
Segmentation and 3D Reconstruction of Animal 
Tissues in Histological Images 
Liliana Azevedo*, Augusto M. R. Faustino**, João Manuel R. S. Tavares* 

 
*Faculdade de Engenharia, Universidade do Porto, Porto, PORTUGAL, tavares@fe.up.pt 
**Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, PORTUGAL 
 
Abstract: Histology is considered the "gold standard" to access anatomical infor-
mation at a cellular level. In histological studies, tissue samples are cut into very 
thin sections, stained, and observed under a microscope by a specialist. Such stud-
ies, mainly concerning tissue structures, cellular components and their interactions, 
can be useful to detect and diagnose certain pathologies. Thus, to find new tech-
niques and computational solutions to assist this diagnosis, such as the 3D image 
based tissue reconstruction, is extremely interesting. 

In this chapter, a methodology to build 3D models from histological images is 
proposed, and the results obtained using this methodology in four experimental cas-
es are presented and discussed based on quantitative and qualitative metrics. 
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1 Introduction 

 
Nowadays, histology is an important topic in medical and biological sciences, 

since it stands at the intersections between biochemistry, molecular biology and 
physiology, and related disease processes (Stevens and Lowe 1992).  

The most commonly used procedure for tissue studies consists in the preparation 
of histological sections for microscopic observation. Because tissues are too thick to 
allow the passage of light, they must be sliced to obtain very thin sections. In order 
to make these very thin tissues slices, they need to undergo a series of prior treat-
ments, such as Fixation (for preserving the tissue structure), Inclusion (the technical 
process to impregnate the tissue with a rigid substance in order to be able to cut the 
sample into thin sections, such as paraffin) and Staining (to facilitate the distinction 
of tissue components) (Bioaula 2007; Carneiro and Junqueira 2004). 

The reconstruction of the three-dimensional (3D) structures of tissues from a se-
ries of 2D images, i.e. slices, is, at least in theory, a valuable tool to expand the 
'hidden' microscopy dimension and thus be able to study the tissues and cells in 
depth. The possible approach to obtain such 3D models involves the digitalization 
of the histological slices, the preprocessing of the images obtained, the segmenta-
tion of the tissues in the pre-processed images, the registration, i.e. the aliment, of 
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the segmented tissues and, finally, the 3D reconstruction of the tissues registered 
(Cooper 2009). 

Whenever an original image is of poor quality due to, for example, the presence 
of severe noise, low contrast between relevant and irrelevant features, or intensity in 
homogeneity, image preprocessing techniques, such as image smoothing, denoising 
or intensity transformations, can be applied to enhance them (He et al. 2009). 

On the other hand, algorithms of image segmentation try to extract the objects or 
regions of interest, here the tissues to be reconstructed into 3D, from images (He et 
al. 2009). The algorithms for image segmentation can be classified into three main 
types: algorithms based on threshold (Gonzalez et al. 2004; Otsu 1979), algorithms 
based on clustering techniques and algorithms based on deformable models (Zhen 
et al. 2010). 

The goal of image registration is the geometrical alignment of two images - the 
reference image (also known as a fixed image) and the image to be aligned (also 
known as the moving image). Image registration is widely used, for example, in 
cartography, remote sensing and 3D reconstruction (Zitová and Flusser 2003). 
There are several methods to register images that can be divided according to: Di-
mensionality of the images, Nature of the transformation used, Domain of the trans-
formation used, Degree of interaction, Optimization Procedures employed, Rules 
adopted, Subjects and Objects involved (Maintz and Viergever 1998). In general, 
the image registration methods can be divided into two major groups: feature-based 
methods (the alignment is made using distinct features from the images, like re-
gions, lines or points) and intensity-based methods (the intensity values of the im-
age are used directly) (Zitová and Flusser 2003). 

