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Abstract 23 

The occurrence of micropollutants (MPs) in the aquatic environment poses a threat for the 24 

environment and the human health. The application of advanced oxidation processes based in 25 

sulphate radicals (SR-AOPs) to eliminate these contaminants has attracted attention in recent 26 

years. In this work, the simultaneous degradation of 20 multi-class MPs (classified into 5 main 27 

categories, namely antibiotics, beta-blockers, other pharmaceuticals, pesticides, and herbicides) 28 

was evaluated for the first time in secondary treated wastewater, by activating peroxymonosulfate 29 

(PMS) by UV-A radiation, without any pH adjustment or iron addition. The optimal PMS 30 

concentration to remove the spiked target MPs (100 μg L-1) from wastewater was 0.1 mM, leading 31 

to an average degradation of 80% after 60 min, with most of the elimination occurring during the 32 

first 5 min. Synergies between radiation and the oxidant were demonstrated and quantified, with 33 

an average extent of synergy of 69.1%. The optimized treatment was then tested using non-spiked 34 

wastewater, in which 12 out of the 20 target contaminants were detected. Among these, 7 were 35 

degraded at some extent, varying from 10.7% (acetamiprid) to 94.4% (ofloxacin), the lower 36 

removals being attributed to the quite inferior ratio of MPs to natural organic matter. Phytotoxicity 37 

tests carried out with the wastewater before and after photo-activated PMS oxidation revealed a 38 

decrease in the toxicity and that the plants were able to grow in the presence of the treated water. 39 

Therefore, despite the low degradation rates obtained for some MPs, the treatment effectively 40 

reduces the toxicity of the matrix, making the water safer for reuse. 41 

 42 

Keywords: UV-A LED radiation; peroxymonosulfate; advanced oxidation process; 43 

micropollutants; phytotoxicity. 44 
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1. Introduction 45 

The presence of micropollutants (MPs) in the environment is an issue of increasing concern. MPs  46 

can be found in aqueous media at concentrations ranging from a few ng L-1 to several µg L-1 (Luo 47 

et al., 2014), most of them being originated in agricultural, domestic, hospital and industrial 48 

activities (Sousa et al., 2019). Conventional urban wastewater treatment plants (WWTPs) are not 49 

specifically designed to remove this type of organic MPs at trace levels. Thus, the discharge or 50 

the reuse of conventionally treated wastewater (still containing MPs) for crop irrigation might 51 

pose a risk to the environment and to the human health. In the case of reclaimed water reuse, the 52 

remaining chemicals can be uptaken by plants and eventually ingested during food consumption 53 

(Delli Compagni et al., 2020). In addition, leaching phenomena can lead to the transfer of 54 

contaminants from the soil to groundwater (Valentín et al., 2013).  55 

The proliferation of MPs throughout the environment is particularly worrisome when considering 56 

antibiotics. In the last years, increased concerns have been raised on the presence of small amounts 57 

of antibiotics, which when sustained over time, promote the development of antibiotic-resistant 58 

bacteria and/or resistance genes (ARB&ARGs), thus posing a clear threat to human health 59 

(Davies and Davies, 2010). Although the increased awareness towards these issues, there are still 60 

very few regulations addressing the presence of MPs in aquatic compartments. The European 61 

Union (EU) launched the Water Framework Directive (WFD) (Directive 2000/60/EC, 2000), 62 

which sets environmental quality standard (EQS) for 45 priority substances/groups of substances 63 

(41 organic compounds and 4 metals). In addition, EU Decision 2015/495 established a watch list 64 

of contaminants of emerging concern (CECs) that should be monitored in surface water, although 65 

in this case, nor EQS, nor specific regulations were set (Decision 2015/495, 2015). This list has 66 

been regularly updated, namely through EU Decisions 2018/840 (Decision 2018/840, 2018) and 67 

2020/1161 (Decision 2020/1161, 2020), the last version including ca. 20 CECs. This watch list 68 

has served as reference for various monitoring studies in surface waters (Barbosa et al., 2018; 69 

Barreca et al., 2019; Rubirola et al., 2017; Sousa et al., 2018). 70 
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Considering that MPs can easily reach the environment through the discharge of inadequately 71 

treated wastewater, it is necessary to find alternative treatments able to cope with the removal of 72 

