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Abstract

The minimal change disease (MCD) and glomerulosclerosis (GS) are two
common kidney diseases. Unless adequately treated, these diseases leads to
chronic kidney diseases. Accurate differentiation of these two diseases is of
paramount importance as their methods of treatment and prognoses are differ-
ent. Thus, this article propose a method capable of differentiating MCD from GS
in glomerulus biopsies images based on a new hybrid deep and texture feature
space. We conducted an extensive study to determine the best set of features
for image representation. Our feature extraction methodology, which includes
Haraliks and geostatistics texture descriptors and pre-trained CNNs, resulted in
13,476 characteristics. We then used mutual information to order the elements
by importance and select the best set for differentiating MSC from GS using the
random forest classifier. The proposed method achieved an accuracy of 90.3%
and a Kappa index of 80.5%. Representation of glomerulus biopsy images with
a hybrid of deep and textural features facilitates the accurate differentiation of
GS and MCD.
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1. Introduction

Glomerulopathies are kidney diseases with different histopathological sub-
types. Microscopic evaluation is crucial for their diagnosis since it provides
prognostic data and guidance for treatment. In Brazil, for example, glomeru-
lopathies are among the leading causes of end-stage kidney disease (ESKD) and
account for 11% of patients on dialysis [1]. On the other hand, nearly 125,000
people in the USA started treatment for ESKD in 2016 [2].

Nephrotic syndrome is one of the primary forms of the glomerular disease,
and when symptoms are persistent, it is associated with a progression to chronic
kidney disease (CKD). A publication by [2] from the US Department of Health &
Human Services reports that 15% of US adults (37 million people) are estimated
to have CKD.

Several histological abnormalities may lead to the development of the nephrotic
syndrome. Common causes of idiopathic nephrotic syndrome are minimal change
disease (MCD) and glomerulosclerosis (GS). In children, MCD is the cause of
nephrotic syndrome in 90% of patients. Simultaneously, in adults, primary
glomerular diseases such as GS and MCD cause a nephrotic syndrome in 70%
of cases. When considering only the adult population, GS is the leading cause
of nephrotic syndrome in several countries [3].

Therefore, it is essential to understand the differences between these two
glomerulopathies (MCD and GS). From the therapeutic point of view, there are
differences in the treatments concerning the attack phase duration in the case
of corticosteroids, treatment response rates and prognosis [3].

Computer-aided diagnosis (CAD) systems aim to assist medical specialists
by offering information that helps in diagnosis [4]. Such systems take as their
input annotated image tests, blood tests, biopsy results or other forms of in-
formation, which are often available as a dataset of examples, and apply image
processing and machine learning techniques to output a supplemental diagno-
sis, such as a classification into “healthy” and “unhealthy”, or “benign” and
“malignant”. These systems are often employed in screening for diseases and
provide a preliminary diagnosis or offer an opinion based on previously labeled
examples.

This article proposes a computational approach that distinguishes glomeru-
lus biopsy images with MCD and glomerulosclerosis (GS), based on a novel
hybrid deep and texture feature space. To achieve this goal, texture descriptors
and transfer learning (TL) techniques were evaluated using convolutional neu-
ral networks (CNNs), in ordr to produce hybrid descriptors that were inputted
to supervised classifiers. Although this article proposes a complete system, its
main focus is on describing the image to be analyzed; i.e., to define the best
features set used to differentiate between MCD and GS.
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This article is organized as follows. Section 2 presents related works; Sec-
tion 3 describes the used materials and techniques and proposed method; Sec-
tion 4 presents the obtained results and their discussion; and finally, Section 5
presents the conclusion and future work perspectives.

2. Related works

Medical images are widely used in computer-aided diagnostic systems. Two
types of tasks are commonly found in these systems: segmentation, whose pur-
pose is to separate specific regions, and classification, whose aim is to define
related groups or classes.

Among the works that use kidney images and are focused on the segmenta-
tion or identification of renal structures, especially those related to the glomeru-
lus, one can find the work of Zhao et al. [5]. These authors proposed an au-
tomated glomerulus extraction framework based on a micrograph of the entire
kidney. On the other hand, Sarder, Ginley, and Tomaszewski [6] estimated the
location of the glomerulus in images of kidney biopsies. These authors devel-
oped a methodology to extract regions containing a single glomerulus and use
them to segment the glomerular boundary. In [7], the authors applied an inte-
grated approach using Gabor filtering and Gaussian blurring to label glomerular
textural edges.

