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ABSTRACT 

Development of packaging systems to maximize quality retention 

and increase shelf life of Pleurotus mushrooms 

Fresh horticultural commodities are excellent sources of vitamins, fiber and 

minerals for the human diet. They are also very perishable and highly dependent on 

the management of the postharvest environment surrounding the product. Therefore, 

quality maintenance over time relies on the success in the reduction of the 

physiological activity of the commodity. 

Modified atmosphere packaging (MAP) used under strict temperature control is 

a postharvest technology that has been applied for many years in a wide range of 

commodities. MAP is known to directly affect commodity metabolism, with a positive 

effect on microbiological spoilage and, consequently, on the extension of the 

commodity shelf life. 

MAP relies on the interplay between the respiration process of the product and 

the gas exchange through the package that contains the product. The movement of O2 

and CO2 within the package creates a gradient that will, at equilibrium, lead to an 

atmosphere composition considered optimal for the preservation of the product.  

In mushrooms, postharvest biological changes are particularly fast. Mushrooms 

have high respiration rate, tends to lose moisture rapidly and gets discoloured at a very 

fast rate. Predicting the kinetics of respiration and transpiration rate of oyster 

mushrooms (Pleurotus ostreatus), as influenced by temperature, relative humidity and 

storage time, is important in order to overcome the lack of information regarding the 

effect of storage conditions on oyster mushroom quality. 

The main aim of this work is to estimate the respiration rate (RR) and the 

transpiration rate (TR) of oyster mushrooms in order to evaluate the response of 

postharvest technologies such as reduced temperatures, modified atmosphere and 

moisture absorbers in the retention of their quality and, ultimately, contribute for the 

development of novel packaging strategies.  
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The respiration rate of oyster mushrooms was evaluated under different 

constant storage temperatures (2, 6, 10, 14 and 18 ºC) and the impact of each storage 

temperature on quality attributes such as colour, solid soluble content, electrolyte 

leakage and mass loss, directly linked to the commodity metabolism, was also 

determined. Herein, it is shown that time had a significant effect on the oyster 

mushroom RR, decreasing over time. Storage temperature also had a significant effect 

in mushrooms quality. A gradual yellowness and high mass losses were also found 

throughout storage life, with an increase rate as storage temperature increases. 

Results show the importance of low temperature on oyster mushroom quality retention. 

Furthermore, results show that, under the conditions tested, storage of fresh oyster 

mushrooms at 2 °C has the potential to increase shelf life.  

Given that respiration rate is an important indicator of postharvest senescence, 

reliable predictions of respiration rates are critical for the development of Modified 

atmosphere packaging (MAP). To study the influence of storage time and temperature 

on the respiration rate, oyster mushrooms were stored at constant temperatures of 2, 

6, 10, 14 and 18 °C under ambient atmosphere. Respiration rate data was measured 

with eight hour intervals up to 240 h. Again, a decrease of respiration rate was found 

after the cutting of the carpophores. Therefore, time effect on respiration rate was 

modelled using a first order decay model. The results also show the positive influence 

of low temperatures storage on mushroom respiration rate and the primary model 

explaining the effect of time on oyster mushroom’s RR also included the temperature 

dependence according to the Arrhenius equation. Moreover, the model included a 

parameter describing the decrease of the respiration rate, from the initial time until 

equilibrium. The overall model fitted well to the data and can be relevant for the choice 

of an appropriate packaging system for fresh oyster mushrooms. 

Atmospheric composition (low O2 and high CO2) can affect respiration rate of 

horticultural commodities. To assess the potential benefits of MAP, the RR of fresh 

oyster mushrooms was evaluated under different concentrations of O2 and CO2 at a 

constant temperature (2 ºC) during storage. Six atmosphere were tested, according to 

a full factorial design, with 2 levels of O2 (2 and 15 % v/v) and 3 levels of CO2 (5, 10 or 

20 % v/v) and with ambient air used as a control. Results showed that RR was affected 

by the conditions tested. Lower RR were found when mushroom were stored under 2 

% O2 and 20 % CO2 (v/v), indicating that MAP under this levels may have potential in 
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increasing oyster mushroom shelf life. A response surface regression analysis was 

also used to determine the effect of O2 and CO2 on oyster mushrooms respiration rate.  

Postharvest transpiration is also an important physiological process affecting 

storage life and overall quality. Although MAP of fresh produce can be used to restrain 

postharvest mass losses, its use in high metabolic products like mushrooms can lead 

to condensation inside the package, ultimately leading to quality losses and shelf-life 

shortening. Therefore, quantification of fresh produce transpiration rate (TR) and the 

use of predictive models could be useful to improve packaging design. To evaluate the 

impact of storage conditions (temperature and RH) on oyster mushroom transpiration 

rate over storage time, mushrooms were stored at 2, 6, 10, 14 and 18 °C and at 86, 96 

and 100 % relative humidity (RH) under ambient atmosphere. Periodically, mushrooms 

mass losses were recorded over 248 h of storage. The results showed that both RH 

and temperature had a significant effect on oyster mushroom TR. Low temperatures 

and high RH decreases mass losses over storage time and therefore transpiration rate. 

An empirical mathematical model considering the effect of temperature and RH was 

developed. Temperature effect was explained using an Arrhenius model and the 

constants of the model were then fitted to linear equations to explain the effect of the 

relative humidity of storage on oyster mushrooms transpiration rate. The novel 

information obtained regarding oyster mushroom mass loss and the developed model 

may be useful for improving packaging design.  

The usefulness of improving MAP of oyster mushrooms, by controlling the 

levels of moisture inside the package, was also tested using different mixtures of 

moisture absorbers in order to identify the mixture that matches the requirements of 

relative humidity inside oyster mushrooms package. Moisture holding capacity of the 

different mixtures was evaluated and a cubic model obtained. According to the model, 

a mixture containing 0.5, 0.26 and 0.24 (m/m) of calcium oxide, calcium chloride and 

sorbitol respectively yield a moisture holding capacity of 0.81 g water.g-1 desiccant and 

remains in powder form for at least 117 hours at 10 ºC presenting therefore, good 

perspectives for application of mixed desiccant for packaging of oyster mushrooms.  

After gathering the necessary information regarding the Pleurotus metabolism 

and moisture holding capacity of the water absorber mixtures, a final validation 

experiment was developed. Locally grown oyster mushrooms were packaged in 

polystyrene trays and stored under different temperature regimes over a 240 h period. 
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Simulated commercial packages were compared with MAP and with MAP with 

moisture absorber obtained in the previous chapter. Levels of O2 and CO2 inside the 

packages and quality evaluation that included both physical (visual appearance, mass 

loss, colour of the cap and texture) and chemical (pH, SSC) parameters were 

determined. Quality of oyster mushrooms was affected by storage time, package and 

temperature regime. Temperature profile significantly affected the quality of oyster 

mushrooms, with mushrooms maintained under abuse temperature showing a fast rate 

of quality loss regarding colour and texture alterations and mass loss. The addition of 

the moisture absorber limited some condensation on mushroom surface.  

This thesis provides novel information regarding the most accurate strategies to 

maintain the quality of oyster mushrooms namely by adjusting the storage time, type of 

package and temperature. The usefulness of the results here presented is also 

expected to motivate the development of other species-specific preservation systems 

that might be important for mushrooms with commercial significance. 

KEY-WORDS: Postharvest technology, modified atmosphere packaging, moisture 

absorber, Pleurotus ostreatus, mass loss, respiration rate, mathematical modelling,  
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RESUMO 

Desenvolvimento de sistemas de embalagem para maximizar a 

retenção da qualidade e aumentar o tempo de vida útil de 

cogumelos do género Pleurotus 

Os produtos hortícolas frescos são excelentes fontes de vitaminas, fibras e 

minerais. Contudo, são muito perecíveis e muito dependentes do tipo de cuidados pós-

colheita. Por conseguinte, a retenção da qualidade durante o armazenamento baseia-

se principalmente no êxito na redução da atividade fisiológica do produto.  

A embalagem em atmosfera modificada (EAM), utilizada sob rigoroso controlo 

de temperatura é uma tecnologia pós-colheita que tem sido aplicada desde há muitos 

anos numa vasta gama de produtos. A EAM é conhecida por afetar diretamente o 

metabolismo dos produtos hortícolas e pelo efeito positivo no controlo de 

microrganismos e, consequentemente, sobre a extensão da vida-útil do produto. 

A EAM baseia-se na interação entre o processo de respiração do produto e a 

troca de gases através da embalagem que contém o produto. O movimento de O2 e 

CO2 no interior da embalagem cria um gradiente gasoso que, no estado de equilíbrio, 

origina uma composição da atmosfera considerada ideal para a conservação do 

produto. 

A pós-colheita de cogumelos é caracterizada por mudanças biológicas 

particularmente rápidas. Os cogumelos têm alta taxa de respiração, perdem água 

rapidamente e sofrem alterações de cor a um ritmo muito rápido. A previsão das taxas 

de respiração e transpiração de repolga (Pleurotus ostreatus) e a influência da 

temperatura, humidade relativa e tempo de armazenamento é de extrema importância 

para colmatar, a falta de informação sobre as condições de armazenamento ótimas 

deste produto.  

O principal objetivo do presente trabalho é estimar a taxa de respiração e a 

taxa de transpiração de Pleurotus, a fim de avaliar a resposta de tecnologias pós-

colheita, tais como baixas temperaturas e atmosfera modificada na retenção da 
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qualidade e, assim contribuir para o desenvolvimento de novos sistemas de 

embalagem que aumentem o tempo de vida útil de cogumelos do género Pleurotus.  

A taxa de respiração de Pleurotus foi avaliada sob diferentes temperaturas de 

armazenamento constantes (2, 6, 10, 14 e 18 ºC) e, o impacto da temperatura de 

armazenamento nos atributos de qualidade, tais como a cor, o teor em sólidos 

solúveis, a perda de eletrólitos e perda de massa, diretamente ligada ao metabolismo 

do cogumelo, também foi determinado. Quer o tempo de armazenamento quer a 

temperatura têm um efeito significativo na taxa de respiração do cogumelo que diminui 

com o tempo. A temperatura teve também influência na qualidade do cogumelo, 

especialmente no que se refere às perdas de massa obtidas e amarelecimento gradual 

do cogumelo. Os resultados mostram a importância da utilização de baixas 

temperaturas na retenção da qualidade do cogumelo. Além disso, os resultados 

demostram que, nas condições testadas, o armazenamento a 2 ºC pode aumentar a 

vida de útil do produto.  

Tendo em conta que a taxa de respiração é um importante indicador de 

senescência pós colheita, as previsões das taxas de respiração são fatores críticos 

para o desenvolvimento de EAM. Para estudar a influência do tempo de 

armazenamento e da temperatura na taxa de respiração, os cogumelos foram 

armazenados a temperaturas constantes de 2, 6, 10, 14 e 18 ºC sob atmosfera 

ambiente. A taxa de respiração foi medida a cada oito horas até às 240 horas de 

armazenamento. Mais uma vez, verificou-se uma diminuição da taxa de respiração 

após o corte dos cogumelos. Como tal, o efeito do tempo na taxa de respiração de 

cogumelos foi modelado com uma cinética de primeira ordem. Os resultados mostram 

também o efeito positive das baixas temperaturas de armazenamento na taxa de 

respiração. Como tal, o modelo primário que explica o efeito do tempo na taxa de 

respiração incluiu também a dependência da temperatura de acordo com o modelo de 

Arrhenius. O modelo final inclui ainda um parâmetro que descreve a redução da taxa 

de respiração a partir do momento inicial, até ao equilíbrio. O modelo global ajustou-se 

bem aos dados e pode ser relevante para a escolha adequada de um sistema de 

embalagem para Pleurotos frescos. 

A composição da atmosfera dentro da embalagem (níveis baixos de O2 e altos 

de CO2) pode também afetar a taxa de respiração de produtos hortícolas. Para avaliar 

esses potenciais benefícios para cogumelos, a taxa de respiração de cogumelos foi 
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avaliada sob diferentes concentrações de O2 e CO2 a uma temperatura constante de 2 

ºC. Foram testadas seis atmosferas, de acordo com um delineamento fatorial 

completo, com 2 níveis de O2 (2 e 15 % v/v) e três níveis de CO2 (5, 10 ou 20 % v/v) e 

com o ar ambiente, utilizado como controlo. Os resultados mostraram que a taxa de 

respiração foi afetada pelas condições testadas. A taxa de respiração mais baixa foi 

observada para cogumelos armazenados a 2 % O2 e 20 % de CO2 (v/v), o que indica 

que a utilização destes níveis de O2 e CO2 pode ter efeitos positives no aumento da 

vida útil do produto.  

A perda de água ou transpiração pós-colheita é também um processo 

fisiológico importante que afeta o tempo de armazenamento e a qualidade global do 

produto. Embora o uso de EAM possa restringir a perda de massa, a sua utilização em 

produtos de elevada taxa metabólico, como o cogumelo pode originar condensação no 

interior da embalagem, levando a perdas de qualidade e redução de vida útil. Portanto, 

a quantificação da taxa de transpiração e a utilização de modelos de previsão pode ser 

útil para melhorar o desenho da embalagem. Para avaliar o impacto das condições de 

armazenamento (temperatura e humidade relativa) na taxa de transpiração de 

cogumelos ao longo do tempo de armazenamento, estes foram armazenadas a 2, 6, 

10, 14 e 18 ° C e a 86, 96 e 100% de humidade relativa em atmosfera ambiente. 

Periodicamente, as perdas de massa foram registadas durante um período máximo de 

248 horas. Os resultados mostraram que quer a temperatura, quer a humidade relativa 

tiveram um efeito significativo sobre a taxa de transpiração. As baixas temperaturas e 

altas humidades relativas diminuíram as perdas de massa ao longo do tempo de 

armazenamento e, portanto, a taxa de transpiração. Um modelo matemático empírico 

considerando o efeito da temperatura e HR foi desenvolvido. O efeito da temperatura 

foi modelado através de uma equação de Arrhenius e as constantes do modelo foram 

modeladas com equações lineares para explicar o efeito da humidade relativa na taxa 

de transpiração de Pleurotus. As informações obtidas sobre a perda de massa de 

cogumelos e, consequentemente o modelo desenvolvido podem ser úteis para 

melhorar o desenho da embalagem para este produto.  

A utilização de absorvedores de humidade para controlar os níveis de água 

dentro da embalagem foi também considerada. Para o efeito, avaliou-se a capacidade 

de retenção de água das diferentes misturas e obteve-se um modelo cúbico. De 

acordo com o modelo, uma mistura contendo 0.5, 0.26 e 0.24 (m/m) de óxido de 

cálcio, cloreto de cálcio e de sorbitol, respetivamente possui uma capacidade de 
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retenção de água de 0.81 gágua.g

-1, permanecendo na forma de pó durante pelo menos 

117 horas a 10ºC. Por conseguinte, os resultados apresentam boas perspetivas para 

aplicação de um absorvedor de humidade para embalagem de Pleurotus. 

Depois de reunir as informações necessárias sobre o metabolismo de 

Pleurotus e da capacidade de absorção de água das misturas de dissecantes 

consideradas, a experiência final foi desenvolvida para validar uma embalagem para o 

armazenamento de cogumelo. Para o efeito, Pleurotus cultivados localmente foram 

embalados em bandejas de poliestireno e armazenadas sob diferentes regimes de 

temperatura por um período de 240 horas. As embalagens comerciais foram 

comparadas com as embalagens com modificação da atmosfera e com embalagens 

com modificação da atmosfera e absorvedor de humidade obtido no capítulo anterior. 

Os níveis de O2 e CO2 no interior da embalagem e a avaliação da qualidade, que 

incluiu parâmetros físicos (aparência visual, perda de massa, cor e textura) físicos e 

química (pH e teor em sólidos solúveis) foram determinados. A qualidade dos 

cogumelos foi afetada pelo tempo de armazenamento, pelo tipo de embalagem e pelo 

perfil de temperatura. A temperatura afetou significativamente a qualidade dos 

cogumelos, com estes mantidos sob temperaturas de abuso com perdas rápidas de 

qualidade no que se refere à cor, textura e perda de massa. A adição do absorvedor 

de humidade permitiu controlar de alguma forma a ocorrência de condensação na 

superfície do cogumelo. 

Esta tese fornece novas informações sobre as estratégias mais precisas para 

manter a qualidade de cogumelos ostra nomeadamente ajustando o tempo de 

armazenamento, do tipo de embalagem e da temperatura. A utilidade dos resultados 

aqui apresentados também é esperado para motivar o desenvolvimento de outros 

sistemas de preservação específica de espécies que podem ser importantes para 

cogumelos com significado comercial. 

PALAVRAS-CHAVE: Tecnologia pós-colheita, embalagem em atmosfera modificada, 

Absorvedor de humidade, Pleurotus ostreatus, perda de massa, modelação 

matemática.  
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1.1. The importance of postharvest preservation 

Fresh horticultural commodities are fundamental components in a balanced 

healthy diet, providing vitamins, minerals and phytochemicals. Additionally, horticultural 

commodities are recommended as a source of dietary fibber (Slavin and Lloyd, 2012). 

Harvested horticultural products remain as living tissues subject to continuous 

metabolism. Before harvesting, when horticultural commodities are attached to the 

parent plant, losses of substrates and moisture due to respiration and transpiration are 

replaced. After harvest, however losses are not replaced and quality declines, limiting 

horticultural commodities shelf life.  

Respiration involves a chain of oxidation–reduction reactions, each of which is 

catalysed by specific enzymes which brea s down or anic reserves to simpler 

molecules releasing energy used for other metabolic processes of the cell (Kays, 1991; 

Fonseca et al., 2002a). An inverse relation exists between respiration rate and storage 

life- higher respiration rates are associated with higher deterioration of commodities 

and consequently lower storage life (Brash et al., 1995).  

Moisture loss by transpiration in fresh products is associated with mass and 

quality losses and it is assumed to be a major cause of postharvest loss in some 

commodities such as leafy vegetables or citrus fruits (Ben-Yehoshua, 1969).  

The goal of postharvest techniques is to maintain the level of quality found at 

harvest, so proper storage conditions are key factors to maintain maximum quality. 

One of the most important approaches for overall quality retention is proper control of 

temperature and relative humidity in the storage environment (Kader, 2002).  

Although the management of temperature and relative humidity have a 

well-known positive effect, other hurdles may be used to obtain maximum quality. The 

low levels of O2 and the high levels of CO2 in modified atmospheres can potentially 

reduce respiration rate, ethylene sensitivity and production, decay and physiological 

changes, namely oxidation, with the resultant benefit of extending the storage life of the 

fresh produce (Kader, 1987). 



36 
FCUP 
Development of packaging systems to maximize quality retention and increase shelf life of Pleurotus 
mushrooms 

 
The selection of the best storage conditions for a particular commodity helps to 

reduce postharvest losses, optimizing quality and maintaining fresh appearance and 

nutritional quality.  

1.2. The relevance of mushrooms in human diet and health 

In recent years, demand for fresh mushrooms is increasing due to their 

organoleptic, nutritional and pharmacological properties. The total number of species of 

mushrooms has been estimated as reaching about 140.000, though only a small 

fraction (10%) are currently known (Wasser, 2002).  

The inclusion of mushrooms in human diet is a long lasting story as a key 

source of nutrients and proteins. Judging from archaeological finds, mushrooms and 

other fungi have been used since before recorded history (Moore and Chiu, 2001).  

Several studies have been demonstrated that mushrooms have a high protein 

and carbohydrate content, low fat and many minerals and vitamins (Mattila et al., 2001; 

Cohen et al., 2002; Phillips et al., 2012) indicating a balanced food that might have had 

an important role in human diet during evolution. In addition to their nutritional value, a 

significant role in human health is well supported by scientific research. Mushrooms 

protect human cells against oxidative damage (Yildirim et al., 2012), enhance the 

immune response in the anti-inflammatory process (Jedinak et al., 2011), protect 

against cardiovascular disease (Martin, 2010) and diabetes mellitus (Lo and Wasser, 

2011), two of the most common human diseases. As well, mushrooms have 

antibacterial activity (Singdevsachan et al., 2013) and perhaps the most promising 

therapeutic application of edible mushrooms is related with cancer prevention (Xu et 

al., 2012). For example, the role of mushrooms in reducing cellular proliferation in 

human breast cancer cells was established recently (Martin and Brophy, 2010). Such a 

broad therapeutic spectrum deserves further investigation and, in parallel, the inclusion 

of this food in human diet should continue to be recommended.  

One of the most common specie of mushrooms that are commercially available 

is Pleurotus ostreatus. The fruit bodies of Pleurotus species are considered a delicacy 

because of their flavour properties (Bano et al., 1988). This species presents a high 
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nutritional value and is especially effective against cancer cell proliferation (Martin and 

Brophy, 2010).  

Aside from nutritive and medicinal values (Jedinak and Sliva, 2008), Pleurotus 

mushroom research have been focused in several bio potentialities such as the 

recycling of agricultural residues and bioconversion of lignocellulosic wastes, the 

production or improved of animal feed (Akinfemi et al., 2010); the bioremediation and 

degradation of xenobiotics and industrial wastewaters (Morgan et al., 1991; Faraco et 

al., 2009). 

1.3. Postharvest quality of fresh mushrooms  

Mushroom quality and consumer acceptability of fresh mushrooms is strongly 

influenced by colour  te ture and appearance ( ízhányó and Felföldi  2000; Eastwood 

and Burton, 2002). 

From a postharvest point of view, mushrooms are grouped with fruits and 

vegetables, being classified as highly perishable (Kader and Saltveit, 2003). Biological 

changes occurring after harvest are particularly fast in mushroom and prompt 

deterioration occurs (Ares et al., 2007).  

Mushrooms shelf life can end up due to: i. high rate of respiration; ii. high rate of 

dehydration; iii. browning and iv. texture changes (Burton and Noble, 1993; Braaksma 

et al., 1994; Jolivet et al., 1998; Mahajan et al., 2008a; Iqbal et al., 2009a). 

Mushrooms have high respiration rates, which is high when compared with 

other horticultural produce (Ares et al., 2007).  

Postharvest losses of water by transpiration are also significant in mushroom 

fruit body. Mahajan et al. (2008a) determined transpiration rates of button mushrooms 

and reported significant mass losses over time, with transpiration rate ranging from 

0.29 g.kg-1.h-1 to 5.2 g.kg-1.h-1 for mushrooms stored at 4 ºC and 96 % RH and 16 ºC 

and 76 % RH.  
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Colour changes are also a factor known to affect postharvest quality of 

mushrooms and severe browning or discoloration may occur due to enzymatic and/or 

microbial activities.  

In agreement with its delicate nature, reduction of all metabolic processes is a 

key factor for optimum storage of mushrooms. The general recommendations for the 

postharvest procedures in mushrooms, generally refers to the genus Agaricus and are 

then extrapolated to other species (Ares et al., 2007; Singh et al., 2010). However, 

differences in physiological activities as well as morphological characteristics of the 

mushroom cap may be important with regard to the maintenance of postharvest quality 

of particular specie.  

Once proper conditions of temperature and relative humidity are established, 

modified atmosphere package can also be used, although no consensus regarding its 

effect in distinct genus of mushrooms exist. For instance, MAP is considered of little 

benefit to Pleurotus (Villaescusa and Gil, 2003), but Iqbal et al. (2009b) obtained an 

important metabolism reduction and an increase in the shelf life of Agaricus. Besides 

these discrepancies observed in the effects of MAP in mushrooms and their optimal 

levels of O2 and CO2, other constrain in the use of MAP has been described. The lack 

of packaging films with suitable permeability to O2, CO2 and moisture cause diverse 

problems related with the accumulation of phytotoxic CO2 levels and/or the appearance 

of condensation within mushroom packages (Sapata et al., 2004).  

Due to these severe constraints, other strategies working synergetic with 

refrigeration temperatures and MAP must be developed to reduce postharvest 

deterioration in mushroom species. It has been suggested that placing mushrooms 

under controlled humidity atmosphere improve their quality and increases storability 

(Roy et al., 1995a,b; Villaescusa and Gil, 2003). Nevertheless, the use of hygroscopic 

compounds to control the in-package relative humidity is only empirical and does not 

fulfil requirements regarding optimum relative humidity for mushrooms.  

This work focused mainly in developing novel strategies that can be used in the 

storage of Pleurotus ostreatus, in order to prevent losses in quality and nutritional value 

and early degradation of the product. No other studies have addressed the problem. 

Hence, the results presented here are expected to be of major importance from the 

commercial and the nutritional points of view.  
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1.4. Research objectives  

The central aim of the work presented in this thesis was the development of 

packaging systems that can maximize the quality and shelf life of Pleurotus 

mushrooms. To achieve this, several lines of research were developed and are here 

summarized as follows:  

1. Evaluate postharvest temperature response in quality attributes of Pleurotus 

mushrooms over storage time; 

2. Obtain experimental data on the respiratory behaviour of Pleurotus mushrooms 

in a wide range of temperatures relevant to the supply chain of fresh 

horticultural products;  

3. Obtain experimental data on the transpiration behaviour of Pleurotus 

mushrooms in a range of temperatures and relative humidity relevant to fresh 

horticultural products;  

4. Evaluate respiration and transpiration rates over time and apply mathematical 

models to describe the effects of the storage environment in those physiological 

characteristics;  

5. Evaluate and model the kinetics of moisture absorbers to determine the best 

combination that match the transpiration characteristics of Pleurotus 

mushrooms; 

6. Evaluate the effect of MAP and moisture absorber on different quality attributes 

of Pleurotus mushrooms at both constant and abuse temperature usually found 

in the supply chain of fresh horticultural products. 

 

 



40 
FCUP 
Development of packaging systems to maximize quality retention and increase shelf life of Pleurotus 
mushrooms 

 

1.5. Thesis structure 

The thesis is divided in three parts and nine chapters. The first part includes this 

chapter (Chapter 1) that presents the problem and the objectives of this work and 

Chapter 2 that covers literature review with an overview about mushrooms, causes 

and effects of postharvest deterioration on commodities quality as well as overall 

strategies to control postharvest deterioration.  

The second part includes the experimental work done according to the goals of 

the work. According to the general objective of the thesis, storage conditions on 

postharvest quality attributes were studied in Chapter 3.  

In Chapter 4, a mathematical model describing the effect of temperature and 

storage time on oyster mushroom respiration rate was developed.  

The effect of MA (lower O2 and higher CO2 than ambient air) on oyster 

mushroom rate was also evaluated (Chapter 5).  

Chapter 6 includes the study performed to obtain and model transpiration rates 

of oyster mushrooms in a range of temperatures and relative humidities.  

Kinetics of some mixture of moisture absorbers were also determined (Chapter 

7) and finally the results obtained with the use of MAP and moisture absorbers in 

oyster mushrooms are presented (Chapter 8).  

The third part of this thesis (Chapter 9) presents the final conclusions and 

suggestions for future work. 

Schematic representation of the thesis outline is observed in Fig. 1.1. 
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Fig. 1.1 - Schematic representation of the thesis outline.  
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2.1. Mushrooms taxonomy, morphology, cultivation, nutritional 

and medicinal properties and world production 

Mushrooms have been appreciated since ancient times and have been used for 

several purposes. Their eating qualities are highly appreciated as well as their 

recognized health benefits.  

Although Agaricus bisporus is the most popular mushroom, leading world 

production, other species such as Lentinula edodes and Pleurotus ostreatus are also 

becoming increasingly important. The genus Pleurotus comprises a number of different 

species. They are generally called oyster mushroom due to the sheel-like form of the 

cap. Due to the increasing importance of Pleurotus species as edible mushrooms 

throughout the world, this dissertation will focus on Pleurotus ostreatus. 

In this sub-chapter, brief aspects of taxonomy and morphology of mushrooms 

are discussed. Nutritional value and health benefits of mushrooms  with special focus 

in Pleurotus ostreatus mushrooms will be covered. Mushrooms world production data 

is also presented. 

2.1.1. Mushrooms taxonomy and morphology 

Mushrooms were first classified as plants but due to their particularities like the 

lack of chlorophyll and presence of cellular wall, were placed in a different kingdom 

called Myceteae (Chang and Miles, 2004). According to Chang and Miles (2004), a 

mushroom is “a macrofun us with a distinctive fruitin  body, which can be either 

epigeous or hypogeous and large enough to be seen with naked eye and to be picked 

by hand”.  

Mushrooms are constituted by densely packed fine threads filaments - the 

hyphae – which together form a structure called mycelium. Under favourable 

conditions, the mycelium differentiates and produces the fruiting body (Boa, 2004; 

(Chang and Miles, 2004). The structure which is generally known as mushroom is the 
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fruiting body of the fungus. All mushrooms fructifications have a typical morphology as 

presented in Fig. 2.1. 

 

 
Fig. 2.1 - Mushroom structure. 
Source: Eastwood and Burton (2002). 

Generally, the majority of mushrooms consist of a stem (or stipe), and a fleshy 

umbrella-shaped cap (or pileus) that contains and bear the fungi fertile structure 

(spores). 

Mushroom differentiation and classification are based in their macroscopic and 

microscopic features. 

All mushrooms are included in two Phyla - Ascomycota and Basidiomycota. The 

phylum Ascomycota includes mushrooms like truffles and morels. Most of the known 

mushrooms such as Agaricus bisporus, Pleurotus ostreatus and Lentinula edodes are 

included in phyla Basidiomycota and due to similarities in the morphological 

characteristics; most of the cultivated mushrooms are placed in the order Agararicale 

(Tab. 2.1). 
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Tab. 2.1 - Taxonomy of the main mushroom species cultivated. 

  
Agaricus bisporus 

(J.E. Lange) 
Pleurotus ostreatus 

(Jacq.) 
Lentinula edodes 

(Berk.) Pegler 

Kingdom Fungi 

Phylum Basidiomycota 

Class Basidiomycetes 

Order Agaricale 

Family Agaricaceae Pleurotaceae Marasmiaceae 

Genus Agaricus Pleurotus Lentinula 

Specie A. bisporus P. ostreatus L. edodes 

A. bisporus – known as common mushroom, champignon or button mushroom 

– is, within the genus Agaricus, the most familiar and cultivated specie throughout the 

world.  

The genus Pleurotus (the word pleurotus means side ear), encompass about 

50-70 species, nearly all edible and very similar (Kong, 2004) and are characterized by 

a ear-like in shape cap attached to the wood from which they grow by means of a 

lateral, or side, stem. The genus is recognized by the white spores, the stem attached 

at the side of the cap, or at least off center, and the fleshy or tough texture of the cap 

(Christensen, 1943). Within the genus Pleurotus, only a few of those species are 

currently domesticated and exploited industrially. Among those, P. ostreatus, P. sajor-

caju and P. eryngii (cardoncello) stands out as important industrial species (Chang and 

Miles, 2004). Visual aspect, scientific and common names of some oyster mushrooms 

species are presented in Fig. 2.2.  

One specie of the genus Pleurotus (Fr.) Quel. is P.ostreatus (Jacq. et Fr.) 

Kummer, the most cultivated specie within the genus, and in which many commercial 

strains are developed and cultivated (Kong, 2004). It is common recognized as oyster 

mushrooms, shimeji or hiratake (Sánchez and Royse, 2002). In Portugal, oyster 

mushrooms are known as repolga (Martins, 2004).  

An overview of P. ostreatus characteristics is provided in Tab. 2.2.  
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P. citrinopileatus  
(Golden Oyster Mushroom) (a) 

P. cystidiosus  
(Abalone Mushroom) (b) 

P. djamor  
(Pink Oyster Mushroom) (c) 

P. eryngii  
(King Oyster Mushroom) (d) 

   
 

P. florida  
(Florida Oyster Mushroom) (e) 

P. ostreatus 
(Tree Oyster Mushroom) (f) 

P. pulmonarius  
(Phoenix or Indian Oyster 

Mushroom) (d) 

P. pulmonarius  
(Oyster Mushroom) (g) 

Fig. 2.2 - Aspect of some important oyster mushroom species.  
urce:(a) http://everythingmushrooms.com/grow-your-own-mushrooms/ ; (b) http://www.clovegarden.com/ingred/fungus.html; (c) http://mushroomersclub.blogspot.pt/2012/07/12-some-of-
most-important-cultivated.html#.UwoJyU3itdg (d) Keizer (1998); (e) http://mushroomersclub.blogspot.pt/2012/07/12-some-of-most-important; (f) Authors photo(g) 
http://www.clovegarden.com/ingred/fungus.html 

http://everythingmushrooms.com/grow-your-own-mushrooms/mushroom-grow-kits/oyster-mushroom-golden-oyster-pleurotus-citrinopileatus-ready-to-grow-kit/
http://1.bp.blogspot.com/-f2zuKpBxD7w/T6uCSL5JgII/AAAAAAAAAqU/O19MoN2sAwo/s1600/628x471+(1).jpg
http://1.bp.blogspot.com/-XD9GgXvmqGU/T6pRcOJxhCI/AAAAAAAAAn0/Tni_9BW41JQ/s1600/P1010005.png
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Tab. 2.2 – General characteristics of P. ostreatus.  

Structure Characterization 

Cap 
3 to 5 inches broad, shell-shaped, pale gray in colour, growing yellowish-white with age, margin very 

thin and turned in at first over the gills, later wavy. The flesh is thick, soft, white. 

Gills 
Running down on the stem, decurrent, somewhat distant, veined, broad, white, and yellowish when 

aged. 

Stem Short, growing from the side of the cap (lateral), firm elastic, smooth, thickening toward cap, whitish. 

Ring None 

Volva None 

Spores White 

Odour Quite mild 

Taste Rather strong, when cooked resembling the flavour of oysters 

Source: Cole, 1910. 
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P. ostreatus has an oyster shape cap (Fig. 2.3), with a short stem tapering 

downward from one side. The upper side is smooth with variable colour. The gills are 

white, and the flesh is soft and spongy and varies between white to grey-white. It 

usually grows in clumps or cluster (Fig. 2.3) and it is quite adaptable to a range of 

climates and substrate materials. Some works also suggest that, in comparison with P. 

sajor-caju and P. eryngii, P. ostreatus is the most productive specie (Ramos et al., 

2011).  

 

Fig. 2.3 – Visual aspect of Pleurotus ostreatus mushrooms. 

2.1.2. History of mushroom cultivation 

For centuries, mushrooms have been used not only as food as well as a 

therapeutic agent. Both Chinese and Egyptian collected mushrooms in nature due to 

their knowledge of the benefits provided by mushroom consumption (Pérez-Armendáriz 

et al., 2010).  
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Mushroom cultivation began in Asia around 600 BC with the production of 

Auricularia auricula (Chang and Miles, 2004). Agaricus bisporus was not cultivated until 

1600 AC and it was with this specie that modern mushroom cultivation techniques 

began to emerge. In France, the cultivation of Agaricus initially done in limestone was 

transferred to Paris caves in the 18th century (Kües and Liu, 2000).  

In comparison with Agaricus bisporus, the commercial cultivation of Pleurotus 

species is relatively recent. The first cultivation of oyster mushrooms was recorded in 

Europe in 1917 and cultivation increased rapidly and in 1959, a large scale production 

of oyster mushrooms was established in Hungary. In the mid-seventies, its commercial 

production was fully established in Europe (Sánchez and Royse, 2002). This rapid 

development was probably due to cultivation practices that were easier when 

compared to other species and the overall potentials of Pleurotus for the degradation of 

lignocellulosic substrates from agriculture and silviculture (Rajarathnam et al., 1989).  

2.1.3. Mushroom nutritional composition 

Mushrooms are an attractive food item from the nutritional point of view due to 

their high protein and carbohydrate content, low fat and many minerals and vitamins 

(Manzi et al., 1999; Mattila et al., 2001; Cohen et al., 2002; Pérez-Armendáriz et al., 

2010; Cheung, 2010; Phillips et al., 2012). 

Nutritional composition of mushrooms varies between species. Within the same 

species, strain, type of subtract used and cultivation techniques, maturity at harvest are 

important factors that contribute to the nutritional content of mushrooms (Beelman et 

al., 1989).  

The chemical composition of some mushroom species is shown as follow. 

2.1.3.1. Moisture content 

Moisture content of mushrooms ranges from 85 to 95 % of their fresh mass and 

is affected by the time of cropping, watering conditions during cultivation, postharvest 

period, and temperature and relative humidity during growth (Bano et al., 1988). As a 
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reference, A. bisporus has moisture values within the range of 92.8 – 94.8 %, L. 

edodes between 81.8 and 90 % and Flammulina velutipes between 87.2 and 89.1 %. 

For P. ostreatus, moisture values between 85.2 and 94.7 % were found (Manzi et al., 

1999, Manzi et al., 2001).  

2.1.3.2. Carbohydrate content 

Carbohydrates content of edible mushrooms varies with specie, and is the main 

component ranging from 35 to 70 % on dry weight (DW) basis (Manzi et al., 2004). 

Most of the components of carbohydrate are in the form of polysaccharides like 

glycogen, dietary fiber, cellulose, chitin (mannans) and glucans (Manzi et al., 2001). 

The dominant sugar is mannitol that constitutes about 80 % of the total free sugars 

(Tseng and Mau, 1999; Wannet et al., 2000). Mannitol has an important role in volume 

growth and firmness of fruiting bodies (Barros et al., 2007). In P. ostreatus, the 

carbohydrate content is 61.1 % DW (Longvah and Deosthale, 1998; Mau et al., 2001). 

Trehalose is considered the major component of the soluble sugars in oyster 

mushrooms (Bano et al., 1988; Mau et al., 1997).  

Dietary fiber in mushrooms results from the components of the cell wall and 

according to Mattila et al. (2002), P. ostreatus contains about 30 % DW of dietary fiber.  

2.1.3.3. Protein content 

Protein is an important component of the dry matter of mushrooms of edible 

mushrooms. Although deeply affected by factors such as specie and stage of 

development (Longvah and Deosthale, 1998), mushrooms have high protein content. 

