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  Abstract   Modern medicine has been using imaging as a fundamental tool in a 
wide range of applications. Consequently, the interest in automated 
registration of images from either the same or different modalities has 
increased. In this chapter, computer techniques of image registration are 
reviewed, and cover both their classification and the main steps involved. 
Moreover, the more common geometrical transforms, optimization and 
interpolation algorithms are described and discussed. The clinical applications 
examined emphases nuclear medicine. 

1 Introduction 

Modern medicine has been using imaging as a fundamental tool to assist in 
diagnostic procedures, monitoring the evolution of pathologies and planning 
treatments and surgeries. However, in order to fully exploit digital medical images 
and their efficient analyses, suitable semi- or full-automated methods of image 
registration must be developed [1].  
Computer techniques of image registration enable the fusion of different medical 
image modalities and the detection of changes between images acquired from 
different angles, at different acquisition times or even against an atlas that includes 
anatomical and functional knowledge. This task of image analysis can also point 
out changes in size, shape or image intensity over time and compare preoperative 
images and surgical planned outcomes with the physical world during 
interventions [2]. 
The aim of image registration techniques is to find the optimal transformation that 
best aligns the structures of interest in the input images. Accordingly, the 
techniques establish the spatial correspondence among features in the images or 
minimize an error measure or a cost function. To accomplish such goals, 
optimization algorithms are usually used to find the most suitable geometrical 
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transformations, and interpolators are employed to resample the images into the 
registered discrete spaces.  
The more usual applications of image registration techniques in nuclear medicine 
include correlative image interpretation, attenuation correction, scatter correction, 
correction for limited resolution and improvement of the reconstruction accuracy 
in emission tomography. These techniques have also been used in the co-
registration of functional studies, for the transformation of images into standard 
spaces for their comparison against both normal cases and data from other 
modalities, and in conformal radiotherapy treatment. Also, these methods have 
been used to improve the interpretation of several functional studies based on 
static images, including brain, breast, chest, liver, kidneys and colon images, or to 
assist motion analyses as in cardiac and lung studies.  
There have been previous reviews covering medical image registration in general 
[3–9], medical image classification [10], mutual-information-based registration 
methods [5], unsupervised registration methods [11], non-rigid image registration 
[12, 13], image registration of nuclear medicine images [14], image registration 
techniques for specific organs such as breast [15], brain [16, 17] and cardiac 
images [18]. In this chapter, the classifications of the registration methods 
suggested by several authors are reviewed. Then, techniques of image registration 
in general are introduced, including the geometric transforms, similarity measures, 
optimizers and interpolators. Finally, the main applications related to nuclear 
medicine imaging are examined. 

2 Registration methods: classification 

There are different classification criteria for image registration techniques 
depending on the authors. For example, image registration methods were 
classified into four categories: point methods, edge methods, moment methods and 
“similarity criterion optimization” methods [19]. Also, a classification based on: 
data dimensionality, origin of image properties, domain of the transformation, 
elasticity of the transformations, tightness of property coupling, parameter 
determination and type of interaction (interactive, semi-automatic or automatic) 
was proposed [10]. Moreover, registration techniques were also divided into: 
stereotactic frame systems, point methods, curve and surface methods, moment 
and principal axes methods, correlation methods, interactive methods, and atlas 
methods [19]. 
Registration methods can also be classified according to the subjects and the 
image modalities involved. Hence, intra-subject and intra-modality applications 
refer to the image registration of the same subject in images acquired using the 
same imaging modality. Intra-subject and inter-modality registration is the image 
registration between images of the same subject but acquired using different 
imaging modalities, which is a common case that involves Positron Emission 
Tomography (PET) and Single-Photon Emission Computed Tomography 
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(SPECT) images [20]. Inter-subject and intra-modality registration consists of 
aligning images of different subjects but acquired by the same imaging modality. 
Finally, inter-subject and inter-modality is related to the alignment of images from 
different subjects and acquired by different imaging modalities. 
Table 1 shows the classification of medical image registration methods that take 
into account the data dimensionality, nature of the registration basis, the nature 
and domain of the transformation, type of interaction, optimization procedure, 
imaging modalities, subject and object involved.  

 
Table 1 Classification of medical image registration methods (adapted from [8]). 
Classification 

Criteria 
Subdivision 

Dimensionality 
 

Spatial dimension: 2D/2D, 2D/3D, 3D/3D 

Temporal series 

Nature of the 
registration basis 

 

Extrinsic 

Invasive 
Stereotactic frames 

Fiducials (screw markers) 

Non-invasive 
 

Moulds, frames, dental adapters, etc. 

