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ABSTRACT 
 
Probabilistic analyses often require making assumptions concerning the statistical distribution of the variables 
involved. In this context, the statistical distribution of two demand parameters is examined herein when three-
dimensional analysis of RC buildings is performed considering multiple angles of seismic incidence. Six 
buildings are subjected to multi-stripe analysis with bi-directional ground motion groups of various sizes applied 
along one to twelve angles of incidence and datasets of demand parameters are collected. Seven statistical 
models are then fitted to the datasets and their performance is examined based on quantile-quantile plots and the 
corresponding coefficient of determination. The results show that using more than one angle of seismic 
incidence doesn't affect the type of demand distribution, unless highly inelastic structural response is achieved. 
The generalized extreme distribution exhibits a marginally higher fitting performance when compared to that of 
the lognormal distribution. However, due to the larger variability of the coefficient of determination of the 
generalized extreme value distribution when small ground motion groups are used, the lognormal distribution is 
preferred to fit the demand data even when multiple angles of seismic incidence are used.  
 
Keywords: Angle of seismic incidence; probabilistic seismic demand; RC buildings; statistical models; 
probability distribution fitting  
 
 
1. INTRODUCTION  
 
Seismic analysis using probabilistic methods has been gaining ground against traditional deterministic 
methods over the years. The ability to simulate phenomena that are uncertain by nature and the 
possibility of propagating the uncertainty between different stages of the analysis are among the main 
advantages probabilistic methods provide (Baker and Cornel 2008). Probabilistic analyses, though, 
often require making assumptions regarding the statistical distribution of the variables involved.  
The lognormal distribution is frequently used to describe the statistical distribution of different 
demand parameters at discrete intensity levels or of the fragility function at distinct limit states (e.g. 
see e.g. Ibarra and Krawinkler 2005). The assumption of the lognormality of the data has been 
analyzed by several researchers, both for two-dimensional and for three-dimensional (3D) structural 
analysis (e.g. see Romao et al. 2011). In the latter case though, relevant results exist only for structural 
analyses that were performed with one angle of seismic incidence (ASI), where ASI is defined as the 
angle between the building’s structural axes and the seismic action. Limited work has been done in 
probabilistic seismic analysis involving multiple ASIs, e.g. see the research by Lagaros (2010a) and 
(2010b), in which the lognormal data assumption was adopted in both studies.  
In this context, the objective of the current study is twofold. Based on the results of 3D structural 
analyses performed considering multiple ASIs, the soundness of the lognormal statistical model is first 
examined when used to characterize the probability distribution of structural demand. Secondly, the 
performance of alternative statistical models to characterize the distribution of the structural demand is 
also evaluated. As such, the goodness of fit of seven statistical models, including the lognormal 
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distribution, is analyzed when fitting them to demand samples. The performance of the statistical 
models is analyzed using quantile-quantile (Q-Q) plots whose assessment is performed visually and 
using the coefficient of determination R2 of the corresponding linear regression. The results of these 
analyses highlight the influence of the ASI in probabilistic analysis and possible implications to the 
development of a statistical model of the demand needed for further risk or loss analyses. 
 
