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Abstract Medical image segmentation has seen positive developments in re-
cent years but remains challenging with many practical obstacles to overcome.
The applications of this task are wide-ranging in many fields of medicine, and
used in several imaging modalities which usually require tailored solutions.

Deep learning models have gained much attention and have been lately rec-
ognized as the most successful for automated segmentation. In this work we
show the versatility of this technique by means of a single deep learning archi-
tecture capable of successfully performing segmentation on two very different
types of imaging: computed tomography and magnetic resonance.

The developed model is fully convolutional with an encoder-decoder struc-
ture and high-resolution pathways which can process whole three-dimensional
volumes at once, and learn directly from the data to find which voxels belong
to the regions of interest and localize those against the background.

The model was applied to two publicly available datasets achieving equiv-
alent results for both imaging modalities, as well as performing segmentation
of different organs in different anatomic regions with comparable success.
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1 Introduction

Segmentation of medical images is useful in a myriad of disciplines in medicine,
ranging from screening and diagnosis to treatment and follow-up. In this pro-
cess, one or more regions of interest (ROI) are extracted from the patient’s
anatomical information, in order to guide medical care. It is applied to prac-
tically all types of medical images: various forms of X-ray imaging such as
mammograms and chest X-rays, Computed Tomography (CT), Magnetic Res-
onance Imaging (MRI), ultrasounds, nuclear medicine scans such as scintig-
raphy and Positron Emission Tomography (PET), and also in natural pho-
tographs for surgery planning or forensic medicine. Typically, this is achieved
by means of manual delineation by a medical practitioner.

In this work, the focus is on radiographic images of two types in particular:
computed tomography and magnetic resonance imaging. Although these two
image modalities are used in the same anatomical regions and often for similar
purposes, their working principles and methods for acquiring information are
very dissimilar, resulting in images that are very different, highlighting differ-
ent cellular tissues, as evidenced in Figure 1. Usually MRI offers higher resolu-
tion and better contrast for soft-tissues, while CT helps identify high density
structures easily and is much less expensive. Owing to these differences, CT
and MRI can be used complementary for the same patient, highlighting the
need to have segmentation methods accurate for both image modalities.

Fig. 1 Examples of CT (on the left) [1] and MR (on the right) [2] images, at roughly the
same anatomical position for comparison purposes (these images belong to two different
subjects).

The simplest computational segmentation technique consists of a thresh-
olding method, where pixels above a certain value are classified as object of
interest and the remaining as belonging to the background. Although simple,
this method is often capable of achieving very good results. Over the years,
a myriad of rule-based as well as statistical models have been developed that
gradually improved automatic and semi-automatic segmentation, tailored to
specific uses and specific images. Recently, as in other fields of computational



Title Suppressed Due to Excessive Length 3

vision, the interest has shifted to deep learning, mostly due to its performance
[3].

The vision for widespread use of automatic segmentation in medicine offers
immense gains in productivity and efficiency: no uncertainties associated with
manual delineation and practitioner variability, ensuring consistently accurate
anatomic encompassing of the target volume, increasing treatment success and
patient survival; increase in physician time to spend with patients or studying
and researching; less time between first patient encounter and treatment start,
which improves outcomes.

This article is structured as follows: after this introduction, there is a sec-
tion covering related work, with an overview of medical image segmentation
methods. Afterwards, the methods section gives details about the developed
deep learning model. Section 4 describes the results obtained with our model
in the segmentation of two public CT and MRI datasets, and presents compar-
ative experiments with state of the art models. Lastly, in section 5, a discussion
is provided and final conclusions are drawn.

2 Related Work

Although automatic medical image segmentation has been studied for many
years and significant advances have been accomplished, it remains an active
research field with no definite general solution. The main challenges arise from
inhomogeneity in images, low contrast, noise, artifacts and human factors, as
well as details associated with image acquisition.

Clustering methods have been used for image segmentation as the purpose
of aggregating coherent regions of the image is satisfied. However, the precise
localization of irregular borders poses problems, together with the need to
previously determine number of clusters and centroids [4,5].

The deformable model offers good accuracy tailored to boundaries, such
as the active contour method [6]. Other approaches focus on regions, such
as region-growing and region merging, with complex algorithms tailored to
remove noise and enhance boundary homogeneity [7].