Fiducials (skin markers) 

Intrinsic 

Landmark    
based 

 

Anatomical 

Geometrical 

Segmentation      
based 

 

Rigid models (points, curves, surfaces, volumes) 

Deformable models (snakes, nets) 

Voxel property 
based 

 

Reduction to scalar/vectors (moments, principal 
axes) 

Using full image contents 

Non-image based (calibrated coordinate systems) 
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Nature of 
transformation 

 

Rigid (only rotation and translation) 

Affine (translation, rotation, scaling and shearing) 

Projective 

Curved 

Domain of 
transformation 

 

Local 

Global 

Interaction 
 

Interactive 
 

Initialization supplied 

No initialization supplied 

Semi-
automatic 

 

User initializing 

User steering/correcting 

Both 

Automatic 

Optimization 
procedure 

Parameters computed directly  

Parameters searched (the transformation parameters are computed 
iteratively using optimization algorithms) 

Imaging 
modalities involved 

Monomodal  

Multimodal 

Modality to model (register the coordinate system of the imaging 
equipment with a model coordinate system) 

Patient to modality (register the patient with the coordinate system of 
the imaging equipment) 

Subject Intra-subject  

Inter-subject  

Atlas 
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Object Head (brain, eye, dental, etc.) 

Thorax (entire, cardiac, breast, etc.) 

Abdomen (general, kidney, liver, etc.) 

Limbs 

Pelvis and perineum 

Spine and vertebrae 

Registration methods based on pixel (or voxels in 3D) intensity are known as 
intensity based, while those based on the geometrical structures extracted from the 
images as feature or geometrical based; furthermore, frequency or Fourier based 
registration techniques use the image in the frequency domain and the Fourier 
transform properties. Feature space information, or techniques based on the 
amount of image information used, is another classification proposed in the 
literature [8]. 

3. Image registration  

Methods of image registration aim to find the optimal transformation that best 
aligns the structures of interest in the input images [21–23]. After the attribution of 
a common coordinate system, the images are transformed into this system. 
Usually, the registration methods are based on geometric approaches, known as 
feature-based or intensity-based methods. Feature-based methods start by 
establishing the correspondence between features in the input images and then 
compute the geometrical transformation that aligns these features. Intensity-based 
methods iteratively adjust the transformation that aligns the input images taking 
into account the intensity of the image pixels (or voxels in 3D), through the 
minimization of a cost function. Usually, the cost function consists of a similarity 
measure, i.e. the registration algorithms try to minimize an error measure [24]. In 
such approaches, optimization algorithms are needed to find the most suitable 
geometrical transformation, and interpolators are employed to resample the image 
data into the new common discrete space.  
Landmark-based registration methods are based on the identification of the 
correspondence between landmarks in the two input images. These markers can be 
distinguished as extrinsic, anatomical and geometrical landmarks. External 
landmarks are well suited for validation studies; however, their routine application 
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can be impracticable, since patient studies may be realized on different days and 
the location of the markers must not vary during a study. On the other hand, 
internal anatomical landmarks do not need marker preparation, but in common 
cases it is difficult to obtain a reliable and accurate localization; hence, they are 
not used in routine nuclear medicine, but just to access the efficiency of the 
registration methods. Geometrical landmarks consist of corners and other 
geometric features that can be identified automatically in the images, however, 
these features usually present low resolution and low signal-to-noise levels in 
nuclear medicine images [14]. These problems can be partially overcome using 
image registration algorithms based on different combinations of landmark-, 
surface-, attenuation- and intensity-based registration approaches [25, 26]. 
Boundaries or surfaces are more distinct in medical images than the usual simpler 
landmarks, and are therefore a valuable tool for registration methods based on 
surfaces. These methods require the establishment of correspondence between 
boundaries or surfaces that are defined in the input images, and they give good 
results in inter-modality registration, where both images can have very different 
pixel (or voxel) values [14]. There are four methods to carry out a surface 
registration, namely: feature, point, model and global similarity based methods. 
The criterion for selecting one of these is application-specific. The size of the 
transformation to be computed and its nature are also factors of choice [27].  
Feature-based methods enable building explicit models of distinguishable 
anatomical elements in each image such as surfaces, curves and point landmarks, 
which can be aligned with their counterparts in the second image. The use of 
feature-based methods is recommended for images that contain enough distinctive 
and easily detectable features [15]. Figure 1 illustrates a typical feature-based 
registration algorithm.  
Hybrid registration, using combined surface and volumetric-based registration 
methods, enables the extraction of relevant geometrical information from surface-
based morphing and its following diffusion into the volume [28]. Surface 
alignment has been employed, for example, in image-guided surgery [29]. 
On the other hand, intensity based registration techniques align intensity patterns 
using mathematical or statistical criteria over the whole image without considering 
anatomical information. Combining geometric features and intensity features in 
registration should result in a more robust method. Therefore, hybrid algorithms 
involving intensity-based and model-based criteria allow the establishment of 
more accurate alignments, since these methods tend to average the error caused by 
noise or random fluctuations [12]. Figure 2 presents the general framework of the 
registration methods based on the minimization of a cost function. Image 
registration algorithms can also perform image correction by using the intensities 
of pixels (or voxels), locally or globally, in the two input images [30]. 
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Figure 1 Diagram of a typical feature-based registration algorithm 