 
2. METHODOLOGY AND STATISTICAL MODELS ANALYSED 
 
The current study evaluates the performance of different statistical models to characterize the demand 
distribution obtained from 3D analyses when multiple ASIs are considered. Additionally, further 
insights are provided regarding the unconditional use of the lognormal model to represent seismic 
demand data. Six benchmark buildings are subjected to non-linear dynamic analysis for bi-directional 
ground motion groups of size n equal to 10, 15, 20, 25, 30, 35 and 40, applied along one to twelve 
ASIs. Two engineering demand parameters (EDP) are considered to represent seismic demand: 
maximum inter-story drift ratio (ISD) and maximum roof drift ratio (RD). The former is defined as the 
maximum ISD of the two structural directions, while the latter corresponds to the square root of the 
sum of squares (SRSS) combination of the displacements of two directions measured at the centre of 
mass. The probabilistic analysis is then performed for EDP samples obtained from discrete intensity 
levels (stripes) analyzed using ground motion groups of size n and a number of ASIs. In the following, 
the notation n_ASI will be used to refer to the results of a particular size n and number of ASIs. 
Six statistical models are considered in addition to the lognormal distribution and are fitted to the EDP 
data of each sample. The distributions considered are the normal, the 2-parameter Weibull, the 
extreme value (EV), the Gamma, the generalized extreme value (GEV) and the Rayleigh. The GEV is 
a flexible three parameter model (location, scale, shape) that, depending on the shape parameter, can 
represent three different distribution families. The lognormal, Weibull, EV and GEV models are 
selected due to their suitability to characterize the distribution of maximum (extreme) values. The 
normal model is considered due to its widespread use in statistical analysis and also due to its 
performance for some types of demand data (e.g. see Romao et al. 2011). The Gamma distribution is 
considered given its flexibility to model different types of data. Finally, the Rayleigh model is often 
observed when the overall magnitude of a vector is related to its directional components.  
The suitability of a probabilistic model to fit the sample data is usually checked using goodness-of-fit 
statistical tests, e.g. the Kolmogorov-Smirnov test. These tests are often developed to have power 
against specific distributions (D'Agostino and Stephens 1986), but their performance if often 
inadequate when small or very large sample sizes are examined, which is the case of the current study. 
Therefore, an alternative technique to assess the performance of the selected distributions to fit the 
data is applied herein. Goodness of fit is analyzed using Q-Q plots whose assessment is carried out by 
visual inspection and by computing the coefficient of determination R2 that measures the adequacy of 
the linear fit between the empirical and the theoretical quantile data. An illustrative example of the 
procedure is presented in Figure 1 for an ISD sample and for two statistical models, the normal and the 
lognormal.  
 

(a) (b) (c) 
 

Figure 1. Cumulative distribution functions (CDF) of the normal and lognormal distributions fitted to a 40_3 
ISD sample obtained for an intensity of 0.37g (a); Q-Q plots for the normal (b) and the lognormal (c) model. 
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The ISD sample corresponds to a 40_3 example obtained from the 5-story regular building (presented 
in Section 3.1) and for a seismic intensity equal to 0.37g (explained in Section 3.3). The cumulative 
distribution functions (CDFs) of the two statistical models fitted to the ISD sample are shown in 
Figure 1 (a). Figure 1 (b) and (c), represent the Q-Q plots for the normal and the lognormal model, 
respectively. The poor fitting of the normal model is evident from the plot and is further highlighted 
by the low R2. On the other hand, the lognormal distribution exhibits a higher R2 and provides a better 
fit to the data. Finally, it is noted that the purpose of the study is to examine the suitability of a given 
distribution family without making any assumptions regarding the parameters of the distributions. 
 
 
3. DETAILS OF THE SELECTED BUILDINGS AND OF STRUCTURAL ANALYSES  
 
3.1 Case studies and structural modeling 
 
Six RC buildings with masonry infilled frame systems are analyzed. The selected buildings have 
configurations ranging from low- to mid-rise buildings with and without in-plan irregularities. 
Furthermore, all buildings are located in Lisbon, Portugal and are designed for gravity loads only. The 
plan view of a typical story of the 3-story irregular (3-Ir), the 4-story irregular (4-Ir) and the 5-story 
irregular (5-Ir) buildings is presented in Figure 2, along with design details. Similarly, in Figure 3, the 
plan view of a typical story of the 3-story regular (3-R), the 4-story regular (4-R) and the 5-story 
regular (5-R) buildings and the design details are also shown. The concrete strength and the yield 
strength of the reinforcing steel are equal to 25 MPa and 500 MPa, respectively. 
All buildings are modeled in the OpenSees computer software (McKenna and Fenves 2011) 
considering mean values of the material and geometrical properties. A lumped plasticity approach is 
adopted to simulate the inelastic behavior of all structural elements. Phenomenological hysteresis laws 
are assigned in rotational springs located on both ends of all columns and beams to simulate inelastic 
flexural behavior. Two independent springs are assigned to each end of the columns, one for each 
orthogonal direction, while one spring is assigned to each end of the beams modeling the in-plane 
flexural behavior. Due to the nature of the selected inelastic modeling approach, no bi-axial moment 
interaction or axial force moment interaction is considered when modeling the behavior of columns. 
Hysteretic flexural behavior is simulated using the hysteretic material provided by OpenSees. The 
yielding strength (My) and the yielding rotation capacity (θy) are determined according to 
Panagiotakos and Fardis (2001). The capping (θc) and post-capping rotation (θpc) capacities are 
computed according to Haselton et al. (2008) and a final 20% residual strength (Mr) is considered at 
the ultimate rotation capacity (θu) (see the backbone curve in Figure 4(a)). 
 