Registration accuracy of the algorithms can be evaluated using similarity 
measures, like the Sum of Square Differences (SSD) and Mean Square Error (MSE) 
(Zitová and Flusser 2003; Oliveira 2009; Oliveira and Tavares 2011), fiducial mar-
kers (Pluim et al. 2000; Mattes et al. 2003; Danilchenko and Fitzpatrick 2011) and 
Dice Similarity Coefficient (Alterovitz et al. 2006; Klein et al. 2009). 

In this work a methodology was developed to build 3D models from histological 
slices and then it was evaluated using experimental data. 

 
 

2 Experimental Dataset 

 
The histological images of the four dog tissues used in the experimental evalua-

tion were produced at the Veterinary Pathology Laboratory of the Abel Salazar In-
stitute of Biomedical Sciences, in Portugal. 

After the selection of the tissue samples, the following steps were carried out: 
Fixation, Inclusion and Staining, according to standard procedures. 

To slice the tissue paraffin blocks, a fully motorized Leica 2255 microtome, 
from Leica Microsystems (Germany), was used, Figure 1. The slides obtained were 
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then scanned, using an Olympus VS110 device from Olympus America Inc. (USA), 
in order to obtain the histological images. 

 
 

 

 
 
 
 

Figure 1. Examples of a paraffin block (left) and of a tissue slide (right). 

 
After visual inspection, some of the images scanned were eliminated since sev-

eral noisy artifacts were detected. Table 1 summarizes the procedures, time and 
tools adopted to obtain the images, i.e. the slices, for the four experimental cases. 

 
Table 1. Details about the tissue preparation procedures and images obtained. 

 

Case Description 

Number 
of orig-

inal / 
final 

images 

Tissue Processing Image digitalization 

Fixation Inclusion Staining 

Scanner: Olympus 
VS110, 

Magnification:  20x 

Agent: 
Formalin 

Agent: 
Paraffin 

Protocol: 
Hematoxylin 

and eosin 
(H&E Stain) 

#1 
Testicular tu-
moral Tissue 124/124 ±2 days ±1 day ± 7 days 

#2 
Normal lymph 

node 100/95 ±1.5 day ±1 day ± 5 days 

#3 
Lymph node 

tumor 100/100 ±1.5 day ±1 day ± 5 days 

#4 
Mammary 

gland tumor 96/95 ±2 days ±1 day ± 6 days 
 

3 Methodology 

3.1 Image preprocessing 

 
Since the histological images are digital images, they are prone to various types 

of noise resulting from the acquisition. Image smoothing usually refers to spatial 
filtering in order to highlight the main image structures by removing image noise 
and fine details using for example a Gaussian filter (Alves 2013; He et al. 2012). 
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A Gaussian filter uses a 2D convolution operator in order to blur the input imag-
es and remove details and noise from them. The kernel used in the convolution rep-
resents the shape of a Gaussian hump (Ivanovska et al. 2010). A 2D Gaussian filter 
has the following form: 

 

𝐺 𝑥, 𝑦 =
1

2𝜋𝜎!
𝑒!

!!!!!
!!! , (1) 

 
where (𝑥, 𝑦) are the spatial coordinates and 𝜎 is the standard deviation of the distri-
bution (Ivanovska et al. 2010). 

As reported in the literature (Alves 2013), testing the images using different 
Gaussian filters showed that the higher the 𝜎  was the more apparent the blur was; 
however, this was not so dependent on the filter parameter in terms of the window 
size. Therefore, in order to obtain a good smoothing effect, but keeping the more 
relevant tissue details, a Gaussian filter with a window size of [3 3] and 𝜎 equal to 4 
was applied to all experimental images. 

 
 

3.2 Image segmentation 

 
Image Thresholding is commonly used in many applications of image segmenta-

tion because of its intuitive properties and simplicity of implementation; for exam-
ple, one simple way to separate similar objects from the image background is by se-
lecting a threshold 𝑇 that separates the two classes involved, i.e. objects and 
background. 