L. edodes are reported to have protein content in the range of 15.2 to 23.0 % on DW 

basis (Longvah and Deosthale, 1998; Manzi et al., 1999). Protein content of 

mushrooms also varies from flush to flush. In P. ostreatus, the protein content varies 

between 10 to 30 % on DW basis and in some cases reaches up to 40 % (Yang et al., 

2001).  
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According to Pérez-Armendáriz et al. (2010), the amino acids content presented 

on mushrooms represent 96 -110 % of the amino acids recommended by Food and 

Agricultural Organization/World Health Organization (FAO/WHO). The protein of edible 

mushrooms is rich in threonine and valine (Chang and Miles, 2004). However, it has 

been reported that lysine, leucine, isoleucine, and tryptophan are limiting amino acids 

in some edible mushrooms (Manzi et al., 1999; Cheung, 2010). Although in terms of 

the amount of crude protein, mushrooms rank below animal meats, it ranks above 

other foods such as rice (7.3 %), wheat (12.7 %), soybean (38.1 %) and corn (9.4 %) 

(Bano et al., 1988).  

2.1.3.4. Fat content 

The lipid content of edible mushrooms is very low with a mean content of 4.0 % 

DW, although between species values diverge from 1.1 to 8.3 % DW (Chang and 

Miles, 2004). In P. ostreatus, lipid content is about 2.2 % g DW (Yang et al., 2001). 

Linoleic acid is the predominant fatty acid and accounts for more than 70 % (68.8 – 

84.0 %) of the total fatty acid content of the mushroom. Palmitic (19.2 % of the total 

fatty acid) and oleic acids are also important (8.3 % of the total fatty acid) (Longvah and 

Deosthale, 1998; Yang et al., 2001; Cheung, 2010). Besides the positive nutritional 

aspects, linoleic acid is also the precursor of 1-octen-3-ol, known as the alcohol of 

fungi, the principal aromatic compound that contribute to the characteristic mushroom 

flavour (Maga, 1981).  

2.1.3.5. Mineral content 

The ash content in edible mushrooms ranges from 6 to 10.9 % DW. In P. 

ostreatus the value of ash was 6.90 % DW, while for other species like shiitake, values 

varied between 5.27 and 5.85 % DW (Manzi et al., 1999; Mau et al., 2001). Mushrooms 

are considered an important source of minerals. The major minerals presented are 

potassium and phosphorus (2670 – 4730 mg/100 g DW and 493 – 1390 mg/100 g DW, 

respectively). Sodium, calcium, magnesium and selenium are also important (Zakhary 

et al., 1983; Vetter, 1994;  ernaś et al., 2006). The fruiting bodies of mushrooms are 
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characterized by a high level of well assimilated mineral elements. Elements like 

copper, zinc, iron, molybdenum, cadmium form minor constituents (Bano et al., 1988).  

2.1.3.6. Vitamin content 

Vitamins also contribute to the nutritional importance of mushrooms. Edible 

mushrooms are a  ood source of vitamins such as riboflavin (vitamin  2). Vitamin B2 

concentrations vary within the range 1.8 – 5.1 mg/100 g DW. Vitamin B content is 

higher than that generally found in vegetables, and some varieties of A. bisporus even 

have a higher level of vitamin B2 than the content found in egg and cheese (Mattila et 

al., 2001). The vitamin B2 content of P. ostreatus, A. bisporus and L. edodes is 2.27 – 

8.97, 3.70 – 5.10 and 0.90 – 1.80 mg/100 g DW, respectively (Crisan and Sand, 1978; 

Bano and Rajarathnam, 1986; Bano et al., 1988; Mattila et al., 2001). Concentrations of 

niacin are also high and vary from 33.8 – 109 mg/100 g DW for P. ostreatus, 11.9 – 

98.5 mg/100 g DW for L. edodes and 36.2 – 57.0 mg/100 g DW for A. bisporus (Crisan 

and Sand, 1978; Bano and Rajarathnam, 1986; Bano et al., 1988) In addition, 

cultivated mushrooms also contain small amounts of vitamin C and vitamin B1 and 

traces of vitamins B12 and D2 (Crisan and Sands, 1978).  

2.1.3.7. Energy content 

The energy content of edible mushrooms is generally low, making them an 

interesting choice for low energy diets. Reference values for A. bisporus are 4.17 – 

4.20 kcal/g DW, while in P. ostreatus values between 4.16 and 4.23 kcal/g DW were 

reported (Manzi et al., 2001). 

2.1.4. Health promoting properties of mushrooms 

Besides its use as a food source, mushrooms are also known for medicinal or 

tonic purposes. In the last decades, scientific investigation studied the basic active 

principles of mushrooms which are health promoting (Wasser and Weis, 1999). Some 
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of the properties attributed to mushrooms are related with the content of bioactive 

products with antioxidant activity (Barros et al., 2007; Ferreira et al., 2009). 

Mushrooms have been investigated for preventing diseases such as 

hypertension, hypercholesterolemia and cancer (Bobek et al., 1995; Bobek and 

Galbavý, 1999; Martin and Brophy, 2010). Antibacterial, antimicrobial and antiviral 

activities have also been described (Hearst et al., 2009; Singdevsachan et al., 2013). 

Mushrooms can also be used as a treatment for diabetes mellitus (Lo and Wasser, 

2011).  

Although globally recognized as therapeutic agents, different species of 

mushrooms present different therapeutic characteristics. Some of the medicinal 

properties of Pleurotus are described as follow.  

2.1.4.1. Antioxidant activity 

Fruiting bodies of Pleurotus has good concentration of antioxidants (Mau et al., 

2001; Yang et al., 2002; Jayakumar et al., 2009; Jayakumar et al., 2011; Vamanu, 

2012). Antioxidant properties in oyster mushrooms arise from the presence of 

polysaccharide pleuran (β - glucan) and it was reported to have a positive effect on rat 

colon with pre-cancerous lesions (Bobek and Galbavý, 2001) and on breast and colon 

cancer (Jedinak and Sliva, 2008). In humans, P. ostreatus reduced oxidative damage 

due to the increase of antioxidant enzymes (viz. superoxide dismutase, catalase and 

peroxidase) (Yang et al., 2002).  

2.1.4.2. Antimicrobial and antiviral activity 

Pleurotus mushrooms contain substances that exert direct or indirect antiviral 

effects as a result of immune-stimulatory activity. Ubiquitin, an anti-viral protein was 

isolated and identified from fruiting body of oyster mushroom. Antimicrobial effect of an 

ethanolic extract of Pleurotus ostreatus also inhibited stains from the genus Candida 

observed by Vamanu (2012). 
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2.1.4.3. Hypoglycaemic activity 

The inclusion of oyster mushrooms in the diet of diabetic patient may be a good 

choice due to the high fibre and proteins content and low fat content. Oral 

administration of aqueous extracts of P. pulmonarius decreased serum glucose level in 

alloxan-treated diabetic mice (Badole et al., 2006).  

Similar, hypoglycaemic activity was found for Pleurotus ostreatus and P. 

cystidiosus. Moreover, polysaccharides extracted from P. citrinopileatus alleviated anti-

hypoglycaemic effect by the elevation of the activity of glutathion peroxidase (Hu et al., 

2006). 

2.1.4.4. Hypotensive activity 

Miyazawa et al. (2008) described a blood pressure lowering activity of P. 

nebrodensis in hypertensive rats. Ching et al. (2011) shown that protein fractions from 

P. cystidiosus possessed the highest angiotensin-I converting enzyme inhibitory activity 

that cause the contraction of blood vessels thereby raising the blood pressure. 

2.1.4.5. Anti-Inflammatory 

The polysaccharide pleuran (β - glucan) present in oyster mushrooms also 

possesses anti-inflammatory activity (Bobek and Galbavý, 2001; Jedinak et al., 2011).  

2.1.5. Worldwide mushroom production 

Worldwide mushroom production has increased in the last decades from about 

350 thousand tonnes in 1991 to 7700 thousand tonnes in 2011 (Fig. 2.4) (FAOSTAT, 

2013). 
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Fig. 2.4 - Evolution of world production of mushrooms and truffles. 
Source: FAOSTAT (2013). 

Mushroom cultivation has a long tradition in Asia and therefore it is not a 

surprise that the world production is leaded by China that contributes with 65 % of total 

world output (Fig. 2.5) (FAOSTAT, 2013).  

 

Fig. 2.5 - Production of leading producing countries of mushrooms and truffles in 2011.  
Source: FAOSTAT (2013). 

In 2011, the total of European countries produced 1850 thousand tonnes, 

contributing to 19.6 % of the total world production (FAOSTAT, 2013).  
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European production is led by Italy with a production of 1850 thousand ton, 

followed by the Netherlands (304 thousand tonnes), Poland (198 thousand tonnes), 

Spain (127 thousand tonnes) and France (116 thousand tonnes) (Fig. 2.6) (FAOSTAT, 

2013). These five countries together are responsible for approximately 81 % of the 

European production. 

Commercial markets are dominated by Agaricus bisporus, Lentinula edodes 

and Pleurotus spp. accounting approximately 75 % of the cultivated mushrooms grown 

around the world (Chang, 1999).  

Production of mushrooms in Portugal only began to be recorded since 1983 and 

has undergone some fluctuations over the years. The latest available data refer to 

2011 with a total production of 1,240 tonnes (Fig. 2.7) (FAOSTAT, 2013). 

 

Fig. 2.6 - European mushroom and truffles producers and their outputs in 2011.  
Source: FAOSTAT (2013). 
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Fig. 2.7 - Production of cultivated mushrooms and truffles in Portugal, from 1981 to 2011. 
Source: FAOSTAT (2013). 
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2.2. Main physiological processes responsible for quality 

deterioration in fresh commodities 

Horticultural commodities deteriorate due to physical, chemical and 

microbiological processes. After harvest, horticultural products maintain active 

metabolism that results in product deterioration. The relative importance of each of 

these processes depends on the commodity and the storage techniques applied during 

postharvest period. Respiration and transpiration are the most important physiological 

processes that affect storage life and quality of horticultural products.  

This sub-chapter presents an overview of the respiration and transpiration 

processes and the main factors that affect both processes.  

2.2.1. Respiratory metabolism 

Respiration is the oxidative catabolism of organic materials (carbohydrates, 

lipids and organic acids) that are broken down into water, carbon dioxide and energy 

through sequential enzymatic steps. Respiration constitutes, therefore a central 

process in living cells, providing energy and carbon skeletons that are vital components 

to support all reactions related with the postharvest developmental changes of the 

commodity (Wills et al., 1998; Kader, 1987; Kays, 1991; Kader, 2002; DeEll et al., 

2003). 

The process of respiration can be simplified by the following chemical reaction – 

Eq. 2.1 (Lee et al., 1991): 

CH12 6 6 2  6C 2 6H2  36          Eq. 2.1 

Despite the apparent simplicity, aerobic respiration is a complicated process 

that involves a series of enzymatic reactions taking place through three pathways 

(Kays, 1991; DeEll et al, 2003): 

 Glycolysis or Embeden-Meyerhof-Parnas pathway(EMP);  

 Tricarboxylic acid cycle (TCA) or Krebs cycle;  
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 Oxidative phosphorylation. 

The first step – Glycolysis - occurs in cytoplasm of the cell and involves the 

oxidation of glucose to pyruvate, with the gain of two ATP molecules and reduced 

NAD. Then, the pyruvate is oxidized to acetyl coenzyme A (acetyl-CoA). In the 

presence of oxygen, acetyl-CoA enters the Krebs cycle to produce coenzymes with 

loss of carbon dioxide and water. After the acid citric cycle, occurs the oxidative 

phosphorylation that uses energy released to produce adenosine triphosphate (ATP) 

via a chain of electron carriers (Kader, 1987).  

The ratio of the quantity of carbon dioxide (CO2) produced and the amount of 

oxygen (O2) consumed in respiration, referred to as respiratory quotient (RQ) is also 

important (Platenius, 1943). In aerobic respiration (described in Eq. 2.1), RQ ranges 

between 0.7 and 1.3. Within this range, variations may occur according with the type of 

substrates used for respiration. If carbohydrates are used in respiration, as seen in Eq. 

2.1, RQ assumes a value of 1. On the other hand, if lipids (or proteins) or organic acids 

are the main substrates for respiratory metabolism, the RQ is expected to be below 1 

and above 1, respectively (Kader et al., 1989; Kader and Saltveit, 2003). To support 

the process of aerobic respiration in harvested produce, adequate levels of O2 are 

required. In the absence or at very low O2 levels, cells undergo anaerobic respiration. 

In such cases, oxidative phosphorylation (i.e. Krebs cycle and the hydrogen transport 

chain) does not take place, resulting in the formation of alcohol and consequently off-

flavours development (Kader, 1987; Fonseca et al., 2002a). 

The association between respiration rate (RR), commodity metabolism and 

changes in quality or postharvest shelf life is broadly studied. Respiration uses 

substrates from the cells, ultimately leading to the substrate exhaustion, which gives an 

overall perspective of commodity metabolism. Commodities with high respiration rate 

have short shelf lives (Kader, 1987; Brash et al., 1995; Kader and Saltveit, 2003).  

Brash et al. (1995) observed that shelf life of asparagus at 20 °C is negatively 

related to respiration rate (as evaluated by CO2 production) during storage. Due to this 

close link, several approaches relating gas exchange rates and quality changes in 

horticultural commodities are found. A close relationship between the rate of gas 

exchange and fruit softening was also reported for apples (Hertog et al., 2001) and 

avocados (Hertog et al., 2003).  
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Böttcher et al. (1999) also showed the importance of rate of respiration in 

quality maintenance of culinary herbs, while Fonseca et al. (2005) reported a direct 

relation between the rate of deterioration of shredded galega kale (measured as loss of 

chlorophyll a and b) and kale respiration rate.  

Mushrooms have high respiration rate compared to other horticultural 

commodities (Kader, 2002; Fonseca et al. 2002a). At 10 °C and under air, respiration 

rate of fresh mushrooms ranges from 17.8 to 178 mL CO2 kg -1.s-1, depending on 

mushroom species considered (López-Briones et al., 1993; Varoquaux et al., 1999; 

Villaescusa and Gil, 2003; Iqbal et al., 2009a,b; Ares et al., 2006; Parentelli et al., 

2007). After harvest, mushrooms undergo natural development, so its respiration 

respiratory behaviour is related with the maturation of the sporophore and two distinct 

phases can be observed. High respiration rates observed immediately after harvest are 

generally followed by a decrease in respiration rate few hours after harvest (Hammond 

and Nichols, 1975; Varoquaux et al., 1999; Villaescusa and Gil, 2003).  

2.2.2. Factors affecting respiration rate  

2.2.2.1. Commodity related factors 

Several effects related with commodity can have a great effect in respiration 

rate. Horticultural commodities include a wide range of botanical structures (plant 

organs and mushrooms) and each one is harvested at different developmental stage. 

Consequently, respiration rates vary widely between commodities (Wills et al., 1998).  

High respiration rate are expected in young tissues, growing plants or immature 

fruits. On the other hand, organs like bulbs and tubers are known to have low 

respiration rate (Kader and Saltveit, 2003). 

The same commodity can also show different respiration rates due to cultivar 

and varietal differences (Varoquaux et al., 1996; Seljåsen et al., 2001; Kim et al., 2004; 

Seefeldt et al., 2012). According to Pretel et al., (2000), in apricot, varietal differences 

accounted for up to 60 % of the total respiration rate differences. Kim et al. (2004) 
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reported that white salad savoy had higher respiration rates and lower quality scores 

than violet salad savoy. 

Kiwifruit varieties also show differences among varieties (Manolopoulou and 

Papadopoulou, 1998). Cultivar differences were also found in broccoli and wild rocket 

salad as reported by Seefeldt et al. (2012). In sweet-cherry (Jaime et al., 2001) and 

pomegranate, differences between cultivars were also found. 

Seasonal effects in product respiration rate were also observed by Martínez-

Sánchez et al. (2008) for a range of baby leafs and the influence of pre-harvest factors 

in postharvest respiration rate is also significant as observed for processed romaine 

lettuce (Luna et al., 2013). 

2.2.2.2. Time after harvesting or processing  

It is known that respiration rate it’s not constant during shelf life. Differences in 

RR after harvest are due to natural product ageing and physical stress induced by 

harvest or processing and physical abuse during these operations and must be taking 

into account in MAP design. 

Preparation of products to market or retail display include a series of operations 

that affect respiration rate. Operations such as peeling or cutting, causes a 

physiological response in the product, which causes an increase in RR over time. In 

general, wound-induced respiration is often transitory, reaching a maximum value that 

can last a few hours or days. Respiration then starts to decrease again until it reaches 

a stable level (Fonseca et al., 2002b; Torrieri et al., 2010). Since this changes may 

have a major impact in the gas composition achieved in MAP (Fonseca et al., 

2002a,b), studies on this effect should be performed. 
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2.2.2.3. Environmental factors: temperature and atmospheric 

composition 

Temperature is the most important environmental factor affecting respiration of 

fresh produce. This particular dependence has long been known, since temperature 

affects the rates of all biological reactions (Kader et al., 1989; Wills et al., 1998).  

Within the range of temperature usually encountered in the distribution and 

marketing chain (4 – 30 °C), respiration increases 2 to 3 fold for every 10 °C rise in 

temperature (Zagory and Kader, 1988; Exama et al., 1993; Varoquaux and Ozdemir, 

2005). In some cases, these differences are significantly higher as shown for fresh-cut 

produce. These products present an increase in RR of 3.4 to 8.3 fold for every 10 °C 

rise in temperature (Watada and Qi, 1999). For temperatures higher than 50 °C, 

respiration decreases linearly with temperature, due to either a denaturing of 

respiratory enzymes or the lack of oxygen consequence of a limited rate of diffusion 

(Maguire et al., 2004). 

Respiration rate is also dependent on the amount of available oxygen and 

carbon dioxide present in the immediate surrounding environment of the commodity 

(Beaudry, 2000; Varoquaux and Ozdemir, 2005). Once optimum temperature are 

established, levels of O2 and CO2, different from air may have effect on the respiration 

rate of fresh produce and this effect have been studied for several commodities 

(Geysen et al., 2005; Kim et al., 2006; Escalona et al., 2006; Conesa et al., 2007a,b; 

Iqbal et al., 2009b). 

Oxygen has a major effect in respiratory metabolism. Respiration involves 

molecular oxygen (Wills et al., 1998; Kays, 1991; Kader and Saltveit, 2003), so a 

decrease in contents of oxygen surrounding the produce is beneficial in order to 

maintain low aerobic respiratory metabolism. Lowering the O2 level to 2-3 % (v/v) is 

considered the optimum to lower the RR of most of commodities, although some 

products like mushrooms withstand 1 % (v/v) of O2 in order to found beneficial effects 

related to a decline in the respiration rate (Kader, 2002). The minimum oxygen level 

that has the ability to have a significant effect in the respiratory activity without causing 

anaerobic respiration is, as expected, commodity dependent. 



FCUP 
Development of packaging systems to maximize quality retention and increase shelf life of Pleurotus 

mushrooms 
65 

 
The effect of CO2 on horticultural commodities RR is less clear than the 

metabolic effect of O2. In fact, depending on the commodity, concentration and time of 

exposure, CO2 may allow a reduction on RR, have no effect or increase the respiration 

of fresh produce. Hertog et al. (1998) found that the effect of CO2 in RR of apples, 

broccoli and Belgian endives was positive, lowering the metabolism. On the other 

hand, no effect of CO2 was found in apples (Peppelenbos et al., 1996; Peppelenbos 

and Van't Leven, 1996), strawberries (Li and Kader, 1989; Talasila et al., 1992; Colelli 

and Martelli, 1995; Hertog et al., 1999), onions, lettuce, and spinach (Mathooko, 1996). 

In raspberries, Joles et al. (1994) reported that partial pressures of CO2 < 17 kPa did 

not affect RR and Beaudry (1993) reported a small reduction in O2 uptake of 

blueberries stored under CO2 > 20 kPa. 

2.2.2.4. Mathematical modelling of respiration rate 

Studies on the prediction of the respiration rate of horticultural commodities 

have been carried out with the intent of knowing postharvest characteristics and 

therefore to improve their storage characteristics.  

As previous described (Chapter 2, § 2.2.2), the respiration rate of horticultural 

commodities is affected by many factors. Most of the respiratory models are attempts 

to depict the effect of environmental factors such as temperature and/or gas 

composition in the respiration process of a particular commodity. Extensive research 

has been done on the effect of temperature in RR and mathematical models describing 

that effect are currently available.  

An approach to quantify the effects of temperature on chemical reactions, 

including respiratory rate is using the temperature quotient (Q10). This coefficient 

explain how many times increases the rate of a reaction for each increase in 

temperature of 10 °C (Kader and Saltveit, 2003).  

Although Q10 can be used to accurately describe the effect of temperature in RR 

in some commodity (Böttcher et al., 1999), temperature quotient can vary considerably 

with temperature. For various commodities, Q10 values ranges from 1 to 4 (Kader, 

1987; Talasila et al., 1992; Exama et al., 1993). At higher temperatures, the Q10 is 

usually smaller than at lower temperatures, e.g. at temperatures of 0-10 ºC, Q10 
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assumes a value between 2.5 to 4.0, whereas a temperature quotient of 1.0 to 1.5 can 

is seen in commodities stored at higher temperatures (30 - 40 ºC) (Wills et al., 1998; 

Saltveit, 1996). 

As respiration involves many enzymatic reactions (Wills et al., 1998; Kader, 

2002), directly influenced by temperature, most of the models developed to explain the 

effect of temperature on the RR are based in the Arrhenius equation (Hertog et al., 

1999; Lakakul et al., 1999; Mahajan and Goswami, 2001; Fonseca et al., 2002b; Kaur 

et al., 2011; Caleb et al., 2012a,b). In this particular case, the effect of temperature 

increase is given by the activation energy (Ea) (Cameron et al., 1995). As a 

simplification of the Arrhenius equation, the exponential model is also used to describe 

the effect of temperature on RR (Brash et al., 1995). 

Considering the fact that MAP design involves previous knowledge of the effect 

of O2 and CO2, many models describing this dependence are documented. Both Henig 

and Gilbert (1975) and Hayakawa et al. (1975) used a linear model to describe 

respiration as a function of the gas concentration.  

The Michaëlis–Menten type equation to describe the relation between 

respiration and gas concentration was first introduced by Chevillotte (1973) cit 

Peppelenbos et al. (1996) in that considered the model on its simplest form, describing 

that CO2 does not have an inhibitory effect on RR.  

Later, Lee et al. (1991) included uncompetitive inhibition by CO2 and validated 

the model using broccoli.  eppelenbos and  an’t  even (1996) evaluated the four 

types of inhibition for modelling the influence of CO2 levels on RR as compared with the 

model that considers that CO2 has no influence is fresh commodities RR. Most of the 

reported work describes the influence of CO2 in RR using competitive inhibition.  

Non-competitive inhibition has been described for mushrooms (Peppelenbos et 

al. (1993) and blueberry (Song et al., 1992). 

Ripening, aging or physical stress also affects respiration rate of a particular 

commodity. Therefore, time effect should be taken into account in order to predict the 

changes in gas composition achieved in a MAP system after harvest or processing 

(Fonseca et al., 2002a,b; Kim et al., 2004; Uchino et al., 2004; Rocculi et al., 2006; 

Caleb et al., 2012a,b). 
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In order to predict respiration rate of tomato with storage time, Yang et al. 

(1988) used a quadratic function, with the previous inclusion of the effect of O2 and 

CO2 concentrations in fruit respiration rate.  

Gong and Corey (1994) found that the best fit function for O2 consumption was 

a polynomial of 2nd order equation. The Weibull model (Fonseca et al., 2005; 

Waghmare et al., 2014) or kinetic models (Waghmare et al., 2013) have been 

suggested as good alternatives to describe the effect of time in the respiration rate of 

fresh commodities.  

Mathematical models used to describe the effect of temperature, gas 

composition and time were reviewed by Fonseca et al. (2002a). Updates were 

performed by Caleb et al. (2012c).  

2.2.3. Transpiration or moisture loss  

Water has a vital role in the physiology of agricultural products during the 

growing season and postharvest period. After harvest, the moisture loss by 

transpiration cannot be replenished, which give rises to significant problems in quality 

retention of the commodity (Wills et al., 1998). 

Unique properties of water molecule and its physiochemical properties are 

discussed in detail in Ben-Yehoshua et al. (2003) and Shamaila (2005). From a 

simplified point of view, some of these properties are described next.  

Water is a universal solvent and it is essential in hydrolytic reactions. It also has 

transportation and thermoregulatory functions in the cell. It cannot be overlooked the 

role in the maintenance of cell turgidity (cell expansion, physical and chemical integrity 

of cell walls) (Kramer and Boyer, 1995; Shamaila, 2005).  

Water is a major constituent of horticultural products tissues. It accounts for at 

least 60 % of their fresh weight (FW), whereas others commodities hold about 84 to 96 

% FW of water in their composition (Shamaila, 2005; Rodov et al., 2010). In 

mushrooms, moisture content ranges from 85 to 95 % in FW (Manzi et al., 1999, Manzi 

et al., 2001).  
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The driving force for water loss by transpiration is the difference between the 

water vapour pressure (WVP) of the commodity and the WVP of the surrounding 

environment and it is called water vapour pressure deficit. While fresh, the WVP of the 

product is high due to the high water content of the commodities (near saturation). In 

the environment that surrounds the product, the WVP is generally lower which causes 

the movement of water from the product. The rate of moisture loss from a product is 

traditionally expressed in the single linear form expressed in Eq. 2.2 (Sastry, 1985):  

m      s- ∞                    Eq. 2.2 

where m  is the rate of moisture loss from product (g.kg-1.d-1); k is the transpiration 

coefficient of product (g.kg-1d1.Pa-1); Ps is the WVP at evaporating surface and Ps is the 

ambient WVP close to the product surface. 

Water loss from fresh commodities results in a significant reduction in saleable 

mass, with direct economic losses associated (Robinson et al., 1975; Kays and Paull, 

2004; Nunes and Emond, 2007). Furthermore, wilting, softening, colour alterations and 

enhancement of physiological disorders can also occur (Robinson et al., 1975; Ben-

Yehoshua et al., 2003; Kays and Paull, 2004; Nunes and Emond, 2007) with an 

equivalent decrease in quality and value of the commodity.  

Harvested products remain with fresh appearance only as it retains water. The 

maximum permissible loss of water at which a commodity becomes unsalable has 

been reported (Robinson et al., 1975). Reported maximum tolerable mass losses vary 

greatly, ranging from 5.0 % FW for apples and oranges to 37.0 % FW for green beans 

(Paull, 1999; Ben-Yehoshua et al., 2003). The greater the amount of water in the 

product, the lower is the amount of water that the product may lose without alterations 

in its appearance. In general, most commodities become unsalable as fresh produce 

after losing 3.0 to 10.0 % of their mass (Ben-Yehoshua et al., 2003). 

Even so, even relatively small moisture losses are enough to cause marked 

loss of quality in many commodities. In fact, it should not be underestimated that the 

first symptoms of water stress appear long before the maximum permissible level of 

water loss (Ben-Yehoshua, 1987; Ben-Yehoshua et al., 2003), as shown in pepper 

where 2.0 to 4.0 % of loss of FW caused flaccidity and gloss compromising the overall 

appearance of the product (Lownds et al., 1994). 
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The loss of water causes a set of symptoms that is typical for each commodity. 

As an example, in green vegetables, moisture loss causes changes that are similar to 

senescent breakdown, including the loss of membrane integrity, leakage of cell 

contents, more rapid degradation of surface tissues and colour degradation (Ben-

Yehoshua, 1987). Mass losses can also cause significant loss of aroma and flavour, 

ultimately leading to the rejection by consumers as reported in lettuce (Agüero et al., 

2010). Additionally, water losses can also affect nutritional content of several 

commodities, as seen with the relationship found between the ascorbic acid (AA) 

content and moisture loss in strawberries (Nunes et al., 1998). In climacteric fruits, it 

has been reported that moisture loss can also stimulate the synthesis of ethylene 

(Littmann, 1972 cit. in Paull, 1999) speeding up ripening of the commodity. In 

commodities susceptible to chilling injuries, moisture loss can further enhance that 

sensitivity (Paull, 1999; Kays and Paull, 2004; Maguire et al., 2004). The resistance to 

pathogen invasion is also affected by moisture loss, possibly due to loss of membrane 

integrity and changes in cuticle structure of the cell (Van den Berg, 1987; Kays and 

Paull, 2004). 

2.2.3.1. Factors affecting transpiration  

2.2.3.1.1. Commodity related factors 

Transpiration is a process dependent on the barriers existent in the commodity 

cell. Therefore, besides morphology, skin structures of horticultural products also have 

effect regarding the loss of water of the produce. Size, shape and surface area are 

among the commodity factors that affect the transpiration rate, due to the differences in 

the specific surface area of the commodity that is in contact with the surrounding air.  

Moisture loss is affected by the ratio between surface area and volume of the 

commodity or by the surface area/mass ratio (Van den Berg, 1987; Ben-Yehoshua, 

1987; D  az-Pérez, 1988), although Burton (1982) observed that transpiration is a 

function of fruit surface area rather than fruit mass. An increase in surface area/volume 

increases the rate of moisture loss, as reported in capsicums (Lownds et al., 1993). 

The type of tissue also tends to affect transpiration rates. It has been shown that about 

67 % and 60 % of the total fruit transpiration is through the stem scar of tomato and the 
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calyx eggplant, respectively (Cameron and Yang, 1982; D  az-Pérez, 1988) and not 

through the fruit itself.  

Among the horticultural products, mushrooms present morphological 

particularities. They lack the specialized epidermal structure and are protected only by 

an epithelial layer which affects the rate of moisture loss and quality deterioration. San 

Antonio and Flegg (1964) analysed the loss of water from the fungal growth and found 

similarities between this process and an evaporative loss at a free water surface. 

Moreover, Nichols (1985) found that harvested mushrooms transpire at the same rate 

as non-harvested fruiting bodies.  

2.2.3.1.2. Environmental factors 

For a specific commodity, the rate of postharvest water loss is dependent on the 

storage conditions. Relative Humidity (RH - %) is defined as the ratio of water vapour 

present relative to the maximum amount of water vapour which can be present at the 

same temperature and atmospheric pressure) and temperature are the major storage 

factors influencing the rate of moisture loss (Kader, 2002).  

It is generally assumed that internal atmosphere of horticultural commodities 

are in a saturated condition, due to the high water content of the cells. Unless the WVP 

in the storage atmosphere equals that on the produce surface, moisture will continue to 

evaporate from the produce surface (Shamaila, 2005). 

Therefore, the WVPD or the difference in water vapour pressure between fresh 

products and the immediate surroundings gives an indication of the loss or gain of 

water by the product (Burton, 1982; Kays, 1991; Wills et al., 1998; Thompson et al., 

2002). Any increase in storage temperature increases the rate of transpiration even 

when humidity content of the air is constant since higher temperatures increase free 

energy of water molecules, which increase their movement and exchange potential 

(Ben-Yehoshua et al., 2003).  
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2.3. Postharvest deteriorative changes in mushrooms 

Among the horticultural commodities, mushrooms are one of the most 

perishable horticultural products and quality loss occurs rapidly after harvest. Quality 

losses in mushrooms are related with maturation process and in this sub-chapter the 

quality attributes related to the postharvest of mushroom, such as colour, texture and 

microbial changes will be outlined.  

2.3.1. Colour changes 

Colour is a major component related with quality in horticultural products and 

vital in the acceptability of the product by the consumer and highly related to 

senescence for most horticultural products (Kader, 2002). In mushrooms, colour is one 

of the most important parameters (González-Fandos et al., 2000). In mushrooms, 

especially for the white strains like button mushrooms, the whitest mushrooms reach 

the highest price (Singh et al., 2010). Colour evolution in mushrooms is related to 

ageing of the tissues and is generally characterized by a progressive darkening after 

harvest (Tano et al., 1999; Villaescusa and Gil, 2003; Sapata et al., 2004; Sapata et al., 

2009a,b). Enzymatic browning is one of the main processes responsible for quality 

degradation in mushrooms (Braaksma et al., 1994; Jolivet et al., 1998). Browning is 

reported for button mushrooms (López-Briones et al., 1993; Braaksma et al., 1994), 

oyster mushrooms (Villaescusa and Gil, 2003; Sapata et al., 2009a,b) or shiitake (Ares 

et al., 2006; Parentelli et al., 2007), therefore constitutes a general concern postharvest 

quality maintenance.  

Browning occurs as a result of two distinct mechanisms of phenol oxidation: (i) 

activation of tyrosinase, an enzyme belonging to the polyphenol oxidase family, and (ii) 

spontaneous oxidation (Jolivet et al., 1998).  

Tyrosinase is an enzyme present at high levels in the mushroom surface tissue, 

and is normally found in a latent form (Soler-Rivas et al., 2000). As tissue breakdown 

due to ageing, mechanical damage or bacterial activity (Beelman et al., 1989; Beaulieu 

et al., 1999), the enzyme oxidizes phenolic compounds of mushroom into brown 

melanins, which results in brown discoloration (Boekelheide et al., 1979; Soulier et al., 

1993; Jolivet et al., 1998; Nerya et al., 2006). Storage temperatures greatly affect 
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postharvest colour evolution in mushrooms, foremost due to the effect of temperature 

in enzymatic activity. Refrigeration temperatures can delay deleterious changes in 

mushrooms colour (Tano et al., 1999; Villaescusa and Gil, 2003; Sapata et al., 

2009a,b).  

In modified atmosphere packages the excessive accumulation of CO2 can 

cause cell membrane damage and physiological injuries to the product, such as severe 

enzymatic browning (Burton et al., 1987; López-Briones et al., 1992; Varoquaux et al., 

1999). 

Modified atmosphere packaging has the potential to slow down the rate of 

browning in mushroom (Ares et al., 2007), although levels of O2 and CO2 outside the 

optimum range can have an opposite effect and induce severe browning (López-

Briones et al., 1992; Ares et al., 2007).  

2.3.2. Textural changes  

The texture of horticultural commodities, a major quality attribute related to 

postharvest and therefore important in overall product acceptance is largely determined 

by the integrity of cell wall. When harvested, mushrooms are firm, crisp (resist 

deformation), and tender (easy to shear or chew), as has been described for button 

mushrooms. 

Postharvest senescence is accompanied by changes in cell membrane, which 

leads to the loss of barrier function loss of turgor and senescence, ultimately resulting 

in the deterioration of mushroom (López-Briones et al. 1992; Villaescusa and Gil, 2003; 

Ares et al., 2006; Parentelli et al., 2007; Aguirre et al., 2008; Mohapatra et al., 2010). 

Consequently, overall softening with elapsed harvest time is often seen in 

mushrooms of different species. That loss of firmness of mushrooms throughout 

postharvest storage is related to the degradation of protein and polysaccharide of the 

cell wall, hyphae shrinkage central vacuole disruption and expansion of intercellular 

space at the pilei surface (Zivanovic et al., 2000). Softening can also occur due to the 

degradation of cell walls of postharvest mushrooms by bacterial enzymes (Jiang et al., 

2010). 
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Cohesiveness can also increase as storage progresses as seen in Agaricus 

and shiitake mushroom (Zivanovic et al., 2000; Parentelli et al., 2007; Jiang et al., 

2010). Zivanovic et al. (2000) reported that these specific changes are the result of the 

increase in chitin content and formation of covalent bonds between chitin and R-

glucan, which increase the rigidity of the mushroom cell wall.  

Changes in mushrooms texture are dependent on the storage conditions. 

Temperature has a major impact in mushroom firmness retention. Some studies 

suggest that in button mushrooms, texture is the quality parameter most affected by 

temperature (Mohapatra et al., 2010). In accordance, Escriche et al. (2001) reported 

that temperature influenced firmness loss more than browning. The author analysed 

the sensitiveness of texture changes with increasing storage temperatures by 

calculating the activation energy and Q10. Texture changes were more sensitive to the 

increase the temperature from 5 to 15 °C than from 15 to 25 °C, which results in an 

increase in reaction speed of 4.55 and 1.50, respectively.  

2.3.3. Mass loss  

Mass losses in fresh commodities are responsible for significantly quantitative 

losses and are a result of both respiration and transpiration processes. Transpiration is 

the process by which fresh commodities lose water to the surrounding environment, 

whereas mass losses from respiration arise from the exhaustion of substrates in the 

cell (Kader, 1987). Although both processes have the potential to promote mass losses 

in fresh commodities, transpiration is the most important factor involved in this process.  

There are several factors that have effect in the rate of transpiration of fresh 

products (Chapter 2, § 2.2.3.1). The evaporative surface of the commodity has a major 

influence in the rate of transpiration. From a morphological point of view, epidermal 

structure of higher plant tissues is lacking in mushrooms. Instead, mushrooms are only 

protected by a thin and porous epidermal structure and therefore, water loss from 

mushroom can be compared to the water loss from a free water surface as reported by 

San Antonio and Flegg (1964) in Agaricus mushroom during growing. Given that it is 

hypothesised that freshly harvested mushroom transpires at the same rate as the 

fruiting sporophore (Nichols, 1985), mushrooms are very sensitive commodity 

regarding mass losses by transpiration. Water loss in mushrooms affects the main 
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quality characteristics such as saleable weight, appearance and texture (Mahajan et 

al., 2008a).  

Mass losses throughout storage time are linear (Burton and Noble, 1993; 

Mahajan et al., 2008a). Stored at 5 ºC (73 % RH), Burton and Noble (1993) reported 

that mass losses from common mushrooms stored in open punnets were 4 % per day. 

When temperature increase from 5 ºC (73 % RH) to 18 ºC (90 % RH), the rate of mass 

loss increased to 6 % per day.  

Increases in storage temperatures affect the rate of transpiration (from 0.29 g. 

kg-1.h-1 to 5.2 g. kg-1 .h-1) when temperature increase from 4 to 16 ºC of Agaricus 

bisporus (Mahajan et al., 2008a). 