Image pre-processing is generally used before the registration to ensure that a 
suitable registration solution is successfully achieved, since it provides an 
enhanced definition of the object boundaries, and it enables intensity remapping in 
order to modify the range of the intensities that are used by the registration 
algorithms. However, it is fundamental that the pre-processing algorithms do not 
change the original images excessively and are not too time-consuming [14]. 
Rigid and affine registrations can be found in seconds; contrarily, non-rigid 
registrations can take minutes or hours [12]. Therefore, it is important to improve 
the speed of image registration techniques. Coarse-to-fine methods are commonly 
used, as they initially provide fast estimates and then gradually better-quality ones. 
Another solution to reduce the required registration time consists in sub-sampling 
the original images, involving spatial domain- or intensity-based procedures, and 
increase the image resolutions as the registration algorithm gets closer to the final 
solution [14]. 
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Figure 2 General scheme of the image registration methods based on the optimization of a 

cost function (adapted from [14]) 

 

3.1 Geometric transformations 

The goal of image registration algorithms is to find the transform involved 
between the two input images by means of geometrical transformations, whose 
number of parameters varies with the complexity of the transformation model 
used. The selection of the appropriate geometrical transformation model is crucial 
to the success of the registration process.  
The geometrical transformation model can lead to rigid or non-rigid registrations. 
The simplest geometrical transformation model is based on a rigid transform that 
only considers rotations and translations, which is applied to all elements of one of 
the input images, usually known as moving images. Affine transform models 
include translations, rotations, scaling and shearing so that the straight lines of one 
image are kept as straight lines in a second image, and the parallel lines are 
preserved parallel [4]. An identity transformation maintains all the elements of the 
input image in their original configuration. Fig. 3 illustrates these three types of 
transformation using squares. It should be noted that, a more complex 
transformation model implies a higher number of degrees of freedom leading to 
non-rigid transformations. 
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Figure 3 Three types of geometrical transformations applied to squares: identity 
transformation (left), rigid transformation (middle) and affine transformation (right). 

Image registration algorithms based on non-rigid transformations are required, for 
example, when the alignment between images of one individual and an atlas needs 
to be established [31], or when substantial anatomical variability among 
individuals needs to be accommodated [12, 13, 32, 33]. When compared with rigid 
transformations, non-rigid based registration algorithms have a higher number of 
degrees of freedom [34, 35]. They are frequently used in image registration when 
the image acquisition parameters are not known [36], and usually include an initial 
rigid body or affine transformation that provides an initial solution for the 
transformation. Hence, a good pre-registration method is recommended to obtain 
an initial position and orientation closer to the optima non-rigid registration 
solution. However, a higher number of parameters in the transformation model 
can introduce undesirable transformations and therefore, a regularization term 
must be taken into account [37–39]. Non-rigid image transformations can be 
achieved using basis functions such as a set of Fourier [40–43] or Wavelet basis 
functions [44].  
Image registration using splines can be achieved with techniques based on the 
assumption that a set of control points are mapped into the target image from their 
corresponding counterparts in the source image [45], and a displacement field can 
be established and interpolated [46]. Therefore, spline-based geometrical 
transformations either interpolate or approximate the displacements at control 
points. Thin-plate splines (TPS) are based on radial basis functions and are used in 
surface interpolation of scattered data [32, 33]. Each basis function contributes to 
the transformation, and each control point has a global influence on the 
transformation. The modelling of local deformations can be more difficult with 
these functions, which requires the use of free-form transformations based on 
locally controlled functions [47, 48]. B-splines deform an object through the 
manipulation of an underlying mesh of control points generating a smooth 
continuous transformation. Thin-Plate Spline Robust Point Matching (TPS-RPM) 
algorithms have been used for non-rigid registration, showing robustness when 
aligning models with a large number of outliers [46].  
Elastic, deformable or curved registration methods enable deforming and 
resampling similar to the stretching of an elastic material. Their limitations are 
because of the highly localized deformations that cannot be modelled due to stress 
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deformation energy [45]. In the literature, there are reviews about the most 
promising non-linear registration strategies currently used in medical imaging, 
such as a novel curvature based registration technique that permits a faster image 
registration [51], the application of a deformable registration method in the 
automated hexahedral meshing of anatomical structures [52, 53], symmetric non-
rigid registration [54] and Brownian Warps, which is a diffeomorphism 
registration algorithm [55]. Also fluid registration and registration using optical 
flow are approaches that are equivalent to the equation of motion for 
incompressible flow [45].  

