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Evaluation of the magnetic permeability for the microstructural 

characterization of a duplex stainless steel 

Abstract 

Non-Destructive Testing has been commonly used to assess the presence of discontinuities 

that may affect the integrity of materials in service.	
  In this study, a Hall effect sensor is used 

in a methodology developed to study in a non-destructive manner the microstructural 

variations of a material that occur due to the single-phase decomposition. The material 

selected was the UNS S31803 duplex stainless steel, particularly due to its behavior under 

temperatures below 525 °C. Measurements of magnetic permeability based on Hall voltage 

values were performed as well as hardness measurements and X-ray diffraction studies. The 

results confirm that the magnetic permeability can be used to successfully track the formation 

of α' phase from α phase in a duplex stainless steel. 
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1. Introduction 

Techniques based on magnetic flux loss have been commonly used to detect 

superficial or internal discontinuities in ferromagnetic materials frequently used in 

engineering [1]. In this sense, Hall effect sensors have been used to detect the size and 

position of cracks, but have also been effective to detect superficial gaps, especially in 

metallic materials under excitation by alternating current [2]. The Hall effect discovered by 

Edwin Herbert Hall in 1879, has been known for over a hundred years, but its use has just 

become feasible in the last three decades with the advent of microelectronic. Since then, it has 

been used in a wide variety of industrial applications, including in tachometers, switches and 

in gauges of position, inclination, level, pressure, thickness, current, voltage, power, 

frequency and magnetic field. The Hall effect is also commonly used in non-destructive 

testing in the aircraft industry [3]. 

The use of magnetic properties is widespread in Materials Science. For example, 

Hall effect sensors have been	
  used in the microstructural characterization of steels subjected 

to a variety of heat treatments. Samples of SAE 1045 carbon steel undergoing different 

treatments were exposed to a 300 Gauss field and Hall voltage values were measured [4]. The 

results showed that the Hall effect based sensor was sensitive to microstructural changes, and 

that can be effectively used for non-destructive material characterization [4]. These authors 

also presented the potentiality of Hall voltage values post-processed by a backpropagation 

artificial neuronal network to identify the treated material microstructures. 

The UNS S31803 duplex stainless steel has as main characteristics the high 

resistance to corrosion and mechanical resistance, which are due to a balanced microstructure 

with approximately 50% of ferrite and 50% of austenite. Nowadays, the use of this material is 

important in several industries, including petrochemical, food, paper and cellulose, oil and gas 

industries [5]. However, when exposed to temperatures above 300 oC, this type of steel loses 
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toughness and corrosion resistance, due to the fine precipitation of Cr-rich α phase (usually 

known as α' phase) that produces Cr-depleted regions at the nanoscale [5]. 

Usually, the phases presented in the duplex stainless steels processed at high 

temperatures, i.e. σ, χ, and δ phases, can only be characterized by destructive techniques such 

as the ones based on scanning electron microscopy and transmission electron microscopy [6]. 

Non-destructive techniques have also been studied for application in microstructural 

characterization, as the ones based on ultrasonic signal and eddy current that have been used 

in detection of the embrittled phases present in duplex stainless steels at high temperatures. 

An experimental study was carried out to evaluate the potential of the ultrasonic 

technique, i.e. based on ultrasonic velocity and attenuation measurements, to assess the heat 

aging effects on duplex stainless steel SAF 2205, at temperatures of 425 oC and 475 °C for 

time up to 200 h, as well as in the as received state of the material. Despite the large scatter 

measurements, both ultrasonic velocity and attenuation increased with the heat aging time, 

particularly at 475 ºC. Thus, it was concluded that this technique is promising and provides 

relevant contributions towards the accurate characterization of materials and evaluation of 

their mechanical properties in a non-destructive manner [7]. 

The study about the embrittlement of duplex stainless steels commonly used in 

components of nuclear plants can be attained by non-destructive testing based on the eddy 

current principle. This principle has been widely implemented because it uses light and 

compact equipment, and allows non-contact tests based on induced electromagnetic currents. 