MPs. A great variety of different type of treatments has been studied for that purpose, including 73 

chemical (Gaya and Abdullah, 2008; Peleyeju and Arotiba, 2018), physical (Kim et al., 2018) and 74 

biological (Besha et al., 2017; Grandclément et al., 2017). In this context, the application of 75 

advanced oxidation processes (AOPs), based on the generation of highly reactive free radicals, 76 

has emerged in the last decades as a great option for the removal of organic contaminants (Gogate 77 

and Pandit, 2004; Pera-Titus et al., 2004). The fast reaction rate and strong oxidation capability 78 

of these radicals renders them effective for the degradation of several organic MPs in aquatic 79 

media (Wang and Zhuan, 2020). Moreover, most AOPs are also effective for the simultaneous 80 

inactivation of microorganisms (Rizzo et al., 2019). AOPs are conceptually based on the 81 

generation of the hydroxyl radical (HO●), a non-selective and strong oxidant species with a redox 82 

potential of +2.8 V, which can destroy the structure of the organic compounds (Mecha et al., 83 

2016). Recently, sulphate radicals (SO4
●⁻) based AOPs have received increasing attention (Liu et 84 

al., 2017; Xia et al., 2017; Xie et al., 2019). In comparison to hydroxyl radicals, sulphate radicals 85 

possess equal or even higher redox potential (+2.5 to +3.1 V, depending on the activation method), 86 

higher selectivity and, in certain cases, longer half-life (Neta et al., 1982). Therefore, sulphate 87 

radicals may demonstrate similar or even higher capacity than hydroxyl radicals for the 88 

degradation of CECs (Rodríguez-Chueca et al., 2019). They are typically generated from 89 

persulfate or peroxymonosulfate (PMS), using different activation methods such as heat (Zrinyi 90 

and Pham, 2017), ultraviolet radiation (UV) (Rodríguez-Chueca et al., 2018), ultrasounds 91 

(Monteagudo et al., 2018) and/or employing catalysts (Jorge Rodríguez-Chueca et al., 2019; Wei 92 

et al., 2016). 93 

UV activation is considered as an environmental friendly and efficient way to activate PMS (Q. 94 

Wang et al., 2020), as radicals are generated through two different mechanisms. One possible 95 

mechanism is the break of the O-O bond, giving rise to a sulphate radical and a hydroxyl radical 96 

(Equation 1). Another mechanism takes place when the radiation excites a water molecule to 97 
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produce an electron, which activates the PMS by electron conduction (Equations 2-3) (Wang and 98 

Wang, 2018). 99 

HSO5
⁻→SO4

●⁻ + HO●   (Equation 1) 100 

H2O →H● + HO●   (Equation 2) 101 

HSO5
⁻ + H● →SO4

●⁻ + H2O   (Equation 3) 102 

The combination of UV-C radiation and PMS has proven to be efficient in the degradation of a 103 

large number of pollutants, such as ciprofloxacin (Mahdi-Ahmed and Chiron, 2014), 104 

sulphonamides (Cui et al., 2016), imidacloprid (Q. Wang et al., 2020) and di-(2-ethylhexyl) 105 

phthalate (Huang et al., 2017). However, the combination of persulfate with UV-A radiation only 106 

is less common, an iron-based catalyst being usually added to the treatment. Studies using 107 

persulfate/UV-A in wastewater treatment have been focused on the inactivation of 108 

microorganisms (Qi et al., 2020; Venieri et al., 2020), or the removal of a single micropollutant, 109 

and persulfate (PS) is generally used instead of PMS (Table 1). Therefore, most studies typically 110 

deal with the degradation of individual compounds rather than mixtures and/or using ultrapure 111 

water as matrix, which is a scenario quite different from that observed in real wastewaters, with 112 

complex composition that usually is not taken into account. 113 

Bearing this in mind, the main objective of this work is to study, for the first time, the effectiveness 114 

of the combination of PMS and UV-A light emitting diodes (LEDs) for the degradation of a wide 115 

range of MPs, with diverse chemical nature (Table S1), in a secondary effluent of an urban 116 

wastewater treatment plant (WWTP). Accordingly, the performance of the treatment process was 117 

first optimized for the simultaneous degradation of 20 multi-class MPs (antibiotics, beta-blockers, 118 

other pharmaceuticals, pesticides, and herbicides) spiked in this wastewater, followed by non-119 

spiked experiments with the same water matrix. The MPs under study were selected among those 120 

frequently found in wastewater effluents; some of them being included as priority substances in 121 

EU Directive 2013/39 and as CECs in EU Decisions 840/2018 and 2020/1161. Phytotoxicity tests 122 

were also performed to determine the feasibility and potential of reusing the treated wastewater 123 

in crop irrigation. 124 
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2. Materials and methods 125 

2.1. Chemicals and materials  126 

The following reference standards (>98 wt.% purity) were acquired from Sigma-Aldrich 127 