2.3.4. Microbiological spoilage  

The rate of postharvest deterioration of fresh mushrooms has been directly 

related to the microbial load at harvest (Doores et al., 1987; Singh et al., 2010) and the 

presence of bacterial populations in mushrooms is a factor that si nificant diminishes 

quality of the produce throughout storage (Beelman et al., 1989).Fresh mushrooms are 

considered an ideal medium for microbial growth. Their high moisture content, a water 

activity of 0.98 or higher and a neutral pH, provide good conditions for microbial 

growth. Total bacterial populations in fresh mushrooms are considered high, ranging 

from 6.3 to 7.2 log CFU g−1 (Doores et al., 1987, Santana et al., 2008; Venturini et al., 

2011). Significant levels of moulds and yeasts (3 log cfu and 6 log CFU g−1, 

respectively (Chikthimmah et al., 2006) have also been reported in fresh mushrooms. 

Most of the bacterial count present in mushrooms is within the genus Pseudomonas 

(Wells et al., 1996; Doores et al., 1987; Soler-Rivas et al., 1999; Venturini et al., 2011). 

Flavobacteria are also important in, comprising 10 % of the total bacteria count (Doores 

et al., 1987). Within the genus Pseudomonas, P. tolaasii is the major specie reported 

and is responsible for bacterial blotch. Infections symptoms include the appearance of 

a brown, blotchy appearance during postharvest life of mushrooms (Beaulieu et al., 

1999). Other species such as Pseudomonas fluorescens have also been associated 

with mushroom spoilage (Masson et al., 2002; Jiang et al., 2010). Santana et al. (2008) 

identified Pseudomonas putida in minimally processed shiitake stored at 7, 10 and 15 
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ºC. Contamination of Verticillium maltousei also impairs mushrooms appearance, 

causing brown spots (Beaulieu et al., 1999; Beaulieu et al., 2002).  

The evolution of microbial load profile during storage of all fresh horticultural 

commodities is related to prompt cooling, storage at low temperature, and prevention of 

physical injury. The effect of storage temperatures in microbial spoilage is well known. 

In mushrooms, Chikthimmah et al. (2006) and Doores et al. (1987) observed that 

bacterial populations tend to increase from 7.3 to 8.4 log CFU.g−1 during 1 day at 4 ºC, 

while when stored at 13 ºC, for 10 days, mushrooms with an initial load of 7 log 

CFU.g−1 presented an increase to almost 11 log CFU.g−1. 

In shiitake mushrooms stored at 7 ºC, 10 ºC and 15 ºC, the number of 

mesophilic bacteria had an increase of 3, 4 and 4.3 log cycles respectively, 15 days 

after storage (Santana et al., 2008).  

Postharvest treatment with hydrogen peroxide (Brennan et al., 2000; Sapers et 

al., 2001), citric acid (Brennan et al., 2000) or sodium erythorbarte (Sapers et al., 2001) 

have been used to extend the shelf life of fresh mushrooms by controlling or reducing 

the microbial populations. In this sense, Simón et al. (2010) determined a significant 

reduction of Pseudomonas in button mushrooms washed with citric acid before being 

sliced and stored for 17 days of storage at 5 ºC.  

The use of low O2 levels, generally recommended for mushrooms in modified 

atmosphere packaging (Kim et al., 2006) may lead to the occurrence of anaerobic 

respiration. In those packages, pathogens such as Clostridium botulinum and 

Staphylococcus aureus have potential to grow (Farber et al., 2003; Kim et al., 2006; 

Parentelli et al., 2007). As a result, several authors recommended that, inside 

mushroom packages, O2 should not drop below 2 % (Varoquaux et al., 1999; Ares et 

al., 2006; Parentelli et al., 2007).  

The use of CO2 enriched atmospheres has the ability to reduce decay, due to its 

direct antimicrobial activity (Phillips, 1996) but excessive accumulation of CO2 can 

cause physiological injuries in mushrooms (Ares et al., 2006; Parentelli et al., 2007). 

On the other hand, the absence of CO2 within mushrooms package caused by the use 

of CO2 scavenger can also cause the growth of aerobic bacteria, yeast and moulds 

(Masson et al., 2002; Oliveira et al., 2012).  
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Recently, Venturini et al. (2011) evaluated the microbiological quality of fresh 

mushrooms (wild and cultivated) commercialized in Spain and did not found the 

occurrence of pathogens such as Salmonella spp, E. coli and S. aureus. 
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2.4. Postharvest technologies to extend the shelf life of fresh 

produce  

Harvested fresh produce continues to perform its metabolic functions 

throughout storage, which greatly influences quality and shelf life. 

To extend the shelf life of fresh produce and ensure the maximum quality for 

consumers, proper postharvest technologies for each commodity are required. 

Temperature and relative humidity management during storage is the most adopted 

technology to extend the shelf life of fresh commodities. Although several postharvest 

treatments are available, the use of modified atmosphere package can be used to 

reduce respiration rates and extend the shelf life. In this section, the effects of 

temperature and relative humidity control and modified atmosphere packaging will be 

presented.  

2.4.1. Temperature and relative humidity control 

Temperature and relative humidity control during postharvest life are the most 

important technologies to control deterioration and extend the shelf life of fresh 

horticultural commodities (Lee and Kader, 2000; Kader, 2002).  

Storage temperature has a strong influence in postharvest quality maintenance 

due to its influence in the overall physiological and biochemical processes that affect 

commodity life, but also to the significant effect on the microbiological activity of the 

product (Kader, 2002).  

Optimal temperature for storage and shelf life extension is product dependent. 

Despite varietal or cultural differences, it is generally accepted that the best 

temperature for any product is the lowest temperature possible that does not cause 

damage to produce. Low temperatures reduce respiration and ethylene production 

rates, water loss, pathogen growth and decay incidence (Kader, 2002). Nevertheless, 

the use of low refrigeration temperatures can cause some undesirable changes in 

some commodities. Problems caused by low temperature storages are known as 

chilling and freezing injuries and limit the use of low temperatures for some 

commodities (Saltveit and Morris, 1990). 
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Freezing injury occurs when the contents of the cell of the commodity freezes, 

resulting in water soaked damaged areas. Freezing is dependent on the commodity. 

While commodities with high content of sugars like sweet fruits are damaged by 

temperatures between - 2 and - 5 °C, for horticultural produces with lowest content of 

sugars, like leafy vegetables, freezing temperature is higher (Kader, 2002). Freezing 

injury may cause severe damage to the produce since it causes an immediate collapse 

of tissues and total loss of cellular integrity (Kader, 2002).  

The most common form of injury related to low temperatures storage is chilling 

injury and occurs at temperatures above commodity freezing point causing severe 

physiological damage. The temperature at which such damage occurs is called the 

chilling threshold temperature and corresponds to lower safe limit for a stored produce 

throughout marketing chain (Kader, 2002). Manifestation of chilling temperatures 

includes loss of water, shrivelling, colour alterations and an increase in the 

susceptibility of postharvest rots (Saltveit and Morris, 1990).  

For good quality maintenance, a precise control of temperature during entire 

postharvest chain is fundamental (Brecht et al., 2003). Each product has an optimal 

range of storage temperatures that will maximize its storage life (Paull, 1999; Lurie, 

2002; Thompson et al., 2002). Recommended temperature conditions for storage of a 

particular product is available in numerous source of information (Kader, 2002). 

Fluctuations of temperature are common, which results in important quality losses 

(Paull, 1999; Jacxsens et al., 2000; Brecht et al., 2003). In some cases, water 

condensation on both film package and commodity surfaces may also occur. 

Consequently, while in the film package condensed water can cause alteration in the 

package permeability (Exama et al., 1993), water in the commodity potentially 

increases the occurrence of fungal and bacterial decay (Nunes et al., 2009).  

Temperature management should start at the time of harvest. Prompt cooling is 

essential as the harvest causes a stress in the product increasing RR, water stress and 

a significant reduction in quality (Kader, 2002). Rapid cooling after harvest is a 

technique known as pre-cooling. It can be achieved by different ways. Forced air-

cooling, hydro-cooling, hydro air-cooling and vacuum cooling are normally used (Kays, 

1991; Kader, 2002). 

Storage conditions are highly important for the quality of fresh mushrooms. The 

most favourable storage temperature is low temperature (0 – 2 ºC) combined with high 
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relative humidity of the air (Murr and Morris, 1975; López-Briones et al., 1992, Escriche 

et al., 2001). Storing mushrooms at low temperatures limits mass loss (Escriche et al., 

2001; Mahajan et al., 2008a) and maintains freshness, as well as firmness and colour 

of the flesh (Burton and Noble, 1993). 

Low temperatures contribute to a lower respiration rate in Agaricus. Iqbal et al. 

(2009a) obtained a reduction in respiratory rate of Agaricus in the order of 47 - 60 % at 

temperatures between 4 and 20 °C. Varoquaux et al. (1999) also reported that 

respiration rate of Agaricus mushrooms increased 2.9 fold for each 10 °C increase in 

temperature.  

According to Escriche et al. (2001) and Mohapatra et al. (2010), storage 

temperature is the most important parameter affecting texture of Agaricus mushrooms. 

Besides the effect on the appearance, storage of fresh mushrooms under low 

temperatures also affects the level of su ars  free amino acids and  ’-nucleotides of 

mushrooms as seen for button mushrooms. Mushrooms stored at 12 °C for 12 days 

had a 36 % decrease in the level of total sugars; 42 % decrease in mannitol; 89 % 

decrease in fructose (Tseng and Mau, 1999), potentially decreasing its flavour. 

Refrigeration temperatures significantly increase mushroom shelf life. At 0 - 1 

°C button mushrooms can be stored for 7 - 9 days while at 15 °C for 2 - 3 days 

(Gormley, 1975). Oyster mushrooms held at 0 °C maintained quality for 8 - 11 days, 

but storage at 20 °C reduced the shelf life of about 1 - 2 days (Choi and Kim, 2002). 

RH management has a vast influence on moisture loss of mushrooms (Mahajan et al., 

2008a), and improper RH management causes losses in saleable mass, wrinkling and 

development of brown patches on the produce surfaces (Roy et al., 1995a,b; 

Jayathunge and Illeperuma, 2005) As it has been shown for Agaricus (Cliffe-Byrnes et 

al., 2007), moisture levels in the postharvest atmosphere will also have a direct effect 

in mushroom postharvest development, since higher levels slow down the maturation 

process, as indicated by the slower opening of mushroom cap. 

On the other hand, saturated environment is generally seen in mushrooms 

packaging (Roy et al., 1995a,b; Sapata et al., 2009a,b), which favours the growth of 

microorganisms and consequent decay of the product (Roy et al., 1995a,b). 
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2.4.2. Packaging systems 

Packaging is a fundamental step to ensure quality of fresh produce. Package 

serves several purposes as described by Wills et al. (1998). Besides the main function 

of containment and protection of the produce, packages have been suffering a 

continuously evolution in agreement with development of new technologies to maintain 

quality and extend shelf life.  

Modification of the atmosphere around the produce is a technique that, when 

used with temperature control, further reduce produce deterioration.  

2.4.2.1. Modified atmosphere packaging 

Modified atmosphere packaging (MAP) of fresh horticultural commodities refers 

to the technique of sealing the produce in polymeric film to modify the ambient 

conditions surrounding the produce (Kader, 1987; Church and Parsons, 1995). MAP is 

a dynamic process of altering gaseous composition inside a package and relies on the 

process of respiration and the gas flux throughout the package film (Kader, 2002). Due 

to the respiration process of fresh commodities and the characteristics of the package 

film, a gradient of O2 and CO2 between the package headspace and the storage 

environment is generated. If the film used has the proper barrier properties, a pre 

determined O2 and CO2 concentration will be achieved. At this equilibrium, the rate of 

gas exchange between the product and the packaging material equals, therefore, 

subsequently the gas composition surrounding the product is maintained for the rest of 

the storage life (Kader, 2002). 

In a MAP system, gas compositions of the air (78.03 % of nitrogen (N2), 20.99 

% of oxygen (O2); 0.03 % of carbon dioxide (CO2), 0.94 % of Argon (Ar) and 0.01 % of 

Hydrogen (H2) (Parry, 1993)) are changed to hold perishable products. The 

modification of the atmosphere generally implies a reduction in O2 content and an 

increase in the CO2 concentration. Other approaches are also available, like changing 

the level of carbon monoxide (CO), ethylene, ethanol or other compounds in the 

atmosphere can also contribute to shelf life extension.  
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The establishment of a desired gas mixture in a MAP system may be achieved 

in two different ways: passively or actively. In passive MAP, fresh produce is packaged 

with air as the initial gas concentration. Since over the initial gas composition no further 

control is made, some authors refer to this technology as passive atmosphere 

packaging (Farber et al., 2003; Gorris and Peppelenbos, 2007). In an active MAP, a 

predetermined gas mixture is used to flush packages before sealing the package 

(Kader and Watkins, 2000; Farber et al., 2003).  

The first type of MAP is more economic and is used for products with high 

respiration rate (Gorris and Peppelenbos, 2007), that are able to reduce the in-pack O2 

level fast enough to lower levels that do not cause physiological or microbial 

deterioration. However, high perishable commodities have a relatively short shelf life 

and the time available to attain the steady-state is short. In such cases, active MAP 

may reduce or even suppress the length of the period required to achieve equilibrium 

(Gorris and Peppelenbos, 2007; Guillaume et al., 2010).  

Despite the initial gas composition, after closing the package, a decrease in the 

oxygen content and an increase in the carbon dioxide content occur due to the 

respiration of the product. This atmospheric composition inside the package causes a 

decrease in the respiration rate. After a transient period, in which interaction between 

the product respiration and gas exchange through the package occur, the system 

reaches equilibrium (Fonseca et al., 2002a; Gorris and Peppelenbos, 2007). Therefore, 

the system is also known as equilibrium-modified atmosphere packaging. At this point, 

the atmospheric gases inside the package should be similar to the optimum gas 

concentration for that produce (Gorris and Peppelenbos, 2007).  

Inside the package, the rate of atmosphere modification and the achievement of 

the steady-state are determined by three processes: i) respiration of the commodity; ii) 

gas diffusion through the commodity, and iii) gas permeation through the film. Each of 

these processes is strongly influenced by several factors as summarize in Tab. 2.3 

(Gorris and Peppelenbos, 2007).  
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Tab. 2.3 - Variable involved in MAP design.  

  Variables 

Environmental conditions 
Gas composition 

Temperature 

Produce characteristics 

Product mass 

Product density 

Product respiration rate 

Desired gas composition 

Package 
 

Film 

Free volume 

Thickness of the film 

Area available for gas exchange 

Permeability to O2 and CO2 

Film with 
macroperforations 

Free volume 

Thickness of the film 

Area of film available for gas 
exchange Permeability to O2 and CO2 

Number of perforations 

Radius of holes 

Perforation-mediated 
packages 

Free volume 

Number of tubes (perforations) 

Length of tubes (perforations) 

Diameter of tubes (perforations) 

Porosity of the tube packing 

 

To achieve the optimum gas composition at the shortest period of time, a match 

between the RR and the film permeability should be achieved. As a consequence, 

permeability characteristics of the polymeric films used for pac a in  the produce are 

extremely important to achieve this target.  

Most of the films commercially used for fresh produce packaging are low-

density polyethylene (LDPE), polypropylene (PP) and polyvinyl chloride (PVC). Film 

used for these products have different permeabilities to O2 and CO2. OTR (Oxygen 

transmission rate) and COTR (carbon dioxide transmission rate) are used successfully 

for several commodities. The difficulty in the use of these films is to match the rate of 

permeability of films and the respiration rate of commodities with high respiration rates. 

Most of these films have low permeability rates and their success in packaging 

high respiration commodities is limited. Under such conditions, anaerobic conditions 

within the package are developed (Exama et al., 1993) with a subsequent deterioration 

in the quality of the commodity. 
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Since many of the films used in MAP, singly do not offer all the properties 

required for MAP, different approaches were developed to overcome the gas diffusion 

problems (Exama et al., 1993; Mangaraj et al., 2009). 

A potential solution encountered for fresh produce package available to 

overcome the problem related to diffusion characteristics of the polymeric films is the 

introduction of perforations in films as proposed by several authors (Kader et al., 1989; 

Exama et al., 1993; Renault et al., 1994a, b; Fishman et al., 1996; Hirata et al., 1996; 

Sanz et al., 1999, Sanz et al., 2000; Fonseca et al., 2002c; Al-Ati and Hotchkiss, 2002; 

Mangaraj et al., 2009). In fact, irrespective of the material used, any changes in the 

structure of the polymeric films imply changes on both O2 and CO2 transmission rate.  

Perforations provide numerous advantages over non-perforated polymeric films 

(Exama et al., 1993; Renault et al., 1994a,b; Fishman et al., 1996). Since gas flow 

through the perforations is much greater than gas movement through the film (Fishman 

et al., 1996; Fonseca et al., 2002c; Varoquaux and Ozdemir, 2005), perforations allows 

a significant increase in the total gas flow through the package.  

Microperforated films provide a large range of O2 permeabilities that can match 

the O2 requirement of most produce (Varoquaux and Ozdemir, 2005). These films are 

applicable for products that can tolerate high CO2 since CO2 rate of diffusion is very 

similar to the rate of O2. In this specific case, it is impossible to achieve low O2 (1 – 5 

%) concentration in the package headspace without accumulating high CO2 levels (15 

– 20 %) (Exama et al., 1993). PM - MAP relies on the use of perforations in the form of 

tubes to control O2 and CO2 exchange. Gas flow through this type of perforations may 

be altered by the diameter and length of the tube (Fonseca et al., 2002c). 

The use of composite films  produced by blendin  polymeric films with inert 

inorganic material has also been explored mainly for high sensitive products, such as 

fresh –cut fruits and vegetables (Ahvenainen, 1996).  

Mushrooms are among the produces with high RR that could benefit with a 

MAP system (Kader et al., 1989; Iqbal et al., 2009b). The use of modified atmosphere 

packaging to extend the shelf life of mushrooms has been extensively reported (López-

Briones et al., 1993; Roy et al., 1995a; Tano et al., 1999; Ares et al., 2007; Singh et al., 

2010). Most of the literature, however, is related to the potential benefit on the use of 

MAP for button mushrooms (Agaricus bisporus) (Sveine et al., 1967; López-Briones et 
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al., 1993). Other studies focusing on the positive effects of MAP in Pleurotus 

(Villaescusa and Gil, 2003; Sapata et al., 2004; Sapata, 2005; Sapata et al., 2009a,b; 

Sapata et al., 2010) and shiitake (Ares et al., 2006; Antmann et al., 2008) have also 

been reported.  

The use of MAP on mushrooms is associated with a number of positive effects 

related to appearance of fresh produce. An important delay in maturation, reducing 

colour alterations and mass loss are among the factors described for fresh mushrooms 

resulting in higher quality (Nichols and Hammond, 1975; Kim et al., 2006). In order to 

attain such benefits, recommended MAP conditions for mushrooms were 3 – 5 % (v/v) 

of O2 and less than 12 % (v/v) of CO2 (Ares et al., 2006), but the range of O2 and CO2 

recommended for each species are expected to be different. 

First studies on MAP of Agaricus suggested the use of an atmosphere with 

simultaneous low O2 and CO2 to maintain an optimum quality of the fruit bodies. 

According to Murr and Morris (1975), lowering the O2 levels to 0.1 % (v/v) in 

combination with 5.0 % (v/v) CO2 (storage at 7 °C) increased the shelf life of Agaricus 

mushrooms by delaying cap maturation (as seen by both lower pileus growth and 

expansion of the stipe). In accordance, Gormley and MacCanna (1967), Nichols and 

Hammond (1975) and Sveine et al. (1967) also reported the use of low levels of O2 (0 - 

2 %, (v/v) maximum) to obtain optimum quality in button mushrooms. The optimum 

level of CO2, although varying between studies, is in the range of 5 to 12 % (v/v). 

Atmospheres of 6 % (v/v) have demonstrated to delay maturity as seen by the 

significant reduction in cap development of Agaricus mushrooms (Roy et al., 1995a).  

Studies of the effect of MAP on Pleurotus mushrooms are also available. Popa 

et al. (1999) studied the effect of several combinations of O2 and CO2 and described 

that 1 kPa O2 and 5 kPa CO2 was ideal to maintain Pleurotus quality for 14 days at 4 

°C, as seen for the positive effects in colour and texture. Villaescusa and Gil (2003) 

found that steady state MAP conditions with concentrations of 2 kPa O2 and 12 kPa 

CO2 maintained good visual quality of Pleurotus ostreatus for 7 days, but suggested 

the exploration of other types of atmosphere. Choi and Kim (2002) also evaluated the 

benefits of MAP utilization in the keeping quality of mushrooms. Packaging film was 

found to prevent or retard the deterioration of mushroom appearance, texture and 

discoloration.  
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Although the effects of MAP may positively affect several quality attributes in 

mushrooms, the effect of MAP in the RR of fresh mushrooms is founds no consensus. 

Peppelenbos et al. (1993) studied the effect of atmosphere modification in the RR of 

button mushrooms stored for 1–3 days. The authors found that, within the range of the 

combinations tested (0.81 – 2.6 % O2 plus 0.18 – 9.7 % (v/v) CO2) no effect was found 

in RR. In agreement, Varoquaux et al. (1999) also did not observe reduction in the 

respiration rate of Agaricus stored under O2 and CO2 partial pressure of 0.1 to 20 kPa 

and 0 to 20 kPa, respectively. On the other hand, during storage of Pleurotus 

mushrooms, Choi and Kim (2002) found a decrease in RR as a consequence of the 

levels of O2 and CO2 found in the package.  

As previous stated, a setback in the successful use of MAP is the limits levels of 

O2 and CO2 that the commodity is able to support (Beaudry et al., 1992; Beaudry, 

1999). It has been reported that CO2 concentrations higher than 12.0 % (v/v) causes a 

phytoto ic effect in mushrooms as seen in loss of firmness, browning, off-odours and a 

decrease in overall appearance of different mushroom species (Nichols and Hammond, 

1973; Burton et al., 1987; López-Briones et al. 1992; Varoquaux et al., 1999; Ares et 

al., 2006). Even levels as low as 5.0 or 6.0 % (v/v) caused severe browning in button 

mushrooms, as described by several authors (Nichols and Hammond; 1973; López- 

Briones et al., 1992; Barron et al., 2002). Ares et al. (2006) suggest that different 

species have different critical threshold values, since shiitake mushrooms are 

apparently more sensitive than other species.  

Another setback in the use of MAP for mushrooms is that, in order to obtain the 

benefits previous described, such as a reduction in RR or an increase of the sensory 

quality, a very low concentration of O2 must be used. Although mushrooms can benefit 

with low O2 levels, at those concentrations, anaerobic respiration accompanied by off-

odours was also reported (Burton et al., 1987; Beit-Halachmy and Mannheim, 1992; 

López-Briones et al., 1992; Tano et al., 1999). Anaerobic conditions also have the 

potential for growth of food borne pathogens such as Clostridium botulinum as seen for 

Agaricus mushrooms (Sugiyama and Yang, 1975; Farber et al., 2003). As 

consequence, for safety reasons, O2 should not drop below 2.0 % (v/v) (Varoquaux et 

al., 1999).  
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2.4.2.2. Controlling humidity inside fresh produce package 

Controlling the in-pack relative humidity (IPRH) in MAP systems is becoming 

increasingly important and has been presented as an approach to improve 

effectiveness of MAP (Aharoni et al., 2008). In addition to the limitation on the 

transmission rates of O2 and CO2, package films generally used for fresh commodities 

have also limitations in the water vapour transmission rate (WVTR).  

In general, most of the available polymers used in MAP have very low 

permeability to water vapour (Mahajan et al., 2008a; Mangaraj et al., 2009). As a result, 

when used with produces with high transpiration rates, IPRH is generally maintained 

very high (∼100 % RH) inside the package (Aharoni et al., 2008; Mangaraj et al., 

2009). Although high humidity in packages may potential reduced weigh losses, some 

adverse effects may occur from these environmental conditions. At this humidity levels, 

even small fluctuations in temperature durin  stora e result in water condensation on 

both film and produce.  esides the detrimental effects in pac a e aspect  condensed 

water on the inner film surface may adversely affect the gas exchange, leading to an 

unfavourable internal atmosphere (Cameron et al., 1995; Aharoni et al., 2008). Even 

thou h the use of antifo  additives combined with polymeric films is used to eliminate 

visible condensation, it does control the levels of humidity inside the package. 

Shirazi and Cameron (1992) developed the concept of modified-humidity 

packaging (MHP) that is a type of equilibrium modified atmosphere packaging (EMAP), 

specially developed to control the levels of humidity inside a package.  

Perforations are a relatively simple approach to reduce in-pack moisture and 

therefore condensation. However, matching the requirements of relative humidity, O2 

and CO2 inside the packages is a specially challenging task. In fact, it has been shown 

that the extent of perforations necessary for a small change in the RH inside a package 

increased O2 to the ambient level (Fishman et al., 1996). 

Hydrophilic films may potentially reduce some of these issues  because they 

allow the desired    as well as the humidity levels. Hydrophilic films combine different 

polymeric and non-polymeric compounds to achieve the optimum RH. The modified 

atmosphere is achieved with the microperforations of the combined film (Aharoni et al., 

2008). 
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The use of moisture absorbers inside a package is also an important technology 

to control the IPRH. In this case, in order to achieve the optimum RH, three factors are 

important: the transpiration of the produce, the loss of water through the polymer film 

and the gain of water by the absorber (Shirazi and Cameron, 1992; Mahajan et al., 

2008b).  

Varoquaux et al. (1999) concluded that no extension of mushroom shelf life was 

attainable trough MAP and suggested a control of RH within the package as a more 

effective way to retain produce quality.  

Roy et al. (1995a) have reported better colour retention and lower moisture loss 

for mushrooms packed under MA in combination with sorbitol pre-treatment. Use of 

small amounts of sorbitol was found to reduce condensation with CaCl2 irrigated 

mushrooms (Anantheswaran et al., 1996). For Pleurotus mushrooms, Villaescusa and 

Gil (2003) also used sorbitol and silica gel (10–15 g/150 g of mushrooms) to control 

IPRH, concluding on one hand, that sorbitol deteriorated texture, whereas silica gel 

increased the mass loss of produce. On a different approach, Mahajan et al. (2008b) 

developed a moisture absorber for fresh mushrooms using different combinations of 

desiccants. The authors suggested a combination of bentonite, sorbitol and CaCl2 (in 

proportions of 0.55, 0.25 and 0.2 g.g−1) to fulfil mushrooms requirements (moisture 

holding capacity of 0.9 g.g−1 mixed desiccant that remained in powder form during 120 

h of storage at 10 ºC). Moreover, appearance of Agaricus mushrooms improved with 

the use of 5 g of mixed desiccant in 250 g of mushroom punnets when compared with 

produce packed without desiccant (Mahajan et al., 2008b). 
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3.1. Introduction 

Mushrooms are a highly perishable food item, having a shorter postharvest life 

compared to other horticultural produces. At room temperature, quality losses can 

occur almost immediately (López-Briones et al., 1993; Tano et al., 1999) significantly 

limiting their useful life, and causing problems in mushroom marketing as a fresh 

product (Antmann et al., 2008). In fact, a shelf life of 1–3 days at ambient temperature 

has been described (Burton and Twining, 1989) which is known to be a natural 

consequence of their high metabolic activity and high water content (Villaescusa and 

Gil, 2003; Mahajan et al., 2008a).  

While other technologies may be used, temperature management is still the 

most important environmental factor related to postharvest quality retention (Kader, 

2002). For highly perishable commodities like mushrooms, refrigeration is the most 

usual preservation method, reducing both physiological and microbial spoilage (Singh 

et al., 2010). 

Oyster mushrooms are characterized by high respiration and transpiration rates 

(Rajarathnam et al., 1983; Villaescusa and Gil, 2003; Sapata, 2005; Jayathunge and 

Illeperuma, 2005). Moreover, the cap morphology is characterized by a thin and large 

surface which increases perishability (Rajarathnam et al., 1983). To overcome the 

difficulty in preserving their quality, effective postharvest technologies, namely strictly 

storage temperature control is mandatory (Rajarathnam et al., 1983; Ares et al., 2007). 

The objective of this study was to: (i) investigate the effect of storage 

temperature on different quality attributes of oyster mushrooms and (ii) to illustrate the 

importance of proper temperature management throughout the supply chain of oyster 

mushrooms. 
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3.2. Material and methods 

3.2.1. Sample preparation 

Fresh oyster mushrooms (Pleurotus ostreatus) were collected during the 

morning from a local producer in Gondomar region. Oyster mushrooms clusters were 

transported to the laboratory and stored at 2 °C until the beginning of the experiment at 

that same day. 

3.2.2. Experimental procedure 

Respiration rate and quality attributes of fresh oyster mushrooms were 

measured daily over a 96 hours period. Quality evaluation was based on colour, 

relative electrolyte leakage and mass loss.  

3.2.3. Respiration rate measurement 

Respiration rate was measured using the closed system methodology as 

reported in literature (Cameron et al., 1989; Gong and Corey, 1994; Fishman et al., 

1996; Fonseca et al., 2002a,b; Song et al. 2002; Iqbal et al., 2008; Iqbal et al., 2009a,b; 

Torrieri et al., 2009; Caleb et al., 2012b,c). 

Samples of separated carpophores were weighted (approximately 0.15 kg for 

each sample), placed in glass jars (volume of 1.9 × 10−3 m3) used as respirometers and 

stored in temperature control chambers (Monte Branco Refrigerators, Ltd, Oporto, 

Portugal) at test temperatures (2, 6, 10, 14 and 18 °C ± 1 °C). 

Respiration rate determination was performed daily. At each sampling time, jars 

were closed tightly, sealed with petroleum jelly and Parafilm, and hermeticity was 

verified. After finishing the measurements, jars were opened to allow air renewal, 

remaining opened overnight. To avoid excessive moisture loss, jar lids were kept 

slightly tilted over the jar tops.  
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For each sampling time, gas composition (volumetric fraction of O2 and CO2) of 

the headspace of each jar was monitored by withdrawing a 2 mL sample after inserting 

the analyser needle through a rubber septum on the jar lid. This was monitored over 

time using a gas analyzer (Checkmate, 9900, PBI Dansensor, Denmark O2 /CO2 gas 

analyser with an accuracy of 0.5 %). The interval of time used to calculate respiration 

rate was dependent on temperature, with up to four measurements by jar, varying from 

30 minutes for 18 ºC to two hours for 2 ºC.  

Respiration rate for each sample and for each measuring time in terms of CO2 

generation and O2 consumption was determined from the slope of the fitted linear 

equation according to Equations 3.1 and 3.2. 

RR 2
 

    2
   f

  t   100  
            Eq. 3.1 

 RRC 2
  

   C 2
   f

  t   100  
            Eq. 3.2 

 

where RRO2 
and RRCO2 

are O2 consumption and CO2 production rates (mL.kg.−1.h−1), 

  O2 
and   CO2

are the variation % (v/v) of O2 and CO2 and  t is the variation of time 

(h), M is the mass of the sample (kg), Vf is the free volume in the headspace jar (mL).  

Free volume inside the glass jar was calculated from Equation 3.3: 

 f    -
 

ρ
              Eq. 3.3 

where V is the total volume of the jar (mL); ρ is the volumic mass (experimentally 

determined through a simple water displacement method and obtained the value of 

656.67 kg.m-3). 

Respiratory quotient (RQ) was calculated according with Equation 3.4. 

R  
RRC 2

RR 2

               Eq. 3.4 

The determination of respiration rate was performed in triplicate for each 

combination storage time-temperature. 
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3.2.4. Quality indicators analysis 

The colour of the upper surface of the mushrooms was evaluated using a 

reflectance colorimeter (CR 400, Minolta Corp., Osaka, Japan), with the illuminant D65, 

previously calibrated with a standard white tile (X = 81.1, Y = 86.0 and Z = 91.8).  

For each storage time, colour measurements were performed using an 8 mm 

diameter diaphragm, at ambient temperature and CIE L*a*b* parameters were recorded. 

(Appendix A). Chroma (C*) and hue angle (Hº) values were obtained using the Eq. 3.5 

and 3.6 (McGuire, 1992):  

C
 
  a 2 b 2 

1
2 

              Eq. 3.5 

H° arct  
b
 

a 
              Eq. 3.6 

The original values of L*, a*, b* were used to obtain the degree of overall colour 

change (total colour difference, TCD) and overall lightness change (total lightness,TL), 

throughout the produce storage period, using the Eq. 3.7 and 3.8.  

       
 
 
2
 

1
2 

                 Eq. 3.7 

 CD       
2
   a  

2
   b  

2
 

1
2 

           Eq. 3.8 

Browning index (BI) was calculated as described by Maskan (2001), according 

to Eq. 3.9 and 3.10:  

   
 100  -0.31  

0.1 
              Eq. 3.9 

 in which,   
 a  1.       

  .6    a -3.012b  
         Eq. 3.10 

Colour measurements were made daily in the same mushrooms, directly on the 

cap surface, 3 times on 10 mushrooms from each condition.  
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Relative electrolyte leakage (REL, %) was assessed by cutting discs of fresh 

mushrooms (20 mm diameter, total 5 g) with a sharp cork borer. 

Mushroom discs were placed in autoclaved jars (100 mL) with 50 mL of bi-

deionised water. Conductivity (µS) was measured with a conductivimeter (510 

CyberscanCON, Singapore) after 1 minute (C1) and after 60 minutes (C60), under 

agitation conditions (100 rpm. min-1) in an electromagnetic stirrer (E Agimatic -

C7001606, Spain). 

The samples were then autoclaved for 15 minutes. After cooling, the total 

conductivity CT of the solution in suspension was determined. 

REL was calculated in accordance with that indicated by Fan and Sokorai 

(2005) (Eq. 3.11). 

RE  
        

C 
 100           Eq. 3.11 

Three replicates were performed for each time-temperature combination. 

A small amount of the mushroom homogenized in a Ultra-Turrax (Basic T25, 

IKA, Germany) was squeezed through cheesecloth and a drop was used for SSC 

(expressed as ºBrix) determinations. SSC was determined in triplicate with a hand held 

refractometer (Milwaukee Instruments, Rocky Mount, U.S.A.). 

Ten mushrooms of each time-temperature conditions were weighed individually 

and mass loss (ML, %) was determined by gravimetric difference in respect to the initial 

mushroom mass (Eq. 3.12).  

    %  
 
i -
 t

 i
 100           Eq. 3.12 

where Mi is the initial mushroom mass and Mt is the mushroom mass at time t (h). 

Results were expressed as percentage of mass loss.  

3.2.5. Data analysis 

Effect of time and temperature on quality indicators was inspected through the 

use of a two-way analysis of variance (ANOVA), using PASW Statistics for Windows, 
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Version 18.0 (SPSS Inc. Released 2009, Chicago: SPSS Inc. Multiple comparisons 

were performed using the Tukey´s test. All tests were applied at a 95 % confidence 

interval (CI), except if stated otherwise. Furthermore, results are presented as mean ± 

standard error of mean, unless otherwise stated. 

3.3. Results and discussion  

The respiration rate expressed as the rate of consumption of O2 (RRO2
, 

mL.kg-1.h-1) and rate of production of CO2 (RRCO2
, mL.kg-1.h-1) of oyster mushrooms 

throughout the storage period is shown in Fig. 3.1 a and b. Evolution of RQ is 

presented in Fig. 3.1 c.  



FCUP 
Development of packaging systems to maximize quality retention and increase shelf life of Pleurotus 

mushrooms 
99 

 

 

Fig. 3.1 - Changes in (a) RRO2
 (mL.kg

-1
.h

-1
) (b), RRCO2 (mL.kg

-1
.h

-1
)  and (c) RQ of Pleurotus ostreatus mushrooms over 

time stored at 2, 6, 10, 14 and 18 °C. Each point represents the mean of three replicates and vertical bars represent the 
standard error of the mean. □: 2ºC; ▲: 6ºC; ○:10ºC; :14ºC; : 18ºC. Dotted interpolation lines added for easiness in 
reading.  
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The initial O2 consumption rate of oyster mushrooms (t = 0) is high, ranging 

from 111.93 mL.kg-1.h-1 (± 5.93 mL.kg-1.h-1) to 235.15 mL.kg-1.h-1 (± 11.24 mL.kg-1.h-1) 

in the range of temperatures tested. CO2 also range between 107.13 and 223.17 

mL.kg-1.h-1 (± 4.32 and 16.65 mL.kg-1.h-1, respectively) at the beginning of storage time.  

Temperature had a significant effect on oyster mushroom RR, with values 

obtained for refrigeration temperatures of 2 and 6 ºC being significantly lower than the 

higher temperatures tested (p < 0.05; Appendix B, Table B.1 and B.2). Regardless of 

the storage temperature, respiration rate significantly declined over time (p < 0.05) and 

achieved the lowest value at the end of the experimental period (96 h) for all 

temperatures tested. In fact, for all temperatures, significant decreases (p < 0.05) were 

found for mushrooms stored after 24 and 48 h.  

Regarding RQ, results show a mean value of 0.89 (± 0.02). Although no 

differences were found for RQ values throughout storage time (p > 0.05), slightly higher 

values were found for mushrooms stored at 2 ºC (p < 0.05; Appendix B, Table B.3).  

Similar results for the respiration profile of mushrooms have been previously 

found for both oyster mushroom and other mushroom species. It has been suggested 

that postharvest elapsed time has an effect on respiratory activity of mushrooms and 

that respiration behaviour after harvest is similar to the respiration profile observed for 

non climacteric commodities, with a decline of respiration rate over time. In fact, on 

mushrooms, this metabolic behaviour is related with the maturity of the fruit bodies 

(Hammond and Nichols, 1975). Other authors suggest that the RR burst observed on 

mushrooms is a consequence of the harvest process or even related to the 

physiological response to wounding that occur in minimal processing operations, which 

implies a physiological response with a consequence increase on RR. Villaescusa and 

Gil (2003) found a decrease on respiration rate of oyster mushrooms after samples 

processing, whereas Iqbal et al. (2009a) reported that the respiration rate of button 

mushrooms showed a significant increase 24 h after harvest and then decreased with 

elapsed time. Moreover, although slicing increased the RR of button mushrooms, the 

respiration profile obtained for processed samples was similar to the obtained with 

whole mushrooms and suggested the influence of mushroom maturation on respiration 

rate.  