For example, it allows the embrittlement quantification of duplex stainless steels by 

comparing the results of degraded and non-degraded materials [8]. On the other hand, studies 

about the precipitation of σ phase in samples aged for times up to 2 hours at temperatures of 

800 oC to 900 oC using this principle confirmed its effectiveness [9]. 
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The phase transformations found in an UNS S31803 steel under temperatures below 

550 °C are due to its spinodal decomposition mechanism. This mechanism consists of 

spontaneous decomposition of the ferrite matrix through fluctuations of composition, forming 

rich and poor regions in solute, which originates α' phase in the rich regions. Over time, this 

phase coherent to the matrix loses the coherence. This transformation process has been 

observed by destructive and non-destructive techniques [5]. The formation of α` phase in 

duplex stainless steels at temperatures range from 425 oC to 475 oC for times up to 200 h was 

studied based on measurements of sonic velocity attained using an industrial ultrasound 

equipment [10]. This technique revealed to be promising for the detection of α ` phase, which 

has nanometer dimensions.  

The transformations of ferrite phase for temperatures up to 550 oC were also studied 

through measurements of magnetic susceptibility, and confirmed the possibility to monitor the 

decomposition mechanism of α phase for temperatures above 350 oC [11]. The samples of the 

duplex stainless steel were annealed at the temperatures of 350 oC, 450 oC, 475 oC and 550 oC. 

It was observed that the curves of magnetic susceptibility along time decrease clearly at the 

beginning and then more smoothly for the annealing temperatures of 450 oC, 475 oC and 550 

oC; this behavior was not observed for the curve associated to the annealing temperature of 

350 oC. The steady state values of the curves for 450 oC and 550 oC were higher than the 

related value of the curve for 475 oC. This is because the decomposition of α` phase occurs 

more rapidly at 475 oC [11].  

In a study based on magnetic susceptibility addressing an annealing temperature 

range between 400 oC and 600 oC, it was found that the magnetic susceptibility decreases due 

to the presence of α` phase. This phase is formed by spinodal decomposition mechanism, and 

as soon as the spinodal microstructure reaches the steady state growth, the sensitivity of the 

magnetic properties becomes weak [12].  
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2. Experimental procedures 

In the present work, a Hall effect sensor was used for tracking the microstructural 

variations of the UNS S31803 duplex stainless steel in a non-destructive manner. The material 

samples were submitted to thermal aging at 425 ºC and 475 ºC for 0 (as-received) until 200 h, 

which are the thermal conditions associated to the microstructural transformation of α' phase. 

As such, the microstructural changes are the input data for the sensor, and the sensor voltage 

the output. The testing approach adopted showed to be simple, of low cost, and able to 

monitoring efficiently the microstructural variations of the material studied. 

The samples of the UNS S31803 duplex stainless steel, with dimensions of 30x20x8 

mm3, were aged at the temperatures of 425 oC and 475 oC during 12, 24, 48, 100 and 200 

hours, and at the temperature of 525 oC for 200 hours, in order to track the formation of α' 

phase. The heat treatment was performed in a resistance furnace with an uncontrolled 

atmosphere. The samples were placed in the furnace with the temperature already reached and 

then cooled in water after the aging. The aged samples and one in the condition as received 

were submitted to the Rockwell C hardness, X-ray diffraction (XRD) and magnetic 

permeability testing techniques. The first two are consolidated testing techniques and were 

used to validate the results obtained based on the magnetic measurements achieved by the 

non-destructive approach adopted. Particularly, the XRD tests were performed in order to 

identify the microstructural phases in the steel samples before and after the aging treatments. 

Here, a study was conducted from the XRD spectra to examine the profile of the 

peak (200). Hence, the measurement of the width to half height was performed to examine the 

variation of the peak widening with the aging time. The measured values were then adjusted 

using the Non-linear Gauss method. 



	
   7	
  

The XRD equipment (SIEMENS D5000, Berlin, Germany) used was operated under 

the radiation parameters kα of copper, with a voltage of 40 kV, current equal to 30 mA, a step 

of 0.02o, and a time for step equal to 9.6 s. The tests were performed adopting a scanning 

angle (2θ) ranging from 30 to 110°. For the study around the peak (200) of α phase for 

different conditions of aging treatment, a ranging angle (2θ) from 62 to 66° was applied. 

