent of liberalization and restructuring 
there were no clear cost allocation procedures, cross subsidies were common and final end user tariffs 
were typically determined using average approaches. The segmentation of the industry imposes the 
clarification of this process, the clear identification of costs and their assignment to the agents or 
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activities responsible for them and the construction of additive tariff systems based on elementary 
tariffs per activity, namely including tariffs for the use of transmission and distribution networks to 
pay network operation, management and investment costs. Transmission providers face a challenging 
task in preparing their expansion plans in view of this more decentralized and uncertain environment. 
TEP is clearly identified as a major responsibility of Transmission System Operators (TSO), as these 
operators are responsible for ensuring the long-term ability of the system to meet reasonable demands 
for the transmission of electricity.  
 
TEP modelling is of great importance, since: It is invariably associated with high investment costs; 
The licensing procedures are increasingly complex, due to more demanding legislation and larger 
environmental concerns; Investments have great impact on the economy, not only due to its own cost, 
but also because of the corresponding tariffs, and the economic implications and constraints associated 
with the quality of electricity; TEP models are usually very complex1.  
 
From the stake-holders point of view, transmission expansion should attend the following objectives:  
Encourage and facilitate competition among electricity market participants; Provide non-
discriminatory access to cheap generation for all consumers; Alleviate transmission congestion; 
Minimize the risk of investments; Minimize the investment and operation costs; Increase the reliability 
of the network; Increase the flexibility of system operation while reducing the network charges; 
Minimize the environmental impacts; Allow better voltage level regulation. 

2.2. The network segmentation levels and algorithms 
 
The first effort on TEP process has to do with the correct definition of its scope, even before using any 
model. One should proceed to a careful targeting of investments, which may be segmented in 
hierarchical levels: Hierarchical level 1 (HL1), that correspond to changes in the topology of the 
transmission system in respect to its structure; Hierarchical level 2, which correspond to changes in 
local nature network topology. One may say that HL1 is the structural level, and the one to be 
considered in TEP.  
 
The second effort should be focused on the choice of the methodologies that contribute to lower as 
much as possible the computational burden, without jeopardizing the quality of the solutions. Heuristic 
methods evolve step-by-step generating, evaluating, and selecting solutions, with or without 
interacting with the planner. Taking advantage of the planers experience, the computational 
performance of heuristic approaches is usually better than that of mathematical methods.  
 
In some cases, local searches are performed following rules defined by the planer. The solutions are 
classified according to these rules and consider information like technical, financial and service data. 
The process is stopped when no further improvement is possible on the best-found solution. Heuristic 
Tools include evolutionary algorithms and particle swarm optimization. Evolutionary algorithms are 
usually organized in the following steps: initialize a random population P of µ elements; repeat 
reproduction (by recombination and/or mutation), evaluation, selection and test, until test (for 
termination criteria is valid, based on fitness, on number of generations or other criteria) is positive. 
Evolutionary computation offers several advantages: conceptual simplicity, broad applicability, 
outperform classic methods on real problems, potential to use knowledge and hybridize with other 
methods, parallelism, robust to dynamic changes and capability for self-optimization. The results 

                                                 
1 This complexity is largely due to non-linear large models, with a significant computational burden, which is 
reflected in algorithms that take too long to run. Therefore, models should be developed as simple and efficient 
as possible, so that the adopted algorithms could be fast and reliable. 
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demonstrate that evolutionary strategies found better sequences for TEP. A performance comparison 
of meta-heuristics to solve the dynamic (or multi-stage) transmission expansion planning problems is 
provided in [3]. As a result of these ideas, in this paper we describe the application to the TEP problem 
of a discrete version of EPSO combined with concepts as Fuzzy Numbers, Chaos and Lamarckism.  

2.3. TEP in Sub-Saharan Africa 
 
The connection of new generation plays an important role on interconnectivity amongst Sub-Saharan 
African countries, as relevant energy sources are typically located very far away from the main 
consumers, or even might be located in different countries2. The SAPP may assume a relevant 
coordination role on the planning of the electric power system among member utilities. It is also a 
forum on which regional solutions to electric energy problems are discussed and agreed [4].However, 
the reality is much more complex as Sub-Saharan state-owned utilities still need a deep reform, as 
several indicators reveal very poor performance when compared with those of other regions [1]. 
 