3.2 Similarity measures 

The characteristics of the image modalities and the level of misregistration must 
be taken into account on choosing the similarity measure. Similarity measures can 
be classified into feature or intensity based metrics; however, some similarity 
metrics can be included in both classes. The similarity measure used in 
deformable image registration is commonly constituted by one term related to the 
pixel (or voxel in 3-D) intensity or to the matching between the structures in the 
images, and another one related to the deformation. Then, the cost function built is 
a trade-off between the pixel (or voxel) intensity or matching between the 
structures and the constraints imposed on the deformation field. 
Concerning the feature based measures; the similarity measure commonly used 
represents the average distance between the corresponding features. Similarly, 
surfaces or edges based measures quantify an average distance between the 
corresponding surfaces, or between a surface extracted in one image and its 
corresponding set of points in the other image [9]. 
The simplest similarity measure compares the intensity values between the input 
images directly [14]. To register intra-subject and intra-modality images, the 
Correlation Coefficient (CC) has been an adequate similarity measure, since it 
involves the multiplication of the corresponding image intensities assuming a 
linear relationship between the intensity values. However, it is possible to subtract 
the corresponding image intensities instead of multiplying them, thus the search 
for the best alignment is based on the Smallest Sum of Squared Intensity 
Differences (SSD). However, due to the sensitiveness of SSD to a small number 
of voxels that have very large intensity differences between the input images [45], 
the Sum of Absolute Differences (SAD) is usually employed instead, as shown in 
Figure 4 [56].  
 

Image #1 Image #2 SAD values between 
images #1 and #2 
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Figure 4 Application of SAD to highlight the differences between the two images, before 
registration (top) and after registration (bottom).  Before the registration, the original 
images present large absolute differences (top-right image), while after the registration, the 
aligned images present low or zero absolute differences (bottom-right image). Thus, the 
similarity measure indicates how well the images are aligned. 

Ratio Image Uniformity (RIU), also known as Variance of Intensity Ratios (VIR), 
is an iterative technique similar to derived ratio images. The uniformity of the 
ratio image is quantified as the normalized standard deviation of the respective 
pixels [45]. This technique is used to find the transform that maximizes that 
uniformity. These similarity measures are used for intra-modality registration. 
Partitioned Intensity Uniformity (PIU) seeks to maximize the uniformity by 
minimizing the normalized standard deviation, and is usually used to register 
inter-modality images [4].	
  
Image registration algorithms have also been developed based on information 
theory to solve both inter- and intra-modality registration problems. This image 
registration approach can be described as trying to maximize the amount of shared 
information between the two input images, which means that information can be 
used as a registration metric [57]. The joint entropy measures the amount of 
information existing in the combined images, and it has been used for rigid and 
non-rigid image registration [48, 49]. Mutual information can be given by the 
difference between the sum of entropies of the individual images at the overlap 
regions and the joint entropy of the combined images [58]. Hence, it is the 
measure of how one image explains the other [45, 58, 60] and makes no 
assumptions about the functional form or relationship between the image 
intensities. Changes in very low intensity overlapped regions, such as those due to 
noise, can disproportionally contribute to artefacts [45] that affect the registration 
accuracy when based on mutual information, so this method is commonly used 
combined with the normalization of the joint entropy [45, 59]. 
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3.3 Optimization 