  
 

Figure 2. Plan view of a typical story of the 3-Ir, 4-Ir and 5-Ir buildings and design details. 
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Figure 3. Plan view of a typical story of the 3-R, 4-R and 5-R buildings and design details. 
 
Stiffness, strength and unloading stiffness degradations are considered in the hysteresis curves. Each 
beam-column element is defined by a serial arrangement of the end springs connected to a linear 
elastic element. A stiffness modification factor equal to 10 is applied according to Ibarra and 
Krawinkler (2005) and Zareian and Medina (2010) to account for the effect of the series connection of 
the elements on the total stiffness of the element. For the beam-column joint, rigid elastic elements are 
considered with a length equal to half of the length of the corresponding perpendicular element. The 
possibility of shear failure or beam-column joint failure is not modelled but can be analyzed in post-
processing.  
Infills are considered in all peripheral frames and are modelled using two diagonal compression only 
strut elements. The equivalent area of each strut is established based on the maximum lateral force of 
the infill and on the masonry compressive strength (Dolšek and Fajfar 2008). The parameters obtained, 
i.e. the maximum stress (fm) and strain, are used to define the masonry material with zero tensile 
strength simulated by the Concrete01 constitutive model (Figure 4 (b)). The masonry compressive 
strength is equal to 3.10 MPa and all infills have a thickness of 0.15m. Additionally, a residual stress 
equal to 10% of the maximum stress is considered for numerical stability. 
 

 (a)       (b) 

 
Figure 4. Backbone curve of the Moment-Rotation relationship of all structural elements (a) and cyclic behavior 

of the strut material of the infills. 
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supporting beams and applied uniformly. The corresponding loads are 7.75 kN/m and 8.60 kN/m for 
the permanent and the live loads, respectively. Masonry infills also load uniformly all peripheral 
frames with 7 kN/m. The fundamental periods of vibration of each structure are presented in Table 1. 
 

Table 1. Periods of vibration of the studied buildings. 
 

Periods (s) 3-R 4-R 5-R 3-Ir 4-Ir 5-Ir 
T1,T2 (w infills) 0.31, 0.25 0.41, 0.31 0.52, 0.39 0.21, 0.15 0.29, 0.20 0.37, 0.26 
T1,T2 (w/o infills) 0.73, 0.72 0.96, 0.93 1.18, 1.15 0.39, 0.35 0.55, 0.47 0.70, 0.60 

 
3.2 Ground motion selection 
 
The ground motion selection is carried out using the recently developed SelEQ software (Macedo and 
Castro 2017) considering a conditional mean spectrum (CMS) (Baker 2010) as the target spectrum. 
The probabilistic seismic hazard analysis of the site is first performed using OpenQuake (Pagani et al. 
2014) considering Lisbon, Portugal, as the benchmark site for all structures. Hazard disaggregation is 
then carried out for four probabilities of exceedance, i.e. 50%, 10%, 5% and 2% in 50 years, at a value 
of T* for each building. Four CMS are subsequently constructed for each building, each one 
associated with one of the probabilities of exceedance. The structural period T* corresponds to the 
average of the first two periods of the building with the infills and the first two periods of the building 
without the infills (see Table 1). Involving the periods of vibration of the bare structure in the 
definition of T* is conceptually similar to accounting for the period elongation of the structure after 
yielding and failure of the infills. Figure 5 shows the four CMS for the 5-R building that has T*=0.82s.  
 