The planning of both generation and transmission is a complex topic anywhere in the world, and Sub-
Saharan countries are not an exception. Even in South Africa, where the legal framework is more 
developed than in neighborhood countries, planning is a big challenge [5]. The provisions are 
dispersed in several Acts, Regulations, Licenses and Grid Code. Some authors, like Wilson and 
Adams [6], defend that “… a theoretically integrated approach exists within the National Integrated 

Resource Plan (NIRP), under the jurisdiction of the National Energy Regulator of South Africa 

(NERSA). However, in practice it is apparent that the NIRP is largely irrelevant to ESKOM’s 

planning, which is based on its own Integrated Strategic Electricity Plan (ISEP). It is appropriate that 

planning should be under the control of an independent body. …”. On other countries, Grid Codes and 
Regulatory Independent Agencies are inexistent, which turns planning procedures even more difficult. 
Some countries adopted policies that also condition the procurement of local infrastructures, adding an 
additional constraint to the problem. It is the case of South Africa, with the Broad Based Black 
Economic Empowerment (BBBEE). There is nowadays a debate on  BBBEE, if it is achieving its goal 
in correcting past injustices and opening up opportunities to black South Africans [7]. 
 
To implement new transmission projects huge investment are needed; and investors have to be 
identified outside the region. Both local and foreigner stakeholders and investors need suitable 
dynamic tools to model the expansion of the systems. On these tools one has to take into consideration 
the complexity of the system on both space and time dimensions. Some few models have been 
published focusing modeling system expansion in Sub-Saharan Africa.  Rosnes and Vennemo 
developed a model for optimal expansion of generation, transmission and distribution in 43 country 
members of the four power pools in Sub-Saharan Africa, including the SAPP. This model was 
developed under different assumptions, with a horizon of 10 years [8].Nowadays more powerful tools 
and techniques may be adopted on tackling very complex models, as is the case of TEP. 

3. Artificial intelligence for Transmission Expansion 

Planning 

3.1. Introduction 
 
Artificial intelligence based models, like Discrete Evolutionary Particle Swarm Optimization 
(DEPSO) [9], have already been tested in real transmission networks, and may be also useful on 

                                                 
2 An example of such complex projects is the ZIZABONA project, involving Namibia, Zambia, Zimbabwe, 
Botswana and South Africa. 
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planning the Sub-Saharan transmission network of the future. These mathematical models are suitable 
to perform long term transmission expansion studies having a multiyear nature in order to identify the 
most adequate expansion plan while considering a number of criteria as the investment and operation 
costs, the reliability of operation, and the uncertainties on loads.  

3.2. Discrete Evolutionary Particle Swarm Optimization (DEPSO) 
 

The classical Particle Swarm Optimization (PSO) was proposed by Kennedy in 1995, based on the 
parallel exploration of the search space by a swarm, a set of “particles”, the solutions or alternatives, 
which are transformed along the process [10]. The particles proceed through the search space, that is, 
the space integrating feasible solutions. Each particle coordinates are associated with two vectors, its 
position Xi and its velocity Vi, where i is the particle position in the swarm. When exploring the search 
space, the particles movement is influenced by three elements: its own position, the position of the 
best particle ever found on its position and the best particle ever found on the swarm. PSO has many 
key advantages over other optimization techniques like: it is a derivative-free algorithm unlike many 
conventional techniques; it is flexible to form hybrid tools together with other optimization 
techniques; it is less sensitive to the nature of the objective function, i.e., convexity or continuity; it 
has less parameters to adjust unlike other evolutionary techniques; it has the ability to escape from 
local minima; it is easy to implement and program; it can handle objective functions with stochastic 
nature; it does not require a good initial solution to start the iterative process. More detailed 
information about PSO applications in power systems can be found in [11, 12]. 

 
In 2002 Miranda and Fonseca [13] introduced the Evolutionary Particle Swarm Optimization (EPSO), 
joining the best features of both particle swarm methods and evolutionary algorithms. EPSO focuses 
in regions of the search space where one can find better contributions for the solution, instead of 
conducting a blind sampling of the space. In [14] it was adopted the general scheme of the movement 
rule of PSO according to which the new particles are a combination of four particles: its direct 
ancestor, the ancestor of its ancestor, a distant past best ancestor and the current global best of the 
swarm. This recombination rule pushes the population towards the optimum. The evolutionary flavor 
is given by the self-adaptive mechanism to determine the best values to the weight terms. As in PSO, 
vectors represent possible solutions in EPSO.  
 