Machine learning (ML) experts were typically constrained to building mod-
els in two steps: feature representation, where a complex, carefully engineered
feature extraction process was performed, followed by a predictive model [8].
But the idea of a computational program that could learn representation from
dataset to final result had been sought. The breakthrough with deep learn-
ing (DL) is that no feature extraction is required. DL models can learn to
extract the features most important from the training data itself [9]. These
have become the state of the art in medical image analysis, evidenced by most
of the challenges being populated with these methods in all the top positions
nowadays. However, it is worth understanding that this only became true re-
cently. It was only in 2017 that a 3D fully Convolutional Neural Network
(fCNN) architecture by Yu et al.[10] captured first place in the PROMISE12
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prostate segmentation challenge. Since then, traditional ML models have been
continually going down the leaderboard.

Ronneberger et al. designed the U-Net (figure 2) by dividing the network
into two distinct parts: an encoding arm, progressively downsampling the in-
put through convolutions and pooling similarly to the traditional CNN; and
a decoding arm, completely symmetric to the encoding part, where at each
upsampling step they bring the spatial coordinate information of the image
from the opposite side of the network and use concatenation to place it to-
gether with the result of the up-convolution operation [11]. The model outputs
a segmentation mask, one output for each pixel of the original image: the seg-
mentation task was transformed into a pixel-wise classification task.

Fig. 2 Layout of the original U-net proposed in [11].

U-Net became widely used for medical imaging segmentation and several
improvements were soon made. Cicek et al. created a version of U-net capable
of using 3D inputs instead of 2D images [12]. Similarly, Milletari et al. proposed
V-Net, a volumetric version of U-Net and incorporated the Dice coefficient into
the loss function [13]. The advantage of having a 3D architecture is that instead
of supplying a slice of a CT or MRI scan, one inputs the whole volume into the
model, allowing for representation learning from all the data at once. Unlike
a 2D model which loses information situated between slices and is incapable
of inferring surface continuation, a 3D model can comprehend these details,
which are especially useful at the top and bottom ends of each structure. This
increases both accuracy and ease of use at the cost of computational capability.
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3 Methods

A deep neural network was designed and trained on two datasets. The archi-
tecture of the network was based on the U-net and some additional features
were added, described next.

The network has an encoder-decoder architecture, with a processing bot-
tleneck - the deepest component of the network, where the image signal is the
most encrypted - and high-resolution pathways, which convey the scale and
general geometry information of the structures in the image to the decoder
arm.

Figure 3 shows the general layout of the developed network, whose com-
ponents are described in the following sections.

The model was implemented in Tensorflow using the Keras API, with the
Python programming language.

Fig. 3 Layout of the deep learning model as implemented.

3.1 Encoder arm

The first part of the network is composed of 4 levels, each with 2 convolutional
layers and a max pooling layer.

Given that the input is three-dimensional, the convolutional operations
are also performed in 3D such that unlike more typical 2D convolutions, the
filters can be thought of as cubes instead of squares of trainable parameters.
Padding with zeros was used where necessary to ensure that the output size was
identical to the input volume at each convolutional layer. In this case, 3x3x3
filter sizes were used throughout, resulting in 27 weights per filter. The number
of filters was doubled at each level such that the convolutional operations in
the bottom level used 8 times as many filters as those in the first level. The
number of filters was defined as a hyperparameter, to be tuned in the validation
phase.
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Additionally, there is one skip connection across both convolutional layers,
mapping from the input of the first convolution to the output of the second,
where they are joined by an element-wise addition operation; wherever the
number of channels differs, an additional 1x1x1 convolution is applied in the
skip connection which consolidates the number of channels in both tensors.
This concept was taken from the ResNet architecture and is commonly called
a residual connection [14]. This helps tackle the vanishing gradient problem
typical of very deep neural networks, helps to better backpropagate the gradi-
ent to the first layers and offers some regularization thus reducing the tendency
to overfit. Batch normalization was also implemented, as part of the full pre-
activation residual connection block [15], as shown in Figure 4.

Fig. 4 A residual connection block as implemented. BN indicates batch normalization and
weight indicates a convolutional layer (adapted from [15]).