Recently, Rehem et al. [8] proposed a glomerulus detection method on renal
histological images. The authors applied a single shot multibox detector with
Inception V2 (SI2) and reached 0.88 of mAP and 0.94 of F1-score using 909
images splitted in 509 for training, 200 for validation and 200 for the test.

There are already methods aimed at locating and segmenting the glomerulus.
It is in this structure that changes due to kidney diseases. A helpful step
after segmenting the glomerulus is analyzing the segmented image by identifying
patterns can that be used to assist the disease diagnosis. This step falls within
the classification field.

Focuses on classification tasks, there are works such as the one from Barros
et al. [9]. These authors proposed a computer system to detect proliferative
glomerular lesions (PGL) that could differentiate them from healthy images.
They used the k -nearest neighbor (KNN) algorithm to classify the input images.
The accuracy achieved in their work was 88.3±3.6%.

Araújo et al. [10] used images of single glomeruli to detect segmental
glomerulosclerosis. Three feature vectors were extracted and supplied to four
classifiers: KNN, support vector machine (SVM), neural network and naive
Bayes. The authors achieved an accuracy of 84.8% for hematoxylin-eosin (H&E)
stained samples and of 81.3% for periodic acid–Schiff (PAS) stained samples.

Ginley et al. [11] proposed an approach to define the structural progression
of human glomeruli in diabetic nephropathy. The authors segmented glomeru-
lar compartment boundaries and quantified 47 features from each glomerulus,
including texture based features. They used a naive Bayes classifier on the fea-
ture set and reported that their method could distinguish pathological stages
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of diabetic nephropathy; they reach sensitivity and specificity of 0.89 and 0.93,
respectively.

Sheehan and Korstanje [12] developed a method for identifying and collecting
quantitative data from glomeruli. The suggested approach is semi-automatic,
since it requires intervention from a specialist. The authors used contrast en-
hancement and Gaussian blurring, followed by a size filter to identify regions
of interest corresponding to glomeruli tufts. Three features were extracted:
mesangial matrix expansion (MME), the number of nuclei and capillary open-
ness, which were classified using a random forest (RF) based approach [13]. A
strong correlation was reported between MME and the analyzed phenotypes.

Marsh et al. [14] described a deep learning model that identifies and classifies
non-sclerosed and sclerosed glomeruli in whole-slide images of frozen biopsy sec-
tions of donor’s kidneys. This differentiation is meaningful because the criterion
for accepting or rejecting the donor’s kidneys relies heavily on the pathologist’s
determination of the percentages of glomeruli that are normal and sclerotic.
The proposed approach fine-tuned the VGG-16 [15] CNN using 48 whole-slide
images. According to the authors, the model achieved a precision of 81.28% in
the identification of non-sclerosed glomeruli. They concluded that the method
outperformed another model trained on image patches of isolated glomeruli in
terms of accuracy and computational cost.

Chagas et al. [16], like Barros et al. [9], also worked on PGL detection. Their
proposals perform the classification into specific PGL subcategories: endocap-
illary, mesangial, and both. These authors built a CNN-based architecture to
extract features from glomerulus images, that were supplied to an SVM classi-
fier. In the classification task, their method achieved an accuracy of 82%.

In addition to these works, whose tasks are focused on the renal tissue,
other works employ the same techniques to analyze images of different organs
or tissues. For example, Sousa et al. [17] proposed a method for diagnosing
glaucoma using geostatistics [18] as a texture descriptor for images, and transfer
learning techniques that use medical images as input and are also widely applied
in other CAD systems [19].

To the best of our knowledge, there are no datasets or previous studies that
used computational methods to differentiate between GS and MCD. It is, there-
fore, the main contribution of the current study. Although the aforementioned
works were developed with a different purpose, they were taken into account in
the developing of the proposed solution.