 
 

Figure 5. The CMS and the geometric means of the 40 ground motions for the 5-R building. 
 
Ground motion selection is based on a preliminary selection of ground motions from the NGA 
database (Akkar et al. 2014) based on seismological and strong motion parameters. Subsequently, 
using the CMS as a target spectrum, 40 bi-directional ground motion records are selected 
implementing the criteria and the objective function described in Macedo and Castro (2017). As a 
result, four groups of 40 bi-directional ground motions are obtained for each building, one for each 
CMS corresponding to the previously referred probabilities of exceedance of 50%, 10%, 5% and 2% 
in 50 years, e.g. see Figure 5 for the case of the 5-R building and T*=0.82 s. 
Each group of 40 bi-directional records is subsequently re-sampled to create groups of size n = 10, 15, 
20, 25, 30 and 35. Specific provisions are considered to maintain the compatibility between each new 
group and the reference group of size 40 in terms of seismic input. As a result, a total number of 100 
groups are obtained for each size n. 
 
3.3 Probabilistic demand model and uncertainty considerations 
 
The six buildings presented in Section 3.1 are subjected to multi-stripe analysis (MSA) (Jalayer and 
Cornell 2009) with the ground motion groups defined in Section 3.2. Following a procedure similar to 
the one proposed by Christovasilis et al. (2014), the four groups, corresponding to the intensities 
associated to the previously referred probabilities of exceedance, are scaled up and down to cover a 
total of fifteen intensities. Figure 6 shows a schematic representation of the scaled average geometric 
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response spectra for the case of the 5-R building (T*=0.82s) and the corresponding scale factors. 
 

 
 

Probability of 
exceedance 

Scale 
factor 

Sa(T*=0.82) 
(g) 

 0.40 0.03 
 0.67 0.05 
30% in 50 years 1.00 0.07 
 1.48 0.11 
 0.82 0.14 
10% in 50 years 1.00 0.17 
 1.23 0.21 
 0.90 0.24 
5% in 50 years 1.00 0.27 
 1.21 0.32 
 1.39 0.37 
 0.91 0.42 
2% in 50 years 1.00 0.46 
 1.09 0.50 
 1.17 0.54 

 

 
Figure 6. Average geometric response spectra of the 40 ground motions for different intensities (left) and the 

scale factors (right) for the 5-R building (T*=0.82s). 
 
All six buildings are subsequently subjected to nonlinear time history analyses for the fifteen intensity 
levels (stripes) with the 40 record pairs of each stripe applied along twelve ASIs. The considered ASIs 
range from 0° to 165° in steps 15° and are considered to be equally likely. The sources of uncertainty 
considered in the structural response are therefore the result of the record-to-record variability and the 
ASI of each record. As referred in Section 3.2, 100 groups of ground motions are created for each size 
n of ground motions to take into account the record-to-record variability in different group sizes. All 
groups are also applied along different number of ASIs, from one to twelve. The ASIs are sampled 
from a uniform distribution and a total of 100 combinations of ASIs of size one to twelve are 
considered. Table 2 summarizes the analyzed cases. 
 

Table 2. Analyzed cases (gr. stands for groups). 
 

ASI                 n 10 15 20 25 30 35 40 
1  100 gr 100 gr. 100 gr. 100 gr. 100 gr. 100 gr. 1 gr. 
2  100 gr. 100 gr. 100 gr. 100 gr. 100 gr. 100 gr. 1 gr. 
… … … … … … … … 
11  100 gr. 100 gr. 100 gr. 100 gr. 100 gr. 100 gr. 1 gr. 
12  100 gr. 100 gr. 100 gr. 100 gr. 100 gr. 100 gr. 1 gr. 