The Max Pooling operation at the end of each level consists of a simple
operation without trainable parameters, which uses a kernel size of 2x2x2
reducing therefore, the size of the input volume by 8 (decreasing to a half in
each of the three dimensions). Therefore, given an input size of 256x256x128
(length x width x slices), the sizes of the tensors at the end of each of the
encoding levels are 128x128x64, 64x64x32, 32x32x16 and 16x16x8. One can
also see that the minimum size in any of the axes must be 16.

3.2 Decoder arm

Similarly to the encoding part of the network, the decoder arm is composed
of 4 levels, and each has 3 convolutional layers. As shown in Figure 3, the first
layer at each level of the decoder arm performs an Upsampling operation, in
symmetry with the Max Pooling operation of the encoder arm. At this stage,
the input tensor is increased by 2 at each dimension where each voxel becomes
a 2x2x2 cube, increasing the total size 8-fold.
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The resulting tensor is concatenated with the output of the skip pathway
that brings in information from the encoder arm at the same level. This con-
catenation operation joins the highly encoded information of deeper layers
with the spatial information of shallower layers, so that the network can more
accurately make a decision on where to place the segmentation boundaries.
This is similar to the original U-net, as proposed by Ronneberger et al. [11].

Afterwards, a set of three convolutional layers follows at each level, with
one residual connection block as described above.

In the last decoder level at the top of the network as shown on Figure 3,
there is a 1x1x1 convolutional layer, with a Softmax as activation function,
which singles out the class with the highest prediction for each image voxel,
outputting the final segmentation mask as predicted by the full network. In
the training phase, this segmentation mask is compared with the ground-truth
segmentation, i.e., the labels, and an error is calculated based on a loss function.
Gradient descent is then used to backpropagate this error in order to update
the network’s trainable parameters and minimize the loss.

3.3 Dilated convolutions cascade

In order to enhance the segmentation ability and increase the receptive field
of the network, some additional processing units were placed along the inter-
mediate connections which bring information from the encoder to the decoder
arms, as opposed to using bare skip connections.

In this case, dilated convolutional layers were employed, which process a
larger part of the input thus gathering more information about the surround-
ing region around a given image point. The concept of dilation in convolutional
layers corresponds to the number of pixels left between those whose informa-
tion is processed; i.e., there are pixels whose values are not processed, making
it so that although the size of the filters remain constant, by increasing the
dilation rate we increase the receptive field (Figure 5).

Fig. 5 Convolutions with dilation: (on the left) a standard convolution with a 3x3 filter
size (dilation rate = 1) and (on the right) a convolution with dilation rate = 2 and the same
filter size (from [16]).

The advantage of employing this technique, especially by doing it consecu-
tively with different dilation rates, is to exploit information at different scales,
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so as to better determine object boundaries [17]. Dilated convolutions can do
this without increasing the number of parameters, hence without increasing
complexity and training time.

In this work, a set of four dilated convolutions was employed in succes-
sion, i.e. a cascade, and their outputs joined by addition. At each layer the
dilation rate is doubled, resulting in the following dilation rates for the four
convolutional layers: 1, 2, 4, 8.

Across the whole cascade there is a residual connection that provides an
alternative least-effort pathway where information can flow more easily, facili-
tating backpropagation, similarly to what is described in section 3.1. A dilated
convolutions cascade is shown in Figure 6.

Fig. 6 A dilated convolutions cascade, as implemented in the proposed network: The out-
puts of four dilated convolutional layers are joined together and with a residual connection
coming directly from the input.

Finally, the result is a powerful three-dimensional neural network, based
on the U-net architecture with high-resolution skip pathways in the form of
dilated convolutions cascades, that was trained end-to-end on an Nvidia DGX
station with four Tesla V100 GPUs.

For the segmentation task, knowing that there is a large class imbalance
- many more voxels belong to the background class than the target classes -
instead of using Cross-entropy as the loss function during the training process,
a loss function based on the Dice Coefficient was implemented, similar to the
proposed in [13]. The optimization algorithm used was Adam [18], and the
most appropriate learning rate was found by validation trials.