All the registration algorithms based on optimization require an iterative approach, 
whose initial estimate of the transformation is gradually refined by trial and error, 
by calculating the similarity measure, or cost function, at each iteration. So, the 
optimization process consists of both estimating the transformation and evaluating 
the similarity measure till the algorithm converges to a point when no new 
transformation can be found with a better similarity measure value [4]. Hence, the 
optimization algorithm evaluates the value of the similarity measure, searching for 
the subsequent alignment transformations that will end the registration process if 
an optimal value is reached. In other words, the registration is achieved by 
searching the transformation that increases or decreases the cost function until a 
maximum or minimum is found, depending on the type of the cost function used. 
The optimization process is based on the fact that the quality of the matching of 
two images is balanced against some constraint. This constraint has the purpose of 
prohibiting implausible deformations and may be provided, for example, by some 
estimate of the energy required to physically induce the deformation [45]. 
One of the major difficulties of the registration methods is that the optimization 
algorithms can converge to an incorrect local optimum, because multiple optima 
can exist within the space of the transformation parameters [60–62]. The 
erroneous optima can be due to interpolation artefacts or good local matches 
between features or intensities; however it can be avoided by smoothing the 
original images. Also, the position and orientation associated to the two input 
images must be sufficiently close so the algorithm converges to the best solution 
within its functional range [45]. To choose the solution that has the best function 
cost value, a multi-start optimization can be used to get the global optimal solution 
[45, 60]. Additionally, the images can be initially registered at low resolution and 
then the transformation obtained is used as the starting transformation for 
registration at a higher resolution [63, 64].  

3.4 Interpolation 

A process of interpolation is commonly applied to transform an image space into 
the space of another image in order to register them; i.e. when it is necessary to 
estimate the values of the transformed image [14]. Thus, its goal is to estimate the 
intensity at the new position [8] and depends on the motivation for registering the 
images. The accuracy and speed of the registration process can be improved 
through the use of suitable interpolation solutions. 
Nearest neighbour, linear interpolation or trilinear interpolation are the simplest 
interpolation methods, and consist of curve fitting, using linear polynomials. The 
interpolated image will be smoother than the original. When the interpolation 
complexity increases, the number of polynomial variables also increases and the 
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smoothing effect can be more severe or even generate artefacts [14]. Recent 
interpolation methods between neighbouring image slices in grey-scale are based 
on B-splines [65], geometric multi-grid [66], using a modified control grid 
interpolation algorithm [67] or adaptive 2D autoregressive modelling and soft-
decision estimation [68]. 
The interpolation error can introduce modulations in the similarity measure used 
in the registration process, since the transformations involve pure translations of 
images with equal sampling spacing, and the period of the modulation is the same 
as the sampling spacing. Interpolation methods must be used with a practicable 
computational cost; for example, by using a low cost interpolation as trilinear or 
nearest neighbour first. Hence, it is a good practice to employ a more expensive 
interpolation approach just in the last iterations of the registration process or even 
take advantage of the spatial-frequency dependence of the interpolation error, by 
using, for example, cubic B-splines or windowed sinc interpolators. Finally, the 
use of a more robust interpolation solution in the optimization step may be 
imposed if the level of smoothness and robustness of the similarity measure is 
affected by interpolation imperfections [69]. 

4 Accuracy Assessment and Validation 

The image registration methods must be validated, especially in medical 
applications. A verification process based on the comparison of the results 
obtained against a gold standard must be applied. Additionally, any process of 
accuracy assessment and validation should have a very low failure rate and be 
very accurate.  
The visual assessment of registered images has been used as a standard method; 
however, this depends heavily on the clinical experience of the observers, besides 
being subject to inter- and intra-observer variability. To overcome this 
disadvantage, the software industry has already developed standards, protocols 
and quality assessment procedures [70]. The validation usually follows a sequence 
of measurements using computer-generated models, known as software generated 
phantoms [71], and the comparison of patients’ images against the registration 
algorithms must be efficient. In order to extend the experimental validation of an 
image registration system to a clinical situation [72], the target registration error 
(TRE), which is a measure of error, is recommended to be used to monitor the 
clinical validation process [55], since it evaluates a target feature [73]. However, 
this can vary depending on the application, since there are different image 
modalities, anatomical structures and pathologies, and distinct positions within a 
view [74]. Several fiducial features can be used as registration cues, indicating the 
registration accuracy; this is a desirable method for rigid-body registration. 
Validation is accomplished by establishing statistical relationships between 
fiducial localization error (FLE) and TRE [75] to translate self-consistency into 
accuracy [74]. Furthermore, based on registration circuits, another self-
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consistency method [74] has also been considered, where a set of three or more 
images are registered in pairs. 
The efforts to improve the registration validation methods have been focussed 
more on rigid registration than on non-rigid registration [74]. Improvement in 
these methods is fundamental for novel registration models to be accepted as a 
clinical tool, which is impossible without an optimal validation method. 