(Steinhein, Germany): acetamiprid, alachlor, atenolol, atrazine, carbamazepine, ciprofloxacin 128 

hydrochloride, enrofloxacin, erythromycin, isoproturon, methiocarb, metoprolol tartrate, 129 

ofloxacin, propranolol, simazine, tetracycline hydrochloride, thiacloprid, thiamethoxam, 130 

tramadol hydrochloride, trimethoprim, and warfarin. The isotopically labelled internal standards 131 

(i.e., acetamiprid-d3, azithromycin-d5, atrazine–d5, diclofenac-d4, ketoprofen–d3, methiocarb-132 

d3, propranolol-d7, and ofloxacin-d3) were supplied by Sigma-Aldrich (Steinheim, Germany). 133 

Acetonitrile (MS grade) and ethanol (EtOH; HPLC grade) were purchased to VWR International 134 

(Fontenay-sous-Bois, France). Peroxymonosulfate (PMS; 2·KHSO5·KHSO4·K2SO4), formic and 135 

sulphuric acid (H2SO4) were obtained from Merck (Darmstadt, Germany). Disodium hydrogen 136 

phosphate (Na2HPO4; 99 wt.%), monosodium phosphate (NaH2PO4; 99 wt.%), and N, N-Dietyl-137 

p-phenylenediamine sulphate (DPD; 99 wt.%) were obtained from Fluka (Seelze, Germany). 138 

Ultrapure water was supplied by a Milli-Q water system. A stock solution containing the 20 139 

organic MPs (100 mg L-1 each) was prepared by dissolution of the reference standards in EtOH. 140 

2.2. Secondary treated wastewater 141 

The water matrix used in all the experiments was collected from the secondary effluent of an 142 

urban WWTP located in northern Portugal. The treated wastewater (WW) sample, whose 143 

properties are summarized in Table 2, was divided into aliquots and filtered through 1.2 μm glass-144 

fibre filters (47 mm GF/C, Whatman™, Maidstone, United Kingdom) under vacuum to remove 145 

suspended solids. The aliquots were stored in the freezer to preserve its properties until usage. 146 

The content of trace elements in the WW sample was also analysed (Table S2). 147 

2.3. Experimental set-up 148 



7 
 

All the experiments (spiked and non-spiked) were performed with secondary treated wastewater, 149 

without pH adjustment (natural pH), in a 1 L cylindrical glass reactor under magnetic stirring, to 150 

ensure the homogeneity of the solution. Four LEDs emitting in the UV-A region were used (λmax 151 

= 385 nm) for the activation of PMS. Each LED was equipped with an electric fan to avoid 152 

overheating and placed at the same distance of the reactor in 4 walls of a metallic cubic support, 153 

the schematic representation of the experimental set-up being shown elsewhere (Biancullo et al., 154 

2019). The PMS dosage (0.05, 0.1 or 0.5 mM) was initially optimized. In these experiments, 1 155 

mL of stock solution was added into the reactor to reach a concentration of 100 µg L-1 of each 156 

MP, the ethanol being evaporated with a nitrogen stream until dryness. The evaporation of ethanol 157 

aimed to avoid its scavenging effect on sulphate and/or hydroxyl radicals. After drying, 1 L of 158 

wastewater was added to the reactor, which was left for 2 min in an ultrasonic bath to enable the 159 

solubilisation of the MPs in the wastewater. Each experiment started after 5 min of stirring under 160 

dark conditions, upon collection of the first sample. Once the first sample was collected, a known 161 

amount of PMS was added to the solution and the LEDs were turned on (t0 = 0). A volume of 400 162 

µL was sampled at 0, 5, 10, 20, 30 and 60 min, and refrigerated until analysis. 163 

Non-spiked experiments were also performed, using a PMS dosage of 0.1 mM. In this case, solid-164 

phase extraction (SPE) was performed, as described in Section 2.4.1, to concentrate the samples 165 

prior to analysis.  166 

2.4. Analytical methods 167 

2.4.1. Solid-phase extraction 168 

Each sample collected in the non-spiked experiments (100 mL) was acidified (pH = 2) with H2SO4 169 

and spiked with 50 μL of the stock solution of internal standards. According to the SPE procedure 170 

described by Ribeiro et al. (2015), OASIS® HLB cartridges (150 mg, 6 mL) were conditioned 171 

sequentially with 4 mL of EtOH and 4 mL of acidified ultrapure water (pH = 3) at a flow rate of 172 

1 mL min-1. Then, the cartridges were loaded with each sample at a constant flow rate of 173 

10mLmin-1. After washing with 4 mL of a 5% ethanolic solution in ultrapure water, the cartridges 174 
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were dried under vacuum for 30 min. The elution was performed with 4 mL EtOH at 1mL min-1 175 

to extract the target analytes. The extracts were evaporated to dryness in a Centrivap 176 