 
 
4. RESULTS AND DISCUSSION 
 
Figure 7 shows the Q-Q plots and corresponding R2 values of the ISD data obtained from the analysis 
of the 5-R building, for one group of 35_4 and for an intermediate ground motion intensity level 
(Sa(T*)=0.24g). As can be seen, the lognormal and the GEV distributions appear to be the more 
adequate, followed by the Gamma distribution. The normal and the Weibull distributions demonstrate 
weaker fits when compared to the previously referred distributions, while the Rayleigh and the EV 
distribution fits exhibit very low performance. Due to their poor fitting in most of the cases that were 
analyzed, results from the Rayleigh and the EV distributions will be omitted hereon. 
Figure 8 to Figure 11 show the average R2 values (average of the 100 groups of records of a size n and 
a given number of ASIs) for all buildings and for all the selected n_ASI combinations. Specifically, 
the 35_1 and 35_12 results of the ISD and RD are presented in Figure 8 and Figure 9, respectively. 
Likewise, the 15_1 and 15_12 results of the ISD and the RD are presented in Figure 10 and Figure 11, 
respectively. The results obtained from the groups of size n=35 are representative of larger group sizes 
(n≥25), while the results obtained from the groups of size n=15 are representative of smaller group 
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sizes (n≤20). Given the expected dependence of R2 on the sample size of the fitted data, the results 
should be interpreted separately for each n_ASI combination and the focus should be given to the 
relative variations of R2 among the different distributions. 
 

 
 

Figure 7. Q-Q plots and corresponding R2 values of all considered distributions for a 35_4 ISD sample that 
corresponds to inelastic response of the 5-R building.  

 
It is observed that the GEV presents the best fitting for most of the cases of all buildings, number of 
ASIs and intensity level, followed closely by the lognormal distribution. This trend holds true for both 
the ISD and the RD. The Gamma distribution also presents good fitting performance, sometimes even 
superior to the two previously referred distributions; e.g. see the 15_1 ISD fitting of the 3-Ir building 
for the elastic response (Figure 10). Still, the differences can be characterized as negligible. The 
adequacy of the normal and the Weibull distributions can be seen to vary considerably, depending on 
the building height and regularity and on the level of inelasticity. It can be further observed that the 
number of ASIs involved does not seem to significantly affect the type of the statistical model that 
best fits the demand distribution. On this respect, the smallest variations can be seen in the elastic 
response of the buildings and for the RD, while the largest variations are found for the mainly inelastic 
response and for the ISD. 
 

 
 

Figure 8. Average R2 obtained from ISD Q-Q plots for 35_1 and 35_12 for all buildings. 
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Figure 9. Average R2 obtained from RD Q-Q plots for 35_1 and 35_12 for all buildings. 
 
Focusing on the results for size n=35 (Figure 8 and Figure 9), the GEV distribution seems to provide 
the best fit for both EDPs and for all levels of inelasticity. An exception to this trend can be seen for 
the ISD of the 4-R, 5-R and 3-Ir buildings and for the mainly inelastic response, where the lognormal 
distribution appears to fit better. The coefficient of variation (cov) of R2 for the 100 groups and for 
both distributions is always lower than 5%, except for one case of the lognormal distribution where it 
is 6.6%. Also, apart from the cases where the lognormal distribution provides a better fit to the data, 
the cov of the GEV is lower than the cov of the lognormal distribution. 
As opposed to the consistent trends observed for the larger group sizes, the results obtained for the 
smaller group sizes (shown in Figure 10 and Figure 11) are characterized by a larger variability that 
also increases as the intensity level increases. Focusing on the mainly inelastic response of Figure 10 
and Figure 11, it can be seen that a consistent trend is not observed and that the distribution exhibiting 
better performance constantly changes between the GEV and the lognormal distribution.  
 

 
 

Figure 10. Average R2 obtained from ISD Q-Q plots for 15_1 and 15_12 for all buildings. 
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Figure 11. Average R2 obtained from RD Q-Q plots for 15_1 and 15_12 for all buildings. 
 