Temperature is also an environmental factor that significantly increases the 

respiration of fresh produce. On mushrooms, it has been described that in the range of 
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temperatures generally found throughout the handling chain (4 to 16 ºC), button 

mushrooms respiration rate increased by 5 fold (Cliffe- yrnes and  ’  eirne  200 ). 

For temperatures between 10 and 20 °C, RR increased by 3 fold (Q10 of 2.9) (indicating 

that for each 10 ºC increasing in the storage temperature, RR increases 2.9 times) as 

reported by Varoquaux et al. (1999) for button mushrooms. Iqbal et al. (2009a) also 

reported comparable results for button mushrooms (the rate of O2 consumption 

increased from 22 to 102 mL.kg-1.h-1 in the temperature range of 0 - 20 °C.  

Respiratory quotient found is also in normal range of 0.7 to 1.3 reported in the 

literature for aerobic respiration (Kader et al., 1989), and in accordance with the type of 

substrate used for respiration rate. Varoquaux et al. (1999) reported values of 0.78 and 

0.76 for Agaricus bisporus stored under ambient air at 10 and 20 ºC, respectively. Also 

for button mushrooms, Iqbal et al. (2009a) reported an RQ of 0.89 for mushrooms 

stored in air, while Cliffe- yrnes and  ’ eirne (2007) reported that RQ for mushrooms 

was 0.86.  

Another important aspect that worth mentioning is that the respiration rate 

values obtained for oyster mushrooms under these experimental conditions are higher 

than values reported by other authors. As an example, RR of sliced button mushrooms 

were in the range of 105.5 ± 4.0 mL.kg-1.h-1 to 133.8 ± 2.0 mL.kg-1.h-1, during storage of 

57 h at 20 ºC and 59.2 ± 3.6 mL.kg-1.h-1 to 95.2 ± 3.6 mL.kg-1.h-1, during storage of 100 

h at 12 ºC (Iqbal et al., 2009a).  

Considering this aspect, oyster mushrooms are more perishable than other 

mushrooms species. Moreover, increases in temperature that may occur within 

postharvest handling chain can sharply increase oyster mushroom respiration rate, 

affecting quality.  

Colour is generally used for the assessment of horticultural commodities quality. 

For mushrooms, colour is considered one of the most important quality parameter 

(González-Fandos et al., 2000). In Fig. 3.2, changes on colour parameters of oyster 

mushrooms at different storage temperatures over the storage period are presented.  
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Fig. 3.2 - Evolution of CIE L*a*b* parameters, C*, Hº, browning index, total lightness and total colour differences of Pleurotus ostreatus mushrooms over time stored at 2, 6, 10, 14 and 18 °C. 
Each point represents the mean of three replicates and vertical bars represent SE. □: 2ºC; ▲: 6ºC; ○:10ºC; :14ºC; : 18ºC. Dotted interpolation lines added for easiness in reading.  
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Lightness of oyster mushroom, as indicated by L* value significantly increases 

(p < 0.05; Appendix B, Table B.4) throughout the storage period for all storage 

temperatures considered. Temperature also had a significant effect (p < 0.05) on 

oyster mushroom lightness at the end of storage life (Appendix B, Tab B.4). Oyster 

mushroom stored at 2 ºC did not show a significant increase of L* over storage time but 

at 6 ºC presented an increase in L* value from 59.67 (± 0.78) at the beginning of the 

storage period to 64.49 (± 0.59) after 96 h. At the highest temperature of 18 ºC, 

mushrooms had an increase in L* values from 55.06 (± 1.25) to 64.30 (± 1.00). With 

respect to the values of a* and b* (that represent redness and yellowness, 

respectively), ANOVA (Appendix B, Tab B.5 and B.6) shows that both temperature and 

time had important effect on the evolution of these parameters throughout storage life 

(p< 0.05).  

At temperatures of 2 and 6 °C, the a* value remains relatively constant over the 

storage period, whereas at 14 and 18 ºC a significant increase in redness was 

observed for oyster mushroom (Appendix B, Tab B.5). 

Yellowness (b* parameter) of oyster mushrooms significantly increases (p < 

0.05) during 96 h for all temperatures tested. Even when stored at 2 ºC, the value of b* 

increases from 10.56 (± 0.30) to 12.99 (± 0.20) after 96 hours. Increase in b* values, 

however, were significantly higher for mushrooms stored at storage temperatures of 14 

and 18 ºC (Fig. 3.2).  

Values of hue angle (Hº) and chroma (C*) also present an increase as storage 

progresses (p < 0.05; Appendix B, Tab B.7 and B.8), with higher increase for 

mushroom stored at high temperatures. In accordance with the values obtained for a* 

and b*, an increase in Hº values with increase of storage time and temperature would 

also be expected.  

Concerning the initial colour of the mushroom samples used in the present 

experiment, that displayed a greyish tone colour (presenting a value of a* near 3 and a 

b* value close to 10 respectively), all mushroom samples showed a progressive 

increase in yellowness (increase in b* value), regardless the storage temperature. 

Mushroom yellowing is a common postharvest phenomenon that occurs mainly due to 

the action of the enzyme tyrosinase (polyphenol oxidase). Bacterial infections, namely 

caused by Pseudomonas tolassii also cause oyster mushrooms yellowness during 
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postharvest storage. Colour alterations in mushrooms are considered a major 

biochemical event. With ageing, mechanical damage or bacterial activity (Beelman et 

al., 1989; Jiang et al., 2010), the enzyme oxidizes mushroom phenolic compounds into 

brown melanins, which results in brown discoloration (Boekelheide et al., 1979; Soulier 

et al., 1993; Jolivet et al., 1998). Infections by Pseudomonas tolaasii also affects 

mushroom natural colour causing brown blotch disease in Agaricus bisporus 

mushrooms and yellowing of Pleurotus ostreatus (Bessette et al., 1985). 

Similar results, pertaining yellowness of oyster mushrooms were previous 

reported. Villaescusa and Gil (2003) reported similar trend with an increase in yellowing 

after storage of oyster mushrooms for 7 days at 7 ºC. In previous works, Sapata et al., 

(2004) and Sapata et al. (2009a,b) also reported an increase in yellowing of oyster 

mushrooms stored under MAP conditions at 4 ºC.  

The colour parameters previous analysed can be transformed in browning 

index, total lightness and total colour changes. Browning index, related with enzymatic 

browning in foods, increases for all samples, but the rate of change was temperature 

dependent (p < 0.05; Appendix B, Tab B.9). Despite the storage temperature, 

mushrooms present a slightly increase in BI after 48 h of storage. From this time 

onwards, a rapid increase in BI was observed for samples stored at 14 and 18 ºC and 

by the end of storage time, no significant differences were found between these two 

temperatures. On the other hand, 2, 6 and 10 ºC also presented an increase although 

at a lower rate than the former temperatures. 

Total lightness also increases significantly as storage progresses, with higher 

increase for higher temperatures (p < 0.05; Appendix B, Tab B.10).  

Total colour differences significantly increased with time (p < 0.05; Appendix B, 

Tab B.11) for all temperatures, with the exception of oyster mushrooms maintained at 2 

ºC. On the contrary to what one would expect, there was an increase in both TL and BI. 

This increase both colour parameters could be due to some water condensation on the 

mushroom surface. 

Tab. 3.1 shows the changes in soluble solid contents over storage time as 

affected by storage temperatures of oyster mushrooms.  
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Tab. 3.1 - Soluble solid content (ºBrix) (mean ± SE) of Pleurotus ostreatus mushrooms stored at 2, 6, 10, 14 and 18 ºC for 96 hours.  
The p-value for the main effects from two-way ANOVA is 0.001 for temperature and 0.000 for time. 

Storage time (h) 2 ºC 6 ºC 10 ºC 14 ºC 18 ºC 
p-value 

(one-way 
ANOVA) 

0 4.33 (±0.58)
a,A

 4.33 (±0.58)
a,A,B

 4.33 (±0.00)
a,A

 4.00 (±0.00)
a,A

 4.00 (±0.07)
a,A

 0.737 

24 4.00 (±0.00)
a,A

 4.00 (±0.00)
a,A

 4.67 (±0.00)
a,b,A

 5.00 (±0.00)
b,A

 5.00 (±0.28)
b,A

 0.001 

48 4.33 (±0.58)
a,b,A

 5.00 (±0.00)
b,B

 4.00 (±0.00)
a,A

 5.00 (±0.00)
b,A

 5.00 (±0.05)
b,A

 0.002 

72 4.67 (±0.58)
a,A

 4.33 (±0.58)
a,A,B

 5.00 (±0.00)
a,A

 5.00 (±0.00)
a,A

 5.00 (±0.03)
a,A

 0.171 

96 4.33 (±0.58)
a,A

 5.00 (±0.00)
a,B

 4.33 (±0.00)
a,A

 5.00 (±0.00)
a,A

 5.00 (±0.03)
a,A

 0.072 

p-value (one-way 
ANOVA) 

0.655 0.024 0.147 0.000 0.000 0.001* 

a,b – homogeneous groups of temperature according to the Tu ey’s test  at a 9  % CI. 
A,B – homogeneous groups of storage time according to the Tu ey’s test  at a 9  % CI. 
*p-value for overall time x temperature interactions from two-way ANOVA. 
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The soluble solid content of oyster mushrooms was found to increase with 

storage time (p < 0.05) for storage temperatures of 6, 14 and 18 ºC. For 2 and 10 ºC, 

no significant differences were found regarding SSC with storage time (p > 0.05).  

Similar results were found by Jafri et al. (2013) in which SSC of Pleurotus 

Florida presented an increase over storage at 4 ºC.  

Sapata et al. (2004) and Sapata (2005) studied the effect of passive modified 

atmosphere and reported that SSC of oyster mushrooms did not change when stored 

at 4 °C for 14 days. Villaescusa and Gil (2003) did not found differences in the soluble 

solid content of oyster mushrooms stored at low temperatures (between 0 and 7 ºC). 

Tao et al. (2006) reported an increase (reaching a peak after 5 days of storage) 

followed by a decline on the SSC of Agaricus mushrooms throughout storage. Li et al. 

(2007) reported an increase on the soluble solid content of A. chaxingu peaked at 

either the 8th and 12th storage day, and a concomitant increase on respiration rates on 

these storage days. After this time, the content decreased gradually.  

Tab. 3.2 shows the relative electrolyte leakage of oyster mushrooms stored at 

different temperatures for 96 hours.  
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Tab. 3.2 – Relative electrolyte leakage (%) (Mean ± SE) of Pleurotus ostreatus mushrooms stored at 2, 6, 10, 14 and 18 ºC for 96 hours.  
The p-value for the main effects from two-way ANOVA is 0.001 for temperature and 0.000 for time. 

Storage time 
(h) 

2 ºC 6 ºC 10 ºC 14 ºC 18 ºC 
p-value (one-
way ANOVA) 

0 20.06 (± 3.61)
a,B

 20.06 (± 3.61)
a,B

 20.06 (± 3.61)
a,B

 8.06 (± 6.57)
a,A,B

 8.06 (± 6.57)
a,A

 0.016 

24 12.63 (± 10.09)
a,A,B

 6.04 (± 5.06)
a,A

 7.92 (± 1.61)
a,A

 3.66 (± 1.47)
a,A

 4.29 (± 1.88)
a,A

 0.292 

48 7.37 (± 4.78)
a,A,B

 9.73 (± 2.31)
a,A

 11.65 (± 4.18)
a,A

 6.73 (± 1.29)
a,A

 10.53 (± 0.87)
a,A

 0.312 

72 1.75 (± 1.47)
a,A

 3.68 (± 0.41)
a,A

 4.57 (± 1.46)
a,A

 21.62 (± 1.48)
b,B,C

 23.66 (± 5.33)
b,B

 0.000 

96 4.36 (±1.16)
a,A

 5.43 (± 1.06)
a,A

 9.27 (± 0.87)
a,A

 23.63 (± 9.75)
b,C

 31.31 (± 2.00)
b,B

 0.000 

p-value (one-
way ANOVA) 

0.012 0.000 0.000 0.003 0.000 0.000* 

a,b – homogeneous groups of temperature according to the Tu ey’s test  at a 9  % CI. 
A,B – homo eneous  roups of stora e time accordin  to the  u ey’s test  at a 9  % CI.  
*p-value for overall time x temperature interactions from two-way ANOVA. 
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For storage temperatures of 14 ºC and 18 ºC, there was a tendency for an 

increase in REL over time. At the beginning of storage time, oyster mushrooms 

presented a value of 8.06 % (± 6.57 %) that significantly increased (p < 0.05) for 23.63 

% (± 9.75 %) and 31.31 % (± 2.00 %), respectively.  

This trend suggests an increase of oyster mushroom membrane vulnerability. 

Similar trends pertaining increases in the vulnerability of the membrane system with 

temperature throughout storage time have been previous reported by Li et al. (2007) 

for Agrocybe chaxingu mushrooms and Tao et al. (2006) for button mushrooms.  

The mass loss under different storage temperatures over storage time is shown 

in Fig. 3.3.  

 

Fig. 3.3 - Evolution of mass loss of Pleurotus ostreatus, during storage at 2, 6, 10, 14 and 18 °C. Dots are the mean of 
ten replicates and vertical bar represent SE. □: 2ºC; ▲: 6ºC; ○:10ºC; :14ºC; : 18ºC . Dotted interpolation lines added 
for easiness in reading.  

The mass loss increased with elapsed time and temperature; both factors have 

a significant effect on mass loss of (p < 0.05; Appendix B, Tab B.12). 

Although a loss of 5 – 6 % of fresh mass in fresh horticultural commodities have 

the potential to decrease commodity commercial value (Paull, 1999; Guillaume et al., 

2010), Sveine et al. (1967) and Beit-Halachmy and Mannheim (1992) reported that for 

mushrooms, a fresh mass loss of 2 % is usually enough to cause marked deterioration.  

Mass loss in mushrooms has proven to be important in the present 

experimental conditions. After 24 hours of storage, mushrooms presented important 
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amount of mass loss. By this storage time, two distinct groups regarding mass loss 

were found. Mushrooms stored at 2, 6 and 10 ºC lost 1.52 % (± 0.14 %), 1.94 % (± 

0.17 %) and 2.34 % (± 0.19) of their fresh mass respectively. For higher temperatures, 

mushroom mass loss was significantly higher, attaining values of 6.21 % (± 0.79 %) 

and 10.27 % (± 2.72 %) for 14 and 18 ºC, respectively.  

Moreover, considering the two percent limit for the maximum permissible mass 

loss for mushroom, the results show that even at 2 and 6 °C, this value was attained 

after 48 h after storage (1.96 % (± 0.16 %) and 2.66 % (± 0.20 %) for mushrooms 

stored at 2 and 6 ºC, respectively). By the end of the storage period considered (96 h), 

mushrooms had lost 3.57 % (± 0.26 %) and 5.12 % (± of 0.51 %) at 2 and 6 ºC, 

respectively, whereas significant higher mass losses were found for mushrooms stored 

at 14 and 18 ºC. At these storage temperatures, oyster mushrooms presented losses 

of 41.08 % (± 3.17 %) and 42.56 % (± 3.82 %) of their fresh mass when stored at 14 

and 18 ºC, respectively.  

The results presented suggest that, for mushrooms, mass loss is an important 

phenomena, affecting postharvest quality. Mass losses in horticultural commodities 

include moisture and dry matter by transpiration and respiration (Roy et al., 1995a; 

Varoquaux et al., 1999). The peculiarity of mushrooms is that, unlike fruits and 

vegetables that have a complex epidermal structure to restrain postharvest water loss, 

mushrooms are only protected by a thin epidermal structure. As a consequence, quick 

and high mass losses are generally found during mushroom postharvest period 

(Mahajan et al., 2008a). In general, linear mass losses have been reported for 

mushrooms throughout storage (Burton and Noble, 1993; Varoquaux et al., 1999; 

Mahajan et al., 2008a; Guillaume et al., 2010). The rate of mass loss is dependent of 

postharvest treatments, with temperature having an important effect. Burton and Noble 

(1993) reported a loss of 6 % (w/w) for button mushrooms stored at 18 °C in open 

punnets. 

Roy et al. (1995a) stored mushrooms at 12 °C in polyethylene pouches and 

obtained mass losses in the range of 0.56 % (w/w) for each day of storage. In micro-

perforated oriented polypropylene pouches, 0.17 % (w/w) by day for Agaricus 

mushrooms stored at 10 ºC was reported by Varoquaux et al. (1999). 

When stored with a stretchable film, Guillaume et al. (2010) described mass 

losses of 0.18 % (w/w) day−1 at 20 ºC and under near saturation conditions. On day 3, 
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the author reported a loss of 0.7 % (w/w) of mushroom fresh mass stored in 

commercial stretchable film at 20 ºC. Jiang et al. (2011) reported that mass losses of 

button mushrooms (dipped in a nitric oxide) and in packages with biorientated 

polypropylene stored at 4 ºC for 16 days were below 3 %.  

Villaescusa and Gil (2003) reported that at temperatures of 0 and 4 ºC and 

stored under highly humidified air, Pleurotus mushrooms lost 0.6 % of their fresh 

weight. Jayathunge and Illeperuma (2005) also found mass loss of 2.2 % for oyster 

mushrooms packed (with 3 and 5 g of magnesium oxide) after 12 d of storage at 8 °C 

and 70 % RH. 

On the other hand, for oyster mushrooms (Pleurotus florida), Jafri et al. (2013) 

reported weigh losses values as high 21.27 % (± 0.60 %) for mushrooms stored in air 

at 4 ºC for 10 days.  

As expected, mass loss was accentuated by storage temperature, in 

accordance with the previous results for other mushroom species (Burton and Noble, 

1993; Kang et al., 2001; Mahajan et al., 2008a). In fact, Escriche et al. (2001) reported 

that, amongst the quality attributes of button mushroom studied, mass loss was the 

most sensitive to temperature increase, highlighting that proper temperature 

management may be effective for the control of postharvest mass loss.  

3.4. Conclusions 

In the present study, quality attributes of oyster mushrooms were studied over a 

storage period of 96 h. Mushrooms were stored in air at five temperatures (2, 6, 10, 14 

and 18 °C) and high relative humidity (85 – 95%). Surface colour, soluble solid content, 

mass loss, relative electrolyte leakage and respiration rate were assessed daily. 

Respiration rate of oyster mushrooms was high at the beginning of the experiments 

and decreased 24 hours after sample processing. Low temperatures significantly 

reduced respiration rate and consequent deterioration of produce.  

Colour parameters of oyster mushrooms was affected by both temperature and 

storage time. Mushrooms underwent overall yellowness with storage time. Rate of 

colour changes was higher at higher storage temperatures.  
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These results clearly show the importance of temperature control on quality 

parameters of Pleurotus ostreatus mushrooms. Overall changes in metabolism and 

therefore physicochemical properties of oyster mushrooms can be delayed by 

employing proper temperatures throughout storage. Although overall quality was 

similar after 96 hours for refrigeration temperatures of 2 and 6 ºC, minimum mass 

losses were obtained for mushrooms stored at 2 ºC. Therefore, under the conditions 

tested, 2 °C is ideal temperature for maximum retention of quality attributes and has 

the potential to increase oyster mushroom shelf life.  
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4.1. Introduction 

Respiration is a central process in horticultural produce metabolism. It provides 

energy and carbon skeletons for cell maintenance during storage. Respiration rate 

(RR) is a measure of the metabolic activity of fresh horticultural products (Kader and 

Saltveit, 2003), therefore being an important component for shelf life studies.  

As a complement to storage temperature control, other technologies can be 

used as a barrier to control postharvest quality depreciation. Modified Atmosphere 

Packaging (MAP) is one of them and it is considered an efficient technology to control 

postharvest degradation in several commodities (Fonseca et al., 2002a; Kader, 2002). 

The amount of product, size of packaging material and the permeability 

properties of the packaging film are adjusted for optimal packaging once RR is known 

(Fonseca et al., 2002a; Mangaraj et al., 2009).  

When the respiration rates of fresh products does not match the permeability 

properties of the packaging film, concentrations of CO2 will build up, leading to 

anaerobic respiration and ethanol accumulation inside the package, with a consequent 

development of off-flavours and decay of the produce (Caleb et al., 2012c). 

Because temperature is by far the most important factor in RR alterations, it has 

been investigated and included in most respiration models (Fonseca et al., 2002a; 

Caleb et al., 2012c). Other factors such as gas composition also determine changes in 

RR of several commodities (Fonseca et al., 2002a,b; Caleb et al., 2012c). Time 

elapsed from harvest can also affect RR of produce. In fact, for some commodities, 

respiration rate is not constant during shelf life. Since changes in RR may have a major 

impact in the gas composition achieved in MAP, postharvest respiration behaviour and 

the rate of change is also important to specify packaging conditions (Fonseca et al., 

2002a; Yang et al., 1988; Kim et al., 2004; Uchino et al., 2004; Rocculi et al., 2006; 

Fonseca et al., 2002a; Iqbal et al., 2009b; Caleb et al., 2012a). 

Reported as one of the most perishable foods, mushrooms are expected to 

maintain their quality under MAP conditions (Burton et al., 1987; Burton and Twining, 
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1989; López-Briones et al., 1992, López-Briones et al., 1993, Roy et al., 1995a; Tano 

et al., 1999).  

While refrigeration retains quality conditions of fresh mushrooms (Murr and 

Morris, 1975; López-Briones et al., 1992), MAP has been recognised as a simple, 

economical and effective technology in postharvest preservation of several types of 

mushrooms (Kader et al., 1989; Kim et al., 2006).  

A vast amount of information related to the postharvest preservation of Agaricus 

bisporus is known, including RR modelling (Iqbal et al., 2009a,b; Li et al., 2009). 

Nevertheless, information about storage conditions for other species is still scarce. 

Despite being one of the most commercially important edible mushrooms throughout 

the world (Smith et al., 2002; Sánchez, 2010), studies on the predictive modelling of 

the RR for MAP application on oyster mushrooms are lacking, and only a few studies 

on MAP were found for these species (Villaescusa and Gil, 2003; Sapata, 2005; 

Sapata et al., 2007; Sapata et al., 2009a,b; Ramos et al., 2011). 

Therefore, the objectives pursued in this part of the study were (i) to investigate 

the effect of temperature and storage time on RR of fresh Pleurotus, and (ii) to develop 

a predictive model relating RR to temperature and storage time. 

4.2. Material and methods 

4.2.1. Sample preparation 

Fresh mushrooms (Pleurotus ostreatus) cluster at commercial maturity stage 

were collected during the early morning from a producer in Trás-os-Montes, Portugal, 

transported to the laboratory in the early afternoon and stored at 2 ºC. Oyster 

mushrooms carpophores were carefully separated from the cluster using a sharp knife, 

and the ones with closer carpophores were selected and stored at 2 ºC approximately 

for one hour until the beginning of the experiment.  
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4.2.2. Respiration rate measurement 

Respiration rate was measured using the closed system methodology as 

reported and described in Chapter 3, § 3.2.2.1. 

Samples of separated carpophores were weighted (approximately 0.15 kg for 

each sample), placed in glass jars (volume of 1.9 × 10−3 m3) used as respirometers and 

stored in temperature control chambers (Monte Branco Refrigerators, Ltd, Oporto, 

Portugal at test temperatures (2, 6, 14 and 18 ° C ± 0.5 ºC), and in a domestic type 

refrigerator (Bosch, Germany) at 10 ºC ± 2 ºC 

Two sets of three jars were prepared for each of the five test temperatures. On 

an alternate procedure, each set was taken for respiration rate determination at every 

eight hours interval. At each sampling time, three selected jars were closed tightly, 

sealed with petroleum jelly and parafilm and hermeticity was verified. After finishing the 

measurements, jars were opened to allow air renewal, remaining opened overnight. To 

avoid excessive moisture loss, jar lids were kept slightly tilted over the jar tops.  

For each sampling time, gas composition (volumetric fraction of O2 and CO2) of 

the headspace of each jar was monitored by withdrawing a 2 mL sample after inserting 

the analyser needle through a rubber septum on the jar lid. This was monitored over 

time using a gas analyzer (Checkmate, 9900, PBI Dansensor, Denmark O2 /CO2 gas 

analyser with an accuracy of 0.5 %). The interval of time used to calculate respiration 

rate was dependent on temperature, with up to four measurements by jar, varying from 

30 minutes for 18 ºC to two hours for 2 ºC.  

Respiration rate for each sample and for each measuring time in terms of CO2 

generation and O2 consumption was determined from the slope of the fitted linear 

equation according to Eq. 3.1 and 3.2. RQ was calculated according with Eq. 3.4. 

(Chapter 3, § 3.2.2.1).  

The determination of respiration rate was performed in triplicate for each 

combination storage time- temperature. 
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4.2.3. Data analysis 

The constants of the model developed to describe the influence of time and 

temperature on respiration rate were estimated by fitting the model to the experimental 

data by nonlinear regression using the IBM SPSS Statistics Version 20.0 (IBM, 2011).  

Model parameter estimates were obtained using the least square method that 

minimizes the sum of squares of the residuals between the experimental and the 

predicted data (Seber and Wild, 2003), using the Levenberg-Marquardt algorithm 

available in the software (IBM, 2011). 

Respiration rate data, obtained under different temperature was analysed with a 

two-step method for non-linear regression. Through the two-step method, in a first step, 

parameters of the individual model, describing the time effect on oyster mushrooms 

respiration rate were determined individually for each temperature. Subsequently, the 

parameters estimated from the individual model were used as the initial values to 

obtain overall model parameters. This methodology has the advantage to allow the 

description of both the primary and global models and optimizes the quality of the fit 

(Cohen and Saguy, 1985; Haralampu et al., 1985; Cunha et al., 2006). 

Unless otherwise stated, all results are presented as mean ± standard error of 

mean.  

4.3. Results and discussion 

4.3.1. Respiration rate of fresh oyster mushrooms at 

ambient air 

Storage time is an important factor affecting respiration rate of fresh produce 

and thus it has to be take into account while developing packaging system (Fonseca et 

al., 2002a,b).  
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Fig. 4.1 - Evolution of a) RRO2
 and b) RRCO2

 (mL.kg
-1
.h

-1
) of oyster mushrooms stored at various constant temperatures 

under ambient air. Symbols represent the mean of 3 replicates and bars represent the standard error of the mean (□- 2 
ºC; ▲- 6 ºC; ○-10 ºC; -14 ºC; - 18 ºC).  
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The O2 consumption and CO2 production rates of oyster mushrooms at the 

beginning of the storage experiment was very high and decreases with time for all 

temperatures (Fig. 4.1 a) and b)). These high initial respiration rates were probably 

caused by stress during the harvesting process just before storage or related with 

mushroom maturity (Villaescusa and Gil, 2003; Iqbal et al., 2009a). 

The initial O2 consumption rate of oyster mushrooms ranged from 60.30 mL.kg-

1.h-1 (± 2.94 mL.kg-1.h-1) to values as high as 338.53 mL.kg-1.h-1 (± 13.88 mL.kg-1.h-1) for 

temperatures from 2 to 18 ºC, respectively. 

The O2 consumption rate of mushrooms decreased over the first three to four 

days of storage and then, remained relatively stable from that time onwards for all 

temperatures tested. Similar trends were observed by Villaescusa and Gil (2003) in 

which Pleurotus mushrooms also had high respiration rates at the beginning of the 

storage time at 0, 4 and 7 ºC, with a sharply decrease as storage progresses. 

Respiration quotient (RQ) is measured as the ratio of CO2 evolved and O2 

consumed and is a useful indicator of the respiration process occurring and of the 

substrate used for respiration. 

RQ values obtained in the present study are within the normal range of 0.7 to 

1.3 reported in the literature for aerobic respiration (Kader et al., 1989). The results are 

in accordance with previous results for RQ of mushrooms (Varoquaux et al., 1999; 

Cliffe- yrnes and  ’ eirne  200 ; Iqbal et al. 2009a). 

No significant trend (p > 0.05) was found for the effect of both time and 

temperature on the respiratory quotient (RQ). Therefore, the mean RQ of 0.83 (± 0.09) 

was used to calculate an estimated value for RRO2 
(RR*

O2
), according Eq. 4.1. 

RR
 
 2
  

RRC 2

0.83 
                     Eq. 4.1 

where, RR*
O2 

is the estimated O2 consumption rate (mL.kg-1.h-1) and RRCO2
 is the 

experimental values obtained for CO2 production (mL.kg-1.h-1). 
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O2 consumption rate of oyster mushrooms used to access the effect of time and 

temperature on respiration rate were obtained considering the mean of the 

experimental values for RRO2 
and the estimated value (RR*

O2
) obtained with Eq. 4.1, 

according Eq. 4.2 (Iqbal et al., 2005). 

RR 
RR 2

  RR  2

2
              Eq. 4.2 

where, RR is the estimated O2 consumption rate (mL.kg-1.h-1). 

4.3.2. Effect of time on respiration rate 

According to experimental data obtained, the effect of time on oyster 

mushroom RR was described by a first order decay model (E .  .3).  

RR - RRe 

RR0 - RRe 
 e p(-  t)               Eq. 4.3 

where, RReq and RR0 are the respiration rates at the equilibrium and time 0, 

respectively (mL.kg-1.h-1), k  is the kinetic parameter (h-1) and t is time (h). 

Model parameters (RReq RR0 and k) of the Equation 4.3 were estimated from 

experimental data obtained for each storage temperature using nonlinear regression. 

Since inconsistency between experimental and predicted data at 10 ºC was 

found, respiration data at this temperature was excluded from the subsequent analysis. 

This may be explained as the laboratory only had four temperature control chambers 

with the fifth experiment (10 ºC) being performed with a refrigerator with a weaker 

temperature control. Authors have chosen this approach to warrant that all 

experimental data were obtained from the same batch of mushrooms, avoiding higher 

produce variability. Using different batches would impart a larger error, as can be seen 

from Aguirre et al. (2008). 

Estimated constants, statistical data and the quality of the fit of the first order 

decay model for each storage temperature are summarized in Tab. 4.1 
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Tab. 4.1 - Constant estimates (± SE) of the first order decay model describing the effect of time on respiration rate of 
fresh oyster mushrooms, according Eq. 4.3. 

Temp.      (mL.kg
-1

.h
-1

)      (mL.kg
-1

.h
-1

)   (h
-1

) R
2 
 

2 67.9 (± 5.5) 26.8 (± 3.8) 1.63×10
-2

 (± 5.6×10
-3

) 0.696 

6 121.0 (± 6.3) 37.0 (± 6.7) 1.33×10
-2

 (± 3.3×10
-3

) 0.868 

14 277.7 (± 27.2) 84.4 (± 23.2) 1.44×10
-2

 (± 5.9×10
-3

) 0.662 

18 330.9 (± 38.1) 130.4 (± 14.2) 2.58×10
-2

 (± 9.9×10
-3

) 0.597 

 
 

The fit of the individual model to the experimental respiration rate at each 

temperature ranged from reasonable to good, as indicated by the coefficient of 

determination (R2) between 0.597 and 0.868, confirming an acceptable agreement 

between predicted and experimental values.  

Fig 4.2 shows the fit of the individual model to the experimental respiration rate 

obtained at 2ºC and 18 ºC.  

 

 
Fig. 4.2 – Respiration rate of oyster mushrooms stored under ambient air at 2ºC (□) and 18ºC (). The symbols 
represent the respiration rate data, vertical bars represent standard deviation and the dot and slash line represents the 
individual of the individual model according with Eq. 4.3. 
 

As observed in the graph showing the fit of the first order decay model to the 

experimental data point for the lowest and highest temperature tested, a good 

agreement exists between the predicted and experimental values.  
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4.3.3. Effect of temperature on respiration rate 

Temperature has been identified as the most important e ternal factor 

influencin  respiration rate of horticultural commodities.  iolo ical reactions  enerally 

increase two to three-fold for every 10 ºC rise in temperature within the range of 

temperatures normally encountered in the distribution and marketing chain (Zagory and 

Kader, 1988).  

The effect of temperature on kinetic parameters of the first order decay model 

(RR0, RReq and k) was individually explained using the reparameterised Arrhenius 

equation (Eqs. 4.4, 4.5 and 4.6) as follows (Fonseca et al., 2002a; Uchino et al., 2004; 

Nei et al., 2006; Iqbal et al., 2008; Waghmare et al., 2013). 

RR0 RR0 ref e p
 -
EaRRo

R
  

1

 
 - 

1

 ref
  

          Eq. 4.4 

RRe  RRe  ref e p
 -
EaRRe 

R
  

1

  
 - 

1

 ref
  

           Eq. 4.5 

   ref e p
 -
Ea 
R
  

1

 
 - 

1

 ref
  

            Eq. 4.6 

where, RR0,ref, RReq,ref and kref are the initial respiration rate, respiration rate at 

equilibrium and kinetic parameter at reference temperature (Tref), respectively; Ea
RR0, 

Ea
RReq 

and Ea
k 
are the activation energies (kJ. mol-1) for the initial and O2 consumption 

rate at equilibrium and kinetic parameter, respectively; R is the universal gas constant 

(8.314 × 10 -3 kJ.mol-1.K-1). Reference temperature was obtained by taking the average 

of the experimental temperature ranges (Tref = 10 ºC), as suggested in literature 

(Nelson, 1983; Van Boekel, 1996). 

Dependence of temperature on the first order decay model parameters is 

presented in Fig. 4.3.  

This reparameterisation of the Arrhenius equation was applied to improve 

regression convergence and to diminish model parameter colinearity (Nelson, 1983; 

Cunha et al., 2006).  
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Fig. 4.3 - Dependence on temperature of the first order decay model parameters: a) RR0, ref (mL.kg
-1
.h

-1
); b) RReq,ref 

(mL.kg
-1
.h

-1
) and c) kref (h

-1
). The dots represent the individual estimates and the bars represent the asymptotic 95 % 

confidence intervals (Cunha et al., 2006) and the lines represent the fit of the model, according with Eqs. 4.4, 4.5 and 
4.6, respectively. 
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As it may be observed in Fig. 4.3, the Arrhenius model adequately describes 

the effect of temperature on each of the parameters of the first order decay model.  

Respiration rate of oyster mushrooms decreases with time, until equilibrium is 

attained. The relationship between RRO2
 and RReq, estimated at each of the 

temperatures used for the model, is shown Fig. 4.4. 

 

Fig. 4.4 - Relationship between individual parameter estimates of the initial respiration rate (RR0) and respiration rate at 
equilibrium (RReq) at each temperatures used for model fitting (2, 6, 14 and 18 ºC). Bars represent the asymptotic 95 % 
individual confidence intervals. Dotted line represents the linear fit between RR0 and RReq (R

2
=0.940). 

For each temperature, O2 consumption rate after processing the samples and 

O2 consumption rate at equilibrium shows a linear decrease described by  

RRe     RR0              Eq. 4.7 

where  is the constant ratio between respiration rate at equilibrium and the initial RR 

(dimensionless).  

4.3.4. Overall model 

The Arrhenius relationship (Eqs. 4.4, 4.5 and 4.6) was then included in Eq. 4.5 

to explain the variation of O2 consumption rate of oyster mushroom with storage 

temperature, yielding:  
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Model (Eq. 4.8) was fitted to all experimental data in its logarithm form to avoid 

heterocedasticity of residuals (Draper and Smith, 1981).  

Resulting model parameter estimates showed that the activation energies 

related to O2 consumption rate (Ea
RR0 

(65.37 ± 8.47 kJ.mol- 1) and Ea
RReq 

(64.83 ± 6.82 

kJ.mol- 1)) were not significantly different, therefore Ea
RR0 and Ea

RReq were replaced by 

a single activation energy value (Ea
RR

). A similar approach was used for other 

commodities like mushrooms (Iqbal et al., 2005) and apples (Torrieri et al., 2009). 

Taking the linear relationship between RR0,ref and RReq (Eq. 4.7) into Eq. 4.1 and 

considering Eq. 4.4, Eq. 4.5 and Eq. 4.6, the overall model may be rewritten as (Eq. 

4.9): 

RR RR0 ref e p  -
EaRR

R
 
1

 
-

1

 ref
       1-   e p  -  ref  e p  -

Ea 

R
  

1

 
-

1

 ref
   t      Eq. 4.9 

Model parameters estimates and relevant statistical data are summarized in 

Tab. 4.2. Correlation between parameters of the model is presented in Tab. 4.3. 
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Tab. 4.2 – Model parameter estimates of the global model, obtained to predict the effect of time and temperature on 
oyster mushrooms respiration rate, according with Eq. 4.9. 

Parameter Estimate SE 
95% Confidence Interval 

Lower Bound Upper Bound 

RR0,ref (mL.kg
-1

.h
-1

) 170.83 13.2 144.57 197.08 

Eak (kJ. mol
-1

) 8.0 20.1 -31.94 47.87 

kref × 10
 -3 

(h
-1

) 18.4 3.5 11.5 25.4 

EaRR (kJ. mol
-1

) 64.89 6.2 52.63 77.15 

 (dimensionless) 0.35 0.03 0.29 0.40 

Tab. 4.3 – Correlations of model parameters estimates obtained to predict the effect of time and temperature on fresh 
oyster mushrooms O2 consumption rate, according with Eq. 4.9.  

 
RR0,ref  Eak Kref EaRR   

RR0,ref  1.00 
    

Eak 0.04 1.00 
   

Kref  0.70 0.00 1.00 
  

EaRR  0.05 0.91 -0.04 1.00 
 

 -0.66 -0.10 -0.02 -0.15 1.00 

 

Overall model fits the data well, showing a R2 =0.879. Moreover, the correlation 

between parameters is small, with the exception for the correlation between Eak and 

Ea
RR

. Nevertheless, this value is not high enough to hinder the predictability of the 

model (Cunha et al., 2006). 

Fig 4.5 shows the fit of both the individual (Eq. 4.3) and the global model (Eq. 