Concentrator® device (LABCONCO® Corporation, Kansas City, MO, USA), and the residues 177 

were dissolved in 250 μL of EtOH and filtered through 0.22 μm polytetrafluoroethylene (PTFE) 178 

syringe filters (Membrane Solutions, Texas, USA) prior to the chromatographic analysis 179 

described in Section 2.4.2. A pH meter pHenomenal® pH 1100L (VWR, Germany) was used for 180 

pH adjustments. 181 

2.4.2. Liquid Chromatography-tandem Mass Spectrometry 182 

The concentration of each analyte was analysed in triplicate using an ultra-high performance 183 

liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) Shimadzu Corporation 184 

apparatus (Japan) consisting of a UHPLC equipment (Nexera) coupled to a triple quadrupole mass 185 

spectrometer (Ultra Fast Mass Spectrometry series LCMS-8040), with an ESI source operating 186 

in both positive and negative ionisation modes. A Kinetex™ 1.7 µm XB-C18 100 Å column (100 187 

× 2.1 mm i.d.) (Phenomenex, Inc., California, USA) was used, with a mobile phase consisting of 188 

an aqueous solution of formic acid (0.1%) and acetonitrile, under gradient mode, with the 189 

temperature of the column oven set to 35 °C. The volume of injection was 10 µL and the 190 

autosampler temperature was kept at 4 °C. The quantification of the target compounds was 191 

performed by selected reaction monitoring (SRM), using the most abundant fragment ion as 192 

quantifier and the second most abundant for confirmation of the identity. The optimized 193 

parameters, capillary voltage, drying gas and nebulizing gas flows, desolvation and source 194 

temperatures were respectively: 4.5 kV, 15 dm3 min−1, 3.0 dm3 min−1, 400 °C and 250 °C. The 195 

collision induced dissociation gas (CID) was argon at 230 kPa. 196 

2.4.3. Dissolved organic carbon determination 197 

Dissolved organic carbon (DOC) was determined following the standard procedure 5310 B of the 198 

Standard Methods for Examination of Water and Wastewater (APHA et al., 1988), and using a 199 

Shimadzu TOC-L apparatus. 200 
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2.4.4. PMS monitoring 201 

A colorimetric method with N,N-diethyl-p-phenylenediamine (DPD) was used to monitor the 202 

consumption of PMS (Vieira et al., 2020). Briefly, a phosphate buffer (pH 7) composed of 203 

Na2HPO4 and NaH2PO4 in ultrapure water (H2OUP), and a DPD solution (25 mM) in H2SO4 204 

(0.05M) were prepared. Once the phosphate buffer and the DPD solution were added to the 205 

sample, the colour was allowed to develop during 10 min at room temperature and the absorbance 206 

was measured at 551 nm against a blank prepared with ultrapure water. 207 

2.4.5. Phytotoxicity tests 208 

The phytotoxicity of the wastewater was assessed prior and after photo-activated PMS oxidation 209 

performed under optimized conditions. For that purpose, phytotoxicity tests (Phytotestkit 210 

microbiotest; MicroBioTests Inc.) were performed in triplicate. These tests comply with ISO 211 

Standard 18763 and allow evaluating the germination and growth of three different plants 212 

(Sorghum saccharatum, Lepidium sativum, and Sinapis alba). The number of germinated seeds 213 

was determined, and the roots and stems were measured after 3 days of incubation at 25 ºC. 214 

ImageJ software was used for image processing.  215 

Growth increase (%) was calculated for stems and roots of each species. This parameter was 216 

obtained following Equation 4, where LT and LNT represents the average length of roots/stems of 217 

plants germinated in treated and non-treated wastewater, respectively. 218 

Growth (%)= 
LT- LNT

LT
 × 100                                        (Equation 4) 219 

2.5. Extent of synergy  220 

In order to quantify the possible synergistic effect taking place in the treatments, the extent of 221 

synergy (S) was calculated for each MP. For that, all the pseudo–first order kinetic constants (k) 222 

were previously determined. Once calculated, S was obtained from Equation 5 (Zanias et al., 223 

2020). 224 

S (%) =
kPMS+UV-A - kPMS - kUV-A 

kPMS+UV-A 
 ×100  (Equation 5) 225 

https://www.iso.org/standard/63317.html
https://www.iso.org/standard/63317.html
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3. Results 226 

3.1. Experiments with spiked MPs 227 

Experiments were first performed with secondary treated wastewater spiked with the 20 organic 228 

MPs under study at a concentration of 100 µg L-1 each. The main goal was to optimize the PMS 229 

dosage employed in the photo-activated oxidation process. For that purpose, photo-activation of 230 