3. Materials and methods

This section presents a solution capable of differentiating between kidney
biopsy images with GS or MCD. We performed experiments using texture fea-
tures, such as Haralick’s features [20], and geostatistics [18], and pre-trained
CNNs, mainly VGG-16, VGG-19 [15], Xception [21] and ResNet50 [22].

The following sections describe the proposed solution and the involved tech-
niques, the metrics adopted to assess the solution and the used image datasets.
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3.1. Proposed method

The proposed method has four main steps (Figure 1): the pre-processing
step receives the original input image and then applies size adjustments and uses
the local binary patterns (LBP) [23] representation. The second step, feature
extraction, receives the processed image as input and produces a set of features
describing the image in the form of a numerical feature vector. The extracted
vector is then inputted into the feature selection step, where the most relevant
features are selected in order to be used with machine learning algorithms in
the classification step.

Figure 1: Flowchart of the proposed method of automatic differentiation between MCD and
GS in biopsy images.

The following sections detail the steps of the proposed method and the tech-
niques evaluated in each of them.
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3.1.1. Pre-processing

In the pre-processing step, the input images are resized to the respective
CNNs default input dimensions: 224×224 for VGG-16, VGG-19 and ResNet50,
and 299×299 for Xception.

For extracting texture features according to the Haralick’s method, the input
images are also scaled to 299×299. The same is performed in the case of geo-
statistics; however, the resized image is represented in the form of local binary
patterns (LBP) for each color channel.

Image texture is one of the visual characteristics observed by pathologists
to make their diagnosis. Therefore, the proposed method generates a texture
representation by processing the input image using LBP. Other works also use
texture representations in order to compute geostatistical functions from medical
images [17] [24].

The computation of the LBPs is depicted in Figure 2. This approach is
based on the neighborhood of the central pixel of the used processing window
(Figure 2 (a)); then, neighbors with values greater than or equal to the central
pixel are mapped (Figure 2 (b)), and to each neighbor i is assigned a weight of
2i (Figure 2 (c)). The value of the LBP is then the sum of the weights relative
to the mapped pixels (Figure 2 (d)). After applying this process to all the ipnut
image pixels, the computed values create a new image with the same size as the
original one. Figures 2 (e) and (f) show a glomerulus input image and its LBP
representation, respectively.

Figure 2: Calculation of LBP: a) original neighborhood values; b) mask thresholded by the
central pixel; c) weights given to the corresponding pixels. d) The resulting (b × c) LBP value
is the sum of these values (in this example, LBP = 169); e) RGB sample input image; f) LBP
from channel G of the input image.
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3.1.2. Feature extraction

According to pathologists, GSF and MLD cause changes in different regions
of the glomerulus. Particularly, these diseases cause the collapse of the struc-
tures, leading to adhesions and an impression of more homogeneous areas [11].
Consequently, the used description must take into account the whole image un-
der classification. Therefore, two methods of texture characterization and deep
features from four convolutional neural networks were evaluated.

Texture Features
Haralick’s features are calculated based on the gray-level co-occurrence ma-

trix (GLCM) of the input image, which is a texture descriptor that analyzes the
co-occurrences between pairs of pixels and stores their relative intensities in a
square matrix, with dimensions equal to the number of gray levels; i.e., 256 in
the case of 8-bit images.The probabilities of co-occurrences (Pi,j) are calculated
between two gray levels, i and j, using an angle θ (here, according to 0, 45,
90 or 135◦) and a distance called the pixel pair spacing. For this purpose, 11
distance values were used: six of which are fixed (1, 2, 5, 10, 15 and 20) and five
that are proportional to the image input dimensions (1.25, 2, 5, 10 and 20%).