4.9) to the experimental O2 consumption rate at each temperature tested.  
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Fig. 4.5 –Respiration rate of oyster mushrooms at different constant temperatures under ambient air. Symbols depict the 
O2 consumption rates data as calculated with Eq. 4.2 and vertical bars represent standard error for: a) 2 ºC; b) 6 ºC; c) 
10 ºC; d) 14 ºC; e) 18 ºC). Lines (- - - and ---) represent the fit of the individual (Eq. 4.3) and global model (Eq. 4.9), 
respectively. Long lash dot line on Figure 5c represents the predicted O2 consumption rate with time at 10 ºC according 
to the global model (Eq. 4.9). 
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Both results for model fitting are very close as depicted on Figure 4.5, indicating 

the quality of the overall model to predict O2 consumption rate of fresh oyster 

mushrooms. Moreover, when using Eq. 4.9 to predict O2 consumption rate at 10 ºC, 

one may see a reasonable prediction despite the experimental errors previous referred 

for this temperature.  

Furthermore, Fig. 4.6 shows that the O2 consumption rate model fits the 

experimental data well as seen by the good agreement between predicted and 

experimental values.  

The residuals obtained presented a mean of 0.00 (SD of 0.24 for n = 107) and a 

normal distribution (p > 0.05), according the Kolmogorov-Smirnov test.  
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Fig. 4.6 - Relationship between experimental and predicted O2 consumption rates using the first decay model 

and assuming an Arrhenius type dependence of the model parameters on temperature (global model – Eq. 4.9). 

Enclosed figures represent the residual versus predicted values (top corner) and the frequency distribution of residuals, 

with
 __

 representing the expected normal distribution (bottom corner). 

 

In order to estimate the respiration rate of fresh produce during postharvest 

handling chain, several mathematical models have been developed for a wide range of 

fresh and fresh-cut commodities. Those models have been reviewed by Fonseca et al. 

(2002a) and Caleb et al. (2012c). Regarding temperature dependence on RR, most of 

the developed models are based on Arrhenius or exponential effects and the values of 
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the activation energy can be compared. Exama et al. (1993) reported activation 

energies in the range of 29.0 to 92.9 kJ.mol-1 for the respiration rate of horticultural 

commodities stored in air. For mushrooms (Agaricus bisporus) stored in air, Exama et 

al. (1993) reported an Ea of 65.5 kJ.mol-1. For Agaricus mushrooms, a significant effect 

of temperature on mushrooms respiration rate was found (Iqbal et al., 2009). According 

to the authors, an activation energy of 54.38 (± 1.07) kJ.mol-1 and 56.04 (± 1.44) 

kJ.mol-1 was obtained for O2 depletion and CO2 evolution in the range of storage 

temperatures of 4 ºC to 20 ºC. Varoquaux et al. (1999) stated that the respiration rate 

of mushroom (Agaricus bisporus Lange, strain X25) under air at temperatures between 

10 ºC and 20 ºC  also followed an  rrhenius’ law with apparent activation energy of 

43.40 kJ mol−1. Although some information on RR parameters can be found for 

Agaricus bisporus mushroom, for other mushroom genus, no information is available. 

The values of the activation energy for the respiration rate obtained in the present 

study (67.27 kJ.mol-1 ± 6.93 kJ.mol-1) are comparable to the values reported for 

horticultural commodities and higher when compared to the values obtained for 

Agaricus mushrooms.  

In the particular case of the time effect on respiration rate, several models have 

been used. Time effect on respiration rate has been modelled using the Weibull model 

(and the Arrhenius for the temperature effect) in the case of galega kale (Fonseca et 

al., 2005) and diced papaya (Waghmare et al., 2014). Kinetic models (Waghmare et 

al., 2013) have been suggested as good alternatives to describe the effect of time on 

the respiration rate of fresh commodities. 

The values of the activation energy for the respiration rate obtained in the 

present study (67.27 ± 6.93 kJ.mol- 1) are comparable to the values reported for 

horticultural commodities. Exama et al. (1993) reported activation energies in the range 

of 29.0 to 92.9 kJ.mol-1 for the respiration rate of horticultural commodities stored in air. 

For mushrooms (Agaricus bisporus) stored in air, Exama et al. (1993) reported an Ea 

of 65.5 kJ.mol-1.  

 

 



132 
FCUP 
Development of packaging systems to maximize quality retention and increase shelf life of Pleurotus 
mushrooms 

 

4.4. Conclusions 

The influence of storage time and temperature on respiration rate of oyster 

mushrooms was assessed by storing oyster mushrooms at 2, 6, 10, 14 and 18 kJ.mol-1 

under ambient atmosphere and measuring respiration rate with eight hour intervals for 

240 h. Results are relevant to show the influence of temperature and storage time on 

mushroom respiration rate. Respiration rate of oyster mushroom decreased over time, 

following a first order kinetics model. Temperature dependence was explained by an 

Arrhenius type equation and the inclusion of a parameter describing the rate decrease 

of the respiration rate after sample processing and respiration at equilibrium fitted well 

to the experimental data. Furthermore, the predictive model developed is an important 

tool for the choice of the appropriate packaging system for fresh oyster mushrooms. 

 



 

 

 

Chapter 5: Influence of gas composition on the 

respiration rate of fresh oyster mushrooms  
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5.1. Introduction 

Modified atmosphere packaging (MAP), containing lower partial pressures of 

oxygen and higher levels of carbon dioxide than atmospheric air, is a technology 

successfully applied to many horticultural products. MAP have been shown to delay 

maturation, softening, colour degradation and to reduce microbiological spoilage in a 

broad range of fresh and fresh-cut horticultural products (Carlin et al., 1990; Beaudry, 

2000; Al-Ati and Hotchkiss, 2002; Roy et al., 1995a; López-Briones et al., 1992; 

Manolopoulou et al., 2012; Caleb et al., 2012a,b). The atmospheric modification 

occurring inside the package depends on the permeability of the film used and on the 

commodity respiration rate, among other factors (Fonseca et al., 2002a).  

Atmospheric composition is a factor that potentially affects respiration rate of 

horticultural commodities (Kader, 2002; Fonseca et al., 2002a; Sandhya, 2010). The 

control of respiration rate brings advantages in maintaining products quality but implies 

a thorough knowledge of the effect of both O2 and CO2 on the respiration rate of the 

commodity. 

Mushrooms, in general, have high respiration rates and deteriorate easily, 

causing problems in maintaining its freshness (Ares et al., 2007; Antmann et al., 2008). 

Therefore, a suitable packaging technology to retain freshness and increase the shelf 

life is important.  

MAP is effective for mushrooms shelf life extension as reported for button 

mushrooms (Roy et al., 1995a; Kim et al., 2006) or oyster mushroom (Sapata et al., 

2004; Sapata, 2005). Nevertheless, selection of the optimal combination of O2 and CO2 

becomes difficult, since available studies for mushrooms in MAP suggest very different 

conditions for optimal maintenance of quality of mushrooms (see section 2.4.2.1). 

Furthermore discrepancies are found when the effect of modified atmosphere on 

mushroom respiration rate is evaluated. The aim of this work was: (i) to evaluate the 

effect of different combinations of O2 and CO2 on oyster mushroom respiration rate and 

(ii) to select an optimum gas composition for MAP.  
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5.2. Material and methods 

5.2.1. Sample preparation and experimental procedure 

Fresh oyster mushrooms harvested in the early morning were collected from a 

local producer in Trás-os-Montes region. Mushrooms were transported to the 

laboratory in the early afternoon and stored at 2 ºC for cooling.  

Mushrooms were then separated from the cluster and maintained refrigerated at 

2 ºC in temperature control chambers (Monte Branco Refrigerators, Ltd, Oporto, 

Portugal). In the next day (24 hours after samples processing), mushrooms were 

separated for the jars used to measure respiration rate and flushed with the desired 

mixture. The concentrations of O2 and CO2 were selected according to the available 

literature. Six atmosphere were tested, according to a full factorial design, with 2 levels 

of O2 (2 and 5 % v/v) and 3 levels of CO2 (5, 10 or 20 % v/v). Ambient air was used as 

a control. 

The determination of respiration rate for each storage condition and at 2 ºC was 

evaluated daily, in triplicate, for the next 3 days (t= 1, 2, 3 and 4 days after cluster 

cutting).  

5.2.2. Respiration rate measurement 

The O2 consumption and CO2 production rates were determined using a closed 

system (Chapter 5, §5.2.3). Mushroom samples were weighted (approximately 0.15 kg 

for each sample) and placed in glass jars (volume of 1.9 ×10−3 m3).  

Desired concentration of O2 and CO2 were mixed using a gas mixer (MAP Mix 

9000, PBI-Dansensor), using N2 as balance. Glass jars were tightly sealed and 

connected to a distribution jar with distilled water on the bottom. Gas mixture was 

bubbled through water to humidify the air introduced in jars containing mushrooms 

(Iqbal et al., 2009b). Samples jars’ flushin  was made with constant flow  for 30 

minutes to ensure that the ambient atmosphere was completely replaced inside the 

jars. After that period, inlet and outlet valves were closed and the atmosphere 
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composition was monitored, as previously described in Chapter 3, §3.2.3. O2 

consumption and CO2 production rates were determined by Eqs. 3.1 and 3.2. 

5.2.3. Data analysis 

One-way ANOVA was performed for each mixture to study the effect of time on 

oyster mushrooms respiration rate. Since no significant difference (p < 0.05) was found 

for the effect of time on respiration rate for each of the gas mixtures tested, the four 

experimental times were analysed together. The effect of gas mixture on oyster 

mushroom RR was also performed throughout one-way ANOVA, using IBM SPSS 

Statistics Version 20.0 (IBM, 2011). Multiple comparisons were performed using the 

Tukey´s test. All tests were applied at a 95 % confidence interval, except if stated 

otherwise. 

A Response Surface modelling (RSM) was used to test the interaction of O2 and 

CO2 on oyster mushroom respiration rate, using Statistica software (Version 12, Stat 

soft, Inc., Tulsa, Oklahoma, USA). 

5.3. Results and discussion 

As previously demonstrated (see chapter 4), the respiration rate of mushroom is 

not constant during storage. To minimize this effect, measurements of respiration rate 

were only started 24 h after processing, allowing for the major decrease to occur. 

Results for the respiration rate for each experimental time are shown Appendix C, 

Table C.1. Since no significant difference (p > 0.05) was found for the effect of time on 

respiration rate for each of the gas mixtures tested, the four experimental times were 

analysed together.  

The mean RR of oyster mushrooms stored under air at 2°C at different O
2
 and 

CO2 concentration is shown in Fig. 5.1.  
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Fig. 0.1 – Oxygen consumption ( ) and CO
2
 production rate ( ) (mL.kg

-1
.h

-1
) of oyster mushrooms stored in 

different O2 and CO2 concentrations at 2 °C. Vertical bars represent SE. 
a,b – homogeneous groups for oxygen consumption accordin  to the  u ey’s test  at a 9  % C .  

 

Respiration rate of oyster mushrooms was si nificantly (p ≤ 0.0 ) affected by 

the low O2 and high CO2 levels tested. According to the ANOVA (Appendix C, Table 

C.2), modified atmosphere, for the levels under evaluation, had a significant effect 

(p<0.05) on the respiration rate based on overall O2 consumption and CO2 

consumption. Mushrooms stored in air at 2 ºC had a mean respiration of 36.28 mL.kg-

1.h-1 (± 2.32 mL.kg-1.h-1) and 29.48 mL.kg-1.h-1 (± 1.89 mL.kg-1.h-1) for O2 consumption 

and CO2 production, respectively. This value was higher than the previous values 

found in the first two experiments (in chapter 3, §3.3.1, value obtained at 2 ºC after 24 

h of storage was 61.76 mL.kg-1.h-1 (± 10.54 mL.kg-1.h-1) and after 48 h was 24.44 

mL.kg-1.h-1 (± 5.01 mL.kg-1.h-1) and in chapter 4 §4.3.1, the estimated value for the RReq 

was 26.84 mL.kg-1.h-1 ± 3.75 mL.kg-1.h-1. These differences in respiration rate obtained 

are the result of the high variability of the raw material used for the experiments.  

The lowest O2 consumption rate was found for 2 % O2 and 20 % CO2 (Fig. 5.1). 

All other combinations were not significantly different, even form air. 

In general, low levels of O2 provided RQ values within the reported range for 

aerobic respiration (Kader et al., 1989). The results are in accordance with previous 

results for RQ of mushrooms (Varoquaux et al., 1999; Iqbal et al.; 2009a; Cliffe-Byrnes 

and  ’ eirne  200 ) and were similar to R  reported previously (Chapter 3). MAP has 
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been used with some success for mushrooms, although the mechanisms behind these 

beneficial effects are relatively ambiguous. Furthermore, concerning respiration 

parameters of mushrooms as influenced by O2 and CO2 concentrations, several 

publications can be found for button mushroom and less amount of information is found 

for other mushroom species. It has been reported that mushroom catabolism is aerobic 

under extreme lower levels of O2. According to López- Briones et al. (1992) and 

Varoquaux et al. (1999), respiration rate of button mushrooms remained constant, even 

around 0.2 kPa of O2, as seen from the respiratory quotient equal to unit whatever the 

level of O2 used, with no effect on RR with low O2 levels were found. 

The results presented for oyster mushrooms are in accordance with previous 

reports for other mushrooms species. Tano et al. (1999) reported a decrease in RR of 

button mushrooms at 4 ºC as the gas composition was changed from air to an 

atmosphere of 5 % O2 and 10 %. Iqbal et al., (2009a,b) also observed a significant 

decreased on the respiration rate of button mushrooms stored under different 

concentrations of O2 and CO2.  

Regarding CO2 effect on mushroom respiration rate, it has been found that 

mushroom respiration follows a Michaëlis-Menten-type equation with no inhibition 

(Cliffe-Byrnes and O' Beirne, 2007; Varoquaux et al., 1999) or uncompetitive (Cliffe-

Byrnes and O' Beirne, 2007; Iqbal et al., 2009b).  

A response surface regression analysis was used to determine how O2 and CO2 

affect the respiration rate of oyster mushrooms. Quadratic polynomial functions were 

selected as the best representing the data: (Eqs. 5.1 and 5.2). 

 

RR 2
  28.2 -1.    2 1. 1 C 2- 0.09    2 

2 0.09   2 C 2-0.11   C 2 
2       Eq. 0.1 

 
 

RRC 2
  28.30- .2   2 1.   C 2  0.20    2 

2 0.0     2 C 2-0.11   C 2 
2  Eq. 0.2 

 
 

The plots obtained for the response surface modelling for RRO2
 and RRCO2

are 

presented in Figs. 5.2 a) and b) respectively.  
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Fig. 0.2 – Response surface modelling for the effect of O2 and CO2 on oyster mushrooms respiration rate, according 
with Eqs. 5.1 and 5.2. 

According to the results obtained it can be seen that in order to obtain the 

maximum decrease on the respiration rate, low levels of O2 should be combined with 

high levels of CO2.  

5.4. Conclusions 

Effect of O2 and CO2 levels (2 or 5 % and 5, 10 or 15 % respectively) on 

respiration ate of fresh oyster mushrooms was assessed. Mushrooms were stored at 

2ºC for 4 days after sample processing. Every day, mushrooms were flushed with the 

gas mixture and the respiration rate was measured. Storage time did not affect the 

respiration rate of oyster mushrooms for each mixture tested. Levels of O2 and CO2 

had significant effect on the consumption of O2 and CO2 production rate. If the 

minimum respiration rate is desired, a 2 % (v/v) and 20 (% v/v) should be maintained 

within the packaged mushrooms.  
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Chapter 6: Modelling the influence of time, 

temperature and relative humidity conditions 

on the mass loss of fresh oyster mushrooms 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter was part of the paper published as:  

Sílvia Azevedo, Luís M. Cunha, Susana C. Fonseca, Jorge C. Oliveira and Pramod V. Mahajan. 

Modelling the influence of time, temperature and relative humidity conditions on the mass loss 

of fresh oyster mushrooms.  
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6.1. Introduction  

Horticultural commodities continue their active metabolism after harvest, which 

drives to severe consequences on produce quality and shelf life. Respiration and 

transpiration rates are the main physiological factors affecting postharvest quality 

retention (Kader, 2002). Harvested commodities release water vapour into the 

surrounding atmosphere by transpiration process and use reserves of organic 

materials, and also release water vapour by respiration process. Both processes are 

responsible for mass loss of fresh after harvest. Losses of water of fresh produce are 

known to affect several characteristics throughout storage. It includes loss of 

marketable mass and, loss of produce appearance, therefore decreasing overall value 

of fresh produce (Ben-Yehoshua et al., 2003).  

Transpiration is related to the loss of water from fresh produce and involves the 

transport of water vapour from the produce surface to the surrounding air due to the 

difference between the water vapour pressure (WVP) of the produce and the WVP of 

the surrounding air (Ben-Yehoshua et al., 2003).  

Postharvest water loss or transpiration is dependent on commodity 

characteristics such as surface area, respiration rate and air movement surrounding 

the commodity. Furthermore, external factors such as temperature and RH are also 

known to significantly affect the rate of transpiration of a commodity (Mahajan et al., 

2008a).  

Mass loss is an important parameter used to test the efficacy of various 

postharvest techniques. Quantification of transpiration rate and its mathematical 

modelling is useful to select appropriate packaging materials. The use of a packaging 

system such as modified atmosphere packaging is an effective technology for 

postharvest preservation of several mushroom species (Villaescusa and Gil, 2003; 

Illeperuma and Jayathunge, 2004; Sapata et al., 2004, Sapata et al., 2009a,b; Ramos 

et al., 2011; Kim et al., 2006). However, the choice of packaging film is usually based 

on O2 and CO2 transmission rates and not necessarily water vapour transmission rate 

in order to maintain the optimum relative humidity inside the package. Inappropriate 

selection of packaging film and also fluctuation of storage temperature encountered 
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during the cold chain will eventually lead to excessive humidity and condensation 

inside the package (Linke and Geyer, 2013). Therefore, knowledge of rate of mass loss 

and the development of reliable TR models could improve selection of packaging 

materials for fresh produce.  

Song et al. (2001) and Song et al. (2002) developed a model for the 

transpiration rate of blueberry by the simultaneous application of mass and heat 

transfer processes. Mahajan et al. (2008a) developed a mathematical model based on 

Fick's law of diffusion to obtain an adequate description mass loss of mushroom under 

different combinations of temperature and relative humidity of storage environment. 

The model was later successfully adopted by Caleb et al. (2013) for pomegranate and 

pomegranate arils and strawberry (Sousa-Gallagher and Mahajan, 2013).  

MAP has been recognized as a simple, economical and effective technology for 

postharvest preservation of several mushroom species (Villaescusa and Gil, 2003; 

Illeperuma and Jayathunge, 2004; Sapata et al., 2004, Sapata et al., 2009a,b; Ramos 

et al., 2011; Kim et al., 2006), but the occurrence of rapid condensation inside the 

package have been also reported.  

The objectives of this work were to (i) determine the transpiration rates under 

controlled environmental conditions (2, 6, 10, 14 and 18 ºC and 86, 96 and 100 % of 

RH) and (ii) to model the effect of these variables on the TR of fresh Pleurotus 

ostreatus mushrooms. 

6.2. Material and methods 

6.2.1. Sample preparation 

Oyster mushrooms (Pleurotus ostreatus) grown in Wexford, Ireland were 

bought in a local retailer at Cork City and transported to the laboratory. Mushrooms 

were immediately sorted by appearance, prepared for mass loss measurements and 

maintained at each storage temperature for temperature equilibrium. 
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6.2.2. Transpiration rate measurement 

To evaluate the transpiration rate of mushrooms, a mass loss approach was 

adopted (Leonardi et al., 2000). Mushrooms were stored at 2, 6, 10, 14 and 18 ºC and 

86, 96 and 100 % of RH in 6.5 L plastic containers.  

In each test container, RH was controlled by using saturated salt solutions. 

Solutions of potassium chloride and potassium nitrate (providing 86 and 96 % RH, 

respectively) and distilled water (to create the saturated atmosphere) (Patel et al., 

1988), were placed on the bottom of the container. Lids were put in the container and 

sealed with petroleum jelly. 

Plastic containers were stored in incubator (Sanyo MIR 253) maintained within 

1ºC of the temperature tested. The temperature and RH inside the container was 

monitored using a data logger (HMP50, Campbell Scientific Inc., Utah). Furthermore, a 

gas analyzer (Checkmate, 9900, PBI Dansensor, Denmark) was used to control 

possible changes in the atmosphere inside each container as a result of respiration 

rate. The setup provided a constant temperature and relative humidity throughout the 

experimental run, without changes in gas composition due to mushroom respiration.  

At regular intervals, mushrooms were weighed in an analytical scale (Precisa 

1000C-3000 D), so mushroom mass could be known for each time, temperature and 

RH. Transpiration rate (TR, g.kg-1.h-1) was determined based on the slope of the graph 

of the changes in normalized mass loss (M/M
0
) of oyster mushrooms over time (h).  

For each storage condition, fours replicates were used and the entire set of 

experiments was replicated twice, with a total of 8 mushrooms for each condition. 

6.2.3. Data analysis 

The constants of the model developed to describe the influence of temperature 

and relative humidity on transpiration rate of oyster mushrooms were estimated by 

fitting the model to the experimental data by nonlinear regression using IBM SPSS 

Statistics Version 20.0 (IBM, 2011).  
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The Response Surface modelling (RSM) was used to apply the developed 

model to the transpiration rate (g.kg-1.h-1) of oyster mushrooms as a function of 

temperature and relative humidity, using Statistica software (Version 12, Stat soft, Inc., 

Tulsa, Oklahoma, USA). 

6.3. Results and discussion 

6.3.1. Mass loss of oyster mushroom 

Mass loss of oyster mushrooms stored at 2 ºC and different relative humidities 

is shown in Fig. 6.1. 

 

Fig. 6.1 – Changes in mass loss (M/M0) of oyster mushrooms stored at 2 ºC over time. The values were normalized with 
respect to the initial mass of mushroom (M0). Each point represents the mean of eight replicates. Vertical bars 
represent the standard error of the mean. □- 86 % RH; ▲- 96 % RH; ○- 100 % RH. 

 

There was linear decrease of mass of mushroom over time, therefore TR was 

calculated by the slope mass loss vs. time for all the storage conditions tested. Linear 

decrease of mass loss with time has been previously observed for button mushrooms 

(Burton and Noble, 1993; Varoquaux et al., 1999; Mahajan et al., 2008a; Guillaume et 
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al., 2010), although different rate of mass loss were found. Similar trend was also found 

for other commodities (Shirazi and Cameron, 1992).  

Over a 248 h period, oyster mushrooms stored at 2 ºC, lost significant amounts 

of mass. Mushrooms stored under saturated condition, lost less mass (12.8 % FW (± 

2.1 %)) compared with those stored under the lowest RH of 86 % that lost 26.0 % FW 

(± 2.4 %). These values were higher than the values obtained by Mahajan et al. 

(2008a) for A. bisporus mushrooms. From the results presented, it can be concluded 

that mass loss of oyster mushroom assume major importance for postharvest quality 

maintenance. Burton and Noble (1993) reported that mushrooms stored at 5 ºC and 73 

% RH, had an mean mass loss of 4 % and 6 % per day for button mushrooms stored at 

18 ºC and 90 % RH, respectively. Similar results were reported by Guillaume et al. 

(2010) that determined that button mushrooms in glass jar (maintained with RH near to 

100 %) lost 0.18 % per day.  

Tab. 6.1 presents the results for the transpiration rate of oyster mushrooms for 

each storage temperature and relative evaluated.  

Tab. 6.1 – Transpiration rate (g.kg
-1
.h

-1
) (mean ± SE) of oyster mushrooms stored at 2, 6, 10, 14 and 18 ºC and 86, 96 

and 100 % RH.  

  RH (%) 

Temp. (ºC) 86 96 100 

2 1.82 (± 0.20) 1.21 (± 0.41) 0.52 (± 0.04) 

6 2.97 (± 0.16) 1.83 (± 0.21) 0.92 (± 0.10) 

10 3.24 (± 0.38) 1.86 (± 0.21) 1.34 (± 0.36) 

14 3.67 (± 0.54) 2.77 (± 0.56) 1.52 (± 0.11) 

18 3.88 (± 0.41) 2.92 (± 0.37) 1.84 (± 0.14) 

 

Transpiration rate for oyster mushrooms, ranged from 0.52 (± 0.04) to 3.88 (± 

0.41) g.kg-1.h-1 across all the combinations of temperature and RH tested. In 

accordance with the trend observed for the influence of the storage conditions in mass 

loss, TR was higher for higher temperatures and lower relative humidities. Mahajan et 

al. (2008a) reported that TR of button mushrooms ranges between 0.27 and 3.83 g.kg-

1.h-1 at 5, 10 and 15 ºC with RH of 76, 86 and 96 %. For apple, transpiration rate ~0.03 

g.kg-1.h-1 (TR: 0.67 g.kg-1day-1) at 10 ºC and 86 % RH were reported by Patel et al. 
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(1988), whereas Caleb et al. (2013) reported values of 0.048 to values of 0.70 g.kg-1.h-1 

for arils stored at 5, 10 and 15°C and relative humidity (RH) of 76, 86 and 96 %. 

Fresh harvested commodities are living structures that keep their metabolic 

activities, namely respiration and transpiration. These processes are dependent on the 

food reserves and moisture content at harvest and both lead to a gradual mass loss 

after storage. Transpiration of fresh produce is a mass transfer process in which water 

vapour moves from the surface of the commodity to the surrounding air and occurs due 

to a gradient of water vapour pressure, generally explained by the Fick´s law of 

diffusion.  

The partial pressure of water vapour of the commodity is very close to 

saturation (Burton, 1982) and also water vapour in fresh produce packaging is close to 

saturation level, mainly due to low water vapour permeability of packaging material and 

also water produced by the package commodity. When relative humidity of the air 

equals saturation levels, there is no difference in the partial pressures between the 

commodity and the environment and therefore there is no driving force for water loss to 

occur. In the present study, oyster mushrooms sustained continuous mass loss 

throughout storage, even when stored at 100 % RH. For that reason, other phenomena 

must be considered important for the mass loss of horticultural commodities. Mass loss 

due to respiration is due to the use of organic materials or water loss due to heat of 

respiration. Respiration is the metabolic process that generates energy to the 

commodity cell. The process consumes carbon reserves and produces CO2, water and 

heat as by-products (Burton, 1982; Wills et al., 1989; Ben-Yehoshua et al., 2003). 

Carbon reserves consumption has a direct effect on the mass losses after harvest but 

respiration has also an indirect effect on transpiration. Some of the respiratory energy 

generated is fixed as ATP as a metabolic energy, whereas most of the respiratory 

energy released by the produce is dissipated as heat (Ben-Yehoshua et al., 2003). This 

heat produces can accumulate in the product, raising its temperature (Gaffney et al., 

1985; Sastry, 1985), which leads to the evaporation of the saturated air film around 

produce (latent heat of vaporization) as well as temperature difference between the 

commodity and the surrounding air. In both cases, there is an increase in water vapour 

pressure deficit leading to water evaporation from the produce tissue (Ben-Yehoshua 

et al., 2003). For that reason, even at a saturated environment as often occurs in 

horticultural commodities packages, transpiration is assumed to occur. Although some 

authors consider that mass loss due to respiration process may be considered 
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negligible (Shirazi and Cameron, 1992), for produce with high metabolic rates like 

mushroom (Iqbal et al., 2009a), the contribution of the respiration process to the overall 

mass loss should be considered to the overall mass losses. 

6.3.2. Effect of temperature  

As previously stated, traditionally the rate of moisture loss from a product is 

e pressed accordin  to the Fic ’s law of diffusion (Sastry, 1985). The model considers 

that the driving force for transpiration is the difference in the partial pressures between 

commodity cells and surrounding environment.  

Since the water content of the environment that surrounds the product is lower 

than water content of the commodities (that is considered near saturation), a water 

gradient is created leading to commodity mass losses. This model was successfully 

applied to button mushrooms, pomegranate and strawberry (Mahajan et al., 2008a; 

Caleb et al., 2013; Sousa-Gallagher and Mahajan, 2013). However, the model did not 

fit well with oyster mushrooms transpiration rate data due to RH saturation conditions 

analyzed in this work, the difference in WVP between the commodity surface and the 

surrounding environment would lead to a gain of mass in the product, which was not 

observed durin  the e perimental wor .  herefore  the Fic ’s model to e plain the 

effect of relative humidity on oyster mushroom transpiration rate was dismissed. In 

alternative, according to the results obtained for the effect of temperature on oyster 

mushroom transpiration rate, a reparameterised Arrhenius type-model was fitted to 

experimental data, for each relative humidity, according with Eq. 6.1. 

 R   e p
 - 

Ea R
R

  
1

 
 - 

1

 ref
  

           Eq. 6.1 

where, TR is the transpiration rate (g.kg-1.h-1), k0 is the reaction constant (h-1), EaTR is 

the activation energy for the transpiration rate (kJ.mol-1) for the transpiration rate; R is 

the universal gas constant (8.314×10-3, kJ.mol-1.K-1), T is the storage temperature (ºC); 

Tref is the reference temperature (considered the mean of the storage temperatures, 

283.15, K). 

The effect of temperature on oyster mushrooms TR for the particular case of 96 

% RH is shown on Fig. 6.2. This reparameterisation of the Arrhenius equation was 
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applied to improve regression convergence and to diminish model parameter 

colinearity (Nelson, 1983; Cunha et al., 2006). 

 

Fig. 6.2 – Effect of temperature on oyster mushrooms transpiration rate (g.kg-1 .h-1) stored at 96 % RH. Points are the 
mean of eight replicates, vertical bars represent the standard error of the mean and the line represents the fit of the 
primary model, according with Eq. 6.1. 

Model parameters of the Eq. 6.1 were estimated from experimental data, using 

the linear form of the Arrhenius type equation, to stabilize variance (Draper and Smith, 

1981). Estimated constants, statistical data and the quality of the adjust of the 

Arrhenius-type model at each relative humidity are summarized in Tab. 6.2.  

Tab. 6.2 - Constant estimates (± SE) (k and apparent activation energy) of the Arrhenius type model (Eq. 6.1).  

RH (%) k (h
-1

) Ea (kJ.mol
-1

) R
2
 

86 3.07 (± 0.17) 24.5 (± 6.5) 0.819 

96 2.03 (± .0.19) 33.9 (± 10.6) 0.890 

100 1.06 (± 0.1) 41.1 (± 10.7) 0.605 

 

Despite the somehow low values of the determination coefficient (R2), varying 

between 0.605 and 0.890, considering the functional relationship of TR with 

temperature, as depicted on Fig. 6.2, the model was accepted to explain the effect of 

temperature on oyster mushroom transpiration rate.  
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According to Fockens and Meffert (1972) mushroom surface is considered a 

wet surface covered with a thin layer of water or air saturated with water vapour, which 

contributes to high mass losses over time. Temperature has a significant effect on 

oyster mushroom transpiration rate due to the effect of temperature on water vapour 

partial pressures. Temperature of the commodity surface is a major determinant of the 

driving force for water loss. Exponential effect dependence of transpiration rate on 

temperature has been seen for Agaricus bisporus mushrooms (Mahajan et al., 2008a), 

pomegranate (Caleb et al., 2013) and strawberry (Sousa-Gallagher and Mahajan, 

2013).  

6.3.3. Combined effect of temperature and relative humidity 

In a second step, the dependence of RH on the parameters k and Ea
TR of the 

Arrhenius model was studied. The effect of relative humidity on each parameter was 

described with the following model (Eq. 6.2 and 6.3).  

   a   b   RH          Eq. 6.2 

Ea R aEa  bEa  RH            Eq. 6.3 

where, a
k
 (h-1), b

k
 (h-1) , a

Ea
 (kJ.mol-1) and bEa (kJ.mol-1) are the constants of the model. 

The model fits the data well as observed in Fig. 6.3.  

 

Fig. 6.3 – Effect of RH of the storage environment on the parameters of the Arrhenius model, (a) EaTR (kJ.mol
-1
), and (b) 

k (h
-1
). The symbols represent the estimates of the individual model parameters, the bars represent the 95 % asymptotic 

confidence intervals and the lines represent the fit of the model (Eq. 6.2 and 6.3, respectively).  
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The linear relationship (Eqs. 6.2 and 6.3) was then included in the Arrhenius-

type equation (Eq. 6.1), yielding:  

ln   R   ln a - b   RH -   
aEa bEa RH

R
  

1

 
-

1

 ref
             Eq. 6.4 

where, ln(TR) is the natural logarithm of the transpiration rate of oyster mushrooms 

(g.kg-1.h-1). 

Model (Eq. 6.4) was fitted to all experimental data in its logarithm form to avoid 

residuals heterocedasticity (Draper and Smith, 1981). Estimated constants, relevant 

statistical data and the quality of the fit of global model are summarized in Tab. 6.3.  

Tab. 6.3 – Constant of the global model (Eq. 6.4) obtained to predict the effect of temperature and relative humidity in 
oyster mushroom transpiration rate.  

Parameter Estimate Std. Error 

aEa (kJ. mol
-1

) -47.96 77.401 

bk (h
-1

) 0.152 0.016 

bEa (kJ. mol
-1

) 0.885 0.825 

ak (h
-1

) 16.16 1.54 

Fig. 6.4 shows that the transpiration rate model fits the experimental data well 

as seen by the good agreement between predicted and experimental values.  
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Fig. 6.4 - Relationship between transformed -natural logarithm- experimental (TRexp) and predicted (TRpred) transpiration rates, 
following Equation 6.4. Enclosed figures represent the residuals versus predicted values (top corner) and the frequency 
distribution of residuals with the solid line representing the expected normal distribution (bottom corner). 

 

The residuals obtained presented a mean of 0.00 (SD of 0.44, for n=112) and a 

normal distribution (p > 0.05), according the Kolmogorov-Smirnov test, indicating that 

the distribution is not biased. 

RSM was used as a mathematical approach to empirical model building (Box 

and Draper 2007). The surface curve representing Equation 4 is displayed on Figure 5. 
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Fig. 6.5 – Response surface model for the effect of temperature (ºC) and relative humidity (%) on oyster mushrooms 
transpiration rate (g.kg

-1
.h

-1
), according with Equation 6.4. 

 

Figure 6.5 shows the response surface the effects of the two studied environmental 

variables (temperature and relative humidity) on oyster mushroom transpiration rate. 

According to the Figure, no interaction exists between Temperature and Relative 

humidity. Similar findings were found for strawberry (Sousa-Gallagher and Mahajan, 

2013). At a given temperature, losses of mass are minimized when the air is saturated 

with water vapour. Minimizing storage temperature also slows down mass losses due 

to carbon loss associated with respiration. Increasing the relative humidity of the 

package environment is significant in the reduction of water loss by transpiration. When 

the relative humidity of the surrounding environment becomes close to saturation, the 

percentage of mass loss due to respiration, considering the total mass loss, increases. 

Nevertheless, in saturated relative humidities packages, the control of temperature also 

becomes significant for the reduction of transpiration rate.  
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6.4. Conclusions 

Quality of postharvest commodities is affected by transpiration rate that causes 

quantitative and qualitative losses. Estimation of transpiration rates of fresh produce 

may produce useful information for the development of new packaging systems, 

providing optimum in-package RH. Mass of fresh oyster mushrooms was measured 

throughout storage life at different storage conditions. Five temperatures (2, 6, 10, 14 

and 18 ºC) and three relative humidities (86, 96 and 100 %) Experimental data 

revealed linear decreases with time in the mass of oyster mushrooms, despite the 

storage conditions. Both temperature and RH had a clear effect on the rate of mass 

loss.  

A mathematical model, describing the effect of temperature on oyster 

mushroom transpiration rate, using an Arrhenius-type equation was developed. 

Parameters of the model were described by a linear relationship and the overall model 

presents a good fit and can be useful to predict transpiration rates of oyster 

mushrooms after harvest. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Chapter 7: Development of a moisture 

absorber for fresh oyster mushrooms 
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7.1. Introduction 

MAP has been extensively studied for mushrooms, with positive effects on 

quality and shelf life (Exama et al., 1993; Roy et al., 1995a; Mangaraj et al., 2009; 

Sapata et al., 2007; Sapata et al., 2009a,b). Mushrooms however have high moisture 

content and lose large amounts of water causing condensation of moisture inside the 

packages (Mahajan et al., 2008a). As a consequence of the low water vapour 

transmissions rates (WVTR) of the films generally used for horticultural commodities 

(Exama et al., 1993; Roy et al., 1995a,b; Sapata et al., 2004; Mangaraj et al., 2009). 

Condensation of moisture inside the packages turns the package unpleasant and when 

water reaches mushroom surface, creates the ideal conditions for microbial growth and 

subsequent decay of the product (Roy et al., 1995a,b; Sapata, 2005). 

To control the in-package relative humidity (IPRH) and therefore extend the 

shelf life of respiring product the use of moisture absorbers is an important reliable 

solution (Shirazi and Cameron, 1992; Anantheswaran et al., 1996; Ben-Yehoshua et 

al., 1983; DeEll et al., 2006). The use of sorbitol, xylitol, sodium chloride and potassium 

chloride has already been applied for green tomatoes, increasing their shelf lives and 

suppressing mould growth (Shirazi and Cameron, 1992; Anantheswaran et al., 1996; 

Ben-Yehoshua et al., 1983; DeEll et al., 2006). According to Ben-Yehoshua et al. 

(1983), the use of 5 g of calcium chloride to control IPRH of bell peppers packages 

controlled mass loss and maintained the RH inside the package between 80 and 88 %. 

In the work of DeEll et al. (2006), the addition of sorbitol in MAP allowed a better 

maintenance of general quality of broccoli heads when compared with control 

treatment. 

Regarding mushrooms, very few studies were conducted on the use of 

desiccants for fresh produce packaging. Roy et al. (1995b) studied the use of sorbitol 

(15 g sorbitol/100 g mushrooms) to control IPRH of Agaricus mushrooms at 10 °C, 

concluding that the desiccant application in the package increased the product shelf life 

and that higher sorbitol quantities increased product mass loss. Other commercially 

available food-grade moisture absorbers such as clay and silica were used in modified 

humidity packaging of fresh mushroom (Mahajan et al., 2009b). The authors obtained 
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global better storage quality regarding maturity index and discoloration when 9 

minipacks (3.5 g each pack) were used in a 225 g tray. 