 

3. Results 

The non-destructive tests were performed using an experimental setup consisted of a 

computer, a data acquisition board with a 10 bit analog digital converter, a power supply 

(DC), a testing workbench, a Hall effect sensor, and a permanent magnet, Figure 1. The 

sensor used (A1323L from Allegro MicroSystems, LLC (USA)) is a linear ratiometric type 

Hall-effect capable of operating under high temperatures. It contains a BiCMOS monolithic 

circuit with an integrated Hall element that provides high stability and sensitivity. The 

sensor’s output voltage is proportional to the applied magnetic field [13]. 

A magnetic field of 430 Gauss was applied taking into account that the sensor used 

saturates at 600 Gauss, and the magnetic permeability µ  was calculated based on the Hall 

tension according to: 

( ) 32.5 10S

S

V
S H

µ
− ×

=
×

,           (1) 

where SV  is the output voltage in volts, 2.5 is the offset voltage, SS  is the sensor’s output 

sensitivity that is equal to 3.125 mVolts/Gauss, and H  is the applied magnetic field in Gauss. 

The micrograph of the duplex stainless steel as received is shown in Figure 2. The 

presence of austenite island (γ) in the ferrite matrix (α) phase and the elongation of the grains 

due to rolling can be observed in this figure. It should be noted that in this steel, the γ phase 

does not suffer any transformation during aging, only in α phase can suffer. Since the 
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nanostructures formed under the studied conditions cannot be detected by Electronic 

Scanning Microscopy due to be very small and thin, we used X-ray diffraction in the 

microstructural characterization of the thermal aging samples in order to validate the findings 

obtained based on the magnetic permeability. 

Figure 3 shows the X-ray diffraction measurements for the samples as received and 

aged for 200 hours at 525 °C. In this figure, only γ and α phases are visible and variations in 

the peak (200) shape can be observed. Figures 4a and 4b show the variations of hardness, 

permeability and width at half height for the samples aged at 425 oC and 475 oC, respectively. 

The width at half height is a measurement commonly used to follow the phase formed from α 

phase, and the results show a similar tendency relatively to the permeability. On the other 

hand, the hardness increases with time due to new formed phase. 

 

4. Discussion 

The microstructural transformation that occurs due to the thermal condition of aging 

time in duplex stainless steels can be characterized for two distinct regions: one for 

temperatures above 600 °C, which corresponds to the formation of Cr2N, χ, σ and other 

phases; and another for inferior temperatures, with embrittlement found at temperatures of 

475 °C [14]. 

Here, the phase changes in temperatures ranging from 425 oC to 525 °C were studied. 

The X-ray diffraction of the samples as received and aged for 200 hours at 525 °C revealed 

the presence of γ and α phases (Figure 3). 

The temperature range studied is characterized by the decomposition of the initial α 

phase into two phases: a α phase poor in chromium and another α phase rich in chromium. 

The mechanism responsible for this transformation is the spinodal decomposition [15]. Under 

these conditions, γ phase does not undergo any transformation [16]. 
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The α phase decomposes spontaneously forming a phase called α' that has a 

chemical composition close to the original phase composition. To be fully formed, this new 

phase aligns in the direction <100>, which has the lowest energy. The formation of this phase 

can be studied by the formation of side strips around the peak (200) of the X-ray diffraction of 

the α phase. It results in broadening of peak and reduced intensity. With the aim of studying 

the effect of these phenomena, the intensity of the peak at half height, which is an analysis 

parameter of formation of side strips, was analyzed [10]. 

For the samples aged at temperatures 425 oC and 475 °C (Figures 4a and 4b, 

respectively), the hardness results show the presence of two stages of hardening for the 

temperatures studied, each one with quite different rates of hardening. For the temperature of 

425 °C, as the kinetics is slower, it was observed the first stage for times up to about 48h and 

the beginning of second stage, and for 475 °C, which has a faster kinetic, the two stages of 

hardening were clearly observed, the first one up to about 24h. The increase of hardness due 

to the formation of α phase results in precipitates finely dispersed within the material matrix 

[5, 10]. 