Although there are several characteristics based on the GLCM, this exper-
iment use the contrast (Equation 1), dissimilarity (Equation 2), homogeneity
(Equation 3), angular second moment (ASM) (Equation 4), and correlation
(Equation 5). The proposed method extracts texture feature using the three
channels from the RGB image. Thus, the Haralick’s vector have 660 attributes
for each image:

contrast =

levels−1!

i,j=0

Pi,j(i− j)2, (1)

dissimilarity =

levels−1!

i,j=0

Pi,j |i− j|2, (2)

homogeneity =

levels−1!

i,j=0

Pi,j

1 + (i− j)2
, (3)

ASM =

levels−1!

i,j=0

P 2
i,j , (4)

correlation =

levels−1!

i,j=0

Pi,j

"

# (i− µi)(j − µj)$
(σ2

i )(σ
2
j )

%

& , (5)

where:

µi =

levels−1!

i,j=0

i ∗ Pi,j , (6)
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µj =

levels−1!

i,j=0

j ∗ Pi,j , (7)

σ2
i =

levels−1!

i,j=0

Pi,j(i− µi)
2, (8)

and,

σ2
j =

levels−1!

i,j=0

Pi,j(j − µj)
2. (9)

Characteristics based on the GLCM are traditionally applied for texture
description based on pixel intensities. On the other hand, geostatistics takes
into account, in addition to intensity, the spatial position of the pixels.

Geostatistics are statistics about a population with a known address; i.e.,
coordinates. The fundamental theory of geostatistics is based on the assumption
that, on average, samples that are near to each other in time and space are more
similar than those that are distant [18].

This work uses four geostatistical functions: semivariogram (Equation 10),
semimadogram (Equation 11), covariogram (Equation 12) and correlogram (Equa-
tion 15). These functions take into account the strengths of the associations
between responses as a function of distance and possibly direction [24], and can
describe the texture of a given image through the degree of spatial association
between its spatially referenced pixels as [17]:

γ(h) =
1

2N(h)

N(h)!

i=1

(xi − yi)
2, (10)

where h is the distance vector between origin values xi and extremity values yi,
and N(h) is the number of pairs in distance h:

m(h) =
1

2N(h)

N(h)!

i=1

|xi − yi|, (11)

C(h) =
1

N(h)

N(h)!

i=1

xiyi −m−hm+h, (12)

where m−h is the average of the values of the vectors origin point:

m−h =
1

N(h)

N(h)!

i=1

xi, (13)

and m+h is the average of the values of vectors end point:

m+h =
1

N(h)

N(h)!

i=1

yi, (14)
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ρ(h) =
C(h)

σ−hσ+h
, (15)

where σ−h and σ+h are the standard deviations of the values of the origins and
the extremities of the vectors, respectively.

As aforementioned, vectors (h) are obtained from a combination of four
directions and 11 distances, of which six are fixed and five are proportional to
the input image dimensions. Thus, by combining the 44 distance vectors (h)
with the four geostatistical functions and applying these to the R, G, and B
image channels, the resulting vector contains 528 characteristics.

Deep features
CNNs are commonly applied in the field of machine learning for many tasks

as to extract the typical system response profiles of a complex system and rep-
resent them as visual outputs [25], measuring the degree of unpredictability in
dynamical systems with memory [26]. A significant advantage of these tech-
niques is their ability to automatically detect essential features, since their deep
architectures allow to extract a set of characteristics at multiple levels of ab-
straction. CNNs have been used in the development of diagnosis tools and have
outperformed conventional methods of extracting features with better accuracy
rates [27].

The common architecture of a CNN includes two sections. The first one is
formed of a sequence of convolution operations followed by pooling operations,
and the second section is composed of fully connected layers. Figure 3 illustrates
a generic CNN architecture.

Figure 3: Generic CNN architecture: Blue and yellow blocks represent the convolutional and
pooling filters applied to the input image, respectively (FM = Feature maps, FC = Fully
connected layer).

The convolution layers apply filters that extract feature maps. When passing
through the pooling layers, the map’s dimensions are reduced, keeping only
those of greater magnitude. After the sequence of convolutions and pooling,
the generated feature map forms the input for the fully connected layers. In
this step, the architecture and operation mechanisms are similar to those of a
traditional neural network, and the last layer generates the output data; i.e.,
the classification result.

Usually, the training of a CNN is a task with high computational cost, and
requires a large amount of data to achieve satisfactory results in terms of power
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of generalization [27]. To bypass the training stage, here, it is used transfer
learning (TL), which allows the domains, tasks and distributions used in training
and testing to be different; i.e., the goal of TL is to reuse the knowledge learned
in one field, and apply it to another correlate field [27].

In [19], the authors present one way to apply TL to CNNs used for feature
extraction. Using a previously trained network on an extensive dataset, by
keeping their weights, a specific image is then supplied to this network. The
output data from some internal layers are used as a features vector called deep
features.