Once harvested, oyster mushrooms deteriorate rapidly and high mass losses 

are found during postharvest period. In particular with Pleurotus mushrooms, very few 

studies can be found regarding the use of moisture absorbers to achieve higher quality 

retention (Villaescusa and Gil, 2003; Sapata et al., 2009a,b). 

Existing moisture absorbers approved for use in food packaging have low 

absorption capacity or absorb moisture too quickly, making them unsuitable for food 

packaging. This study aims to develop a moisture absorber with the correct moisture 

holding capacity (MHC) for mushrooms. This will be achieved by combining three 

desiccants, calcium oxide, sorbitol and CaCl2 in varying proportions and identifying the 

combination of the three desiccants which gives optimum performance. Simplex lattice 

design was used to design the experiments and optimize the proportion of ingredients 

for the mixed desiccant. 

7.2. Material and Methods 

7.2.1. Measurement of the moisture holding capacity of the 

desiccant 

Three desiccants selected for the present study were calcium oxide (CaO fine 

powder, puriss Roedel-de Haen), calcium chloride (CaCl2, Calcium chloride dehydrate, 

Merck) and sorbitol (C6H14O6, D-Sorbitol, 99+%, Sigma-Aldrich).  

Each desiccant was oven dried at 60 ºC for at least 1 h before being used in the 

mixture.  

Mixture design experiment was used to determine the optimum mixture 

proportions based on moisture absorber kinetics. Simplex lattice design, available in 

Statistica software (Version 12, Stat soft, Inc., Tulsa, Oklahoma, USA) was used to 

determine the number of experimental runs and the proportion of three desiccants in 

each experimental run (Tab. 7.1). A simplex lattice design is a mixture design in which 

sum of the fractions of the desiccants is unity (Cornell, 1981).  
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Tab. 7.1 - Proportion of components used in each mixture of desiccant.  
The proportion of components was obtained using Design of Experiments (DOE) tool in Statistica software. A 3 factor 
simplex-lattice design (Degree m=3) with interior points and overall centroid was used. 

Mixture # 
Component proportion 

CaO CaCl2 Sorbitol 

1 0.60 0.20 0.20 

2 0.20 0.60 0.20 

3 0.20 0.20 0.60 

4 0.33 0.47 0.20 

5 0.33 0.20 0.47 

6 0.20 0.33 0.47 

7 0.47 0.33 0.20 

8 0.47 0.20 0.33 

9 0.20 0.47 0.33 

10 0.33 0.33 0.33 

11 0.47 0.27 0.27 

12 0.27 0.47 0.27 

13 0.27 0.27 0.47 

14 0.33 0.33 0.33 

 

Moisture absorption of each mixture was measured at 10 ºC and 96% RH. 

Individual small plastic trays (1 mL) were used to hold 1 g of each of the 14 mixtures in 

an air tight 6.5 L plastic container (Fig. 7.1). In order to create 96 % RH, a saturated 

salt solution of potassium nitrate was placed at the bottom of the plastic container. 

Plastic containers holding the different mixtures at 96 % RH were sealed tightly with 

plastic cap and vaseline and then transferred to an incubator (Sanyo MIR 253), 

providing 10 ºC (± 0.2 ºC).  

 

Fig. 7.1 – Experimental setup used to: (a) hold moisture absorber and of (b) the plastic trays used to hold each mixture. 

 

 

a) b) b) 
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The plastic trays were weighed at regular intervals and the moisture content 

(MHC) of desiccant was expressed in terms of g water .g
−1 desiccant as Eq.7.1: 

 HC 
 
t -
 i

 i
             Eq. 7.1 

where, MHC is the moisture holding capacity of desiccant at time t (gwater.g
−1 desiccant), 

t is time (h), Mi and Mt are the mass of desiccant (g) in the beginning and at time t. For 

each set of the desiccant, 3 replicates were performed and the entire set of 

experimental runs was replicated twice, with a total of 6 replicates for each mixture.  

7.2.2. Statistical analysis 

Results were analysed by non-linear regression with moisture content as the 

dependent variable, using Statistica software (Version 12, Stat soft, USA). In order to 

optimize the desiccant mixture, the proportion of CaCl2 was fixed at 0.26 mass fractions 

and the maximum MHC at any combinations of CaO and sorbitol was obtained using 

the solver Tool in Microsoft Excel. 

7.3. Results and discussion 

The experimental data showed that the mass of the mixed desiccant increased 

over time (Appendix D, Figure D.1). Moisture was absorbed rapidly at first and then the 

slope began to level off indicating that moisture was gradually absorbed more slowly as 

the mixture reached equilibrium.  

Considering that shelf life of oyster mushrooms is about 2 to 3 days at 10 ºC 

(Choi and Kim, 2002), moisture content of mixed desiccant up to maximum 117 h was 

considered as equilibrium moisture content (Appendix E, Figure E.2).  
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Tab. 7.2 – Moisture holding capacity (gwater. g
−1

 desiccant) of mixed desiccant at 117 hours. 

Mixture # 
Component proportion 

MHC (g water g
−1

 
desiccant) at 117 hours  

CaO CaCl2 Sorbitol Mean SD n 

1 0.60 0.20 0.20 0.49 0.20 4 

2 0.20 0.60 0.20 1.29 0.21 5 

3 0.20 0.20 0.60 0.33 0.09 6 

4 0.33 0.47 0.20 1.13 0.11 6 

5 0.33 0.20 0.47 0.41 0.05 6 

6 0.20 0.33 0.47 0.85 0.10 5 

7 0.47 0.33 0.20 0.82 0.06 6 

8 0.47 0.20 0.33 0.45 0.11 6 

9 0.20 0.47 0.33 0.93 0.06 6 

10 0.33 0.33 0.33 0.67 0.05 6 

11 0.47 0.27 0.27 0.52 0.04 6 

12 0.27 0.47 0.27 0.91 0.10 6 

13 0.27 0.27 0.47 0.59 0.16 6 

14 0.33 0.33 0.33 0.60 0.06 5 

 

Moisture uptake for mixture #2 was faster than for mixture #13 (Appendix E, 

Figure D.2). Mixture #2 had a 0.6 of CaCl2, whereas mixture #13 had a CaCl2 of 0.27. 

The difference in proportion of this specific component could explain the rapid moisture 

uptake and higher moisture holding capacity (MHC) of mixture #2 could be due to the 

higher proportion of CaCl2 in comparison with the other two desiccants.  

Fig. 7.2 shows the Pareto chart accounting for the effect of mixing desiccants 

on MHC.  
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Fig. 7.2 - Standardized Pareto chart accounting for the effect of each of the individual components and the mixing 
component in the total moisture holding capacity. The dashed vertical line corresponds to the 95 % confidence limits. 

According with the Pareto chart (see Fig. 7.2), the three components of the 

mixture (calcium oxide, calcium chloride and sorbitol) have a significant impact on 

moisture holding capacity of the mixed desiccant (p = 5 %).  

 

Fig. 7.3 - Contour plot for accounting the effect of each of the individual components and the mixing component in the 
total moisture holding capacity. The dashed vertical line corresponds to the 95 % confidence limits. 

Pareto Chart, Standardized Pseudo-Comps; Variable: MC at 117 hours

3 Factor mixture design; Mixture total=1; 79 Runs

DV: MC at 117 hours; MS Residual=0.014

p=0.05
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According to the results obtained, CaCl2 had the most significant impact on 

moisture holding capacity of the mixed desiccant followed by CaO and sorbitol. These 

results are in agreement with previous studies (Mahajan et al., 2008b; Song et al., 

2001) since CaCl2 is known for its strong hydrophilic properties.  

Moreover, it can be seen that the ternary mixture has also a significant effect on 

moisture holding capacity. 

Since the 3 components have significant effect in the MHC, a cubic model (Eq. 

7.2) was fitted to the experimental data. 

 HC α1  α2  α3C α12   α13 C α23 C α123  C        Eq. 7.2 

where A, B and C indicate CaO, CaCl2 and sorbitol proportions in the mixture, 

respectively.  

 he coefficients (α’s) of the cubic model and other statistical information are 

shown in Tab. 7.3 and 7.4.  

Tab. 7.3 - Coefficients and respective standard errors of the cubic model (Eq. 7.2). 

 

Coefficient Value SE 

α1 0.47 0.05 

α2 1.24 0.05 

α3 0.38 0.05 

α12 0.44 0.24 

α13 0.06 0.23 

α23 0.34 0.23 

α123 -4.35 1.28 

 

The coefficient of determination (R2) was 0.847 (R2 Adj = 0.834) which indicated 

a good fit of the model. 
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Tab. 7.4 - Analysis of variance of the cubic model (Eq. 7.2).  

 
 
 
 
 

 

 

CaCl2 has the strongest influence on MHC, in contrast with sorbitol which 

showed the weakest effect on MHC. ABC is negative, meaning an antagonist blending 

effect, which will decrease the MHC of the mixture through the storage time. 

From the contour plot accounting for the effect of each of the individual 

components and the mixing component in the total moisture holding capacity (Fig. 7.3), 

it can be observed that if high MHC is desired, higher levels of CaCl2 should be used.  

However, in order to develop a moisture absorber for respiring products, the 

selected moisture absorber must stay in the powder form throughout the storage life of 

the product. Therefore, addition of a specific amount of CaO and sorbitol is important to 

optimize moisture absorber performance. Calcium oxide is calcinated or recalcinated 

lime that removes water from a package very slowly and it has been used in primarily 

the packaging of dehydrated foods, remaining in the powder form for longer periods.  

In order to optimize the desiccant mixture, considering the moisture holding 

characteristics of CaCl2, the proportion of this component was fixed at 0.26 (m/m). The 

maximum MHC at any combinations of CaO and sorbitol was obtained using the solver 

Tool in Microsoft Excel.  

The results show that in order to obtain a maximum MHC of 0.81 g water per g 

of desiccant, a mixture of CaO, CaCl2 and sorbitol should be prepared with respective 

mass fractions of 0.50; 0.26 and 0.24, respectively.  

 

 

 SS df MS F p - value 

Model 5.600 6 0.933 66.29 < 0.001 

Total Error 1.014 72 0.014   

Lack of Fit 0.232 6 0.039 3.27 0.007 

Pure Error 0.781 66 0.012   

Total Adjusted 6.614 78 0.085   
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7.4. Conclusions 

This study was undertaken in order to develop a moisture absorber with 

optimum characteristics for fresh horticultural products. The experiment was designed 

according to a simplex lattice design, with moisture absorbers (calcium oxide, sorbitol 

and calcium chloride) being the factors. These three desiccants were mixed in varying 

proportions, according to the experimental design and stored 10 ºC and 96 % RH. 

Change in moisture content of each of the mixed desiccants was measured at regular 

intervals. Results showed that CaCl2 had the most significant effect on final moisture 

content of mixed absorber, although to remain in powder, an optimum amount of CaO 

and sorbitol should be added.  

According to the cubic model obtained for the MHC, a mixture containing 0.5, 

0.26 and 0.24 of calcium oxide, calcium chloride and sorbitol respectively yield a 

moisture holding capacity of 0.81 g water g-1 desiccant and remains in powder form for 

at least 117 hours at 10 ºC. These results present good perspectives for application of 

mixed desiccant for packaging of oyster mushrooms. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Chapter 8: Influence of modified atmosphere 

packaging and moisture absorber on the 

quality of fresh oyster mushrooms as 
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8.1. Introduction 

The maintenance of low temperatures and high levels of relative humidity are 

considered the most important techniques to retain quality and extend the shelf life of 

horticultural products (Kader and Saltveit, 2003). However, constant low temperatures 

are difficult to maintain through the generally long postharvest chain of fruits and 

vegetables (Paull, 1999; Jacxsens et al., 2000; Brecht et al., 2003), leading to 

problems regarding directly to the produce physiology as well as the package 

behaviour that contains the produce. In this context, the use of other hurdles rather 

than low temperature control is generally required. 

The use of modified atmosphere packaging (MAP) for postharvest preservation 

of horticultural commodities has been recognised as an important technology to 

maintain quality throughout the distribution system (Kader et al., 1989). The levels of 

O2 and CO2 reached inside the package can reduce respiration rate, ethylene 

sensitivity and production, decay and physiological changes, with the resultant benefit 

of extending the storage life of the fresh produce (Kader, 2002).  

Mushrooms are delicate horticultural commodities that can benefit of the use of 

MAP throughout storage when stored at 5 % O2 and under 12 % CO2 (López-Briones et 

al., 1993, Villaescusa and Gil, 2003; Ares et al., 2007). Nevertheless, the use of films 

with lower water vapour transmission rate in combination with high respiration and 

transpiration rate of mushrooms (Mahajan et al., 2008a) may reduce the potential 

benefits of MAP. In fact, water retained inside the package moistens the product and 

therefore, shortens shelf life (Sapata et al., 2004).  

The use of moisture absorbers inside horticultural commodity package has 

been reported as a potential solution to address the problem of the excess of water 

inside commodity package. Although beneficial effects have been found in broccoli and 

tomato packages, its use in other products are still scarce. Though some beneficial 

effects in mushrooms were found by Sapata et al. (2009a,b), Villaescusa and Gil 

(2003) found no beneficial effects on the use of sorbitol in oyster mushroom packages.  
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The purpose of this study was to (i) evaluate quality of fresh Pleurotus 

mushrooms in modified atmosphere package with or without a selected moisture 

absorber and to compare with ones in actual commercial packages found in the market 

as affected by storage temperature.  

8.2. Material and Methods 

8.2.1. Sample preparation 

Oyster mushrooms (Pleurotus ostreatus) were obtained from a commercial 

supplier one day after harvest and transported to the laboratory in a refrigerated 

transport. At the laboratory arrival, they were immediately placed in a refrigerated 

chamber and maintained at 4 °C. In the next day, mushrooms were carefully separated 

from the cluster and maintained refrigerated until the next day to overcome the 

respiration peak previous observed. 

8.2.2. Experimental procedure 

In order to test the effect of MAP and moisture absorber on oyster mushroom 

quality, 3 types of packages were evaluated: a commercial package, a modified 

atmosphere package and a modified atmosphere package with the addition of a 

moisture absorber.   

For each experimental condition, 3 packages were prepared. In each package, 

about 200 g of mushrooms were placed in polystyrene trays (PS). In commercial 

packages (Control), mushrooms were placed in PS trays and wrapped with stretchable 

PVC film. MAP packages (MAP) consisted in PS trays heat sealed with a perforated 

film and an atmosphere of 5 % O2 and 10 % CO2 was injected. The choice of the 

packaging system was made based that at equilibrium the optimal preservation 

atmosphere were maintained. For packages with moisture absorbers (MAP+ ab), a 

combination of CaO, CaCl2 and sorbitol (0.50: 0.26: 0.24) was used as moisture 

absorber as found in a previous chapter (Chapter 7). An amount of approximately 8 g 

were placed in 4 petri covered with filter paper (VWR, grade 413) (Fig. 8.1). 
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Fig. 8.1 – Examples of the packages used in the experiment. Commercial package; modified atmosphere package and 
modified atmosphere package with moisture absorber, respectively. 

To evaluate the effect of temperature abuse on oyster mushroom quality, two 

different temperature profiles were used (Fig. 8.2).  

 

Fig. 8.2 - Temperature history of the storage ambient temperatures for the two temperature profile (I being constant and 
II with abuse of temperature). 

For constant temperature (Profile I), mushrooms were stored in a cold room 

maintained at 4 °C. To simulate fluctuation and abuse of storage temperatures (Profile 

II), on each measuring day (0, 72, 120, 168 and 240 h), packages were taken out from 

refrigeration and left for 3 hours at ambient temperature (~20 ºC). 

Quality parameters were evaluated at the beginning of experiment (0 h) and 

after 72, 120, 168 and 240 h.  

 

0 24 48 72 96 120 144 168 192 216 240

storage time (h)

20 ºC 

4 ºC I 

II 



174 
FCUP 
Development of packaging systems to maximize quality retention and increase shelf life of Pleurotus 
mushrooms 

 

8.2.3. Headspace gas composition  

Changes in the package headspace gas composition were monitored by 

measuring the values of O2 and CO2 inside each package using an O2 and CO2 gas 

analyzer (PBI Dansensor, CheckMate 9900, Denmark) and withdrawing 5 mL of the 

package headspace atmosphere.  

8.2.4. Quality indicators 

The colour of the upper surface of the mushrooms was evaluated as described 

in Chapter 2; § 3.2.3). For each storage condition, 6 mushrooms were used and, in 

each mushroom 5 measurements were performed.  

For texture analysis, a double penetration test was performed on the mushroom 

cap using a TA.XT2 texture analyser (Stable Micro Systems, Godalming, UK), with a 

load cell of 50 N. A 2 mm diameter cylindrical inox probe was used. The speed of the 

probe was 2.0 mm. s−1 during the pre-test, 2.0 mm.s−1 during penetration, and 2.0 

mm.s−1 during relaxation. The relaxation time between penetrations was 2 s and 

samples were penetrated 5 mm, according to the methodology described in Parentelli 

et al. (2007) and Antmann et al. (2008). 

For each experimental condition, 3 measurements were performed in the 

middle of the stipe of five mushrooms. From the force vs. time curves, firmness (N) was 

calculated as the maximum force of first peak. Resilience (how well a product fights to 

regain its original position) and cohesiveness (how well the product withstands a 

second deformation relative to how it behaved under the first deformation) were also 

determined to evaluate overall texture of oyster mushrooms. Resilience was 

determined as the as area during the withdrawal of the first penetration, divided by the 

area of the first penetration. Cohesiveness was measured as the area of the second 

penetration divided by the area of the first penetration on force vs. time plot. 

Mushrooms were homogenized with a grinder and pH of a diluted solution (1:1 

(w:w)) was measured using a digital pHmeter (Consort, Multi-parameter liquid analyser, 

Belgium). For each experimental condition, 3 replicates were performed.  
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Homogenized mushrooms were filtered and a drop of the obtained filtrate was 

used to measure the soluble solid content (SSC) using a digital refractometer (ABBE, 

mod. 315, Zuzi, Spain). Three replicates were performed and results were expressed 

as °Brix.  

Mushroom mass loss was determined by weighing the content of the packages 

before and after each storage time. Mass loss (ML, %) was calculated by dividing the 

mass change during storage by the initial mass (t = 0), according with Eq. 3.12.  

For each condition, 3 packages were used and results were expressed as 

percentage of mass loss.  

The moisture absorption of the mixed desiccant was also calculated at the end 

of each experimental time and package and expressed in terms of g water.g
−1 desiccant.  

Mushrooms were taken out of each package, placed in 1.5 L glass jars and 

allowed to warm at room temperature. Sensory tests were performed in a test room 

based on NP4258. Samples were coded (three-digit random numbers) and provided 

simultaneous to panel. Each member of the panel (panel of 10 elements) was asked to 

rank the overall preference of the six mushroom samples (according to the odour and 

colour) (Appendix E, Figures E.1 and E.2). 

Overall visual quality of packages and mushroom samples were also described 

according with odours and off-odours, colour, maturation, firmness and condensed 

water on the product.  

8.2.5. Statistical analysis 

Effect of storage time, temperature and type of package on quality indicators 

was inspected through the use of a three-way analysis of variance (ANOVA), using 

IBM SPSS Statistics Version 20.0 (IBM, 2011). Multiple comparisons were performed 

using the Tukey´s test. All tests were applied at a 95 % confidence interval, except if 

stated otherwise. Sensory analysis data was evaluated with non-parametric Friedman 

and Mann-Whitney-U tests, using the same software. Results are presented as mean 

and standard error of mean. 
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8.3. Results and discussion 

8.3.1. Atmosphere composition inside the package 

The evolution of O2 and CO2 concentration inside the package during the 240 h 

of storage are shown in Tab. 8.1.  

Tab. 8.1 - Evolution of O2 and CO2 in Pleurotus mushroom stored under different storage conditions. Values are the 
mean (± SE) of 3 packages. 

Temperature 
profile 

Temperature abuse Constant Temperature 

storage time 
(h) 

Control MAP MAP+ab Control MAP MAP+ab 

   
O2 (%) 

   
0 20.90 (± 0.00) 5.84 (± 0.00) 5.84 (± 0.00) 20.90 (± 7.53) 5.84 (± 0.00) 5.84 (± 0.00) 

120 16.90 (± 4.38) 0.13 (± 0.13) 5.26 (± 3.41) 19.03 (± 7.41) 4.84 (± 0.90) 6.19 (± 1.07) 

240 14.33 (± 1.80) 10.69 (± 2.01) 5.80 (± 0.21) 19.20 (± 3.95) 5.87 (± 0.60) 11.40 (± 3.20) 

CO2 (%) 

0 0.1 (± 0.00) 9.00 (± 0.00) 9.00 (± 0.00) 0.1 (± 0.10) 9.00 (± 0.00) 9.00 (± 0.00) 

120 2.40 (± 2.30) 0.13 (± 0.76) 3.41 (± 0.10) 0.90 (± 1.50) 1.07 (± 14.43) 1.45 (± 0.10) 

240 3.60 (± 1.19) 2.01 (± 1.99) 0.21 (± 0.99) 0.60 (± 0.87) 3.20 (± 11.23) 2.38 (± 0.03) 

Commercial packages stored under constant temperatures remained with 

values of O2 and CO2 relatively constant throughout the 240 h of storage.  

Temperature fluctuations during the storage of oyster mushrooms in 

commercial simulated packages created a gradual decrease in O2 values that reach 

about 14 % at the end of storage life. Values of CO2 increased inside the package and 

3.6 % of CO2 was found at the end of the storage period.  

Differences in O2 and CO2 values are a consequence on respiration rate and 

film permeability used to package product. Moreover, both processes are affected by 

temperature, although the rate of change can vary. An increase in storage temperature 

promotes an increase in commodity metabolism which is generally higher than the 

increase observed on the permeability of packaging film (Exama et al., 1993; Cameron 

et al., 1995). 
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8.3.2. Quality indicators 

Colour of mushroom fruiting body is an important quality parameter, related with 

consumer acceptance. Postharvest colour development of mushrooms has also a 

significant effect on quality evaluation throughout shelf life. The results obtained using 

CIE L*a*b* parameters clearly show the influence of storage time, temperature and gas 

composition of the headspace package in mushroom colour characteristics.  

One of the CIE L*a*b* parameters related with mushroom colour is L*, that 

measures the lightness of the sample. The evolution of the L* parameter of oyster 

mushrooms stored under different conditions is shown in Fig. 8.3.  

 

Fig. 8.3 - Evolution of L* parameter of Pleurotus mushroom stored under different storage conditions (dots are the mean 
of 30 replicates and bars are standard error of mean). 

Treatment identification: C_CP - Constant temperature, Commercial package; C_MAP-Constant temperature, Modified 
atmosphere packaging; C_MAP+ab-Constant temperature, Modified atmosphere packaging plus moisture absorber; 
A_CP - Abuse temperature, Commercial package; C_MAP-Abuse temperature, Modified atmosphere packaging; 
C_MAP+ab-Abuse temperature, Modified atmosphere packaging plus moisture absorber. 

L* value of oyster mushrooms gradually decreases during storage time from an 

initial value of 77.78 (± 0.91) to values between 62.94 (± 0.92) and 72.31 (± 0.43) 

obtained for commercial packages stored under abuse and constant temperatures, 

respectively. All conditions tested (package, temperature profile and storage time) had 

a significant effect on the L* value of the samples (p < 0.05) and interaction between 

factors were also significant for this colour parameter (Appendix E, Table E.1). 
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In the first 72 hours after sample packaging, a rapid decrease in L* value was 

found in all samples. By this storage time, lower values of L* were found for 

commercial packages stored at abuse temperatures, that displayed a value 66.81 (± 

0.54). This value however, was not significantly different from the L* value obtained for 

oyster mushrooms stored under MAP (p < 0.05). Under abusive temperatures, oyster 

mushrooms stored in packages with moisture absorbers held significantly higher values 

(p < 0.05) for L* parameter when compared with other packages. When stored at 

fluctuating temperatures for 240 h, oyster mushrooms stored in commercial packages 

presented lower values of L* (p < 0.05; Appendix E, Table E.1), when compared with 

MAP and MAP with moisture absorber. 

At constant temperatures of 4 ºC, oyster mushrooms stored for 72 h under MAP 

had the lowest value for L* value (Appendix E, Table E.1). Among the packaging 

conditions evaluated, by the end of storage time, significant lower values of L* were 

obtained for mushrooms stored in MAP.  

Although mushroom colour has been commonly measured using the L* value 

(Jolivet et al., 1998; Brennan et al., 2000; Cliffe- yrnes and  ’ eirne, 2007) because it 

is highly related with mushroom darkening, a* and b* values are also related to 

browning and may also be useful to describe the postharvest colour changes of 

mushrooms (   zhányó and Felföldi, 2000; Villaescusa and Gil, 2003; Aguirre et al.; 

2008; Mohapatra et al., 2010). Values of a*, b* and BI are presented in Figs. 8.4, 8.5 

and 8.6.   
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Fig. 8.4 - Evolution of a* parameter of Pleurotus mushroom stored under different storage conditions (dots are the mean 
of 30 replicates and bars are standard error of mean).  

Treatment identification: C_CP - Constant temperature, Commercial package; C_MAP-Constant temperature, Modified 
atmosphere packaging; C_MAP+ab-Constant temperature, Modified atmosphere packaging plus moisture absorber; 
A_CP - Abuse temperature, Commercial package; C_MAP-Abuse temperature, Modified atmosphere packaging; 
C_MAP+ab-Abuse temperature, Modified atmosphere packaging plus moisture absorber. 

 

Fig. 8.5 - Evolution of b* parameter of Pleurotus mushroom stored under different storage conditions (dots are the mean 
of 30 replicates and bars are standard error of mean).  

Treatment identification: C_CP - Constant temperature, Commercial package; C_MAP-Constant temperature, Modified 
atmosphere packaging; C_MAP+ab-Constant temperature, Modified atmosphere packaging plus moisture absorber; 
A_CP - Abuse temperature, Commercial package; C_MAP-Abuse temperature, Modified atmosphere packaging; 
C_MAP+ab-Abuse temperature, Modified atmosphere packaging plus moisture absorber. 
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Fig. 8.6 - Evolution of BI parameter of Pleurotus mushroom stored under different storage conditions (dots are the mean 
of 30 replicates and bars are standard error of mean).  

Treatment identification: C_CP - Constant temperature, Commercial package; C_MAP-Constant temperature, Modified 
atmosphere packaging; C_MAP+ab-Constant temperature, Modified atmosphere packaging plus moisture absorber; 
A_CP - Abuse temperature, Commercial package; C_MAP-Abuse temperature, Modified atmosphere packaging; 
C_MAP+ab-Abuse temperature, Modified atmosphere packaging plus moisture absorber. 

 

At the beginning of the storage period, oyster mushrooms presented an a* 

value of 2.11 (± 0.21). This value significantly changed with time (Appendix E, Table 

E.2) for all conditions, with the exception for oyster mushrooms in MAP stored at 

fluctuating temperatures, in which changes on a* parameter were not significantly 

different (p > 0.05).  

At the end of storage time, a* values ranged from 2.01 (± 0.09) for control 

packages stored at constant temperature to values of 3.64 (± 0.32) for packages stored 

under abusive temperatures in MAP with moisture absorbers. 

Among the packages stored under constant temperatures, mushroom stored in 

commercial packages presented significantly lower values of a* (p < 0.05) than the 

other packaging conditions. 

Regarding b* value (Fig. 8.5), a gradual increase in this coordinate was found 

for all samples throughout storage life, with significant effects found for all factors 

studied (Appendix E, Table E.3). Interactions between factors were also found 

(Appendix E, Table E.3). Higher increase in b* value was found in packages with 

atmosphere modification combined with moisture absorbers stored under abusive 

temperatures. In these packages, oyster mushrooms presented a significant increase 
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(p < 0.05, Appendix E, Table E.3) in b* value from 18.14 (± 0.54) to 23.32 (± 0.51) after 

240 h of storage.  

When stored at constant temperatures, an increase in b* value was also 

observed, with the exception of the b* value of oyster mushrooms stored in MAP that 

remained relatively constant (values from 18.14 (± 0.54) to 18.38 (± 1.06).  

Browning index can be defined as brown colour purity, is one of the most 

common indicators of browning in sugar containing food products (Lunadei et al.,  2011. 

It can be used to capture the variations in CIE L*a*b* parameters that are related to a 

turn towards brown colour (Mohapatra et al., 2010) 

As observed in Fig. 8.6, BI measured as Maskan (2001) reported, increases 

over storage time from initial values of 174.26 (±1.07) to values of as high as 188.08 (± 

1.68).obtained for mushrooms undergoing temperature fluctuations.  

All parameters tested had influence in the evolution of browning of oyster 

mushrooms. Interactions among factors were also found (Appendix E, Table E.4). 

Although BI increased for all package conditions, by the end of storage life, BI 

was lower for samples stored at constant temperatures. For mushrooms stored under 

these temperature conditions, Pleurotus stored under MAP had the lowest values 

regarding BI, although this value was not significant different from the other two 

package conditions (p < 0.05; Appendix E, Table E.4) For fluctuating temperatures, 

mushrooms stored in MAP with moisture absorber had significantly higher values for 

BI.  

Numerical values of a* and b* can be converted and analysed as hue angle (Hº) 

and chroma (C*) (McGuire, 1992). Values for C* and Hº obtained for oyster 

mushrooms stored under different conditions are presented in Fig. 8.7 and 8.8, 

respectively.  
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Fig. 8.7 - Evolution of C*of Pleurotus mushroom stored under different storage conditions (dots are the mean of 30 
replicates and bars are standard error of mean).  

Treatment identification: C_CP - Constant temperature, Commercial package; C_MAP-Constant temperature, Modified 
atmosphere packaging; C_MAP+ab-Constant temperature, Modified atmosphere packaging plus moisture absorber; 
A_CP - Abuse temperature, Commercial package; C_MAP-Abuse temperature, Modified atmosphere packaging; 
C_MAP+ab-Abuse temperature, Modified atmosphere packaging plus moisture absorber. 

 

Fig. 8.8 - Evolution of hue values of Pleurotus mushroom stored under different storage conditions (dots are the mean of 
30 replicates and bars are standard error of mean).  
Treatment identification: C_CP - Constant temperature, Commercial package; C_MAP-Constant temperature, Modified 
atmosphere packaging; C_MAP+ab-Constant temperature, Modified atmosphere packaging plus moisture absorber; 
A_CP - Abuse temperature, Commercial package; C_MAP-Abuse temperature, Modified atmosphere packaging; 
C_MAP+ab-Abuse temperature, Modified atmosphere packaging plus moisture absorber. 

 

In accordance with the values obtained for a* and b*, a significant increase in 

C* parameter was found at the end of storage time (p < 0.05) (Appendix E, Table E.5).  

Slightly, non significant (p > 0.05, Appendix E, Table E.5) changes were found 

for mushrooms stored in MAP at constant temperatures (values changed from 18.27 (± 
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0.56) to values of 18.60 (± 1.07). on the other hand, mushrooms stored at fluctuating 

temperatures and MAP with moisture absorber had significantly higher values for C*.  

Regarding Hº values (Fig. 8.8, Appendix E, Table E.6), higher increase were 

found for mushrooms stored at constant temperatures in commercial packages (under 

these conditions, Hº values increases from 83.46 ± 0.50 to 85.03 ± 0.23). 

Mushrooms are very susceptible to enzymatic browning (Burton et al., 1987; 

Jolivet et al., 1998, Brennan et al., 2000). Consequently, a progressive darkening is 

generally observed throughout storage life for different mushroom species (Tano et al., 

1999; Villaescusa and Gil, 2003; Sapata, 2005; Mohapatra et al., 2010). In general, 

decreases in the value of L*, increase in a*, b* and BI are reported throughout storage 

life as seen for Agaricus (Mohapatra et al., 2010) and Pleurotus (Choi and Kim, 2002; 

Villaescusa and Gil, 2003; Sapata et al., 2004). Villaescusa and Gil (2003) reported an 

increase in yellowness after storage of oyster mushrooms for 7 days at 7 ºC. Similarly, 

the increase in H° and C*, as obtained under these experimental conditions also 

reflects this increasing trend in b* value during storage time.  

Storage conditions used had a significant effect on colour changes of fresh 

oyster mushrooms. Temperature and modified atmosphere affect metabolism of fresh 

produce (Kader, 2002). Since colour changes in mushrooms, specially browning are 

governed by enzymatic activity, storage temperature affects the rate of colour changes. 

As observed in the present study, although colour changes could not be stopped, those 

changes were lower for mushrooms stored at constant temperatures, especially for L* 

and a* and BI.  

Although changes were found for all samples, decreases in lightness and 

yellowing were always higher for mushrooms stored under abusive temperature. The 

fluctuating temperatures encountered in this experiment are not uncommon in the 

postharvest chain of some commodities. Consequently, even a small period of time at 

ambient temperature can impair product quality. These results highlight the importance 

of low temperature maintenance in colour retention of oyster mushrooms.  

Texture is an important quality parameter for fresh horticultural commodities 

including different species of mushrooms (López-Briones et al., 1992; Villaescusa and 

Gil., 2003; Ares et al., 2007; Parentelli et al., 2007; Oliveira et al., 2012). 
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Evolution of the firmness during storage life of oyster mushroom is presented in 

Fig. 8.9.  

 

Fig. 8.9 - Evolution of firmness of Pleurotus mushroom stored under different storage conditions (dots are the mean of 
30 replicates and bars are standard error of mean).  

Treatment identification: C_CP - Constant temperature, Commercial package; C_MAP-Constant temperature, Modified 
atmosphere packaging; C_MAP+ab-Constant temperature, Modified atmosphere packaging plus moisture absorber; 
A_CP - Abuse temperature, Commercial package; C_MAP-Abuse temperature, Modified atmosphere packaging; 
C_MAP+ab-Abuse temperature, Modified atmosphere packaging plus moisture absorber. 

 

Firmness of oyster mushrooms significantly decreases throughout storage time 

(p < 0.05; Appendix E, Table E.7) for all conditions tested, from initial value of 0.68 N 

(SE of 0.03) to values as low as 0.26 N (SE of 0.03) at the end of the storage period. 

On the other hand, no effect of package was found at the end of storage life for this 

textural parameter (p > 0.05; Appendix E, Table E.7). 

Oyster mushroom underwent a rapid loss of firmness after  2 hours for all 

conditions studied (p < 0.05; Appendix E, Table E.7). When stored under temperature 

fluctuations, mushrooms firmnsess decreased from initial values of 0.68 N (± 0.13 N) to 

a minimum value of 0.31 N (± 0.03 N) when samples were stored in MAP, although no 

significant differences were found between packages (p > 0.05). At this storage time, 

constant temperatures also delayed softening (p < 0.05; Appendix E, Table E.7) of 

oyster mushrooms. As storage progresses, temperature profile had a significant effect 

(p < 0.05; Appendix B, Table E.7) on this textural parameter, whereas package did not 

affect firmness of oyster mushrooms (p > 0.05; Appendix E, Table E.7).  
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Evolution of resilience and cohesiveness of oyster mushrooms is presented in 

Fig. 8.10 and 8.11, respectively.  

 

Fig. 8.10 - Evolution of resilience of Pleurotus mushroom stored under different storage conditions (dots are the mean of 
30 replicates and bars are standard error of mean).  

Treatment identification: C_CP - Constant temperature, Commercial package; C_MAP-Constant temperature, Modified 
atmosphere packaging; C_MAP+ab-Constant temperature, Modified atmosphere packaging plus moisture absorber; 
A_CP - Abuse temperature, Commercial package; C_MAP-Abuse temperature, Modified atmosphere packaging; 
C_MAP+ab-Abuse temperature, Modified atmosphere packaging plus moisture absorber. 
 

 

Fig. 8.11 - Evolution of cohesiveness of Pleurotus mushroom stored under different storage conditions (dots are the 
mean of 30 replicates and bars are standard error of mean).  

Treatment identification: C_CP - Constant temperature, Commercial package; C_MAP-Constant temperature, Modified 
atmosphere packaging; C_MAP+ab-Constant temperature, Modified atmosphere packaging plus moisture absorber; 
A_CP - Abuse temperature, Commercial package; C_MAP-Abuse temperature, Modified atmosphere packaging; 
C_MAP+ab-Abuse temperature, Modified atmosphere packaging plus moisture absorber. 
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Resilience and cohesiveness (Figs. 8.10 and 8.11) of oyster mushrooms 

showed a trend similar to firmness  with a si nificant (p < 0.05; Appendix E, Tabs. 8 

and 9) decrease throughout storage life. Both parameters show the effect of all factors 

studied and interactions between factors were also significant (p < 0.05; Appendix E, 

Tabs. 8 and 9). 

This effect of elapsed postharvest time in mushroom textural parameters has 

been analyzed by several researchers. Reduction in firmness of mushroom has been 

reported (Antmann et al., 2008; Oliveira et al., 2012; Tano et al., 1999; Villaescusa and 

Gil, 2003; Aguirre et al., 2008). While fresh, mushrooms are firm, crisp (resist to 

deformation), and tender (easy to shear or crew) (Villaescusa and Gil, 2003; Oliveira et 

al., 2012) and as maturation progresses, mushrooms softens (López-Briones et al., 

1992). This decrease in firmness is a result of the cellular wall degradation, hyphae 

shrinkage, central vacuole disruption and expansion of intercellular space at the pilei 

surface. Losses of firmness can also be enhanced by bacterial enzymes and increased 

activity of endogenous autolysins that appear throughout postharvest storage period 

(Zivanovic et al., 2000).  

Texture of mushrooms is affected by temperature (Mohapatra et al., 2010). As 

observed in the present study, a single cycle of abusive temperature (3 h at ~20 ºC) 

was enough to decrease the values of firmness for about half of the initial values. 

Moreover, atmospheres saturated with water could have been responsible for the 

acceleration of mushroom softening as reported by Antmann et al. (2008). 

A positive effect on firmness retention have been reported with the use of MAP 

(Villaescusa and Gil, 2003; Antmann et al., 2008; Oliveira et al., 2012). Sapata et al. 