PMS was carried out with three different dosages of the oxidant source, namely 0.05, 0.1 and 0.5 231 

mM. A remarkable increase in MPs removals was achieved when the PMS dosage increased from 232 

0.05 to 0.1 mM (Figure 1). Specifically, the average removal of the selected MPs increases from 233 

31.8% when using 0.05 mM of PMS, to 87.4% when employing 0.1 mM of PMS. Although 234 

increasing the PMS concentration further (to 0.5 mM) led to a more pronounced degradation of 235 

some pollutants (e.g., trimethoprim, the 3 beta-blockers, tramadol, warfarin, and thiacloprid), the 236 

average MPs removal was slightly lower (82%) than that obtained with 0.1 mM of PMS. This 237 

effect may be due to the fact that excess PMS can scavenge the generated hydroxyl and sulphate 238 

radicals (Equations 6-7), which originate less reactive species as well as their recombination 239 

(Equations 8-10) (Khan et al., 2017). These phenomena have been reported on several occasions 240 

when combining PMS with UV radiation. For example, concentrations of PMS above 0.66 mM 241 

were reported to decrease the treatment performance for the elimination of Bisphenol A (Sharma 242 

et al., 2015). The same effect was observed by Jiang et al. (2018) for the removal of refractory 243 

pollutants in incineration leachate. Therefore, 0.1 mM was selected as the optimum PMS dosage, 244 

and employed in subsequent experiments. 245 

SO4
●⁻ + HSO5⁻ → SO5

●⁻+ SO4
2
⁻ + H+ (k < 1.0 × 10

5
 M−1s−1) (Brandt and Eldik, 1995) (Equation 6) 246 

OH● + HSO5
−

→ SO5
●⁻ + H2O    (Neta et al., 1988)  (Equation 7) 247 

SO4
●−+ SO4

●−→  S2O8
2
⁻ (k = 4.0 × 10

8
 M−1s−1)  (Huie and Clifton, 1993) (Equation 8) 248 

OH● + SO4
●−→ HSO5⁻ (k = (0.95 ± 0.08) × 10

10
 M−1s−1) (Khan et al., 2017)          (Equation 9) 249 

OH● + OH●→ H2O2 (k = 5.3 × 10
9
 M−1s−1)   (Khan et al., 2017)          (Equation 10) 250 

 251 

Complementary experiments were performed to discriminate the different contributions for the 252 

degradation of each MP by photo-activated PMS oxidation, namely photolysis and PMS 253 
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oxidation. Both processes may be taking place during treatment and their effects may be additive 254 

or synergistic, the latter being the desirable scenario. The degradation of the target MPs promoted 255 

by photolysis (i.e., by UV-A radiation only) was first evaluated. In this work the treatments were 256 

tested with real wastewater so both direct and indirect photolysis are expected to take place [43, 257 

44]. Apart from direct degradation of the MPs due to the electronic excitation of the molecules, 258 

compounds dissolved in the matrix may contribute to the degradation since reactive oxygen 259 

species can be originated by the irradiation of photosensitizers dissolved in the water matrix (Lado 260 

Ribeiro et al., 2019). However, dissolved organic matter is also responsible for irradiation 261 

absorption, diminishing the degradation by direct radiation. As observed, the effect of UV-A 262 

radiation on the degradation of most of the target MPs is negligible (Figure 2a). Indeed, after 263 

60min of reaction, most of the contaminants were removed by less than 15% with UV-A, except 264 

tetracycline, propranolol, atrazine, thiacloprid, and methiocarb, for which removals of 97%, 26%, 265 

35%, 24%, and 52% were respectively obtained. The contribution of PMS oxidation for the 266 

degradation of each MP was also studied. For 11 out of the 20 target MPs, a degradation lower 267 

than 35% was verified after 60 min of reaction under dark. However, 6 out of the 20 target 268 

pollutants (all the antibiotics and methiocarb) were completely degraded. This fact suggests that 269 

PMS oxidation plays a remarkable role in the degradation of these 6 MPs in the real matrix 270 

studied.  271 

When comparing the results obtained for the treatments involving only PMS or UV-A radiation 272 

with those observed after treatment by PMS/UV-A, a noteworthy improvement in the removal of  273 

most compounds was observed by photo-activation of PMS. This effect is especially remarkable 274 

in the case of the most recalcitrant compounds when using PMS or UV-A radiation alone, i.e. 275 

atenolol, alachlor, acetamiprid, isoproturon, simazine, carbamazepine, and thiamethoxam. For the 276 

last 4 compounds cited, a negligible degradation was observed by adding PMS in the dark and 277 

during photolysis, but around 80% of elimination was achieved with the combined treatment. 278 