We apply TL in feature extraction by taking the output vectors of the penult
fully connected layer, i.e., the layer before the classification layer, of four CNNs:
VGG-16, VGG-19, Xception and ResNet50. All these CNNs were pre-trained
on the ImageNet dataset [28], which contains more than 1.2 million images and
1,000 classes.

Table 1 presents a summary of all the individual feature vectors extracted
and evaluated in this study. In addition to these six individual vectors, we
produced hybrid vectors by concatenating all their combinations, making sets
with two, three, four, five and all six vectors, which led to 26 − 1 = 63 vectors
in total.

Table 1: Summary of the features evaluated in this study.

Type Method Features
Number of
features

Texture

Geostatistic Semivariogram,
semimadogram,
covariogram and
correlogram

528

Haralick Contrast, dissimi-
larity, homogene-
ity, angular sec-
ond moment and
correlation

660

Deep
features

VGG-16 Features
extracted from
the penult fully
connected layer

4,096
VGG-19 4,096
Xception 2,048
ResNet50 2,048

TOTAL 13,476

3.1.3. Feature selection

We performed a feature selection process for each of the 63 feature vectors
obtained in the previous step, sorting the features in the vector in descending
order of relevance. The F statistic of variance analysis (ANOVA-F) and mutual
information (MI) were used to calculate the relevance of each feature.
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ANOVA-F is based on measures of dispersion among the elements belonging
to a group and on the dispersion among the means of each group. Given an
attribute x of the feature vector, when grouping into two classes (GS or MCD),
the more distant the mean value of x for these groups and the less dispersed the
values of x within each group, the higher the value of the ANOVA-F, and the
higher the relevance of this attribute within the feature set.

The MI between two variables is the amount of information that one variable
has from the other [29]. MI measures the extent to which knowledge of one of
these variables reduces uncertainty in the other. Thus, for two attributes, x1

and x2, when comparing the MI of each of them with variable y (i.e., the GS or
MCD class), the one with the highest MI value will be considered more relevant.

We performed tests to define the final feature vector’s dimensionality, search-
ing for the best results with the smallest vector size. We used the ranked features
and performed an incremental attribute selection approach, starting from the
highest relevant feature and adding the others to complete all features.

3.1.4. Classification

The classification step is responsible for receiving the selected attributes and
outputting the final prediction, here: GS or MCD. In this study, we evaluated
two supervised classifier algorithms: Random Forest and Support Vector Ma-
chine.

The initial parameters used in the SVM were a penalty of 1.0, and a radial
basis function (RBF) kernel with a gamma coefficient of 1/number of features.
For RF, 100 trees and no in-depth limit growth were adopted. After analyzing
the classification results, we chose the five best results and searched for the best
set of classifier hyperparameters.

Here, the stratified k -fold cross-validation technique (k = 5), which consists
of randomly distributing the dataset instances into k mutually exclusive subsets
(folds) of approximately equal size, and in the same proportion observed in the
original dataset, was employed. The classifier is then trained and tested k times,
and in each round, a different subset is used for testing, and the remaining k–1
subsets are used for training. This mechanism ensures that each dataset element
is used to evaluate the classifier and train it, and the classification ability for
both classes is assessed in all folds. A confusion matrix was computed for each
fold, and the arithmetic average of the five values achieved from each studied
classifier was taken into account.

3.2. Evaluation metrics

The confusion matrix confronts the classifier predicted results and the actual
results for the same set of tests. Here, there are two classes, GS and MCD, and
the problem is, therefore, a binary classification problem. Thus, there are four
values in this matrix: the true positive (TP), which indicates the number of
images correctly classified as MCD; the true negative (TN), corresponding to
the number of correct GS classifications; the false positive (FP), representing
the number of images classified as MCD, but which are GS; and finally, the false
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negative (FN), which refers to the number of images erroneously classified as
GS.

The accuracy assesses the overall rate of correct classification for both classes
together, and is obtained as the ratio between the number of correctly classified
images and the total number of images.