The Otsu method is a histogram based thresholding method where the gray-level 
histogram is treated as a probability distribution (Gonzalez et al. 2004). Supposing 
there is a dichotomization of the image pixels into two classes 𝐶! and 𝐶!, then the 
Otsu method selects the threshold value k that maximizes the variance between 
classes, 𝜎!!, which is defined as: 

 
𝜎𝐵2 = ꙍ0 𝜇0 − 𝜇𝑇

2
+ ꙍ1 𝜇1 − 𝜇𝑇

2
, (2) 

 
where ꙍ! and ꙍ! are the probability of occurrence, and 𝜇0 and 𝜇1 are the means of 
the two classes, respectively (Gonzalez et al. 2004; Otsu 1979). 

In order to extract the tissues from the histological slices, the Otsu method was 
applied to the saturation component of the HSV (hue, saturation, value) colour 
space of the preprocessed images. Figure 2 shows that the smoothing step was es-
sential to obtain suitable tissue segmentation masks. 

In some of the tissue segmentation masks traces of loose tissue that were re-
moved in order to reconstruct consistent tissue volumes were perceived, Figure 3. 
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Afterwards, in order to obtain the final tissue segmentation, the preprocessed 
RGB images were transformed into grayscale images, and multiplication operations 
were performed between each tissue segmentation mask and the respective gray im-
age, Figure 4. 

Since the image registration algorithm requires that the input images are the 
same size, all experimental images were normalized to the same size. 

 
 

 
 
 
 
 
 
 
 
 
 
 

a) 
 

 
 
 
 
 
 
 
 
 
 
 

b) 

Figure 2. Results of the Otsu method on the saturation channel of an original image (a) and 
on the same channel of the corresponding smoothed image (b). 
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Figure 3. Identification of the regions (in green) to be discarded from an experimental image. 
 
 

Figure 4. An experimental image in grayscale after been multiplied with the corresponding 
segmentation tissue mask. 

 
 

3.3 Image registration 

 
Image registration is the process of overlapping two or more images of the same 

scene acquired at different time points, from different views and/or by different sen-
sors. Usually, this process aligns geometrically two input images - the reference im-
age, also known as fixed image, and the moving image, by searching for the opti-
mal transformation that best aligns the structures of interest in the images (Zitová 
and Flusser 2003; Oliveira and Tavares 2012). 

In general, image registration methods can be divided into two major groups: 
feature- and intensity-based methods. The first group is based on the detection and 
matching of similar features, such as points, lines or regions, between the input im-
ages (Zitová and Flusser 2003). This type of registration follows four steps: 1) Fea-
ture Detection; 2) Feature Matching, i.e. the establishment of the correspondence 
between the detected features; 3) Model Transformation Estimation, i.e. the estima-
tion of the parameters of the mapping function that register the features matched; 
and 4) Interpolation and Transformation, i.e. the transformation of the moving im-
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age according to the estimated parameters of the mapping function used. On the 
other hand, the Intensity-based registration methods are preferably used when the 
input images do not present prominent features that can be efficiently detected. To 
overcome such difficulty, these methods use the intensity values of the pixels of the 
input images in order to estimate the best mapping function by minimizing a cost 
function, which is usually based on a similarity measure. The cost function is com-
puted using the overlapping regions of the input image and an optimizer tries to ob-
tain the best value possible. Additionally, an interpolator is used to map the pixels 
(or voxels in 3D) into the new coordinate system according to the geometric trans-
formation found, Figure 5. 

 

 
Figure 5. Diagram of a typical intensity-based registration algorithm (adapted from Oliveira 

and Tavares 2012). 
 
To register the histological images, the Intensity-based image registration algo-

rithm in MATLAB (Mathworks, USA) was used (Mathworks 2013a; Mathworks 
2013b). A monomodal registration was involved since the images were acquired us-
ing the same device and according to the same protocol. The geometric transfor-
mations compared were the rigid, affine and the similarity transformations. The 
projective transform was excluded because this transformation deals with the tilting 
transformation, and the slices used were obtained parallel to each other. 