In order to quantify the possible synergistic effect taking place, the extent of synergy (S) was 279 

calculated and plotted for each MP (Figure 2b). This analysis was not performed for 280 
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ciprofloxacin, erythromycin, enrofloxacin, ofloxacin, methiocarb, and tetracycline, due to the lack 281 

of data. In fact, these compounds were removed in less than 5 min in the experiments carried out 282 

with PMS/UV-A, thus precluding the determination of their pseudo-first order kinetic constants. 283 

Furthermore, these MPs were those fully degraded with PMS (dark). The S values obtained for 284 

the studied MPs are consistent with the results given in Figure 2a. As expected, no synergies were 285 

found between the oxidant and UV-A radiation for the degradation of thiacloprid and warfarin, 286 

since in these cases, the sum of the single effect of UV-A and PMS was equal to that obtained 287 

from their combined use. Moreover, only 3% of synergy extent was estimated for tramadol, which 288 

was not degraded by single UV-A. A completely different situation was observed for the other 289 

MPs, for which an average S of 87.6% was obtained. The value of S drops to 69.1% when 290 

considering all the 20 MPs under study. These results confirm the existence of synergies between 291 

PMS and the applied UV-A radiation, possibly due to the enhanced formation of radicals. This 292 

phenomenon has been previously reported for the degradation of other pollutants under UV-C 293 

irradiation. Zhang et al., (2019) showed that the degradation of haloacetonitriles was practically 294 

non-existent when using UV-C or PMS (individually) in deionized water. However, when UV-C 295 

was combined with PMS, the degradation increased to 80% in just 30 min. The same has been 296 

observed when using this treatment in the degradation of tris(2-chloroethyl) phosphate (TCEP) in 297 

ultrapure water. In another study (Xu et al., 2017), it was determined that the elimination of this 298 

compound was 94.6% after 30 min of treatment with a [PMS]:[TCEP] ratio of 20:1 under UV-C 299 

radiation, while negligible degradation was obtained by PMS oxidation, and only 4.5% was 300 

removed by photolysis. 301 

In order to understand if there is any similar trend in the degradation kinetics obtained for each 302 

particular class of MPs, the 20 compounds under study were grouped into 5 main categories, 303 

namely antibiotics, beta-blockers and other pharmaceuticals (anticoagulant, analgesic and 304 

anticonvulsant), herbicides, and insecticides. The degradation kinetics obtained for each class was 305 

then analysed (Figure 3). As observed, all antibiotics (Figure 3a) are degraded within 5 minutes 306 

(when the first sample was collected), except for trimethoprim. This suggests that the target 307 
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antibiotics are degraded by PMS/UV-A (or even PMS, Figure 2a), which may be transformed in 308 

by-products or even mineralized. These results differ from those obtained by other authors for the 309 

degradation of ciprofloxacin (Ao et al., 2018) and tetracycline (Ao et al., 2019) in milli-Q water 310 

under UV-C radiation (pH = 3.7). In those studies, the degradation of the antibiotics was 311 

negligible when using only PMS, being lower when combining PMS and UV-C radiation than in 312 

the present study. However, Ao et al. (2019) reported higher removals of TC in real matrices 313 

collected from different drinking water treatment plants, which was ascribed to other water 314 

constituents in real water matrices, either inorganic or organic that can act as a promoters or 315 

inhibitors of radicals. Some studies suggest that the presence of carbonates, nitrates or chlorides 316 

in the medium can improve the effectiveness of the treatment (Ao et al., 2018), while the presence 317 

of organic matter inhibits the degradation of pollutants (Q. Wang et al., 2020). However, there is 318 

no agreement between the authors, the effects of each of these components being different 319 

depending on the target pollutant and the overall composition of the matrix. Similarly to 320 

antibiotics, all beta-blockers followed similar degradation kinetics (Figure 3b), with a fast 321 

elimination within the first 5 min of reaction, after which a residual removal occurred until 30min 322 

of reaction, when ca. 86% of the compounds was eliminated. For the other three pharmaceuticals 323 

not included in these therapeutic classes (Figure 3c), 83% and 90% of tramadol and warfarin 324 

were degraded after 10 min, respectively. By contrast, 59.5% of carbamazepine was removed in 325 

the same period of time. Compared to pharmaceuticals, herbicides (Figure 3d) and insecticides 326 

(Figure 3e) were more recalcitrant, except the insecticide methiocarb that had similar kinetic to 327 

that observed for antibiotics, indicating its complete removal. Once again, the most intense 328 

reduction was observed during the first 5 minutes (48-64%) and the reaction seemed to stop after 329 