The off-springs are generated by recombination of the particles, which can be modelled by the rules 
specified by (1) and (2). This movement is illustrated in Figure 1. 
 

Xi
k+1

 = Xi
k
 + Vi

k+1    
 (1) 

Vi
k+1

 = Wi1*.Xi
k
 + Wi2* (bi - Xi

k
) + Wi3*.(bG* - Xi

k
).p (2) 

In these expressions: 
Xi

k Location of the particle i in generation k 
Xi 

k+1 Location of the particle i in generation k+1 
bi Best point found by particle i in its past life up to the current generation 
bG* Best overall point found by the swarm of particles in their past life up to 

the current generation 
Vi

k = Xi
k - Xi

k-1 Velocity of particle i at generation k 
Wi1* weight conditioning the inertia term 
Wi2* weight conditioning the memory term 
Wi3* weight conditioning the cooperation term 
Wi4* weight conditioning the best global particle 
P communication factor 

 



  5 
 

It must be underlined that the vector associated with the cooperation factor does not point exactly to 
the global optimum bG but to a mutated location. This is as an extra touch Miranda has added to the 
classical PSO concept, by defining a blurred target instead of a single point, which also contributes to 
improve the quality of the results. 
 

 

Figure 1 - EPSO Movement Rule (Source:[14]) 

 
The communication factor P is a diagonal matrix affecting all dimensions of a particle, containing 
binary variables of value 1 with probability p and value 0 with probability (1-p). The p value controls 
the flow of information within the swarm and is 1 in classical formulations. The symbol * indicates 
that the parameter will undergo mutation. Mutation is a relevant operation because it can provide extra 
chances for the swarm to escape from local minima and also the necessary focus and zoom in the 
optimum when the inertia and memory weights are reduced and the cooperation weight is larger. 
Reference [15] provides results that demonstrate  the superior performance of EPSO.  

 
The DEPSO used in this paper is a new approach of the EPSO model, able to tackle problems with 
non-continuous and integer search spaces. Its main characteristics will now be detailed. 
  
The population is characterized by the number of particles, each one representing a possible solution 
for the problem, the number of positions in a particle, which means the number of projects that are 
included in an expansion plan project list and the number of possible states in each particle position, 
representing the period when each project would enter in service. The main difference between this 
approach and classical EPSO is that the elements in this particle are integers, instead of real numbers. 
 
DEPSO follows the same structure of classic EPSO, and the algorithm is organized as follows. 
- Replication: the population is cloned twice; 
- Mutation of weights: as in the classical EPSO approach, there are three weights that are subjected to 

mutation: inertia, memory and cooperation. The mutation is performed through a sigmoid function3 
as indicated in (3); 
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3 The sigmoid function was adopted as a map due to its chaotic behaviour, and also to keep the self adaptation 
capabilities of the swarm while respecting a narrow variation range that could help on the particles movement 
control. It is a very simple expression, which includes the previous value of the weight to mutate, that is, it 
carries the influence of the weights of the previous iterations for the following iterations. It also allows an easy 
integration in the classical mutation expressions, which contributes to a simple and fast algorithm (no 
intermediate conversions needed). 
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- Mutation of best global: the global best particle is a vector, whose positions are mutated only when 
randomly numbers uniformly generated in the interval [0.1] take values less than kc € [0,1] . The 
weights are updated by (3) and the mutation of particle bG is obtained by (4); 

( )1.2 *
4

*
−+=

it

GjGj wroundbb
 (4)  

- Recombination: we adopted the same expressions of the classic EPSO, which we round up to 
integers. Accordingly, we shall not consider a continuous velocity spectrum, but jumps from one 
admissible position to another admissible position in the search space. When the particles exceed the 
search space boundaries, they are returned to the search space, either being placed on the edge or in a 
contiguous position, according to a random generation (5 and 6); 

( )()0, randroundX it
jpt +=

  (5) 

( )()1, randroundnpX
it

jpt −+=  (6) 

- Recombination by Lamarkian evolution: when the velocity of a particle is zero, meaning that it will 
not move, it is promoted a Lamarckian evolution of that particle using (7). In this particular 
evolution the particle only sees some of his positions mutated, those when random numbers 
uniformly generated in the interval [0.1] take values less than kb; ka is set to nper. 
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- Selection: at each position of the population survives the clone whose fitness is better than the best 
article of the same position. The best global is updated if some of the best particles has best fitness. 