Additionally, the number of levels of the multiresolution pyramid used was spec-
ified to be equal to 3. For the cost function, the Root Mean Square Error (RMSE) 
was adopted since this metric is known to be appropriate for monomodal registra-
tion. This metric is computed by squaring the differences in terms of intensities of 
the corresponding pixels in each image and taking the mean of those squared differ-
ences. For the optimizer, the One Plus One Evolutionary also in MATLAB was 
used, which assumes a one-plus-one evolutionary optimization configuration, and 
an evolutionary algorithm is used to search for the set of parameters that produce 
the best possible registration result (Mattes et al. 2001). In this algorithm, the num-
ber of iterations equal to 1000 was adopted. The registration process started with 
the application of a rigid transformation to deal with the rigid misalignment in-
volved between the images and simplify the posterior finer registration process and 
facilitate its convergence. 
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For the 3D reconstructing, the registration process started from an image in the 
middle of the image stack, since the slices closest to the center generally contain 
more information about the tissue (Roberts et al. 2012). Two approaches were test-
ed: 1) Using a reference slice, the registration of each slice of the stack was done 
taking into account only its spatial information, i.e. all remainder slices were regis-
tered to the reference slice, Figure6a; 2) Using a pairwise strategy, the registration 
is made in cascade, starting from the center slice to the following neighbor slices in 
the stack, the next slice is registered with the previous one and so forth, Figure6b.  
 

a) b) 

Figure 6. Registration using the center slice as reference (a) and from the center 
slice to neighbor slices in the stack (b). 

 
Three metrics were used to evaluate the registration accuracy: 
 
1) RMSE - First the mean for the errors of the corresponding intensity pixels be-

tween each aligned image pair was calculated, and then the average error between 
all the images of the registered stack, given the Mean Square Error (MSE). Finally, 
the RMSE value was obtained by calculating the square root of the correspondent 
MSE. The RMSE and its variations have been used in many image registration 
problems, including those with histological images (Egger et al. 2012; Sharma and 
Katz 2011; Sharma et al. 2011). 

 
2) The Dice Similarity coefficient (DSC or Dice) - The calculation of this metric 

is based on the overlap of two registered areas, and it has been a metric commonly 
used to evaluate the intersection of two areas. The DSC has values between 0 (zero) 
and 1 (one); the higher values represent registrations of better quality (Alterovitz et 
al. 2006; Klein et al. 2009). This metric has been widely used to access the registra-
tion error of histological images (Alterovitz et al. 2006; Klein et al. 2009), and can 
be calculated as: 

 

𝐷𝑆𝐶 =
2𝐴

𝐴 + 𝐵
, (3) 

where 𝐴 and 𝐵 are the registered areas. 
 
3) Because the tissues may appear in the slices as a set of regions, in addition to 

the DSC, a DSC normalized by the total minor tissue area was defined: 
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𝐷𝑖𝑐𝑒𝑛 =
𝑅

𝑚𝑖𝑛𝑜𝑟  𝑎𝑟𝑒𝑎
, (4) 

 
where 𝑅 is the area of intersection between total tissue area in slices A and B, and 
𝑚𝑖𝑛𝑜𝑟  𝑎𝑟𝑒𝑎, as the name suggests, is the total minor tissue area between these two. 

 
 

3.4 3D Reconstruction 

 
Finally, for the 3D reconstruction of the tissues presented in the experimental da-

taset, the surfaces were built using the isosurface algorithm included in MATLAB 
(Mathworks 2013c). 

To enhance the visualization and facilitate the comparison among the four exper-
imental cases under study, an adjustment on the reconstruction z scale was made, 
and different colors were chosen for the surfaces built. 

 
 
4 Results and Discussion 

The image preprocessing and the image segmentation were fundamental steps 
for preparing the images for the 3D registration. The intensity-based registration 
was carried out with success, but to find the best geometric transform, the registra-
tion accuracy needed to be evaluated, Table 2. Analyzing the data shown in Table 2, 
some conclusions can be pointed out: 

The existence of a strong relationship between the metrics used to evaluate the 
registration accuracy (RMSE, Dice and Dicen); the higher the quadratic registration 
error is, the lower the dice coefficient is; the registration improved the alignment of 
the tissue represented along the slices in each dataset. 