30 minutes, with an elimination of 71-82%, the amount of pesticides remaining in the water being 330 

nearly 2-fold greater than that of the beta-blockers.  331 

Interestingly, the decay of PMS is similar to that observed for the target MPs, with 32% of the 332 

PMS being consumed during the first 5 min of reaction, while additional 11% were consumed in 333 
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30 min (Figure 4). At the end of the experiments, 50% of the initial PMS was consumed, from 334 

which only 7% was consumed in the second half-hour.  335 

In order to evaluate the possible effect of residual EtOH (a well-known scavenger of hydroxyl 336 

and sulphate radicals) in the reactor, resulting from residues that could persist in the evaporation 337 

step after spiking the stock solution, and to get insights about the possible pathways (radical 338 

and/or non-radical), an experiment was performed without EtOH evaporation. Figure 5 shows a 339 

marked reduction in the removal of most of the MPs in the presence of the alcohol, the degradation 340 

results being comparable to those obtained with non-activated PMS oxidation. This observation 341 

confirms the generation of radicals during PMS photo-activation. More experiments would be 342 

necessary to determine which of these two radical species is responsible for the degradation of 343 

the pollutants, but this subject falls out of the goal of this study. Nevertheless, our results are in 344 

agreement with some reports on the simultaneous occurrence of radical and non-radical 345 

degradation pathways in activated PMS oxidation of organic MPs (C. Li et al., 2019; W. Li et al., 346 

2019; Xu et al., 2020).  347 

 348 

3.2. Non-spiked experiments 349 

3.2.1. Degradation results  350 

Once the optimum PMS dosage was determined (Figure 1), the effectiveness of the treatment to 351 

eliminate the MPs originally present in the wastewater (without spiking) was studied. For this 352 

purpose, a wastewater sample previously concentrated using the SPE procedure described in 353 

Section 2.4.1, was analysed to find out which of the pollutants targeted in this study can be found 354 

in the collected effluent. 12 out of 20 target contaminants were detected in the actual wastewater. 355 

Interestingly, these MPs were those most recalcitrant to the proposed treatment (Figure 2). 356 

A treatment time of 30 min was selected for the experiments in non-spiked wastewater (Table 3), 357 

considering the results obtained in the spiked experiments (Figure 3), i.e. no remarkable 358 

degradation is expected afterwards. 359 



15 
 

Among the MPs detected, 5 were not degraded (carbamazepine, warfarin, simazine, 360 

thiamethoxan, and trimethoprim). The remaining were removed to a greater or lesser extent, 361 

varying from 10.7% (acetamiprid) to 94.4% (ofloxacin), the average degradation being 28.9%. 362 

This value differs from the results obtained in the spiked experiments, where more than 80% of 363 

the pollutants were degraded under the same conditions, suggesting that the removal achieved 364 

increases with pollutant concentration in the range considered in this study (up to 100 μg L-1), i.e. 365 

a higher removal is achieved when the mass ratio of MPs to natural organic matter is higher. 366 

Although this phenomenon cannot be completely understood based on our results, the 367 

observations herein reported highlight the importance of carrying out future studies under realistic 368 

conditions. Otherwise, misleading conclusions may limit potential improvements of this treatment 369 

technology. 370 

At the moment, very few research articles have been published in the application of this treatment 371 

to the degradation of such a high number of compounds at the same time. Rodríguez-Chueca et 372 

al. (2018) studied the degradation of 25 compounds of different classes in real wastewater, 373 

achieving an average removal of 48%, which is higher than that observed in the present study 374 

(28.9%). This higher performance can be explained by the use of UV-C radiation in that research, 375 

which is a better PMS activator than UV-A here reported. Moreover, the use of a higher 376 

concentration of PMS was also described (0.5 mM versus 0.1 mM, in the present study). 377 

3.2.2. Phytotoxicity assessment 378 

Phytotoxicity assays were carried out to assess the possible increase on toxicity after treatment, 379 

due to either the formation of toxic by-products resulting from the degradation of the target 380 

contaminants or the presence of PMS does. As is shown in Table 4, almost all the seeds 381 

germinated in both treated and untreated wastewater. However, Figure 6 shows that in all cases 382 

the plants have grown more when fed with treated wastewater (instead of untreated wastewater), 383 

the roots and the shoots being 18% and 27% longer on average, respectively. The main difference 384 

was observed for Lepidium sativum, where the roots and the shoots grew on average 22% and 385 