Here, Cohen’s kappa [30] is used as the primary evaluation metric because
it is more challenging than accuracy, since kappa considers the probability dis-
tribution of the expected classes. Also, kappa gives a value that represents the
degree of agreement between nominal classifications performed by two evalua-
tors. In the present case, those predicted by the classifier and those annotated
by a pathologist:

kappa =
accuracy − Pe

1− Pe
, (16)

where Pe represents the expected probability of the evaluators agreeing on the
classification; in other words, it means the overall random agreement probability.

The maximum value of kappa is 100%, which indicates a perfect agreement
among the evaluators. The labels shown in Table 2, proposed by [31], are usually
used to maintain consistent vocabulary when describing the relative strength
of agreement associated with the kappa metric, and therefore, they were also
adopted in the current study.

Table 2: Labels assigned to the corresponding ranges of kappa.

kappa (%) Strength of Agreement
<0 Poor

0 ⊢ 20 Slight
20 ⊢ 40 Fair
40 ⊢ 60 Moderate
60 ⊢ 80 Substantial
80 ⊢ 100 Almost Perfect

In this study, two additional metrics were computed to give a further evalua-
tion: precision, which can be understood as the ability of the classifier to avoid
labeling a negative example as positive, and recall, which can be interpreted as
the ability of the classifier to identify all positive instances.

3.3. Image datasets

The images used in this study were from two datasets. The first one, named
DME, contains 83 RGB images from the Department of Specialized Medicine
of the Federal University of Piaúı, of which a specialist had classified 42 as GS
and 41 as MCD.

The images of the DME dataset images were acquired using a Nikon e220
and a Nikon e200 microscopes adapted with immunofluorescence. Pigmentation
was applied to the slides using the following dyes: H&E, Masson’s trichrome,
PAS and silver methenamine.
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The second used dataset, named InetDB, was built by collecting images in
public domain available on the internet, and is composed of 21 RGB images, of
which a specialist had classified 10 as GS and 11 as MCD.

The original images have different aspect ratios (width/height), and there-
fore, they were manually adjusted, keeping glomerulus in the centre and leaving
the width equal to the height. Only cutouts and padding were used in this
operation to not cause distortions in the glomerulus image, not even when it
was resized in the pre-processing step.

Figure 4 shows examples of the used images. In these images, visual het-
erogeneity can be observed between images belonging to the same class and
similarities between images in distinct classes, which is always challenging for
classification.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Samples of images from the used dataset: a-d, glomerulosclerosis images; e-h,
minimal change disease images; c and g, padded images. (The images on the last column are
from the InetDB dataset, the others are from the DME dataset.)

Hence, the two datasets together contain 104 images, where 52 are from GS
and 52 from MCD. Despite being balanced, the number of images may not be
enough for the proper training of the classifiers. Thus, to obtain a more extensive
training set, data augmentationtechniques were applied to the original images.

To preserve the characteristics of the input images and not lose critical in-
formation, changes such as shear or zoom were avoided, and three rotation
transformations: 90, 180, and 270◦, were applied to each original image. These
transformations represent situations that can naturally happen, e.g., a slide is
rotated under the microscope at the time of analysis. As a result, the total num-
ber of samples, i.e., original + transformed images, used in this studied were
increased from 104 to 416. Thus, on each of the five rounds of cross-validation,
the training was performed with an average of 332 images, while the test was
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applied with an average of 21 images.

4. Results and discussion

In this study, 252 scenarios were evaluated: 63 feature vectors combined
with two feature selection methods and two classifiers. An incremental feature
selection approach was also applied by computing the importance of each fea-
ture. Then, the highest mean kappa was taken into account in order to select
the best scenario.

In the sections below, the following abbreviations: v16 = VGG-16, v19 = VGG-
19, xce = Xception, rsnet = ResNet50, hrlk = Haralick’s feature and geo = Geo-
statistics, are used to refer the feature vectors in order to improve the compre-
hension and layout.

Table 3 presents the best five classification results obtained using the RF and
SVM classifiers, and the average processing time, in seconds, for each evaluated
method. The highest 35 kappa values were achieved using RF and MI. Random
Forest is a classifier formed by a committee of decision trees where each tree
considers subsets of different features. Thus, it is more robust to overfitting and
here performed better than the tested SVM classifier.