 
Table 2. Assessment results for the four cases under study regarding the accuracy achieved using different 
geometrical transformations (rigid, similarity and affine) and a reference slice or pairwise based approach on 
the registration procedure (- not performed, * Erroneous registration). 

 
Case #1 

Without registration RMSE= 9.3219 
Dice= 0.8292 
Dicen= 0.8458 

Pre-Registration 
 

RMSE= 8.6835 
Dice= 0.9441 
Dicen= 0.9635 

 Rigid Similarity Affine 

 RMSE Dice Dicen RMSE Dice Dicen RMSE Dice Dicen 

Reference slice - - - 8.3307 0.9671 0.9753 8.8068 0.9377 0.9454 

Pairwise 8.3255 0.9602 0.9798 8.1888 0.9676 0.9772 * * * 
 



10  

 
Case #2 

 
Without registration RMSE= 9.5687 

Dice= 0.8606 
Dicen= 0.8734 

Pre-Registration RMSE= 7.9695 
Dice= 0.9356 
Dicen= 0.9517 

 Rigid Similarity Affine 

 RMSE Dice Dicen RMSE Dice Dicen RMSE Dice Dicen 

Reference slice - - - 7.5954 0.9492 0.9598 8.6138 0.9066 0.9156 

Pairwise 7.4857 0.9484 0.9651 7.3995 0.9515 0.9618 9.5232 0.7744 0.7820 
 

Case #3 
 

Without registration RMSE= 9.5544 
Dice= 0.8222 
Dicen= 0.8423 

Pre-Registration RMSE= 7.7236 
Dice = 0.8271 
Dicen= 0.8589 

 Rigid Similarity Affine 

 RMSE Dice Dicen RMSE Dice Dicen RMSE Dice Dicen 

Reference slice - - - 7.2046 0.8679 0.8927 9.0429 0.6978 0.7211 

Pairwise 6.8316 0.8774 0.9121 6.8222 0.8773 0.9052 9.4064 0.5922 0.6110 
 

Case #4 
Without registration RMSE= 10.1506 

Dice= 0.6705 
Dice= 0.7135 

Pre-Registration RMSE= 9.9125 
Dice = 0.7698 
Dicen = 0.8198 

 Rigid Similarity Affine 

 RMSE Dice Dicen RMSE Dice Dicen RMSE Dice Dicen 

Reference slice - - - 9.7034 0.8080 0.8471 10.0953 0.7273 0.7615 

Pairwise 9.6133 0.8114 0.8613 9.5578 0.8191 0.8604 10.4697 0.5747 0.6061 
 

 
In the preregistration step, a rigid transformation was used to place the tissue in 

the center of the image and then low error values and improved Dice values were 
achieved. The pairwise registration approach had better results than the reference 
slice based registration approach. Globally, and for the four cases used, the best reg-
istration results were obtained using the pairwise registration approach and the 
similarity transform. The worst results were obtained with the affine transfor-
mation: The RMSE values were high, and the dice values were low. The affine 
transformation copes with rotation, translation, scale and shear, which are too many 
degrees of freedom when histological images are involved. The registration based 
on the affine transform and pairwise registration approach was not successful for 
Case #1 and of bad quality in the other cases. On the other hand, the rigid registra-
tion only copes with rotation and translation (simple geometrical transformations), 
and the error and Dice values obtained indicated good registration results. 

It was also possible to verify that the normalized dice (Dicen) presented higher 
results than the normal dice (Dice). A plausible explanation for this is the fact that 
the Dicen is less affected by slices with different tissue areas, which is a common 
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situation with histological images, since it is normal that the tissue appears with 
disconnected areas in each image slice. 