 
This model is boosted by local search nearby the best solutions ever founded. When a particle has a 
good fitness, it is assumed that other particles in their vicinity may be of interest. Thus we create a 
new population on which we run an additional search. This population will result from the evolution 
of clones of the best global or a randomly selected particle among the best population. The Lamarkian 
evolution is also promoted using (7). 
 
Numerous tests were conducted to compare the performance of this approach with conventional EPSO 
approaches. The results were very promising given that the new approach was able to escape from 
local minima in more than 95% of the analyzed cases and also because it was possible to identify good 
solutions with less iterations and smaller populations than previously.  

3.3. TEP modeling using DEPSO  
 
TEP modeling using DEPSO starts by defining an investment plan project list, based on Pr projects, 
and a time frame, based on Pe periods, is defined by the following information: origin bus, destination 
bus, technical data and investment. A solution Xi of the TEP problem corresponds to a plan that 
includes a number of projects selected among this list as well as their location in the time frame. The 
search space under analysis is discrete and integer. It typically includes a large number of possible 
alternative plans, given by PePr. 
 
The general formulation of the TEP is given by (8-11).  
 

Min Cost (Xi) = Investment (Xi) + Oper. cost (Xi)+ αi
  

(8) 
Subject to:  
Physical constraints (generation; power flow limitations); (9) 
Financial constraints (global and period constraints); (10) 
Quality of service constraints (reliability) (11) 
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The list of possible projects mentioned in a) can include, not only new lines to establish in new 
corridors, but also lines to install in existing corridors or projects associated with the upgrade of the 
capacity of existing lines, for example increasing the voltage level. Each of these projects is 
characterized by its investment cost and period. Then if a particular project is selected for a particular 
period, its investment cost is referred to the period 0, using an interest rate appropriate to the risk of 
this type of investment. Operation Costs are evaluated solving a linearized DC_OPF problem. While 
doing this, network and generator limit constraints are enforced. However, if transmission or 
generation capacity is insufficient, then the power not supplied (PNS) will be non-zero, thus increasing 
the value of the objective function. This means that using this strategy, we are inherently penalizing 
particles that are not adequate in terms of being able to connect properly generation and demand. On 
the other hand, this formulation assumes that the network is lossless. In order to increase the realism of 
the model, this DC-OPF was enhanced to include an estimate of transmission losses. The objective 
function (08) is subjected to: Physical constraints, namely associated to the capacity of the generators 
and of the available branches; Financial constraints associated to limitations on the amounts that the 
company can invest on each year on during the entire horizon; and Quality of service constraints, for 
instance expressed by maximum amounts of PNS in n and in n-1 regimes. Failure to comply with the 
constraints set leads the solutions to be penalized, with the penalty terms αi: if the level of losses 
exceeds a reference value; if the PNS(n) is not zero; if maximum number of projects per period is 
exceeded; if investment value over the entire horizon is exceeded; if the PNS (n-1) is not zero. 

3.4. Multiyear TEP model considering load uncertainties 
 
Several TEP data is actually affected by uncertainties: load demand evolution, generation costs, new 
generation (technology, location, year), market development, regulations, and tariffs. Uncertainty in 
the future behavior of data has long been addressed using scenario analysis, sensitivity approaches and 
probabilistic models. However, in several power system problems, it was recognized that the 
uncertainty one has to deal with has not a probabilistic nature or one has not enough information to 
build reliable probabilistic distributions. So, in the early 1990’s, fuzzy set models started to be applied 
to power systems, namely in planning models. Miranda, Matos and Saraiva introduced in 1990 the 
first DC and AC models admitting that at least one generation and demand are modeled by fuzzy 
numbers [16]. Since then, several studies represent load, generation, voltages and branch flows by 
fuzzy numbers, expressing the possible behavior of the system, given the specified uncertainties. More 
recently, Gomes and Saraiva describe the formulations and the solution algorithms developed to model 
uncertainties in the generation cost function and in the demand on DC OPF studies. On their approach 
uncertainties are modelled by trapezoidal fuzzy numbers and the algorithms are based on multi-
parametric linear programming techniques [17]. They extend the fuzzy optimal power flow problem, 
considering, not only load uncertainties, but also generation cost uncertainties. The model, even 
though very accurate, has the draw-back of being very demanding in terms of computational capacity, 
which makes it not suitable for our approach.  
 