(2009a), on the other hand, using texturometer Stable Microsystems TA-Hdi, with a 

load cell of 50 N, using a puncture, with a probe inox P6 (Ø 6 mm reported a significant 

decrease on postharvest firmness change, from 3.68 N to 1.90 N up to 11 days of 

storage under MAP. On the other hand, as mushroom maturation progresses, an 

increase in chitin content and formation of covalent bonds between chitin and R-

glucan, increasing the rigidity of the hyphal wall may occur, increasing cohesiveness 

with storage time (Zivanovic et al., 2000; Parentelli et al., 2007).  

Values of SSC and pH of samples stored at different conditions are given in 

Figs. 8.12 and 8.13, respectively.  
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Fig. 8.12 - Evolution of SSC of Pleurotus mushroom stored under different storage conditions (dots are the mean of 3 
replicates and bars are standard error of mean).  

Treatment identification: C_CP - Constant temperature, Commercial package; C_MAP-Constant temperature, Modified 
atmosphere packaging; C_MAP+ab-Constant temperature, Modified atmosphere packaging plus moisture absorber; 
A_CP - Abuse temperature, Commercial package; C_MAP-Abuse temperature, Modified atmosphere packaging; 
C_MAP+ab-Abuse temperature, Modified atmosphere packaging plus moisture absorber. 

 

Fig. 8.13 - Evolution of pH of Pleurotus mushroom stored under different storage conditions (dots are the mean of 3 
replicates and bars are standard error of mean).  

Treatment identification: C_CP - Constant temperature, Commercial package; C_MAP-Constant temperature, Modified 
atmosphere packaging; C_MAP+ab-Constant temperature, Modified atmosphere packaging plus moisture absorber; 
A_CP - Abuse temperature, Commercial package; C_MAP-Abuse temperature, Modified atmosphere packaging; 
C_MAP+ab-Abuse temperature, Modified atmosphere packaging plus moisture absorber. 

 

SSC of oyster mushrooms increase over time for most of the conditions studied 

(Appendix E, Table E.10). The exception was found for mushrooms stored at abusive 

temperature in commercial or MAP that show a significant decrease in SSC with time. 
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This decrease in SSC could be a consequence of mushrooms RR and therefore 

substrate depletion. The results are in accordance with those reported by Hammond 

and Nichols (1975). Villaescusa and Gil (2003) evaluated the content of soluble solids 

in oyster mushrooms stored at 4 °C and found a decrease in SSC of mushrooms 

stored under these conditions. On the other hand, an increase in SSC was observed 

for all other packages. This effect was more evident when mushrooms were stored at 

abuse temperatures, with the higher increase in SSC throughout storage life.  

Initial oyster mushrooms pH (6.61 ± 0.00) stayed relatively stable during most of 

the storage time for all treatments. From 168 h onwards, a significant increase (p < 

0.05; Appendix E, Table E.11) in pH was observed for all conditions tested. At the end 

of storage life, pH values of oyster mushrooms ranged from 7.63 (± 0.04) to 6.53 (± 

0.01) for commercial packages stored at abuse and constant temperatures 

respectively.  ll the factors studied presented a si nificant effect (p < 0.0 ) on pH of 

oyster mushrooms (Appendix E, Table E.11).  

Increases in pH as observed in the present study are generally related with 

increased in PPO activity, as previous seen in litchi fruits (Jiang and Fu, 1999). Sapata 

et al. (2009a) reported similar results for the pH evolution throughout the storage life of 

oyster mushrooms. According to the author, an increase in pH value was found (values 

of pH changed from 6.25 to 7.49) for mushrooms stored under modified atmosphere at 

4 ºC for 11 days. On the other hand, Villaescusa and Gil (2003) did not found 

differences in pH levels for mushrooms stored at 0, 4 and 7 ºC. Evolution of pH 

throughout storage life of fresh horticultural commodities is related to a number a 

factors, although as a natural consequence of spoilage, a decrease in pH can be 

found. The growth of microorganisms in food products results in the production of 

organic acids, which decreases pH values during storage (Heard, 2002; Masson et al., 

2002).  

Mass losses that occur in horticultural commodities are an important 

postharvest process and can significantly limit mushroom quality. Fig. 8.14 shows 

mass loss throughout storage time for oyster mushrooms. 
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Fig. 8.14 - Evolution of mass loss of Pleurotus mushroom stored under different storage conditions (dots are the mean 
of 3 replicates and bars are standard error of mean).  

Treatment identification: C_CP - Constant temperature, Commercial package; C_MAP-Constant temperature, Modified 
atmosphere packaging; C_MAP+ab-Constant temperature, Modified atmosphere packaging plus moisture absorber; 
A_CP - Abuse temperature, Commercial package; C_MAP-Abuse temperature, Modified atmosphere packaging; 
C_MAP+ab-Abuse temperature, Modified atmosphere packaging plus moisture absorber. 

Mass loss of oyster mushrooms was influenced by storage time and 

temperature, although according to the statistical analysis, no effect of storage 

temperature was found or for the interaction of time and storage temperature.  

By the end of storage time, at abusive temperatures, mushrooms had lost 7.22 

% (± 0.23 %) of their initial mass when packaged in commercial conditions, which was 

significantly higher than the value obtained in the previous storage time (2.96 % ± 0.54 

%). Mushrooms stored at constant temperature of 4 °C exhibited a maximum mass 

loss of 5.23 % (± 0.34 %) in the case of MAP with moisture absorbers. When MAP was 

used alone, mushrooms lost about 2.41 % (± 0.45 %), value very similar to the 

commercial package. Nevertheless, it should be noticed that, with the exception of the 

former storage time, MAP retained mass loss of mushrooms throughout the first 168 

hours.  

Mass loss is a consequence of moisture loss by transpiration and loss of carbon 

reserves by respiration, with only a minor contribution from respiration (Zagory and 

Kader, 1988; Maguire et al., 2004). Mushrooms are subject to high water losses 

(Mahajan et al., 2008a), as a consequence of their delicate epidermic structure and 

high metabolic rate. Besides the obvious economic losses, water loss also influences 

mushroom deterioration rate due to effects on colour and texture.  
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Temperature has a major effect on the rate of water loss from fresh products. 

Moreover, with temperatures fluctuations encountered during postharvest handling 

chain, occurrence of condensate formation in film packaging or in commodity surface 

may occurs as a consequence of high air humidity in the head space of fresh 

commodities packaging (Ben-Yehoshua et al., 2003; Tano et al., 2007). Although the 

lack of high relative humidities inside package can potentially cause severe losses, the 

excess of water also leads to problems in appearance (skin colour, surface structure, 

texture) (Feng et al., 2003; Srinivasa et al., 2004) and it may also encourage microbial 

growth (Brennan et al., 2000). 

Films used for oyster mushroom packaging restrained weigh losses throughout 

storage life, possibly due to the reduced transpiration and respiration rates. By the end 

of storage time, for mushrooms stored at constant temperature of 4 °C, mass loss 

value remained slightly below the acceptable mass loss for mushrooms, which is 2 % 

(Sveine et al., 1967; Tano et al., 1999). Nevertheless, even for control packages, that 

was not subjected to modify package atmosphere and thus, to potential reduced 

metabolism, reduced mushrooms dehydration. 

By the end of storage period, moisture absorbers had gain 0.67 gwater.g
−1 

desiccant (± 0.05 gwater.g
−1 desiccant) and 0.76 gwater.g

−1 desiccant (± 0.05 gwater.g
−1 

desiccant) for abuse and constant temperatures respectively.  

The addition of moisture absorber did not bring any positive effects regarding 

oyster mushrooms mass losses. No symptoms of severe mass loss were found 

although visually, packages had less condensation that the other ones packages 

conditions. Similar results were found by Roy et al. (1995b) for Agaricus mushrooms. 

Although silica gel provided a clear view through the package, no improvements on 

quality were found when comparing samples with or without silica gel.  

Fresh mushrooms were judged by their appearance and odour. Scores 

obtained for the different samples are presented in Tab. 8.2.  
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Tab. 8.2 – Evolution of the scores of Pleurotus mushroom stored under different storage conditions.  

 
Storage time (h) 

Package 

condition 
72 120 168 240 

Abusive temperature 

CP 1.40 (± 0.27)
a
 1.20 (± 0.20)

a
 1.40 (± 0.40)

a
 1.11 (± 0.11)

a
 

MAP 2.80 (± 0.47)
a,b

 3.00 (± 0.49)
b
 2.90 (± 0.48)

ab
 2.44 (± 0.24)

b
 

MAP + ab 3.60 (± 0.43)
bc

 3.40 (± 0.43)b 4.60 (± 0.50)
bc

 2.89 (± 0.35)
b
 

Constant temperature 

CP 4.30 (± 0.65)
bc

 4.30 (± 0.33)
bc

 4.70 (± 0.40)
c
 4.67 (± 0.33)

c
 

MAP 4.80 (± 0.36)
c
 4.00 (± 0.39)

bc
 3.60 (± 0.27)

bc
 5.33 (± 0.17)

c
 

MAP + ab 4.20 (± 0.25)
bc

 5.10 (± 0.46)
c
 3.80 (± 0.49)

bc
 4.56 (± 0.47)

c
 

p-value 0.001 0.000*** 0.001*** 0.000*** 

Chi-square 21.590 25.714 21.486 35.143 

Values (mean of ten replicates) in the same column followed by the same letter (a - c) are not significantly different 
according to Mann-Whitney U test at p < 0.05; NS, not significant. *, P < 0.05; **, P < 0.01; and ***, P < 0.001. 
Treatment identification’s - Commercial package; MAP- Modified atmosphere packaging; MAP+ab- Modified 
atmosphere packaging plus moisture absorber 

Storage conditions lead to an overall statistically significant difference in the 

scores obtained for oyster mushrooms. Temperature had a significant effect on the 

sensory quality of oyster mushrooms. Mushrooms stored under abuse temperature had 

overall lower scores throughout shelf life, when compared to mushrooms stored under 

at constant refrigeration temperatures (4 ºC).  

After 72 hours of storage, mushroom commercial packages stored under 

temperature fluctuations had the lowest score among all conditions. In comparison, 

samples packed with moisture absorber gathered a mean score of 4.40, value that was 

very similar to the score obtained for the other type of packages (4.30 and 3.60 for 

commercial packages and modified atmosphere package respectively). By the end of 

storage life, mushrooms stored under temperature fluctuations were scored with the 

worst quality and, among those, mushrooms packed in commercial packages had the 

lowest scores.  

The visual quality of Pleurotus mushrooms was very good after 72 h of storage. 

From this time onwards, both temperature profile and package significantly affected 

mushroom visual quality (Appendix E, Figure E.1). 

When packaging film was removed from commercial packages of Pleurotus 

maintained at constant temperature, a slightly strange odour was found that quickly 
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disappeared. Mushrooms presented characteristic odour, with a yellow colour in bottom 

surface. Broken lamellaes were also visible, indicating an increase in mushroom 

maturation. Moreover, mushrooms were soggy, but they were still within the range of 

marketability.  

MAP packages at constant temperatures, presented a very good overall quality, 

although some moisture was found inside the package. By this storage time, MAP with 

moisture absorber also presented mushroom in good quality. Moreover, in comparison 

with other packages, Pleurotus stored under these conditions seemed less soggy. 

At abusive temperatures, on the other hand, signs of deterioration were found in 

all packages. Intense off odours were found for control packages and mushroom were 

all very spongy as a consequence of high amount of water on the product surface. 

Mushroom stored under MAP or under MAP with desiccant had also off odours, severe 

yellowing and spongy texture. These characteristics impaired mushrooms acceptance. 

Fluorescent pseudomonads (e.g. Pseudomonas putida and Pseudomonas 

fluorescens) also produce exopolysaccharides associated with the sliminess 

accompanying spoilage of Agaricus mushrooms (Fett et al., 1995). Although some of 

the signs of mushrooms spoilage may be related to the presence of harmful microbial 

populations, Ares et al. (2006) reported that, in minimally processed shiitake, the 

rejection time was more related to the appearance (browning, slime aspect and the 

presence of fungi on their surface) of than the presence of harmful quantities of 

microorganisms on mushrooms.  

Nevertheless, throughout all storage period considered, Pleurotus mushrooms 

quality was possible affected by the water content of the tissues and by the high 

condensation created inside the package  

8.4. Conclusions 

Fresh oyster mushrooms were stored under different packages at two different 

temperature regimes and their quality was studied over a 240 storage period. Levels of 

O2 and CO2 inside the packages and quality evaluation that included both physical 

(visual appearance, mass loss, colour of the cap and texture) and chemical (pH, SSC) 
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parameters were determined over a period of 240 h. Mushrooms were stored under 

commercial conditions, in a modified atmosphere packaging (active MAP) and a MAP 

with added moisture absorber. Temperature profile significantly affected the quality of 

oyster mushrooms, with mushrooms maintained under abuse temperature showing a 

fast rate of quality loss. 
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9.1. General conclusions 

Mushrooms have been gaining recognition as a source of unique properties that 

includes high nutritional qualities, functional and therapeutically properties. These 

amazing commodities are subjects of numerous scientific studies regarding biology, 

genetics, cultivation and also health promoting effects.  

Edible mushrooms constitute a rich source of bioactive compounds, including 

non-starch polysaccharides, polysaccharide–protein and polysaccharide–peptide 

complexes, ribonucleases, proteases and lectins. Those components exhibit several 

recognized health promoting properties such as antitumor, hypocholesterolemic, 

immunosuppressive, antioxidant, antimicrobial and anti-inflammatory properties (Khan 

and Tania, 2012; Roupas et al., 2012; Cheung, 2013; Roy and Prasad, 2013).  

In addition to the exceptional organoleptic characteristic and recognized 

culinary versatility  these uni ue features increase consumer’s curiosity towards 

mushrooms and, nowadays mushrooms market is marked by an increase in mushroom 

species offered to the consumer. Under the common name of “oyster mushroom”, 

several species of mushroom belonging to the genus Pleurotus are available and 

popularly consumed all over the world due to their taste and flavour. Within the genus, 

Pleurotus ostreatus (also recognized as oyster mushroom), is becoming increasingly 

important. Organoleptic quality (Cuppett et al., 1998), undemanding cultivation 

conditions (Gregori et al., 2007; Sánchez, 2010), high nutritional value (Manzi et al., 

1999; Mattila et al., 2001; Lindequist et al., 2005) and recognized therapeutic 

properties (Roy and Prasad, 2013), are possible explanations to the popularity of this 

specie. 

Despite this potential interest in oyster mushroom production and consumption, 

they present a very short shelf life (Bano et al., 1988; Villaescusa and Gil, 2003) and 

very little information about postharvest physiology and personalized postharvest 

technologies are known. In a work regarding postharvest characteristics of oyster 

mushrooms, Rajarathnam et al. (1983) reported a shelf-life of 12 hours for P. 
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flabellatus maintained at 25 ºC and a 30 % mass loss within 24 hours at the same 

temperature.  

Physiological processes are important in determining deterioration rate and of 

oyster mushrooms (Rajarathnam et al., 1983; Bano et al., 1988; Villaescusa and Gil, 

2003; Sapata et al., 2009a,b). Besides the natural metabolism, absence of cuticle and 

large but thin mushroom surface also contribute to their extreme perishability (Bohling 

and Hansen, 1988). Accelerated postharvest metabolism of oyster mushrooms 

presents an important drawback for consumption of the produce in an ideal fresh state. 

In order to meet consumer demands and fulfil their expectations for fresh, tasteful and 

nutritious mushrooms, postharvest characteristics of each mushroom specie should be 

known. Although strictly storage temperature control is required to maintain optimum 

quality (Kader and Saltveit, 2003), knowledge of physiological postharvest specificities 

are useful to the development of other effective postharvest technologies.  

Packaging is a fundamental tool in order to retain general quality and the use of 

MAP for the postharvest preservation of horticultural commodities has been recognised 

as an important technology to reduce losses, maintain quality and extend shelf life 

throughout the distribution chain (Kader et al., 1989; Fonseca et al., 2002a). MAP has 

been used for several mushrooms species, but leads to water accumulation resulting in 

produce sliminess and enhancement of microbial growth. The global goal of this thesis 

is to contribute for the knowledge of oyster mushrooms postharvest characteristics. 

In a first approach of the experimental work of this thesis, the effect of storage 

temperature on fresh oyster mushrooms was analysed. Evaluation of temperature 

effect was performed on fresh oyster mushrooms stored at 2, 6, 10, 14 and 18 ºC with 

~95 % RH. Physico-chemical attributes and respiration rates were assessed over a 96 

h storage period (Chapter 3). Fresh mushrooms were separated from the cluster, 

allowed to equilibrate at each storage temperature and respiration rate and quality 

attributes were immediately analysed. On the day of harvest and after sample 

processing, high respiration rate for oyster mushroom were observed. A decrease on 

respiration rate with time was observed after the beginning of the experiment. Oyster 

mushroom quality also decreases with time. From the greyish natural colour, oyster 

mushrooms underwent yellowness (increase in CIE b* value) for all temperatures. As 

expected, increases were higher for higher temperatures. Mushroom membrane, 

evaluated by the relative electrolyte leakage, also suffered some damage over storage. 
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Severe mass losses were also found. In fact, oyster mushrooms presented severe 

dehydration for temperatures of 18 ºC, impairing the freshness of the produce. 

Considering the quality attributes studied, as storage temperature increases, the rate of 

deterioration speeds up, with temperatures higher than 6 ºC, affecting significantly the 

quality, even a few hours after harvest. For lower temperatures of 2 and 6 ºC, less 

deterioration was found. 

Respiration rate studies and consequent quantification and modelling are a key 

factor in the design of the best strategies for storage and packaging. Several 

respiration rate models are available for a broad range of commodities.  

Respiration of a produce depends on a wide range of environmental factors 

although temperature and atmospheric composition are the most important Respiration 

rate is also expected to change with elapsed time and therefore should be included on 

respiration rate studies. In Chapter 4, a mathematical model for the effect of time and 

storage temperature on Pleurotus mushroom respiration rate was developed. 

Respiration rates were measured in a closed system at 8 h intervals for 240 hours at 2, 

6, 10, 14 and 18 ºC with ~95% RH. The respiration rate decrease with time was 

described with a first order kinetic model, with Arrhenius dependence for storage 

temperature. For each temperature, a clear relationship between initial respiration rate 

and respiration rate at equilibrium was also found and incorporated in the model. The 

developed model, should give reliable predictions of respiration rates of oyster 

mushrooms with storage time at any temperatures.  

Most fresh fruits and vegetables maintain quality with high CO2 concentrations 

and low O2 concentrations longer than in air (Kader et al., 1989). Atmospheric 

composition also affects the metabolic rate of fresh produce. Oyster mushrooms were 

stored under different O2 and CO2 concentrations at 2 ºC (Chapter 5) for 4 days. 

Results show that respiration rate of oyster mushrooms was affect by the levels of O2 

and CO2. Within the compositions tested, low levels of O2 (2 % v/v) and high levels of 

CO2 (20 % v/v) maintained respiration rate at low levels, without inducing fermentation. 

Another physiological process strictly linked with respiration is the transpiration 

rate. Both respiration and transpiration rate result in mass losses of fresh produce.  

In Chapter 6, oyster mushrooms, obtained one day after harvest were stored 

on relative humidity of 86, 96 and 100 % and on temperatures interval previous 
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defined. Results show linear mass losses with time and an empirical transpiration 

model describing the effect of storage temperature based on an Arrhenius type 

equation and linear relationships with relative humidity was developed.  

High relative humidity diminishes dehydration and avoids wilting and shrivelling 

of the product. Nevertheless, the maintenance of a very high relative humidity can 

promote moisture condensation on the commodity, due to temperature fluctuation. 

Condensation creates conditions favourable for pathogen growth (Henig and Gilbert, 

1975; Zagory and Kader, 1988). Thus, water condensation should be addressed when 

a MAP system is to be exploited in commercial scale. 

Although the use of high relative humidity inside packages might bring benefits 

regarding a reduction in postharvest mass losses, other problems may occur. In fact, 

one of the main problems related with packaging of horticultural commodities with high 

metabolic rates is the condensation of moisture on the product and on the film used. To 

overcome this problem, the use of moisture absorbers has been suggested. 

Nevertheless  e istin  moisture absorbers don’t have the re uirement needed for 

packaging of fresh commodities. On Chapter 7, a simplex lattice design was used to 

studt different mixtures. CaO, CaCl2 and sorbitol were mixed in different proportions 

and MHC for each mixture was determined. The optimized mixture containing 0.26, 

0.24 and 0.50 of CaCl2, CaO and Sorbitol, respectively has a moisture holding capacity 

of 0.814 g water. g-1 desiccant at 10 ºC and 96 % RH. This information suggests that 

the moisture absorber may the useful for the development of a novel packaging system 

for oyster mushrooms.  

In the last chapter regarding experimental work of this thesis (Chapter 8), 

previous information was gathered and a package for oyster mushroom was validated. 

Commercial packages of oyster mushrooms were compared with active modified 

atmosphere (5 % O2 and 10 % CO2) and an active modified atmosphere with the 

selected moisture absorber. Since it is known that temperature abuses promote major 

damage in fresh produce, two temperature profiles were tested. Mushrooms packages 

were maintained at constant temperatures of 4 ºC, while other packages were 

maintained at 4 ºC, but with an abuse of temperature (3 h at ~20 ºC) every 48 h. After 

240 h of storage, mushrooms presented some signs of deterioration. In commercial 

packages, mushrooms were very soggy as a result of the high water content in the 
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package. On the other hand, mushrooms in MAP with added moisture absorber had 

partially less amount of water inside the package.  

9.2. Suggestions for future work 

The development of a reliable MAP should be carefully design, since so many 

factors can affect the respiration rate. It has been recognized that, studies on 

respiration rate must consider the combined effect of temperature and gas composition 

(Fonseca et al. 2002a). Therefore, although respiration rate under different gas 

compositions was evaluated at the optimum temperature found for storage (2 ºC), with 

a positive effect on RR, it will be of utmost importance to verify the same trend under 

different storage temperatures.  

Since tolerance limits for O2 and CO2 for a particular commodity may be 

affected by the concentration of the other gas (Kader et al., 1989), studies on O2 and 

CO2 limits for aerobic respiration could provide some additional information on the 

dependence of O2 and CO2 on mushroom respiration rate and mushroom quality and 

for the safe levels of O2 and CO2 for MAP marketing of mushrooms.  

Furthermore, since quality of fresh produce includes a combination of different 

quality attributes, studies on the effect of O2 and CO2 on mushrooms quality attributes 

is necessary. 

Studies on the microbiological aspects of mushroom storage and the effect of 

postharvest quality should be developed to ensure quality and safety of the product. 

 oss of water from products it’s important and studies on the influence of 

relative humidity and temperature on other quality attributes should also be developed.  

Regarding moisture absorbers, although they present potential for the 

development of a novel MAP system for mushrooms, the effect of time on each 

combination should be studied and other possible combination should be studied.  

Although the contribution of some factors is not as significant as that of others, 

their combined or even synergetic effect (known as the hurdle technology) is important 

to preserve the overall product quality. From that point of view, the combination of 
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novel methods for mushroom packaging needs to be examined. Irradiation has been 

suggested as a reliable technology to control microbiological spoilage. Therefore, 

irradiation used with MAP should provide additional hurdles for oyster mushrooms.  
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Appendix A: CIE L*a*b* colour parameters 

 

Figure A.1 - CIEL*a*b* chromaticity diagram. CIEL*a*b* space represent colour in a dimension rectangular space based 
on the opponent colours theory, where L* represent the Lightness that is related to the changes from white (+100) to 
black (0) in a food item. a* (vary on a green (-a*) to red (+a*) and b* represent yellowness. h (Hº) is an angle in a colour 
wheel of 360º, with 0º, 90º, 180º and 270º representing the hues red-purple, yellow, bluish-green and blue, respectively. 
Chroma is the intensity or purity of the hue, measures colour saturation and vary between 0 (pale colour) and +60 (vivid 
colour), source: Berns, 2000. 
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Appendix B: Supplementary material pertaining to Chapter 3. 

Table B.1 - Evolution of respiration rate, RRO2
 (mL.kg

-1
.h

-1
) of P. ostreatus throughout storage time 2, 6, 10, 14 and 18 ºC for 96 hours. The p-value for the main effects from two-way ANOVA 

is 0.000 for temperature and 0.000 for time.  

Storage time (h) 2 ºC 6 ºC 10 ºC 14 ºC 18 ºC 

p-value 
(one-way 
ANOVA) 

0 111.93 (± 5.93)
a,C

 137.97 (± 14.24)
a,B

 235.15 (± 11.24)
b,C

 215.45 (± 16.34)
b,C

 222.67 (± 5.49)
b,C

 0.000 

24 61.76 (± 10.54)
a,A,B

 105.73 (± 4.40)
a,b,A,B

 151.28 (± 7.75)
b,c,B

 185.51 (± 21.47)
c,d,B,C

 215.49 (± 6.68)
d,c,B,C

 0.000 

48 24.44 (± 5.01)
a,A

 111.54 (± 9.64)
b,c,A,B

 129.04 (± 9.06)
b,c,A,B

 91.80 (± 19.65)
b,c,A

 160.09 (± 7.93)
c,B

 0.000 

72 36.82 (± 2.52)
a,A,B

 82.01 (± 0.45)
b,A

 94.00 (± 6.02)
b,c,A

 117.54 (± 7.67)
b,c,A,B

 128.14 (± 14.17)
c,A,B

 0.000 

96 36.56 (± 8.61)
a,A,B

 73.12 (± 1.88)
b,A

 120.95 (± 4.21)
c,A,B

 74.30 (± 8.81)
b,A

 94.15 (± 6.45)
b,c,A

 0.000 

p-value (one-
way ANOVA) 

0.000 0.004 0.000 0.000 0.000 0.000* 

a,b,c – homogeneous groups of temperature accordin  to the  u ey’s test  at a 9  % CI.  
A,B,C– homo eneous  roups of stora e time accordin  to the  u ey’s test  at a 9  % CI.  
*p-value for overall time x temperature interactions from two-way ANOVA. 
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Table B.2 - Evolution of Respiration rate, RRCO2
 (mL.kg

-1
.h

-1
) of P. ostreatus throughout storage time 2, 6, 10, 14 and 18 ºC for 96 hours. The p-value for the main effects from two-way 

ANOVA is 0.000 for temperature and 0.000 for time.  

Storage time (h) 2 ºC 6 ºC 10 ºC 14 ºC 18 ºC 

p-value 

(one-way 

ANOVA) 

0 107.13 (± 4.32)
a,B

 131.67 (± 5.84)
a,b,C

 182.50 (± 26.35)
b,c,B

 194.19 (± 5.76)
b,c,D

 223.17 (± 16.65)
c,C

 0.001 

24 53.41 (± 10.81)
a,A

 83.23 (± 2.40)
a,b,A,B

 117.08 (± 8.36)
b,c,B,A

 136.60 (± 14.03)
c,C

 189.33 (± 4.13)
d,C,B

 0.000 

48 32.40 (± 6.72)
a,A

 84.81 (± 8.39)
a,B

 105.98 (± 3.06)
b,c,A

 74.78 (± 13.89)
a,b,A,B

 135.33 (± 16.59)
c,A,B

 0.001 

72 36.82 (± 2.52)
a,A

 70.29 (± 0.39)
b,A,B

 82.15 (± 6.74)
b,c,A

 101.84 (± 2.39)
c,B,C

 136.58 (± 11.21)
d,A,B

 0.000 

96 44.51 (± 6.76)
a,A

 61.85 (± 1.80)
a,A

 83.88 (± 15.29)
a,A

 44.51 (± 6.05)
a,A

 74.02 (± 10.59)
a,A

 0.046 

p-value (one-way 

ANOVA) 
0.000 0.000 0.008 0.000 0.000 0.000* 

a,b,c,d – homogeneous groups of temperature according to the Tu ey’s test  at a 9  % CI.  
A,B,C, D – homogeneous groups of storage time according to the Tu ey’s test  at a 9  % CI.  
*p-value for overall time x temperature interactions from two-way ANOVA. 
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Table B.3 - Evolution of RQ of P. ostreatus throughout storage time 2, 6, 10, 14 and 18 ºC for 96 hours. The p-value for the main effects from two-way ANOVA is 0.000 for temperature and 
0.139 for time.  

Storage time (h) 2 ºC 6 ºC 10 ºC 14 ºC 18 ºC 

p-value 

(one-way 

ANOVA) 

0 0.96 (± 0.05)
a,A

 0.97 (± 0.05)
a,B

 0.78 (± 0.12)
a,A

 0.91 (± 0.05)
a,A

 1.01 (± 0.10)
a,A

 0.366 

24 0.85 (± 0.04)
a,A

 0.79 (± 0.01)
a,A

 0.77 (± 0.04)
a,A

 0.75 (± 0.08)
a,A

 0.88 (± 0.03)
a,A

 0.244 

48 1.33 (± 0.06)
b,A

 0.76 (± 0.01)
a,A

 0.83 (± 0.08)
a,A

 0.84 (± 0.09)
a,A

 0.84 (± 0.08)
a,A

 0.004 

72 1.00 (± 0.00)
a,b,A

 0.86 (± 0.00)
a,B,A

 0.88 (± 0.02)
a,A

 0.87 (± 0.05)
a,A

 1.07 (± 0.03)
b,A

 0.016 

96 1.32 (± 0.27)
b,A

 0.84 (± 0.01)
a,b,B,A

 0.70 (± 0.13)
 a,b,A

 0.60 (± 0.06)
a,A

 0.79 (± 0.12)
a,b,A

 0.044 

p-value (one-

way ANOVA) 
0.100 0.010 0.798 0.059 0.246 0.024* 

a,b – homogeneous groups of temperature according to the Tu ey’s test  at a 9  % CI.  
A,B – homogeneous groups of storage time according to the Tu ey’s test  at a 9  % CI.  
*p-value for overall time x temperature interactions from two-way ANOVA. 
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Table B.4 - Evolution of L* parameter of P. ostreatus throughout storage time 2, 6, 10, 14 and 18 ºC for 96 hours. The p-value for the main effects from two-way ANOVA is 0.000 for 
temperature and 0.000 for time. 

Storage time (h) 2 ºC 6 ºC 10 ºC 14 ºC 18 ºC 
p-value (one-

way ANOVA) 

0 62.00 (± 0.81)
c,A

 59.67 (± 0.78)
c,b,A

 61.91 (± 0.69)
c,b,A

 58.27 (± 1.10)
a,b,A

 55.06 (± 1.25)
a,A

 0.000 

24 62.13 (± 0.83)
a,b,A

 60.86 (± 0.69)
a,A,B

 64.44 (± 0.47)
b,B

 61.86 (± 1.05)
a,b,A,B

 59.77 (± 1.18)
a,B

 0.004 

48 62.32 (± 0.83)
a,A

 62.49 (± 0.62)
a,B,C

 65.88 (± 0.43)
b,B,C

 64.54 (± 1.00)
a,b,B,C

 62.40 (± 0.98)
a,B,C

 0.004 

72 63.24 (± 0.78)
a,A

 63.38 (± 0.60)
a,B,C

 67.29 (± 0.50)
b,C

 65.67 (± 1.14)
a,b,B,C

 64.44 (± 0.73)
a,b,C

 0.001 

96 63.57 (± 0.84)
a,A

 64.49 (± 0.59)
a,C

 67.69 (± 0.48)
b,C

 66.14 (± 0.96)
a,b,C

 64.30 (± 1.00)
a,C

 0.002 

p-value (one-way 

ANOVA) 
0.5640 0.0000 0.0000 0.0000 0.0000 0.000* 

a,b,c – homogeneous groups of temperature according to the Tu ey’s test  at a 9  % CI.  
A,B,C – homogeneous groups of storage time according to the Tu ey’s test  at a 9  % CI.  
*p-value for overall time x temperature interactions from two-way ANOVA. 
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Table B.5 - Evolution of a* parameter of P. ostreatus throughout storage time 2, 6, 10, 14 and 18 ºC for 96 hours. The p-value for the main effects from two-way ANOVA is 0.000 for 
temperature and 0.000 for time. 

Storage time (h) 2 ºC 6 ºC 10 ºC 14 ºC 18 ºC 
p-value (one-

way ANOVA) 

0 3.18 (± 0.14)
b,A

 3.22 (± 0.12)
b,A

 3.01 (± 0.12)
a,b,B

 2.84 (± 0.15)
a,b,A

 2.61 (± 0.13)
a,A

 0.005 

24 3.39 (± 0.14)
a,A

 3.16 (± 0.10)
a,A

 2.98 (± 0.12)
a,B

 3.23 (± 0.12)
a,A,B

 3.19 (± 0.12)
a,A,B

 0.209 

48 3.24 (± 0.13)
a,b,A

 3.26 (± 0.09)
a,b,A

 2.87 (± 0.12)
a,A,B

 3.62 (± 0.13)
b,c,B

 3.85 (± 0.14)
c,C

 0.000 

72 3.23 (± 0.13)
a,b,A

 3.38 (± 0.09)
b,A

 2.73 (± 0.14)
a,A,B

 3.66 (± 0.13)
b,B

 3.58 (± 0.17)
b,B,C

 0.000 

96 3.10 (± 0.14)
b,A

 3.05 (± 0.11)
b,A

 2.46 (± 0.14)
a,A

 3.51 (± 0.12)
b c,B

 3.76 (± 0.22)
c,B,C

 0.000 

p-value (one-

way ANOVA) 
0.654 0.219 0.016 0.000 0.000 0.000* 

a,b,c – homogeneous groups of temperature according to the Tu ey’s test  at a 9  % CI.  
A,B,C – homo eneous  roups of stora e time accordin  to the  u ey’s test  at a 9  % CI.  
*p-value for overall time x temperature interactions from two-way ANOVA. 
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Table B.6 - Evolution of b* parameter of P. ostreatus throughout storage time 2, 6, 10, 14 and 18 ºC for 96 hours. The p-value for the main effects from two-way ANOVA is 0.000 for 
temperature and 0.000 for time. 

Storage time (h) 2 ºC 6 ºC 10 ºC 14 ºC 18 ºC 
p-value (one-

way ANOVA) 

0 10.56 (± 0.30)
b,A

 10.39 (± 0.30)
b,A

 11.67 (± 0.28)
c,A

 10.21 (± 0.16)
b,A

 9.05 (± 0.34)
a,A

 0.000 

24 11.00 (± 0.27)
a,A,B

 11.12 (± 0.26)
a,A

 12.91 (± 0.29)
c,B

 12.67 (± 0.14)
b,c,B

 11.91 (± 0.24)
a,b,B

 0.000 

48 11.88 (± 0.25)
a,B,C

 12.13 (± 0.22)
a,B

 13.73 (± 0.29)
b,B,C

 14.22 (± 0.16)
b,C

 14.00 (± 0.36)
b,B,C

 0.000 

72 12.64 (± 0.22)
a,C,D

 13.30 (± 0.18)
a,b,C

 14.49 (± 0.30)
b,c,C

 16.08 (± 0.42)
c,D

 15.57 (± 0.85)
c,C

 0.000 

96 12.99 (± 0.20)
a,D

 13.78 (± 0.20)
a,C

 14.35 (± 0.30
 a,C

 17.07 (± 0.52)
b,D

 16.22 (± 0.84)
b,C

 0.000 

p-value (one-

way ANOVA) 
0.000 0.000 0.000 0.000 0.000 0.000* 

a,b,c – homogeneous groups of temperature according to the Tu ey’s test  at a 9  % CI.  
A,B,C – homogeneous groups of storage time according to the Tu ey’s test  at a 9  % CI. 
*p-value for overall time x temperature interactions from two-way ANOVA. 
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Table B.7 - Evolution of C* parameter of P. ostreatus throughout storage time 2, 6, 10, 14 and 18 ºC for 96 hours. The p-value for the main effects from two-way ANOVA is 0.000 for 
temperature and 0.000 for time. 

Storage time (h) 2 ºC 6 ºC 10 ºC 14 ºC 18 ºC 
p-value (one-

way ANOVA) 

0 11.06 (± 0.30)
b,c,A

 10.90 (± 0.30)
b,A

 12.06 (± 0.29)
c,A

 10.66 (± 0.13)
b,A

 9.47 (± 0.32)
a,A

 0.000 

24 11.54 (± 0.27)
a,A,B

 11.58 (± 0.27)
a,A

 13.26 (± 0.30)
b,B

 13.11 (± 0.13)
b,B

 12.36 (± 0.22)
a,b,B

 0.000 

48 12.33 (± 0.26)
a,B,C

 12.57 (± 0.23)
a,C

 14.04 (± 0.31)
a,B,C

 14.71 (± 0.15)
b,C

 14.56 (± 0.35)
b,B,C

 0.000 

72 13.07 (± 0.24)
a,c,D

 13.73 (± 0.19)
a,D

 14.76 (± 0.32)
a,b,C

 16.52 (± 0.41)
c,D

 16.04 (± 0.84)
b,c,C

 0.000 

96 13.37 (± 0.22
 a,C

 14.13 (± 0.21)
a,D,C

 14.58 (± 0.32)
a,C

 17.45 (± 0.51)
b,D

 16.68 (± 0.85)
b,C

 0.000 

p-value (one-

way ANOVA) 
0.0000 0.0000 0.0000 0.0000 0.0000 0.000* 

a,b,c – homogeneous groups of temperature according to the Tu ey’s test  at a 9  % CI.  
A,B,C – homogeneous groups of storage time according to the Tu ey’s test  at a 9  % CI.  
*p-value for overall time x temperature interactions from two-way ANOVA. 
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Table B.8 - Evolution of Hº parameter of P. ostreatus throughout storage time 2, 6, 10, 14 and 18 ºC for 96 hours. The p-value for the main effects from two-way ANOVA is 0.000 for 
temperature and 0.000 for time. 