Error! Reference source not found.7-10 show the 3D models built for the four 
experimental cases under study. These figures show that the best reconstructions 
built still had rough surfaces. This is due to the fact that the registration process is 
not totally perfect and also due to the procedure used to prepare the histological im-
ages, which is influenced by several features, such as dilation and retraction of the 
tissue. 
 

 
 

Figure 8. 3D reconstruction obtained for Case #2. 
 

 

Figure 7. 3D reconstruction obtained for Case #1. 
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Figure 9. 3D reconstruction obtained for Case #3. 
 
 

Figure 10. 3D reconstruction obtained for Case #4. 
 
 
5 Conclusions 

In this chapter, a straightforward and successful methodology to reconstruct the 
3D volumes of tissues from histological images was described. The methodology 
can be resumed in three main steps: image preprocessing, segmentation and regis-
tration. 
The image preprocessing step using a Gaussian filter proved to be efficient. The 
Otsu thresholding method applied on the saturation component of the preprocessed 
images also achieved good results. 
The intensity-based registration algorithm used for the registration step proved to be 
efficient. The similarity transform combined with the pairwise registration approach 
proved to be useful for the 3D reconstructing of the four tissue types addressed and 
led to a minimum of registration errors and more attractive visualizations. 
 



13 

Acknowledgment 

This work was partially done in the scope of the project with reference 
PTDC/BBB-BMD/3088/2012, financially supported by Fundação para a Ciência e a 
Tecnologia (FCT), in Portugal. 
 

References 

Alterovitz, R. , Goldberg, K. ., Pouliot, J. , Hsu, I. , Kim, Y. , Noworolski, S., &  
Kurhanewicz, J. (2006). Registration of MR prostate images with biomechanical 
modeling and nonlinear parameter estimation. Medical physics, 33(2), 446–454. 

Alves, A. (2013). Joint Bilateral Upsampling. Retrieved January 2, 2013, from 
http://lvelho.impa.br/ip09/demos/jbu/filtros.html#. 

Bioaula. (2007). Histologia básica. Retrieved April 16, 2012, from 
http://www.bioaulas.com.br/aulas/2006/histologia/apostilas/apostila_histologia_bas
ica/apostila_histologia_basica_demo.pdf. 

Carneiro, J., & Junqueira, L. (2004). Histologia Básica. In G. K. S.A. (Ed.), 
Histologia Básica (10a edição., pp. 1–22). 

Cooper, L. A. D. (2009). High Performance Image Analysis for Large Histological 
Datasets. Ohio State University. 

Danilchenko, A. , & Fitzpatrick, J. (2011). General approach to firstorder error 
prediction in rigid point registration. IEEE Transactions on Medical Imaging, 
30(3), 679–693. 

Egger, R. , Narayanan, R. , Helmstaedter, M. , De Kock, C., & M., O. (2012). 3D 
reconstruction and standardization of the rat vibrissal cortex for precise registration 
of single neuron morphology. PLoS Computational Biology, 8(12), 1–18. 

Gonzalez, Rafael C.,Woods, Richard E. & Eddins, S. L. . (2004). Digital Image 
Processing Using MATLAB (pp. 100,194,195,200,205, 378,404–406). PEARSON, 
Prentice Hall. doi:0-13-008519. 

He, L., Long, LR., Antani, S. & Thoma, G. (2009). Computer Assisted Diagnosis in 
Histopathology. (Vol. 3, pp. 272–287). 

Ivanovska, T., Schenk, A., Dahmen, U., Hahn, H. & Linsen, L. (2010). A fast and 
robust hepatocyte quantification algorithm including vein processing. BMC 
Bioinformatics., 11(1), 1–18. 



14  

Klein, A., Andersson, J., Ardekani, BA., Ashburner J., Avants, B., Chiang, MC., 
Christensen, GE., Collins, DL., Gee, J., Hellier, P., Song, JH., Jenkinson, M., 
Lepage, C., Rueckert, D., Thompson, P., Vercauteren, T., Woods, RP., Mann, JJ. & 
Parsey, R. (2009). Evaluation of 14 nonlinear deformation algorithms applied to 
human brain MRI registration. NeuroImage, 46(3), 786–802. 