Given the fact that the dynamic TEP modelling is computationally very heavy, and that in the 
developed model we want to consider the reliability criteria n and n-1, which require time and have 
high computational burden, we just focus on the uncertainties affecting the loads, within a range of +/- 
5%. In order to also simplify the model, without compromising its validity, the uncertainty of the loads 
is modelled by a triangular membership function. For illustration purposes, when combining the 
uncertainties affecting two loads we obtain the polygon shown in Figure 2. The combination of two 
loads affected by uncertainty results in a pyramid. The point of maximum membership corresponds to 
the coordinates (A2, B2). If, for simplicity, one assumes that both loads are correlated and with 
progression in the same direction, this pyramid can be reduced to two of its edges, namely the edge 
((A1, B1) - (A2, B2)) and the edge ((A2, B2) - (A4, B4)). That is, to study the uncertainty affecting the 
loads, and under these assumptions, it is enough to study points that lie along these two edges. 
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Regarding this simplification, it should be noted that when analyzing the performance of a particle, 
that is, a possible expansion plan in terms of accommodating load uncertainties, we are mainly 
concerned in checking if the system is able to supply the demand affected by uncertainty still with a 
null level of power not supplied.  

 

 
Figure 2 - Combination of two triangular fuzzy loads 

 
For the problem under analysis, it is not our concern to identify the possible behavior of a particular 
generation or branch flow but in fact to assess power not supplied. In order to check that these 
assumptions did not compromise the characterization of the possible behavior of power not supplied, 
we ran numerous simulations sampling load combinations associated to the specified load 
uncertainties, and we concluded that analyzing the two mentioned edges is enough if the purpose is to 
assess the possible amount of power not supplied. If, instead of only considering two loads, one 
considers all network loads, and combine their uncertainties, and if one wants to do the same type of 
study with the same simplifications, the subject to be studied are the edges of an hyper-volume 
connecting the point having the maximum membership value to the point associated to the minimum 
load combination and to the point of maximum load combination. 

 
The assessment of multiyear TEP considering uncertainties can be made by adopting the same 
expression (8) listed before, but considering an additional penalty factor when the solution (obtained 
for the deterministic load) affected by uncertainty originate non-null values for the power not supplied. 
If power not supplied is non-null the particle will be penalized and will hopefully evolve while 
enforcing all problem constraints (9-11).  
 
At the end of the evaluation process a set of possible solutions is obtained, as many as the particles 
that belong to the best populations in DEPSO. The next step is the evaluation of these solutions 
considering the effect of uncertainties in loads.  
 
Several points on the hyper volume are defined, corresponding to different membership degrees of 
fuzzy loads, for instance, 0, 0.5 and 1. The membership degree of 1 corresponds to the deterministic 
solution, whose evaluation is already known. The other four points are those that will be assessed in 
the developed approach. If the assessment conditions are not likely to penalize the solutions, they 
maintain the value of the first stage assessment. On the contrary, if some of the constraints are not met 
for any of the points and in any period, the solution is penalized. Once analyzed all the particles 
affected by the specified load uncertainties, a set of solutions to the problem is obtained. 

3.5. Case Study – IEEE 24 bus Reliability Test System 
 

The IEEE RTS network has 24 nodes, 35 lines and 32 generators. In order to obtain a more stressed 
network, and in line with other recent research works, the demand was set at 8,550 MW and the 
installed generation capacity to 10,215 MW, 3 times more than the original values, as adopted by 
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many researchers. The list of possible projects on the expansion planning included 28 new projects, in 
which four projects correspond to the installation of new transformers.  
 
For a single period analysis the search space has 328 = 2,29x1013 positions. The fitness has considered 
the investment cost, no limit was imposed for the number of projects to be added. A set of 20 tests, 
1000 iterations each, with 10, 30 and 100 particles were performed. One has to keep in mind that with 
1000 iterations and a population of 30 particles only 90.000 solutions are tested, in a search space with 
2,29x1013 possible solutions. The best solution ever found has an investment of 2150 M$ and it 
includes two new transformers (9/11; 10/11) and three new lines (2/4, 6/10 and 11/13). With 
populations of 30 particles the success frequency was of 95% of the cases.  
 