4 Results

The deep learning model described in the previous section was applied to
two publicly-available datasets. For a complex task such as segmentation, it
is hard to define a single metric that fully translates the capability of the
model. Hence, a set of metrics were calculated and are shown. These include
the Dice Similarity Coefficient as well as boundary-specific metrics such as the
Average Boundary Distance (ABD) and the 95th percentile of the Hausdorff
Distance (95% HD), both measured in mm, widely used in the literature for
segmentation tasks [19].
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The first dataset used is the Lung Computed Tomography Segmentation
Challenge dataset (LCTSC) which contains thoracic studies of 36 patients,
taken from different CT machines, with some variation in resolution and
anatomical landmarks [20]. It was originally published as part of a challenge
at AAPM 2017 [21]. The dataset is hosted by The Cancer Imaging Archive
[22]. The ground-truth segmentations are divided into 6 classes: background,
left and right lungs, heart, esophagus and spinal cord. In this work, 30 volumes
were used as the training set and 6 for validation.

DSC Accuracy Sensitivity Specificity ABD 95% HD
Spinal Cord 82.27 99.97 79.78 99.99 0.85 5.48
Left Lung 96.10 99.80 95.30 99.94 0.69 5.62
Right Lung 95.18 99.87 95.63 99.95 0.92 7.73
Heart 84.21 99.62 83.99 99.83 3.31 25.75
Esophagus 42.56 99.94 32.25 99.99 2.54 16.82

Table 1 Results for the Computed Tomography dataset.

Fig. 7 The learning curves for the best model with the LCTSC (on the top) and
PROMISE12 datasets (on the bottom): the loss of the model (on the left) and the Dice
Coefficient (on the right) along the training epochs are despicted.

The volumes were composed of 512x512 images with a variable number
of slices, from 115 to 279. In order to overcome the problem that all input
samples must have the same input size, all images with fewer than 256 slices,
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were padded with slices containing all zeros and the single study with more
than 256 was cut at the bottom - those extra slices were not useful as they
had no organ classes in the ground truth segmentations. The volumes were
also downsized resulting in samples with size 256x256x128, which could be
processed one at a time by the neural network as implemented.

Training was performed with some variations of the hyperparameters: learn-
ing rate and number of filters in the first level, with 3x10-4 and 26, respectively,
producing the best results. Training took place over 150 epochs and the learn-
ing curves are shown on Figure 7. The Dice Coefficient achieved on the 6
samples of the validation data was 83.32, averaged over all patients and all
organs. The best results were achieved in the lungs, with average DSC of 96.10
and the worst in the esophagus, with average DSC of 42.56, as shown in table
1.

The differences in the DSC for each organ type may be explained by the fact
that larger organs, with well defined boundaries and large contrast differences
such as the lungs are easier to contour than those with smaller dimensions and
whose boundaries are so thin as to be nearly invisible in CT.

Fig. 8 Example comparisons of the ground-truth segmentations (on the left) with the model
segmentations (on the right), for three different patients: On the top and middle rows, two
accurate examples are shown; and on the bottom row, an example where the outcome was
not so positive (in green: right lung, blue: left lung, red: spinal cord, white: esophagus, pink:
heart).

In a visual comparison of the segmentations against the ground-truth, the
model performs reasonably well, capturing the most significant landmarks with
accuracy. The main limitations concern soft tissue structures, with low con-
trast, like heart and esophagus. However, as evidenced in the bottom row of
Figure 8, even an easy organ can become an obstacle for computational mod-
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DSC Accuracy Sensitivity Specificity ABD 95% HD
Prostate 80.08 99.57 79.50 99.79 1.71 10.53

Table 2 Results for the Magnetic Resonance dataset.

els if it has considerable alterations; in this case, the patient has atelectasis,
where the left lung is filled with liquid and solid tissue, making its radiographic
signature very atypical and causing the other lung to expand to its side. Par-
ticularly, the model placed more emphasis on the side specificity than on the
organ continuity.

The second dataset used was the Prostate Magnetic Resonance Image Seg-
mentation (PROMISE12), which contains the most widely known dataset for
prostate segmentation [2]. It was originally set up for the MICCAI conference
in 2012 [23,24,25]. It is composed of a total of 80 studies, 50 publicly available
for training and 30 kept private for benchmarking purposes. Therefore, in this
work, only the 50 images in the training set were used, with 42 used for actual
training and 8 for validation.

Fig. 9 Some example comparisons of the ground-truth segmentations (on the left) with the
model segmentations (on the right), for two different patients.