Table 3: Best five kappa achieved using each classifier under comparison and the respective
average processing in seconds.

I Vector #F Accuracy Kappa Precision Recall Time
RF

1
v16+v19+rsnet+
hrlk+geo

25 88.4 5.1 76.7 10.2 89.0 7.0 88.4 9.5 26.8

2
v16+xce+rsnet+
hrlk+geo

29 88.4 5.1 76.7 10.2 91.0 8.3 86.5 11.3 32.2

3
v16+v19+xce+
rsnet+hrlk+geo

46 88.3 6.9 76.5 13.9 89.5 10.4 88.4 9.5 37.3

4
v16+v19+xce+
hrlk+geo

22 87.6 4.5 75.3 9.0 84.7 4.6 92.5 10.6 24.9

5
v16+v19+
xce+geo

31 87.5 6.1 75.1 12.2 88.2 3.5 86.7 12.2 23.9

SVM

36 v19+rsnet 87 84.5 9.3 68.9 18.6 83.8 10.4 86.5 9.4 13.6
39 v19+xce+rsnet 261 83.7 7.1 67.5 14.2 82.5 7.7 86.7 9.4 22.3
43 v16+v19+rsnet 106 83.5 7.9 67.1 15.7 82.5 10.0 86.7 9.4 18.1

51
v16+v19+
xce+rsnet

49 82.6 5.8 65.3 11.5 82.2 7.7 84.7 7.2 26.8

52 v16+v19 122 82.6 7.5 65.3 15.0 81.7 10.7 86.7 13.0 7.9
- I: Ranking index in a global comparison (252 scenarios); #F: number of features
- For each classifier, the best results found are in bold.

From the data in Table 3, one can realize that the scenario that required
the longest time to run took, on average, 37.3s. The tests were carried out
on a computer with an Intel Core i5-1135G7 CPU and 8GB of RAM memory.
There was no substantial difference between the execution time of the classi-
fiers. The extraction of geostatistical information was the most time-consuming
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operation. However, according to a consulted pathologist, the visual examina-
tion of a glomerulus can take about three minutes. Thus, the response time of
the proposed solution can be considered applicable in real environment. It is
essential to point out that the use of a GPU-appropriate implementation would
decrease the reuired processing time.

The results obtained with each of the descriptors individually were also an-
alyzed. Among the deep features, the best result was found using the exception
vector (kappa = 71.1%), classified with RF. Among the texture descriptors,
geostatistics were outstanding (kappa = 57.8%) when classified with RF. These
results indicate that the use of a hybrid descriptor is more efficient to charac-
terize the images under study.

We also used a Grid search for the best hyperparameters for the best five
results in order to improve the classification results reached using the RF clas-
sifier. A Grid search is a process that searches exhaustively through a manually
specified subset of the hyperparameter space of the targeted algorithm. A total
of 211,200 hyperparameter settings concerning the RF classifier were evaluated.
The classification task was performed for each of them, keeping the same 5-folds
and using the same previously selected feature set. Table 4 presents the results
reached after the RF tuning, and Table 5 the parameters found from the tuning
process of the RF classifier that gave the best classification results.

Table 4: Classification results after the RF hyperparameter tuning for the best five achieved
kappa.

Vector #F Accuracy Kappa Precision Recall
v16+v19+rsnet+
hrlk+geo

25 89.4 5.8 78.7 11.5 91.0 8.3 88.5 10.8

v16+xce+rsnet
+hrlk+geo

29 90.3 3.3 80.5 6.6 91.4 7.8 90.4 8.6

v16+v19+xce+
rsnet+hrlk+geo

46 88.4 5.1 76.7 10.2 ↓89.0 7.0 88.4 9.5

v16+v19+xce+
hrlk+geo

22 87.7 7.7 75.5 15.4 85.3 4.8 ↓90.7 14.1

v16+v19+
xce+geo

31 88.5 6.0 77.1 12.0 88.5 2.9 88.7 13.3

- #F: number of features.
- Down arrow means metric worsening; Best found results are in bold.