Maintz, JBA. & Viergever, M. (1998). A survey of medical image registration. 
Medical Image Analysis, 2(1), 1–36. 

Mathworks. (2013a). Estimate Geometric Transformation (R2013a). Retrieved 
March 4, 2013, from 
http://www.mathworks.com/help/vision/ref/estimategeometrictransformation.html 

Mathworks. (2013b). imregister (R2013a). Retrieved March 4, 2013, from 
http://www.mathworks.com/help/images/ref/imregister.html. 

Mathworks. (2013c). Techniques for Visualizing Scalar Volume Data (R2013a). 
Retrieved April 6, 2013, from 
http://www.mathworks.com/help/matlab/visualize/techniques-for-visualizing-
scalar-volume-data.html. 

Mattes, D. ., Haynor, D. ., Vesselle, H. ., Lewellen, T. ., & Eubank, W. (2003). 
PET-CT image registration in the chest using free-form deformations. IEEE 
Transactions on Medical Imaging, 22(1), 120–128. 

Mattes, D., Haynor, DR., Vesselle, H., Lewellyn, TK. & Eubank, W. (2001). 
Nonrigid multimodality image registration. IEEE Transactions on Medical 
Imaging, 4322, 1609–1620. 

Oliveira, F. P. M. (2009). Emparelhamento e alinhamento de estruturas em visão 
computacional: aplicações em imagens médicas. Faculdade de Engenharia da 
Universidade do Porto. 

Oliveira, F. P. M. . & Tavares, J. M. R. S. (2011). Novel framework for registration 
of pedobarographic image data. Medical and Biological Engineering and 
Computing, 49(3), 312–324. 

Oliveira, F. & Tavares, J. (2012). Medical image registration: a review. Computer 
Methods in Biomechanics and Biomedical Engineering, ISSN: 1025-5842 (print) - 
1476-8259 (online), Taylor & Francis, 17(2), 73-93. doi: 
10.1080/10255842.2012.670855. 



15 

Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE 
Transactions on Systems, Man and Cybernetics., 9(1), 62–66. 
doi:10.1109/TSMC.1979.4310076. 

Pluim, J., Maintz, J. & MA., V. (2000). Image registration by maximization of 
combinedmutual information and gradient information. IEEE Transactions on 
Medical Imaging, 19(8), 809–814. 

Robert, s N., Magee, D., Song, Y., Brabazon, K.., Shires, M., Crellin, D., Orsi, 
NM., Quirke, R., Quirke, P. & Treanor, D. (2012). Toward Routine Use of 3D 
Histopathology as a Research Tool. The American Journal of Pathology, 180(5), 
1835–1842. 

Sharma, R. & Katz, J. (2011). Taxotere Chemosensitivity Evaluation in Rat Breast 
Tumor by Multimodal Imaging: Quantitative Measurement by Fusion of MRI, PET 
Imaging with MALDI and Histology. IEEE Transactions on Medical Imaging, 1(1), 
1–14. 

Sharma, Y., Moffitt, RA., Stokes, TH., Chaudry, Q. & Wang, M. (2011). Feasibility 
analysis of high resolution tissue image registration using 3-D synthetic data. 
Journal of Pathology Informatics, 2(6), 1–7. 

Stevens, A. & Lowe, J. (1992). HISTOLOGY. In Mosby (Ed.), (pp. 1–6). 

Zhen, M., Tavares, J. M. R. S. ., Natal, R. J., & Mascarenhas, T. (2010). Review of 
Algorithms for Medical Image Segmentation and their Applications to the Female 
Pelvic Cavity. Computer Methods in Biomechanics and Biomedical Engineering, 
13(2), 235–246. doi:10.1080/10255840903131878. 

Zitová, B. & Flusser, J. (2003). Image registration methods: a survey. . Image and 
Vision Computing, 21(11), 977–1000. 