Measures of width and half height have been used for tracking microstructural 

transformations due to spinodal decomposition mechanism [5]. In duplex stainless steels at 

the temperatures studied in this work, just only microstructural transformations occur within 

the ferritic phase. The peak (200) of this phase suffers shape variations due to the formation 

of a new phase called α' within the original α phase. An increase of the width half height was 

observed for aging times up to about 24 h (Figure 4a). This increase is due to the formation of 

α' phase and corresponds to the first stage of hardening. In this case, the hardening with a 

higher rate is due to the formation of α' resulted from α prime phase, and the end of this phase 

formation was observed in the second hardening stage. 
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The results of the magnetic permeability, calculated based on the Hall effect sensor’s 

output voltages, had a behavior similar to the one of the width at half height measures, and 

were affected by the microstructural variations of the material under study. The sensor’s 

output voltage is proportional to the density of the magnetic flux lines that reaches it. The 

magnetic permeability curves reveal significant reduction for aging times inferior to 50 h 

(Figure 4b), and tend to stabilize after this aging time due to the kinetics formation of α' phase 

and its ferromagnetic characteristic. Similar results were also found in [11], where the phase 

transformations of a duplex stainless steel in the same range of aging temperatures were 

studied based on magnetic susceptibility. The authors found an initial drop of the magnetic 

susceptibility in the region of α' phase formation, followed by a stabilization after the phase 

formation. 

Some works have focused on the precipitation of microstructural phases in duplex 

steels by magnetic means and based on the volume variation of the ferrite phase [17, 18, 19, 

20]. The volume fraction of ferrite phase in duplex stainless steels has been determined by 

ferritoscope tests [9, 14]. The characterization of α' phase in stainless steels based on the 

magnetic permeability found out that the precipitation of this phase by spinodal 

decomposition hampers the movement of the magnetic domain upon the application of an 

external field that causes the decrease of the permeability values [20, 21]. 

 

4. Conclusions 

The present study intended to verify the potential use of magnetic permeability 

measurements achieved using a Hall effect sensor. The results obtained confirmed that the 

Hall voltage measurements are affected by the phase transformations that occur in the UNS 

S31803 duplex stainless steel at the two temperatures studied (425 oC and 475 ºC), and are 

suitable to track the formation of α' phase in a non-destructive manner. This was confirmed by 
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correlation with the X-ray diffraction technique that is an inspection technique already 

consolidated in this domain. Similar results were obtained by others authors that observed the 

decreasing in the magnetic susceptibility measurement in the same range of temperature. The 

microstructure formed hinders movement of magnetic domain walls and therefore, the 

magnetic susceptibility is decreased. 

Based on the experimental findings, it is possible to conclude that the magnetic 

permeability can be used to continually monitor in service structures that are susceptible to 

embrittlement due to α phase transformations that cannot be easily detected by common 

destructive testing techniques, such as scanning electronic microscopy, and by non-

destructive testing as ultrasound and eddy current techniques, due to the nanostructures 

formed be very small and thin. Additionally, in comparison to other non-destructive testing 

techniques, another attractive characteristic of this technique is that the permeability is an 

intrinsic property of the material that is not affected by geometry changes. 
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FIGURE CAPTIONS 

Figure 1: Experimental setup used for the non-destructive testing based on Hall effect: 1 - 

Computer, 2 - Data acquisition board with a 10 bit analog digital converter, 3 - Power Supply 

(DC), 4 - Testing workbench, 5 - Hall effect sensor, 6 - Sample of the duplex stainless steel, 7 

- Permanent magnet. 

Figure 2: Optical microscopy of the duplex stainless steel sample as received (magnification 

of 1000X). 

Figure 3: Diffractogram of the sample as received, showing only the presence of α and γ 

phases (a), and of the aged sample at 550 ºC for 200 hours (b). 

Figure 4: Variation of the magnetic permeability, hardness and half height width for the 

material samples aged at 425 °C (a) and at 475 °C (b). 
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