5 Registration in Nuclear Medical Imaging 

Nuclear image modalities have been widely used in healthcare diagnostics. They 
provide physiological diagnoses through the use of radiotracers to map the 
metabolism and fluid flow in tissues, organs or organ systems [76]. Nuclear 
medicine benefits from such integration and image registration plays a central role 
in this integration [18, 77–79].  
In oncology, the completion of the medical Positron Emission Tomography (PET) 
examination, usually hybrid Positron Emission Tomography/Computed 
Tomography (PET/CT) [80, 81] enables the detection of tumours at early stages, 
As this exam is capable of detecting the development of a cancer it can help in the 
proper choice for the treatment and the later evaluation of the therapeutic 
response.  
In cardiology, several studies have been developed, particularly in the study of 
chronic ischemia [20, 82–85], myocardial perfusion [18–20, 86–96], 
atherosclerosis rate [85, 97], post-transplantation [18] and cardiac nervous system. 
Registration of cardiac images is more complex than the registration of images of 
static organs, since it is a non-rigid moving organ inside a non-static body, and 
exhibits few easily distinguishable and accurate landmarks [18]. Non-rigid 
registration is, for example, a key requirement for the application of cardiac 
function biomechanical models, through the building of a generic cardiac model 
that is instantiated by linear elastic registration with cardiac images of a subject 
acquired using different modalities [12]. 
As regards the neurological and psychiatric disorders, molecular imaging 
registration has the ability to reveal non-detectable lesions by other imaging 
methods [98], and provides information on the physiological and biochemical 
properties and subsequent functional integrity of brain damaged adjacent regions 
[99]. The pre-surgical evaluation of epilepsy [14, 57] and guided biopsy in brain 
tumours [19], evaluation of primary brain tumours, dementia diagnosis and 
selection of stroke patients for surgical treatment [99] are usually based on the 
quantification of regions of interest in nuclear medicine images. Such 
quantification can be automated using techniques of image processing and 
analysis; such as image registration techniques for image correction. These 
techniques also allow the study of Parkinson's disease [85, 99], Alzheimer [100, 
101], and movement disorders [102]. Monitoring changes in the individual by 
acquiring series of imaging scans and highlighting differences using image 
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registration is a common practice and it is particularly useful in dementia where 
fluid registration is a cue to visualize patterns of regional atrophies [12].  
Fully automatic multimodality image registration algorithms are also employed 
for aligning functional data with anatomic information, such as Magnetic 
Resonance/PET (MR/PET), Computerized Tomography/PET (CT/PET), and 
MR/SPECT inter-modality registrations.  

7 Conclusions 

Most current algorithms for medical image registration use rigid body 
transformations or affine transformations, and are restricted to parts of the body 
where the tissue deformations are small compared with the desired registration 
accuracy. Algorithms based on optimizing of a similarity measure and based on 
information theory can be applied automatically to a variety of imaging modality 
combinations, without the need of pre-segmenting the images, and can be 
extended to non-affine transformations. However, it is recommended to pre-
register the input images with an image registration technique based on rigid 
transformation, and then finalize the process using another image registration 
technique based on deformable transformations.  
Fully-automated inter-modality registration is still unusual in normal clinical 
practice, but this kind of image registration is being used in medical research, 
especially in neurosciences, where it is used in functional studies, in cohort studies 
and to quantify changes in structures during ageing and the development of 
diseases. However, its clinical use has logistical difficulties due to the need to 
acquire and register a large number of images in a reduced period, requiring 
advanced computational infrastructures as well as the storing of vast amounts of 
image data. 
Due to the functional diagnosis that molecular imaging provides, computer 
techniques to register SPECT and PET images have been applied in clinical 
diagnosis, in order to assess the response to treatments and the delivery of targeted 
therapies. Image registration has proved its potential to aid the medical diagnosis, 
surgery and therapy. Examples include the combination of functional and high 
anatomical information to assist the localization and determination of 
abnormalities and the planning of their treatment. Besides, differences between 
two medical exams can be directly quantified, providing more objective evidences 
of the effects of intervention or responses to therapy in successive studies. 
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