Finally, after RF hyperparameters tuning, the best feature vector was: v16+xce+rsnet+hrlk+geo.
From the 9,380 features of this vector, 29 were selected based on MI. Then, it
was classified using the RF classifier. Figure 5 shows the number of attributes
chosen from each descriptor, and their distributions along with the positions of
the vector sorted by the MI algorithm.

By analyzing Figure 5, one can notice that of the 1,188 texture character-
istics, 23 were selected; while of the 8,192 deep features, only six were selected.
Notably, the texture had greater representativeness in the set of more relevant

15



Table 5: Values of the parameters found through tuning of the RF classifier for the best 29
MI features obtained with v16+xce+rsnet+hrlk+geo.

Parameter description Range search Value found

Number of trees
40 values from [5 to
200]

80

Minimum number of samples re-
quired to split an internal node

[2 to 6] 6

Minimum number of samples re-
quired to be at a leaf node

[1 to 4] 1

Grow limit in the depth way
Unlimited and 10 val-
ues from [10 to 100]

Unlimited

Split quality measure function
Gini impurity and In-
formation gain

Gini impurity

Amount of features to consider
when looking for the best split

√
N , log2(N) e N ,

where N is number of
features.

√
N

Value which grow trees in best-
first fashion.

Unlimited, 15, 30 and
60

Unlimited

Total searched combinations 211,200

attributes; this simulates the pathologists’ practice when observing these visual
characteristics in order to differentiate GS from MCD.

As for deep features, we believe that, although the used CNNs were pre-
trained on a varied and dense image dataset, their ability to extract relevant
characteristics is low for the specific type of image under study. It is possible
that other TL techniques, such as, for example, fine tunning, or the complete
training of the same architectures, could change this scenario. However, this
task requires a dataset with a more significant number of images.

Although deep features represent about 21% of the definitive vector, they
are not expendable. The metrics achieved using the vector composed only by
the two texture descriptors (hrlk + geo), and kappa reached 61.8%, which is
a 19.4% lower result relatively to the vector composed with the included deep
features, and that before even adjusting the hyperparameters of the RF.

When using the classifier with the hyperparameters found in the search,
in addition to good metrics,a perfect balance in the classification results was
reached: The correct answers (TP and TN) obtained equal values, 47 images in
each class. Similarly, the classification errors (FP and FN) also occurred in a
balanced way, with 5 images in each class. This points out that the proposed
solution is not biased when classifying instances. Figure 6 depicts some results
obtained using the proposed solution.

The proposed computational solution was evaluated on two image datasets.
This is a positive aspect, as it brings more robustness to it, since images from
different sources reduce the possibility of carrying patterns of color, brightness,
etc., that could generate bias. However, there are two limitations to consider.
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Figure 5: Origin of the 29 attributes with best mutual information for the
v16+xce+rsnet+hrlk+geo vector. (The bar at the bottom depicts the source of the char-
acteristics at each position.)

The former is the number of examples; for the solution be more reliable, it
is interesting to test it using more images. And the second one is due to the
fact the used images contain the centralized glomerulus, and not the entire
biopsy slide. So, in practice, a previous step to segment these structures will be
necessary. However, there are works, such as [5], [6], [7] and [8], that proposed
computational methods that can be used to automatically perform this task.

5. Conclusion and future works

This article proposed a computer solution to differentiate MCD and GS in
microscopic images. The most relevant features from VGG-16, Xception, and
ResNet50 CNNs, with Haralick and Geostatistical textural descriptors, were
evaluated using the Random Forest classifier. This solution gave results that
are in near-perfect agreement with the diagnosis made by a pathologist.

From the findings, one can conclude that hybrid deep and texture features
can convey the attributes from the image under study more competently than
a single descriptor. Therefore, a new hybrid deep and texture feature space was
built to differentiate glomerulosclerosis from minimal change disease in glomeru-
lus biopsy images. The used features selection algorithms determined that the
texture characteristics are most relevant than those obtained from CNNs by
deep features.

As future works, we intend to evaluate methods that use the fine-tuning
technique in CNNs. This technique uses a pre-trained CNN on a large image
dataset and re-train some layers with a small learning rate for fine adjustment
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Figure 6: Sample results achieved by the proposed solution.

weights. Another future work concerns using larger image datasets to train and
test the proposed solution and validate it in clinical scenarios.
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