In contrast with the CT dataset, only one organ was contoured, the prostate.
The best validation DSC obtained was 80.08, after 180 epochs of training,
shown in Figure 7. Additional evaluation metrics are shown in table 2. The best
learning rate was found to be 3x10-3. A visual comparison with the ground-
truth segmentations is shown in Figure 9. The model is able to identify the
prostate gland, accurately separating it from the background, mostly avoiding
pitfalls in the surrounding tissue with similar image features. On the bottom
row, however, we can see that the model has difficulty in identifying the pe-
ripheral zone of the prostate (bottom of the segmentation), likely because it
has similar intensity values to the surrounding tissue and a vanishing bound-
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DSC Accuracy Sensitivity Specificity ABD 95% HD
3D U-net 77.70 95.91 76.26 95.99 3.32 22.71
U2-net 79.29 99.86 76.63 99.97 1.70 11.04
Our model 80.06 99.84 77.39 99.94 1.66 12.28

Table 3 Comparative results of different models on the Computed Tomography dataset.

DSC Accuracy Sensitivity Specificity ABD 95% HD
3D U-net 79.43 99.21 84.00 99.50 2.49 11.38
U2-net 80.70 99.23 76.12 99.79 2.26 12.13
Our model 80.08 99.57 79.50 99.79 1.71 10.53

Table 4 Comparative results of different models on the Magnetic Resonance dataset.

ary, while the boundary between the zones inside the prostate gland have more
contrast.

4.1 Comparative experiments

In order to better assess the value of the proposed model, comparative exper-
iments were performed with state of the art deep learning models which have
the ability to perform segmentation on medical images: the 3D U-net proposed
by Cicek et al. [12] and the U2-net proposed by Qin et al. [26]. Both models
were trained with scripts found in Github pages with the correct implemen-
tations provided by the authors [27,28] and evaluated in the same manner as
our model for fair comparisons.

For the CT dataset (LCTSC), the results are presented in Table 3, where
the average across all organs (disregarding the background class) was taken for
each metric, to allow for easier comparisons. Our model achieved the highest
Dice score and also the lowest average boundary distance, although it was very
close to U2-net, which achieved a lower Hausdorff distance.

Regarding the PROMISE12 dataset, the results are very close among the
three models, shown in Table 4. The highest volumetric Dice score was achieved
by the U2-net, whilst our model achieved the best result as to the boundary
metrics.

Both the 3D U-net and the U2-net use plain skip connections as the transfer
of information from the encoding to the decoding arms of the network, whereas
our model introduces the dilated convolutions cascade where additional pro-
cessing of information is done, which can better capture fine edge details at
a given level of abstraction and scale to be transferred to the decoding arm.
This is likely the reason behind the better result on surface boundary metrics,
as the cascade acts as a high-resolution pathway for edge information. On the
other hand, the smaller U-net-like architecture at each level of the U2-net can
more accurately determine coarser organ shape features leading to a higher
Dice score on the PROMISE12 validation set.
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5 Conclusions

In summary, an image segmentation neural network was implemented, based
on the original U-net and with some variations to improve its performance:
fully three-dimensional architecture, residual connection blocks, skip connec-
tion high-resolution pathways through cascades of dilated convolutions, and a
loss function based on the Dice Coefficient.

When trained on two very different datasets, LCTSC and PROMISE12,
with CT and MRI images, respectively, the network achieved good results, as
evidenced by the quantitative analysis and the visual comparisons against the
ground-truth segmentations. This work verifies the versatility of deep learning
models for segmentation, showing that the same architecture can be applied to
medical imaging techniques with very different characteristics. No handcrafted
feature extraction is required, facilitating the implementation. Furthermore,
segmentation of multiple structures at once is viable and accurate with this
method.

The additional network modules tailored to this model give it the ability
to generate consistent segmentations, with smooth boundaries, reflecting the
features of the underlying patient scan. It is able to use both the spatial
information of the whole volume and the local features of the surrounding
voxels to determine the presence of anatomic structures and organ boundaries.
The model is particularly successful in large organs, and has some limitations
in thin and long structures. Larger datasets could help to overcome these
problems. However, more than just larger datasets, the requirement is for
datasets which encompass a large variation of data, more representative of
real world diversity.

As part of future work, we plan to apply this same network architecture
to a curated dataset that we are collecting, with a large number of samples
from a diverse population, in an attempt to better understand the limitations
of this model and help improve its performance.
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