On the four periods analysis the same list of possible projects was adopted. For these tests, and to cope 
with the demand increase of 5% a year, two new generators were added. The search space for a four 
period analysis has 6 28 = 6,14x1021 positions. The best solution found on the preliminary tests has a 
fitness of 3.345,6 M$, and it was obtained with a run with 100 particles, in 694 iterations and includes: 
in period 1, one new transformer and five new lines; in period 2 one new line; in period 3 one new line 
and in period 4 one new line. 
 
Multi period test results were also compared with single period test results. With this purpose, 
additional tests with larger populations and more iteration were performed. As can be seen in Figure 3, 
and as expected, the performance of the run with 150 particles is much more interesting than those 
with 30 and 100 particles, not only because fewer iterations are needed to identify a solution, but also 
because the solution is slightly better (less expensive). 
 
On Table 1 one can see that the solutions obtained are identical (they identify mostly the same 
projects). In particular the first and second solutions differ only in the project 2/6, which in the run 
with 100 particles is postponed from the second period to the fourth period. 
 

 
 

Figure 3 – Deterministic multi-period test fitness evolution with 30, 100 and 150 particles. 
 

Among the single period and multi-period solutions one finds significant differences as indicated in 
Table 1: the project 16/17, identified in the single period solution, is only selected in the fourth period 
in one of the multi-period solutions; one of the projects 7/8 is delayed from period 1 to period 2; 
several projects not elected in the singe period solution are included in the multi-period solution: 3/24, 
10/12, 2/6, 11/13 and 11/23. 
 
One may conclude that a multi-period analysis is not necessarily a combination of static schedules, 
and that not always the elected projects for a single period solution are considered in dynamic multi-
period analysis. 
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When considering uncertainties on the four period analyses, the same list of possible projects on the 
expansion planning was adopted. The uncertainty in each load is modeled using a fuzzy number with a 
triangular membership function. It should be noted that point of 100% corresponds to the deterministic 
solution, already mentioned previously. All particles were tested by assessing the PNS (n-1) with the 
fuzzy load. 
 

Table 1 – Deterministic expansion plans for the single and multi-period analysis. 
 

 
 
From the results we observe the following: the solutions that include transformer 3/24 display poor 
quality in the presence of load uncertainties; some solutions that have identified the exclusion of 
certain lines (such as 1/5 and 11/23, which interconnect generating buses with relevant loads) also 
show poor quality, being very sensitive to load variations; only 19% of the 100 solutions that integrate 
the final population failed the load uncertainty test; the 34 particles with better fitness showed no 
problem in accommodating load uncertainties; there is no correlation between the number of projects 
and network behavior, as it was observed that solutions with fewer projects and better fitness have 
better performance than solutions with more projects and worse fitness, namely solutions having larger 
investment cost. 

4. Conclusions 
 
We present in this paper a dynamic or multiyear TEP model, based on heuristic DEPSO. The proposed 
approach is a real dynamic model, since it considers the influence of the branches selected to be 
installed in the previous periods over the following ones. It meets technical, financial and quality of 
service constraints, as well as the uncertainty in loads. The model includes an estimation of losses, 
with an improved version of DC OPF, and the evaluation of quality of service through the PNS (n) and 
PNS (n-1). It also incorporates the possibility of resource constraints, by defining a maximum number 
of eligible projects per period, as well as setting an investment limit (to any period or for the overall 
plan). One of the critical points on particle swarms based methodologies is the huge number of 
solutions that need to be assessed. The evaluation of TEP solutions requires running many OPF’s, 
considering the periods, the dimension of the network and the expansion plan, with enormous impact 
in terms of run time. For this reason evaluation was broken down into several steps, so that the 
heaviest steps are actually only performed for those solutions that have revealed good performance in 
the previous ones. Once a set of deterministic solutions (with excellent quality of service, PNS (n) = 0 
and PNS (n-1) = 0) is obtained, load uncertainty is then considered, modeled by fuzzy numbers. The 
output of the model is the set of solutions included in the best population and their fitness. 
 
The model was tested in well-known networks, and proved to be accurate. In addition, we observed 
that it needed fewer iterations and less time to converge, when compared with other methods. It is 
therefore an interesting model with development potential, which can be applied to real networks, and 
make use of parallel programming to benefit from greater computing power and decrease the run time. 
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