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F rictional forces are everywhere. 
They are probably among the 

most important macroscopic forces in 
our daily routine because we depend 
on them to walk, to pick up objects, 
and even to eat! They affect our lives 
in different ways, and thus it is very 
important to understand them better; 
this is what we say to our students. 
There are many experimental meth-
ods and techniques to measure static 
and kinetic frictional forces (and to 
determine their corresponding coeffi-
cients of friction), which we can find 
in several textbooks.1-5 Most of them 
involve pulling/pushing blocks along 
a flat surface and expensive equip-
ment for accurate measuring (sensors, 
computers, etc.). In this paper we 
show how to find both coefficients of 
friction, static and kinetic, with roll-
ing objects instead of blocks in a very 
simple way and using nonexpensive 
laboratory equipment.

Theory
Suppose we put a solid cylinder of 

radius R and mass M on an incline 
and let it freely rotate along it, as 
shown in Fig. 1, where we have also 
represented the forces acting on the 
cylinder (this is very useful in the 
classroom and students should always 

be encouraged to do it). The descrip-
tion of the cylinder’s motion can be 
done mathematically by using both 
fundamental equations, for transla-
tion 

 Fext = M aCM ,        (1)

and for rotation

 τCM = ICMα ,                    (2)

where  is the moment 
of inertia about the axis of the cyl-
inder, and τCM is the sum of the 
torques about the center of mass.  

If the cylinder rolls without  
slipping, then aCM = Rα. Therefore, 
Eqs. (1) and (2) become, respectively, 
Mg sin θ – f = M aCM  and f R =  
ICM 

(aCM/R) . Combining these equa-

tions, we find expressions for the 
static frictional force and acceleration 
of the CM:
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Here it must be stressed that f is 
always less (or equal) than its maxi-
mum value, fmax = µsMg cos θ (µs is 
the coefficient of static friction), i.e., 
for every angle θ satisfying the con-
dition tan θ < 3µs, the cylinder rolls 
without slipping; when tan θ > 3µs, 
it rolls and slips. Therefore, there is 
a critical angle θc for which the coef-
ficient µs can be determined:

 
      (4)µ θs c=

1

3
tan .

  
Now let us suppose the angle θ in 

Fig. 1 is higher than θc. The cylinder 
rolls and slips along the incline, and 
the forces acting on the cylinder are 
the same as those represented in the 
figure, but f is now given by fk =  
µk Mg cos θ (µk is the coefficient of 
kinetic friction). Making use of Eqs. 
(1) and (2), we get the analytical ex-
pressions for the angular and linear 
accelerations:  
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Fig. 1. Schematic representation of 
the forces acting on a cylinder rolling 
freely along an incline.
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Since the cylinder starts from rest 
at position x = 0, the position of the 
CM at instant t is given by:

      (6)  x a t g tL kCM= = −
1

2

1

2
2 2(sin cos ) .θ µ θ

Meanwhile, the cylinder rotates by 
an angle Ω,

     (7)Ω= =
1

2
2 2α
µ θ

t
g
R

tk cos
.

          
As it rolls and slips, xL does not 
match the distance xΩ  = ΩR along 
the circular arc described by Ω, i.e., 
there is a difference ∆x between the 
displacement of the CM and the 
length along the arc described by any 
point at the external surface of the 

cylinder,       
∆x = xL – xΩ  

      =  1

2
g (sin θ – 3µk cos θ)t2.  (8)

The time elapsed for N complete 
rotations (Ω = 2NπR) can be deter-
mined from Eq. (7),

          (9)t
N R
gN =
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Therefore, the difference ∆xN for N 
complete rotations is given by
                         

(10)∆x N RN = −
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If we could mark the positions 

where the cylinder completes each 
rotation on the surface of the incline, 
we would get a diagram like the one 
in Fig. 2. The distance between two 
successive marks,

D = xL(N + 1) – xLN 

=          ,           (11)
    

2 3π π
θ
µ

R R+ −
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tan

k

could therefore be measured. 
By plotting D as a function of 

tan θ, we would expect to obtain an 
experimental graph similar to that 
represented in Fig. 3, which was 
determined by simulation. Above 
the critical angle θc the graph has a 
constant slope m, which allows us to 
determine the coefficient of kinetic 
friction by using Eq. (11):

    (12)µ
π

k =
R

m
.