Storage time (h) 2 ºC 6 ºC 10 ºC 14 ºC 18 ºC 
p-value (one-

way ANOVA) 

0 73.11 (± 0.71)
a,A

 72.59 (± 0.63)
a,A

 75.55 (± 0.43)
a,A

 74.19 (± 0.98)
a,A

 73.22 (± 1.00)
a,A

 0.066 

24 72.81 (± 0.72)
a,A

 74.04 (± 0.46)
a,b,A,B

 77.08 (± 0.37)
c,B

 75.62 (± 0.61)
b,c,A,B

 74.74 (± 0.66)
a,b,A,B

 0.000 

48 74.80 (± 0.48)
a,A,B

 74.95 (± 0.36)
a,B

 78.34 (± 0.34)
b,B,C

 75.62 (± 0.59)
a,A,B

 74.36 (± 0.66)
a,A,B

 0.000 

72 75.76 (± 0.46)
a,B

 75.75 (± 0.33)
a,B

 79.43 (± 0.39)
b,C,D

 76.86 (± 0.56)
a,B

 75.93 (± 0.76)
a,A,B

 0.000 

96 76.73 (± 0.49)
a,B

 77.59 (± 0.35)
a,C

 80.38 (± 0.42)
b,D

 78.04 (± 0.48)
a,B

 76.75 (± 0.60)
a,B,B

 0.000 

p-value (one-way 

ANOVA) 
0.000 0.000 0.000 0.001 0.011 0.850* 

a,b,c – homogeneous groups of temperature accordin  to the  u ey’s test  at a 9  % CI.  
A,B,C – homo eneous  roups of stora e time accordin  to the  u ey’s test  at a 9  % CI.  
*p-value for overall time x temperature interactions from two-way ANOVA. 
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Table B.9 - Evolution of BI of P. ostreatus throughout storage time 2, 6, 10, 14 and 18 ºC for 96 hours. The p-value for the main effects from two-way ANOVA is 0.010 for temperature and 
0.000 for time. 

Storage time (h) 2 ºC 6 ºC 10 ºC 14 ºC 18 ºC 
p-value (one-

way ANOVA) 

0 171.20 (± 0.63
)a,b,A

 171.76 (± 0.62)
a,b,A

 172.55 (± 0.67)
b,A

 171.50 (± 0.50)
a,b,A

 170.25 (± 0.49)
a,A

 0.091 

24 172.08 (± 0.61)
a,A,B

 172.28 (± 0.55)
a,b,A

 173.27 (± 0.64)
a,b,A

 174.38 (± 0.52)
b,A,B

 173.94 (± 0.47)
a,b,A

 0.014 

48 173.12 (± 0.67)
a,A,B

 173.30 (± 0.53)
a,A,B

 173.70 (± 0.66)
a,A

 176.14 (± 0.55)
b,B,C

 177.05 (± 0.69)
b,A

 0.000 

72 173.30 (± 0.53)
a,B

 174.78 (± 0.50)
a,B

 174.04 (± 0.67)
a,A

 178.65 (± 0.98)
a,C,D

 178.19 (± 1.29)
a,A

 0.266 

96 174.03 (± 0.71)
a,B

 174.57 (± 0.56)
a,B

 173.33 (± 0.68)
a,A

 179.52 (± 1.03)
b,D

 180.13 (± 1.69)
b,A

 0.000 

p-value (one-way 

ANOVA) 
0.0120 0.0000 0.5880 0.0000 0.0550 0.000* 

a,b,c – homogeneous groups of temperature according to the Tu ey’s test  at a 9  % CI.  
A,B,C – homogeneous groups of storage time according to the Tu ey’s test  at a 9  % CI.  
*p-value for overall time x temperature interactions from two-way ANOVA. 
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Table B.10 - Evolution of TL of P. ostreatus throughout storage time 2, 6, 10, 14 and 18 ºC for 96 hours. The p-value for the main effects from two-way ANOVA is 0.000 for temperature and 
0.000 for time. 

Storage time (h) 2 ºC 6 ºC 10 ºC 14 ºC 18 ºC 
p-value (one-

way ANOVA) 

24 4.27 (± 0.47)
a,A

 3.95 (± 0.33)
a,b,A

 3.27 (± 0.33)
a,b,A

 6.64 (± 0.54)
b,A

 7.16 (± 0.81)
c,A

 0.002 

48 4.24 (± 0.48)
a,A

 4.02 (± 0.42)
a,b,A,B

 4.04 (± 0.42)
b,c,A,B

 7.46 (± 0.75)
c,A,B

 7.70 (± 0.90)
d,A

 0.000 

72 4.38 (± 0.40)
a,A

 4.27 (± 0.49)
a,b,B

 5.48 (± 0.49)
a,b,B;C

 9.01 (± 0.79)
b,A,B

 9.43 (± 0.71)
c,A

 0.000 

96 4.76 (± 0.43)
a,A

 5.18 (± 0.50)
b,B

 5.82 (± 0.50)
b,C

 9.06 (± 0.63)
b,B

 9.75 (± 0.87)
c,A

 0.000 

p-value (one-

way ANOVA 
0.539 0.001 0.000 0.019 0.003 0.000* 

a,b,c,d – homogeneous groups of temperature according to the Tu ey’s test  at a 9  % CI.  
A,B – homogeneous groups of storage time according to the Tu ey’s test  at a 9  % CI.  
*p-value for overall time x temperature interactions from two-way ANOVA. 
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Table B.11 - Evolution of TCD of P. ostreatus throughout storage time 2, 6, 10, 14 and 18 ºC for 96 hours. The p-value for the main effects from two-way ANOVA is 0.000 for temperature and 
0.000 for time. 

Storage time (h) 2 ºC 6 ºC 10 ºC 14 ºC 18 ºC 
p-value (one-

way ANOVA) 

24 4.87 (± 0.41)
a,A

 4.51 (± 0.29)
A
 4.24 (± 0.25)

A
 7.40 (± 0.46)

A
 7.98 (± 0.79)

A
 0.000 

48 4.96 (± 0.43)
a,A

 4.82 (± 0.36)
a,A

 5.28 (± 0.30)
a,A

 8.96 (± 0.64)
b,A

 9.88 (± 0.80)
b,A

 0.000 

72 5.21 (± 0.37)
a,A

 5.68 (± 0.37)
a,A,B

 6.82 (± 0.34)
a,B

 11.65 (± 0.56)
b,B

 12.56 (± 0.76)
b,B

 0.000 

96 6.65 (± 0.40)
a,A

 6.72 (± 0.36)
a,B

 7.08 (± 0.33)
a,B

 12.06 (± 0.52)
b,B

 13.78 (± 0.64)
b;B

 0.000 

p-value (one-

way ANOVA) 
0.528 0.000 0.000 0.000 0.000 0.000* 

a,b – homogeneous groups of temperature according to the Tu ey’s test  at a 9  % CI.  
A,B – homogeneous groups of storage time according to the Tu ey’s test  at a 9  % CI.  
*p-value for overall time x temperature interactions from two-way ANOVA. 
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Table B.12 - Evolution of ML (%) of P. ostreatus throughout storage time 2, 6, 10, 14 and 18 ºC for 96 hours. The p-value for the main effects from two-way ANOVA is 0.000 for temperature 
and 0.000 for time. 

Storage time 

(h) 
2 ºC 6 ºC 10 ºC 14 ºC 18 ºC P value 

24 1.52 (± 0.14)
a,A

 1.94 (± 0.17)
a,A

 2.34 (± 0.19)
a,A

 6.21 (± 0.79)
a,b,A

 10.27 (± 2.72)
b,A

 0.000 

48 1.96 (± 0.16)
a,A,B

 2.66 (± 0.20)
a,A,B

 4.36 (± 0.55)
a,A

 15.34 (± 1.84)
a,A

 27.18 (± 3.63)
c,A,B

 0.000 

72 2.60 (± 0.21)
B
 3.79 (± 0.27)

a,B
 9.21 (± 0.74)

a,B
 33.01 (± 4.04)

b,B
 62.35 (± 9.30)

c,B
 0.000 

96 3.57 (± 0.26)
C
 5.12 (± 0.51)

a,b,C
 11.72 (± 0.98)

b,B
 41.08 (± 3.17)

c,B
 42.56 (± 3.82)

c,C
 0.000 

p-value (one-

way ANOVA) 
0.000 0.000 0.000 0.000 0.000   

a,b – homogeneous groups of temperature according to the Tu ey’s test  at a 9  % C .  
A,B,C – homogeneous groups of storage time according to the Tu ey’s test  at a 9  % C .  
*p-value for overall time x temperature interactions from two-way ANOVA. 
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Appendix C: Supplementary material pertaining to Chapter 4. 

Table C.1 – O2 consumption and CO2 production rates (Mean and SE) of fresh oyster mushrooms stored under different 
atmospheres, with t (h) being the time after samples processing.  

O2 (%, v/v) CO2 (%, v/v) t (h) RRO2
 (mL.kg

-1
.h

-1
) RRCO2

 (mL.kg
-1

.h
-1

) 

Mean SE Mean SE 

2 5 

24 34.54 16.25 31.61 5.29 

48 36.92 5.52 30.05 7.74 

72 21.41 10.78 28.24 5.21 

96 16.91 3.21 16.96 6.18 

2 10 

48 35.35 14.02 30.20 7.99 

72 24.99 7.22 25.30 7.28 

96 38.43 9.62 35.64 9.99 

2 20 

24 14.57 7.76 15.15 1.39 

48 12.70 2.77 22.19 5.76 

72 27.69 6.60 35.66 15.7 

15 5 

24 39.07 7.32 21.60 4.27 

48 55.93 8.11 29.88 5.56 

72 48.50 5.67 26.0 1.17 

96 26.53 4.14 14.26 3.58 

15 10 

24 41.35 2.28 20.3 5.05 

48 44.15 4.09 31.99 3.38 

72 42.31 2.02 25.29 4.28 

96 33.59 2.06 27.66 5.44 

15 20 

24 31.9 5.56 21.99 5.50 

48 42.61 9.29 9.23 0.97 

72 41.10 4.88 19.0 7.84 

96 32.65 4.70 12.96 5.71 

Ambient air 

24 37.53 1.05 26.45 0.38 

48 57.91 2.98 45.14 5.37 

72 37.52 1.14 28.66 2.93 

96 28.35 0.73 26.40 2.43 
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Table C.2 – Results of one-way ANOVA for the effect of O2 and CO2 (% v/v) on oyster mushroom respiration rate.  

  
Sum of 
Squares 

df 
Mean 

Square 
F Sig. 

RRO2 (mL.kg
-1

.h
-1

) 

Between 
Groups 

4556.909 6 759.485 6.192 0.000 

Within Groups 6623.307 54 122.654 
  

Total 11180.216 60 
   

RRCO2 (mL.kg
-1

.h
-1

) 

Between 
Groups 

769.025 6 128.171 1.794 0.119 

Within Groups 3715.271 52 71.448 
  

Total 4484.296 58 
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Appendix D: Supplementary material pertaining to Chapter 7. 

 

 

Figure D.1 - Visual appearance of the different mixtures at 10 ºC and 96 % RH over 5 days of storage. Mixtures (from 1 

to 14) are presented in the following order: CaO: CaCl2: sorbitol (w/w) -1- 0.60: 0.20: 0.20; 2 - 0.20: 0.60:0.20;3 - 

0.20:0.20:0.60; 4 - 0.33:0.47:0.20; 5 - 0.33: 0.20:0.47; 6 – 0.20:0.33: 0.47; 7 - 0.47:0.33:0.20; 8 - 0.47:0.20:0.33; 9 - 

0.20:0.47:0.33; 10 - 0.33:0.33:0.33; 11 - 0.47:0.27:0.27; 12 - 0.27:0.47:0.27; 13 - 0.27:0.27:0.47; 14 - 0.33:0.33:0.33.  
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Figure D.2 – Evolution of moisture content of different mixtures at 10 ºC and 96 % RH over storage. Points are the mean of six replicates and vertical bars are the standard deviation. Mixtures are 
presented in the following order: CaO: CaCl2: sorbitol (w/w) -1- 0.60: 0.20: 0.20; 2 - 0.20: 0.60:0.20;3 - 0.20:0.20:0.60; 4 - 0.33:0.47:0.20; 5 - 0.33: 0.20:0.47; 6 – 0.20:0.33: 0.47; 7 - 0.47:0.33:0.20; 8 
- 0.47:0.20:0.33; 9 - 0.20:0.47:0.33; 10 - 0.33:0.33:0.33; 11 - 0.47:0.27:0.27; 12 - 0.27:0.47:0.27; 13 - 0.27:0.27:0.47; 14 - 0.33:0.33:0.33. 
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Appendix E: Supplementary material pertaining to Chapter 8. 
 Constant Temperature  abuse 

t 
(h) 

Commercial MAP MAP+ab  Commercial MAP MAP+ab 

120 

   

 

   

168 

   

 

   

240 

   

 

   

Figure E.1 – Appearance of Pleurotus mushrooms used for sensorial evaluation. Treatment identification: CP = Commercial package, control; MAP= Modified atmosphere package; MAP2= Modified 
atmosphere package and moisture absorber. 
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Figure E.2 – Sensory evaluation sheet provided for oyster mushrooms evaluation.  

 

 

 

Sensory evaluation sheet - 

Oyster mushroms  

 

Name:__________________________________Date:____________________ 

 

Dear (a) taster (a), has its presence in 6 samples of mushrooms Pleurotus identified by a 

code, we ask you to sort them according to their global assessment (appearance and 

odour): 

 

Code:  

 

      Worst                                                 Better 
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Table E.1 - Evolution of L*parameter of P. ostreatus throughout storage time at different storage conditions. The p-value for the main effects from three -way ANOVA are as follows: time: 0.000; 
temperature: 0.000; Package: 0.000; time x Temperature:0.000; time x Package:0.000; Temp x Package: 0.000; time x Temp x Package: 0.000. 

Temperature 

profile 
Constant Abuse 

Storage time (h) Commercial MAP MAP+ab 
p-value 

(one-way 
ANOVA) 

Control MAP MAP+ab 
p-value 

(one-way 
ANOVA) 

0 77.78 (± 0.91)
a,D

 77.78 (± 0.91)
a,B

 77.78 (± 0.91)
a,C

 1.000 77.78 (± 0.91)
a,A,C

 77.78 (± 0.91)
a,B

 77.78 (± 0.91)
a,C

 1.000 

72 72.92 (± 0.52)
b,A,B

 68.73 (± 0.63)
a,A

 71.98 (± 0.69)
b,B

 0.000 66.81 (± 0.54)
a,B

 67.58 (± 1.20)
a,A

 74.70 (± 0.55)
b,B

 0.000 

120 75.44 (± 0.40)
b,C

 66.89 (± 1.09)
a,A

 72.62 (± 1.07)
b,B

 0.000 65.01 (± 0.44)
a,A,B

 68.01 (± 0.50)
b,A

 74.44 (± 0.40)
c,B

 0.000 

168 74.92 (± 0.53)
c,B,C

 70.24 (± 0.65)
b,A

 66.22 (± 0.37)
a,A

 0.000 64.21 (± 0.71)
a,A,B

 68.10 (± 1.10)
b,A

 73.95 (± 0.70)
c,B

 0.000 

240 72.31 (± 0.43)
c,A

 67.81 (± 0.95)
b,A

 70.11 (± 0.69)
a,A,B

 0.000 62.94 (± 0.92)
a,B

 67.69 (± 0.69)
b,A

 67.66 (± 0.78)
c,A

 0.000 

p-value (one-way 

ANOVA) 
0.000 0.000 0.000 

 
0.000 0.000 0.000 0.000 

a,b,c – homogeneous groups of Temperature according to the Tu ey’s test  at a 9  % CI.  
A,B,C,D – homogeneous groups of storage time according to the Tu ey’s test  at a 9  % CI. 
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Table E.2 - Evolution of a* of P. ostreatus throughout storage time at different storage conditions. The p-value for the main effects from three -way ANOVA are as follows: time: 0.000; temperature: 
0.020; Package: 0.000; time x Temperature: 0.040; time x Package: 0.000; Temp x Package: 0.000; time x Temp x Package: 0.000. 

Temperature 

profile 
Constant Abuse 

Storage time (h) Commercial MAP MAP+ab 

p-value 

(one-way 

ANOVA) 

Control MAP MAP+ab 

p-value 

(one-way 

ANOVA) 

0 2.11 (± 0.21)
a,A,B

 2.11 (± 0.21)
a,A,B

 2.11 (± 0.21)
a,A

 1.000 2.11 (± 0.21)
a,A

 2.11 (± 0.21)
a,A

 2.11 (± 0.21)
a,B

 1.000 

72 2.53 (± 0.20)
b,B

 2.13 (± 0.15)
a,b,A,B

 1.77 (± 0.12)
a,A

 0.010 3.66 (± 0.20)
c,C

 2.24 (± 0.32)
b,A

 1.11 (± 0.16)
a,A

 0.000 

120 2.01 (± 0.13)
a,A,B

 2.71 (± 0.22)
b,B

 1.65 (± 0.15)
a,A

 0.000 2.49 (± 0.13)
b,A,B

 2.40 (± 0.23)
b,A

 1.12 (± 0.09)
a,A

 0.000 

168 1.78 (± 0.22)
a,A

 1.78 (± 0.13)
a,A

 2.20 (± 0.13)
a,A,B

 0.420 2.92 (± 0.20)
b,B,C

 2.42 (± 0.15)
b,A

 1.59 (± 0.10)
a,A,B

 0.000 

240 2.01 (± 0.09)
a,A,B

 2.70 (± 0.21)
b,B

 2.79 (± 0.09)
b,B

 0.000 2.74 (± 0.19)
a,A,B

 2.53 (± 0.21)
a,A

 3.64 (± 0.32)
b,C

 0.000 

p-value (one-

way ANOVA 
0.030 0.000 0.000 

 
0.000 0.840 0.000 

  

a,b,c – homogeneous groups of Temperature according to the Tu ey’s test  at a 9  % CI.  
A,B,C – homogeneous groups of storage time according to the Tu ey’s test  at a 9  % CI. 
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Table E.3 - Evolution of b* of P. ostreatus throughout storage time at different storage conditions. The p-value for the main effects from three -way ANOVA are as follows: time: 0.000; temperature: 
0.020; Package: 0.000; time x Temperature: 0.040; time x Package: 0.000; Temp x Package: 0.000; time x Temp x Package: 0.000. 

Temperature 

profile 
Constant Abuse 

Storage time (h) Control MAP MAP+ab 
p-value 

(one-way 
ANOVA 

Control MAP MAP+ab 
p-value 

(one-way 
ANOVA 

0 18.14 (± 0.54)
a,A

 18.14 (± 0.54)
a,A

 18.14 (± 0.54)
a,A

 1.000 18.14 (± 0.54)
a,A

 18.14 (± 0.54)
a,A

 18.14 (± 0.54)
a,A

 1.0000 

72 20.84 (± 0.41)
c,B

 17.32 (± 0.27)
a
 18.71 (± 0.40)

b,A,B
 0.000 24.07 (± 0.68)

b,C
 18.56 (± 0.33)

a,A
 19.65 (± 0.25)

a,A,B
 0.0000 

120 21.97 (± 0.24)
b,B,C

 19.58 (± 0.22)
a
 20.24 (± 0.35)

a,B,C
 0.000 18.13 (± 0.40)

a,A
 20.14 (± 0.58)

b,A,B
 20.97 (± 0.52)

b,B
 0.0000 

168 22.32 (± 0.53)
b,B,C

 19.06 (± 0.27)
a
 17.82 (± 0.16)

a,A
 0.000 21.29 (± 0.62)

a,B
 20.07 (± 0.44)

a,A,B
 21.00 (± 0.38)

a,B
 0.2000 

240 23.18 (± 0.36)
a,C

 18.38 (± 1.06)
a
 21.06 (± 0.32)

b,C
 0.000 20.73 (± 0.30)

a,B
 21.66 (± 0.65)

a,B,b
 23.32 (± 0.51)

b,C
 0.0000 

p-value (one-way 

ANOVA 
0.000 0.060 0.000 

 
0.000 0.000 0.000 

 

a,b,c – homogeneous groups of Temperature according to the Tu ey’s test  at a 9  % CI.  
A,B,C, D – homo eneous  roups of stora e time accordin  to the  u ey’s test  at a 9  % CI. 
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Table E.4 - Evolution of BI of P. ostreatus throughout storage time at different storage conditions. The p-value for the main effects from three -way ANOVA are as follows: time: 0.000; temperature: 
0.020; Package: 0.000; time x Temperature: 0.040; time x Package: 0.000; Temp x Package: 0.000; time x Temp x Package: 0.000. 

Temperature 

profile 
Constant   Abuse   

Storage time (h) Control MAP MAP+ab 

p-value 

(one-way 

ANOVA 

Control MAP MAP+ab 

p-value 

(one-way 

ANOVA 

0 174.26 (± 1.07)
a,A

 174.26 (± 1.07)
a,A

 174.26 (± 1.07)
a,A

 1.000 174.26 (± 1.07)
a,A

 174.26 (± 1.07)
a,A

 174.26 (± 1.07)
a,A

 1.000 

72 179.82 (± 0.80)
b,B

 176.26 (± 0.52)
a,A,B

 176.30 (± 0.47)
a,A,B

 0.000 189.25 (± 1.21)
b,D

 179.22 (± 1.32)
a,A,B

 175.68 (± 0.57)
a,A

 0.000 

120 179.39 (± 0.30)
a,b,B

 181.33 (± 0.84)
b,C

 177.96 (± 0.53)
a,B

 0.000 179.51 (± 0.78)
b,B

 180.99 (± 1.28)
a,B

 177.39 (± 0.72)
a,A

 0.030 

168 179.98 (± 1.09)
a,B

 177.53 (± 0.62)
a,A,B,C

 177.98 (± 0.39)
a,B

 0.110 185.25 (± 0.95)
c,C,D

 180.76 (± 0.70)
b,B

 178.20 (± 0.44)
a,A

 0.000 

240 182.37 (± 0.56)
a,B

 179.52 (± 1.58)
a,B,C

 181.66 (± 0.47)
a,C

 0.120 185.05 (± 0.68)
a,b,C

 183.53 (± 1.27)
a,B

 188.08 (± 1.68)
b,B

 0.040 

p-value (one-way 

ANOVA 
0.000 0.000 0.000 

 
0.000 0.000 0.000 

  

a,b,c – homo eneous  roups of  emperature accordin  to the  u ey’s test  at a 9  % CI.  
A,B,C – homogeneous groups of storage time according to the Tu ey’s test  at a 9  % CI. 
*p-value for overall time x Temperature interactions from two-way ANOVA. 
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Table E.5 - Evolution of C* of P. ostreatus throughout storage time at different storage conditions. The p-value for the main effects from three -way ANOVA are as follows: time: 0.000; temperature: 
0.020; Package: 0.000; time x Temperature: 0.040; time x Package: 0.000; Temp x Package: 0.000; time x Temp x Package: 0.000. 

Temperature 

profile 
Constant   Abuse   

Storage time (h) Control MAP MAP+ab 

p-value 

(one-way 

ANOVA 

Control MAP MAP+ab 

p-value 

(one-way 

ANOVA 

0 18.27 (± 0.56)
a,A

 18.27 (± 0.56)
a,A

 18.27 (± 0.56)
a,A

 1.000 18.27 (± 0.56)
a,A

 18.27 (± 0.56)
a,A

 18.27 (± 0.56)
a,A

 1.000 

72 21.02 (± 0.42)
c,B

 17.47 (± 0.27)
a,A

 18.81 (± 0.40)
b,A,B

 0.000 24.36 (± 0.70)
b,C

 18.76 (± 0.36)
a,A

 19.70 (± 0.25)
a,A,B

 0.000 

120 22.07 (± 0.24)
b,B,C

 19.80 (± 0.22)
a,A

 20.33 (± 0.34)
a,B,C

 0.000 18.31 (± 0.41)
a,A

 20.30 (± 0.61)
b,A,B

 21.00 (± 0.52)
b,B

 0.000 

168 22.41 (± 0.55)
b,B,C

 19.16 (± 0.28)
a,A

 17.96 (± 0.17)
a,A

 0.000 21.51 (± 0.62)
a,B

 20.24 (± 0.44)
a,A,B

 21.06 (± 0.38)
a,B

 0.190 

240 23.27 (± 0.36)
b,B,C

 18.60 (± 1.07)
a,A

 21.25 (± 0.31)
b,C

 0.000 20.94 (± 0.29)
a,B

 21.83 (± 0.67)
a,B

 23.64 (± 0.55)
b,C

 0.000 

p-value (one-way 

ANOVA 
0.000 0.060 0.000 

 
0.000 0.000 0.000 

  

a,b,c – homogeneous groups of Temperature according to the Tu ey’s test  at a 9  % CI.  
A,B,C – homogeneous groups of storage time according to the Tu ey’s test  at a 9  % CI. 
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Table E.6 - Evolution of Hº of P. ostreatus throughout storage time at different storage conditions. The p-value for the main effects from three -way ANOVA are as follows: time: 0.000; temperature: 
0.240; Package: 0.000; time x Temperature: 0.080; time x Package: 0.000; Temp x Package: 0.000; time x Temp x Package: 0.000. 

Temperature 

profile 
Constant   Abuse   

Storage time (h) Control MAP MAP+ab 

p-value 

(one-way 

ANOVA 

Control MAP MAP+ab 

p-value 

(one-way 

ANOVA 

0 83.46 (± 0.50)
a,A,B

 83.46 (± 0.50)
a
 83.46 (± 0.50)

a
 1.000 83.46 (± 0.50)

a,B
 83.46 (± 0.50)

a,A
 83.46 (± 0.50)

a,B
 1.000 

72 83.22 (± 0.47)
a,A

 82.97 (± 0.50)
a
 84.45 (± 0.44)

a
 0.070 81.47 (± 0.31)

a,A
 83.44 (± 0.87)

a,A
 86.82 (± 0.45)

b,C
 0.000 

120 84.74 (± 0.36)
b,A,B,C

 82.13 (± 0.64)
a
 85.23 (± 0.46)

b
 1.000 82.22 (± 0.37)

a,A,B
 83.45 (± 0.42)

b,A
 86.97 (± 0.24)

c,C
 0.000 

168 85.69 (± 0.45)
b,C

 84.72 (± 0.34)
b
 82.99 (± 0.38)

a
 0.000 82.21 (± 0.49)

a,A,B
 83.01 (± 0.46)

a,A
 85.62 (± 0.27)

b,C
 0.000 

240 85.03 (± 0.23)
b,B,C

 82.29 (± 0.67)
a
 82.41 (± 0.28)

a
 0.000 82.35 (± 0.59)

a,b,A,B
 83.51 (± 0.43)

b,A
 81.37 (± 0.58)

a,A
 0.020 

p-value (one-way 

ANOVA 
0.000 0.010 0.000 

 
0.200 0.970 0.000 

 

a,b,c – homogeneous groups of Temperature according to the Tu ey’s test  at a 9  % CI.  
A,B,C – homo eneous  roups of stora e time accordin  to the  u ey’s test  at a 9  % CI. 
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Table E.7 - Evolution of firmness (N) of P. ostreatus throughout storage time at different storage conditions. The p-value for the main effects from three -way ANOVA are as follows: time: 0.000; 
temperature: 0.020; Package: 0.300; time x Temperature: 0.040; time x Package: 0.000; Temp x Package: 0.000; time x Temp x Package: 0.000. 

Temperature 

profile 
Constant 

 
Abuse 

 

Storage time (h) Control MAP MAP+ab 

p-value 

(one-way 

ANOVA 

Control MAP MAP+ab 

p-value 

(one-way 

ANOVA 

0 0.68 (± 0.03)
a,C

 0.68 (± 0.03)
a,C

 0.68 (± 0.03)
a,C

 1.000 0.68 (± 0.03)
a,B

 0.68 (± 0.03)
a,B

 0.68 (± 0.03)
a,A

 1.000 

72 0.48 (± 0.04)
a,b,B

 0.60 (± 0.04)
b,B,C

 0.46 (± 0.03)
a,B

 0.020 0.35 (± 0.02)
a,A

 0.31 (± 0.03)
a,A

 0.38 (± 0.03)
a,A

 0.180 

120 0.34 (± 0.03)
a,A

 0.38 (± 0.03)
a,A

 0.32 (± 0.02)
a,A

 0.330 0.37 (± 0.04)
a,A

 0.37 (± 0.02)
a,A

 0.30 (± 0.02)
a,A

 0.130 

168 0.50 (± 0.03)
b,B

 0.54 (± 0.04)
b,B

 0.37 (± 0.02)
a,A,B

 0.000 0.35 (± 0.01)
a,A

 0.34 (± 0.02)
a,A

 0.40 (± 0.03)
a,A

 0.160 

240 0.42 (± 0.03)
b,A,B

 0.26 (± 0.01)
a,A

 0.46 (± 0.05)
b,B

 0.000 0.36 (± 0.02)
a,A

 0.31 (± 0.02)
a,A

 0.36 (± 0.02)
a,A

 0.180 

p-value (one-

way ANOVA 
0.000 0.000 0.000 

 
0.000 0.000 0.000 

 

a,b,c – homogeneous groups of Temperature according to the Tu ey’s test  at a 9  % CI.  
A,B,C– homogeneous groups of storage time according to the Tu ey’s test  at a 9  % CI. 
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Table E.8 - Evolution of cohesiveness of P. ostreatus throughout storage time at different storage conditions. The p-value for the main effects from three -way ANOVA are as follows: time: 0.000; 
temperature: 0.020; Package: 0.000; time x Temperature: 0.040; time x Package: 0.000; Temp x Package: 0.000; time x Temp x Package: 0.000. 

Temperature 

profile 
Constant   Abuse   

Storage time (h) Control MAP MAP+ab 

p-value 

(one-way 

ANOVA 

Control MAP MAP+ab 

p-value 

(one-way 

ANOVA 

0 0.69 (± 0.01)
a,C

 0.69 (± 0.01)
a,C

 0.69 (± 0.01)
a,B

 1.000 0.69 (± 0.01)
a,C

 0.69 (± 0.01)
a,C

 0.69 (± 0.01)
a,C

 1.000 

72 0.67 (± 0.01)
b,B,C

 0.63 (± 0.01)
a,b,B,C

 0.62 (± 0.01)
a,A

 0.010 0.58 (± 0.01)
a,A

 0.61 (± 0.03)
a,b,A,B

 0.66 (± 0.01)
b,C

 0.000 

120 0.67 (± 0.01)
b,B,C

 0.57 (± 0.01)
a,A

 0.60 (± 0.02)
a,A

 0.000 0.62 (± 0.01)
a,B

 0.60 (± 0.01)
a,A,B

 0.61 (± 0.02)
a,A,B

 0.450 

168 0.64 (± 0.01)
a,A,B

 0.60 (± 0.02)
a,A,B

 0.61 (± 0.01)
a,A

 0.310 0.58 (± 0.01)
a,A

 0.63 (± 0.01)
b,B,C

 0.64 (± 0.02)
b,B,C

 0.000 

240 0.61 (± 0.01)
a,A

 0.61 (± 0.01)
a,A,B

 0.58 (± 0.01)
a,A

 0.110 0.57 (± 0.01)
a,A

 0.56 (± 0.02)
a,A

 0.59 (± 0.01)
a,A

 0.460 

p-value (one-way 

ANOVA 
0.000 0.000 0.000 

 
0.000 0.000 0.000 

  

a,b,c – homogeneous groups of Temperature according to the Tu ey’s test  at a 9  % CI.  
A,B,C– homogeneous groups of storage time according to the Tu ey’s test  at a 9  % CI. 
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Table E.9 - Evolution of resilience of P. ostreatus throughout storage time at different storage conditions. The p-value for the main effects from three -way ANOVA are as follows: time: 0.000; 
temperature: 0.020; Package: 0.000; time x Temperature: 0.040; time x Package: 0.000; Temp x Package: 0.000; time x Temp x Package: 0.000. 

Temperature 

profile 
Control Abuse   

Storage time (h) Control MAP MAP+ab 

p-value 

(one-way 

ANOVA 

Control MAP MAP+ab 

p-value 

(one-way 

ANOVA 

0 0.22 (± 0.01)
a,B

 0.22 (± 0.01)
a,C

 0.22 (± 0.01)
a,C

 1.000 0.22 (± 0.01)
a,B

 0.22 (± 0.01)
a,B

 0.22 (± 0.01)
a,B

 1.000 

72 0.15 (± 0.01)
a,b,A

 0.19 (± 0.01)
b,B,C

 0.15 (± 0.01)
a,A,B

 0.030 0.12 (± 0.01)
a,A

 0.19 (± 0.02)
b,B

 0.13 (± 0.01)
a,A

 0.000 

120 0.22 (± 0.01)
a,B

 0.23 (± 0.02)
a,C

 0.19 (± 0.01)
a,B,C

 0.190 0.12 (± 0.01)
a,A

 0.12 (± 0.01)
a,A

 0.10 (± 0.00)
a,A

 0.080 

168 0.16 (± 0.01)
b,A

 0.16 (± 0.01)
b,B

 0.12 (± 0.01)
a,A

 0.000 0.11 (± 0.00)
a,A

 0.12 (± 0.01)
a,A

 0.24 (± 0.02)
b,B

 0.000 

240 0.13 (± 0.01)
b,A

 0.09 (± 0.00)
a,A

 0.15 (± 0.02)
b,A,B

 0.000 0.11 (± 0.01)
a,A

 0.11 (± 0.01)
a,A

 0.22 (± 0.01)
b,B

 0.000 

p-value (one-way 

ANOVA 
0.000 0.000 0.000 

 
0.000 0.000 0.000 

 

a,b,c – homo eneous  roups of  emperature accordin  to the  u ey’s test  at a 9  % CI.  
A,B,C, D – homogeneous groups of storage time according to the Tu ey’s test  at a 9  % CI. 
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Table E.10 - Evolution of SSC of P. ostreatus throughout storage time at different storage conditions. The p-value for the main effects from three -way ANOVA are as follows: time: 0.000; 
temperature: 0.020; Package: 0.000; time x Temperature: 0.040; time x Package: 0.000; Temp x Package: 0.000; time x Temp x Package: 0.000. 

Temperature 

profile 
Control Abuse   

Storage time 

(h) 
Control MAP MAP+ab 

p-value 

(one-way 

ANOVA 

Control MAP MAP+ab 
p-value (one-

way ANOVA 

0 6.61 (± 0.00)
a,D

 6.61 (± 0.00)
a,A

 6.61 (± 0.00)
a,B

 1.000 6.61 (± 0.00)
a,B

 6.61 (± 0.00)
a,B

 6.61 (± 0.00)
a,D

 1.000 

72 6.48 (± 0.01)
a,B

 6.40 (± 0.00)
c,A

 6.49 (± 0.03)
b,A

 0.000 6.48 (± 0.01)
b,A

 6.54 (± 0.03)
b,A,B

 6.36 (± 0.02)
a,B

 0.000 

120 6.44 (± 0.01)
a,B

 6.63 (± 0.01)
b,A

 6.48 (± 0.03)
a,A

 0.000 6.41 (± 0.02)
b,A

 6.53 (± 0.01)
c,A

 6.26 (± 0.00)
a,A

 0.000 

168 6.35 (± 0.01)
a,A

 6.78 (± 0.03)
b,B

 6.42 (± 0.01)
a,A

 0.000 7.00 (± 0.02)
c,C

 6.55 (± 0.00)
b,A,B

 6.43 (± 0.01)
a,C

 0.000 

240 6.53 (± 0.01)
a,C

 7.51 (± 0.02)
c,C

 6.81 (± 0.01)
B,c

 0.000 7.63 (± 0.04)
c,D

 7.33 (± 0.04)
b,C

 6.57 (± 0.02)
a,D

 0.000 

p-value (one-

way ANOVA 
0.000 0.000 0.000 

 
0.000 0.000 0.000 

  

a,b,c – homogeneous groups of Temperature according to the Tu ey’s test  at a 9  % CI.  
A,B,C, D – homogeneous groups of storage time according to the Tu ey’s test  at a 9  % CI. 
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Table E.11 - Evolution of pH of of P. ostreatus throughout storage time at different storage conditions. The p-value for the main effects from three -way ANOVA are as follows: time: 0.000; 
temperature: 0.020; Package: 0.000; time x Temperature: 0.040; time x Package: 0.000; Temp x Package: 0.000; time x Temp x Package: 0.000. 

Temperature 

profile 
Control Abuse   

Storage time (h) Commercial MAP MAP+ab 

p-value 

(one-way 

ANOVA 

Commercial MAP MAP+ab 

p-value 

(one-way 

ANOVA 

0 6.60 (± 0.00)
a,A

 6.60 (± 0.00)
a,A

 6.60 (± 0.00)
a,A,B

 0.000 6.60 (± 0.00)
a,D

 6.60 (± 0.00)
a,B

 6.60 (± 0.00)
a,C

 0.0000 

72 6.60 (± 0.00)
a,A

 6.65 (± 0.07)
a,A

 6.40 (± 0.14)
a,A

 0.135 5.95 (± 0.07)
a,B

 6.75 (± 0.07)
a,A

 5.85 (± 0.07)
b,D

 0.0020 

120 6.85 (± 0.07)
a,B

 6.90 (± 0.00)
a,B

 6.80 (± 0.00)
a,B,C

 0.192 6.30 (± 0.00)
B
 6.30 (± 0.00)

B
 6.70 (± 0.00)

B
 0.0000 

168 7.60 (± 0.00)
A,B

 6.73 (± 0.12)
C
 6.93 (± 0.12)

C
 0.000 6.30 (± 0.00)

a,A
 6.37 (± 0.06)

b,C
 7.73 (± 0.12)

a,B
 0.0000 

240 7.83 (± 0.06)
a,A,B

 6.77 (± 0.06)
b,D

 7.73 (± 0.06)
a,D

 0.000 6.00 (± 0.00)
C
 6.00 (± 0.00)

C
 7.37 (± 0.25)

A
 0.0000 

p-value (one-way 

ANOVA) 
0.0330 0.0000 0.0000 

  
0.0000 0.0000 0.0000 

  

a,b,c – homo eneous  roups of  emperature accordin  to the  u ey’s test  at a 9  % CI.  
A,B,C, D – homo eneous  roups of stora e time accordin  to the  u ey’s test  at a 9  % CI. 
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