31% more, respectively.  386 



16 
 

Phytotoxicity tests are rare when studying this type of treatment and there are many different 387 

species that can be used for this purpose. However, some authors have found that treatments based 388 

on sulphate radicals can reduce phytotoxicity (Ghanbari et al., 2020; Jaafarzadeh et al., 2017), 389 

which is confirmed by the results herein presented. This is an advantage of this treatment over 390 

others, which may not reduce toxicity. For instance, with similar phytotoxicity tests, it has been 391 

reported that treatments that use ozone to eliminate pollutants tend to increase the toxicity of the 392 

water, possibly due to the greater toxicity of the oxidation products generated than that of the 393 

original matrix (Iakovides et al., 2019). Our work demonstrated that the proposed treatment does 394 

not increase the toxicity of the effluents, it actually reduces the pre-existing levels. 395 

 396 

4. Conclusions 397 

A PMS/UV-A treatment was successful applied for the degradation of 20 multi-class MPs spiked 398 

in real wastewater. Nearly half of the optimal concentration (0.1 mM) of the oxidant was 399 

consumed in the first 30 min of reaction, which was accompanied by the elimination of ca. 80% 400 

of the initial concentration of the spiked MPs. In general, the herbicides and pesticides were more 401 

recalcitrant to the PMS/UV-A process than pharmaceuticals. The existence of synergies between 402 

the oxidant and the UV-A radiation was estimated as 69.1%, which might be related to the 403 

formation of additional radicals with PMS/UV-A. The degradation of 12 MPs detected in the 404 

collected wastewater varied between 0% and 94.4%, with an average removal (28.9%) 405 

considerably lower than that obtained in the spiked experiments. The drop in the efficiency of the 406 

treatment showcases the critical importance of conducting future studies under realistic 407 

conditions. Moreover, phytotoxicity assays revealed a decrease in the toxicity of the wastewater 408 

after treatment. Specifically, the roots and the shoots of the germinated seeds were 18% and 27% 409 

longer on average, respectively, when they were fed with treated wastewater instead of fresh 410 

wastewater. Therefore, the proposed treatment reduces the pre-existing toxicity, allowing for a 411 
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safer water reuse. This is an advantage over other treatments that have been shown to generate 412 

toxic by-products.  413 
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Table captions 693 

Table 1. Studies involving the degradation of organic pollutants using UV-A activated persulfate 694 

(PS). 695 

Table 2. Characterization of the secondary treated wastewater used in this study. 696 

Table 4. Number of germinated seeds of each specie in the phytotoxicity test 697 

Table 3. Micropollutants removal in non-spiked wastewater by PMS-UV-A, after 30 min of 698 

reaction. 699 
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Figure captions 701 

Figure 1. Removal (%) of the target 20 multi-class MPs by PMS/UV-A, by varying the 702 

concentration of PMS (0.05, 0.1 and 0.5 mM). Experimental conditions: Sample = WW spiked at 703 

100 µg L-1; pH = 7.6 (natural pH); Irradiation = 4 LEDs; Reaction time = 60 min.  704 

Figure 2. Determination of the synergistic effects between PMS and UV-A radiation on the 705 

degradation of the target 20 multi-class MPs: A) Removal by PMS/UV-A, PMS or UV-A (%) B) 706 

Extent of synergy in the PMS/UV-A treatment, estimated for those MPs marked in Figure (A) 707 

with an *. Experimental conditions: Sample = WW spiked at 100 µg L-1; pH = 7.6 (natural pH); 708 

Irradiation (when used) = 4 LEDs; [PMS] = 0.1 mM; Reaction time = 60 min. 709 

Figure 3. Removals of a) Antibiotics; b) Beta-Blockers; c) Other pharmaceuticals; d) Herbicides; 710 

and e) Insecticides. Experimental conditions: Sample = WW spiked at 100 µg L-1; pH = 7.6 711 

(natural pH); Irradiation = 4 LEDs; [PMS] = 0.1 mM. 712 

Figure 4. PMS consumption during PMS/UV-A treatment. Experimental conditions: Sample = 713 

WW spiked at 100 µg L-1; pH = 7.6 (natural pH); Irradiation = 4 LEDs; [PMS] = 0.1 mM. 714 

Figure 5. Removal (%) of MPs by PMS/UV-A, PMS, and PMS/UV-A in the presence of residual 715 

ethanol (0.1%): effect of the presence of ethanol (EtOH). Experimental conditions: Sample = WW 716 

spiked at 100 µg L-1; pH = 7.6 (natural pH); Irradiation (when used) = 4 LEDs; [PMS] = 0.1 mM; 717 

Time = 60 min. 718 

Figure 6. Additional length increase (%) of roots and stems of three species (Sorghum 719 

Saccharatum, Sinapis alba, and Lepidium Sativum) fed with PMS/UV-A treated wastewater, in 720 

comparison to untreated wastewater. 721 

 722 

 