      
The coefficient of static friction can 
be easily calculated from the critical 
angle,
µ

θ
s

c=
tan

.
3                               

(13)

Experimental procedure

All you need for this experiment is 
a flat inclined surface, a protractor, a 
solid cylinder (we have used one with 
44.5-mm diameter and 47.0-mm 
length), a small brush, a measuring 
tape and some ink (permanent ink 
will be just fine). Glue the brush 
handle to one of the cylinder’s bases 
so that the hair stands just a bit out-
side the border (see Fig. 4). Choose 
a value θ for the slope of the incline 
and measure it with the protractor. 
Drop some ink into the brush and 
put the cylinder at the top of the 
incline. Carefully rotate the cylinder 
until the hair almost touches the sur-
face. By doing this, you will get the 
first mark on the surface when the 
cylinder starts to move. You are now 
ready to start your experiment (see 
Fig. 5).

Let the cylinder roll down freely. 
Measure the distance between the 
marks on the surface and repeat this 
procedure for different angles. As you 
will see for yourself, if the bases of the 
cylinder do not have exactly the same 
radius it will describe a curved line 
instead of a straight line, so the dis-
tance between marks will not be con-
stant—this is much more important 
when the cylinder slips; if this is the 
case, we suggest you simply measure 
the distance between the two first 
marks. Do not forget to clean the 
surface before each sampling!

In our own experiment, we used a 
common glass surface and a polished 
cylinder made of aluminium. The 
results are plotted in Fig. 6.

Above 22 the slope in the experi-
mental graph witnesses the slipping 
of the cylinder while rotating down 
the incline. Computing the slope of 
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Fig. 2. Representation of the positions 
marked by the cylinder when it com-
pletes each rotation.
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Fig. 3. Graph of the distance between 
two successive marks on the incline vs 
tan θ, according to Eq. (11). The jump 
at θc is proportional to

1 1

µ µk c

−

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;

therefore it vanishes 
when µk is close to µc.
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this graph and using Eqs. (11) and 
(12), we get as a result for the coef-
ficient of kinetic friction (aluminum 
on glass)µk = 0.091 ± 0.007, the ac-
curacy being affected essentially by 
the uncertainty of the slope. 

As the cylinder effectively starts 
to slip above the critical angle of 20, 
the coefficient of static friction (alu-

minum on glass) can be determined 
from Eq. (13), and so we have come 
to µs = 0.121 ± 0.007, where the ac-
curacy is affected only by the uncer-
tainty of the critical angle.

Between 20 and 22 we observed 
a nonpredicted behavior that we as-
sign to a transient regime where both 
static and kinetic friction are present, 

i.e., at some points the cylinder rolls 
and slips, and at others it only rolls. 
Such a situation could be found in 
other experimental measurements, 
so teachers and students should be 
aware of it.

Conclusion
We have shown in a very easy and 

inexpensive way how to measure the 
coefficients of static and kinetic fric-
tion with rolling objects. This meth-
od can be used in any middle school 
laboratory lacking equipment such as 
sensors and computers; you just need 
a small brush, a measuring tape, and 
some ink. Results are easily compared 
with the theory, but we recommend 
that Eqs. (10) and (11) be conceptu-
ally discussed in the classroom and 
interpreted in terms of the cylinder’s 
motion (simultaneous rolling and 
slipping, angular and linear speed in 
each instant tN, and so on).
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Fig. 4. One of the bases 
of the aluminium cylinder. 
The brush handle is glued 
in such a way that the hair 
stands just a bit outside 
the border.

Fig. 5. Experimental setup 
used. The cylinder is ready 
to go along the incline.
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Fig. 6. Distance between 
the two first successive 
marks made by a pol-
ished aluminium cylin-
der on a glass incline vs  
tan θ, obtained from exper-
imental data.
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