Additionally, the cov of R2 obtained for the groups of size n=15 is always larger when compared to the 
value obtained for groups of size n=35. Furthermore, the GEV distribution presents higher covs when 
compared to the covs of the lognormal distribution for most buildings and for both EDPs. More 
specifically, the larger values of cov are found in all cases where the GEV yields a significantly low R2 
due to its inability to provide a good fit to the data. The initial fitting is performed using the maximum 
likelihood method with 400 iterations and a tolerance of 10e-5. However, no better performance could 
be achieved by changing the tolerance or by increasing the number of iterations. These cov values may 
reach up to 40%, indicating a large variability. 
In order to demonstrate the evolution of R2 between the different distribution models when more 
numbers of ASIs are used, the R2 values are aggregated over all buildings, and an average R2 value is 
obtained for each statistical model and plotted in Figure 12 to Figure 15. Furthermore, two group sizes 
n are considered for both EDPs and correspond to 30, shown in Figure 12 and Figure 13, and 20, 
shown in Figure 14 and Figure 15.  
 

 
 

Figure 12. Average R2 of all buildings obtained from ISD Q-Q plots for ASIs 1 to 12 and for n = 30. 
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Figure 13. Average R2 of all buildings obtained from RD Q-Q plots for ASIs 1 to 12 and for n = 30. 
 
The superior performance of the GEV is apparent in most of the cases shown in Figure 12 to Figure 
15. The analysis with more than 1 ASI doesn't seem to affect the type of model representing the 
demand distribution of the RD in any intensity level. The same trend can be observed for the ISD 
distribution when the response is elastic and mixed elastic/inelastic. On the contrary, when the 
response is mainly inelastic, considering more than 1 ASIs seems to favor the use of the lognormal 
over the GEV distribution. The latter observation is particularly obvious for the smaller ground motion 
group size (see Figure 14).  
 

 

 
Figure 14. Average R2 of all buildings obtained from ISD Q-Q plots for ASIs 1 to 12 and for n = 20. 
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distribution, despite featuring a lower fitting performance than the GEV, seems to provide much more 
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stable fittings and thus a more reliable performance. At the same time, the average R2 values of the 
lognormal distribution are over 90% regardless of the number of ASIs and the covs of the R2 are rarely 
above 10%. 
 

 
 

Figure 15. Average R2 of all buildings obtained from RD Q-Q plots for ASIs 1 to 12 and for n = 20. 
 
As a final remark, despite the overall better performance of the GEV distribution to characterize the 
demand distribution when one or more ASIs are taken into account when compared to the lognormal 
distribution, two factors render its use less efficient. First, the difficulty in fitting the GEV to the data 
when small ground motion groups are used, especially for higher seismic intensities. Second, the fact 
that three parameters are required to fully characterize the GEV distribution. Instead, the lognormal 
distribution, although exhibiting marginally lower performance, has a stable and low cov even when a 
low number of ground motions is used. Finally, only two parameters are required to fully characterize 
the lognormal distribution and thus it can be is the best option even when more than one ASI is used.  
 
 
5. CONCLUSIONS 
 
The effect of the ASI on the probabilistic seismic demand of RC buildings is examined, in particular 
the influence of the selected number of ASIs in the type of statistical distribution that is used to fit 
seismic demand and develop with a probabilistic model. Six RC buildings are analyzed for different 
numbers of ground motion groups applied along one to twelve ASIs and for fifteen intensity levels. 
Seven statistical models are fitted to the demand observations for all cases and the performance of 
each model is evaluated through Q-Q plots and the corresponding R2. The distribution of both the ISD 
and the RD is tested. 
The R2 comparisons show that the Rayleigh and the EV models are inappropriate to characterize the 
demand distribution of both EDPs. Moreover, the normal and the Weibull distributions exhibit low 
fitting performance that is also characterized by significant variability when fitting highly inelastic 
structural response. The Gamma distribution shows an adequate fitting performance for all cases, but 
inferior to that of the lognormal and the GEV distributions. The GEV presents the best fitting 
performance in most of the cases. However, this performance exhibits a high variability when ground 
motion group sizes lower than 25 are used, particularly for larger intensity levels. The lognormal 
distribution, on the other hand, shows a more stable behavior. Based on its low variability and on the 
fact that is characterized by only two parameters, the lognormal distribution is considered the best 
model to represent the demand distribution of both EDPs studied herein, when more than one ASIs are 
used. 
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