A Survey on Fault Localization Techniques

Alexandre Perez, Rui Abreu
Department of Informatics Engineering
Faculty of Engineering, University of Porto
Porto, Portugal
alexandre.perez@fe.up.pt,

Abstract—A considerable body of work on debugging and
particularly in fault localization has been published in the
past decades. This paper summarizes the underlying ideas
behind locating faults and presents the different techniques
that are currently available to tackle the challenging task that
is diagnosing faulty software systems and groups them into
different categories: traditional debugging techniques (such as
assertions and breakpoints), program slicing, delta debugging
and coverage-based, as well as model-based approaches to
debugging are detailed. A comparison between such diagnosis
techniques is performed, and the challenges and potential fu-
ture directions of software fault localization are also discussed.

Keywords-Debugging, diagnosis, fault localization, software
testing.

I. INTRODUCTION

In 1947, the Harvard Mark II was being tested by Grace
Murray Hopper and her associates when the machine sud-
denly stopped. Upon inspection, the error was traced to a
dead moth that was trapped in a relay and had shorted out
some of the circuits. The insect was removed and taped
to the machine’s logbook [1]. This incident is believed
to have coined the use of the terms “bug”, “debug” and
“debugging” in the field of computer science. Since then,
the term debugging is associated to the process of detecting,
locating and fixing faulty statements in computer programs.

In software development, a large amount of resources is
spent in the debugging phase. It is estimated that testing
and debugging activities can easily range from 50 to 75
percent of the total development cost [2]. This is due to the
fact that the process of detecting, locating and fixing faults
in the source code is not trivial and is error-prone. Even
experienced developers are wrong almost 90% of the time
in their initial guess while trying to identify the cause of a
behavior that deviates from the intended one [3].

If this debugging task is not thoroughly conducted, even
bigger costs may arise. In fact, a landmark study performed
in 2002 indicated that software defects constitute an annual
$60 billion cost to the US economy alone [4].

Debugging, as well as testing, are then important steps
that should not be disregarded when developing software.
However these tasks consume large amounts of resources.
Therefore, ways to help developers in these tasks are

rui@computer.org

W. Eric Wong
Department of Computer Science
University of Texas at Dallas
Richardson, Texas, USA
ewong@utdallas.edu

continuously being researched. Currently, there are some
techniques that (semi)automatically pinpoint likely sources
of faults in software programs. Different from a previous
survey [5], this paper groups fault localization techniques
from an alternative perspective and discusses and compares
them.

This paper makes the following contributions:

« Several software fault localization techniques and tools
currently in use are detailed, namely traditional debug-
ging, program slicing, delta debugging, coverage-based
and model-based approaches.

e A comparison between such fault localization tech-
niques is performed.

The remainder of this paper is structured as follows.
Section II will introduce some concepts used throughout the
paper. Section III will present some traditional debugging
techniques (e.g., assertions and breakpoints). In Section IV,
program slicing will be detailed. Section V will present
delta debugging. Coverage-based debugging approaches are
detailed in Section VI, and reasoning-based approaches
appear in Section VIIL. Section VIII will provide a compar-
ison between the previously detailed debugging techniques.
Lastly, some conclusions are drawn in Section IX.

II. CONCEPTS & DEFINITIONS

In this section, some concepts and definitions are intro-
duced. Throughout this paper, the following terminology is
used [6]:

o A failure is an event that occurs when delivered service
deviates from correct service.

e An error is a system state that may cause a failure.

o A fault (defect/bug) is the cause of an error in the
system.

In this paper, this terminology is applied to software pro-
grams, where faults are bugs in the program code. Failures
and errors are symptoms caused by faults in the program.
The purpose of fault localization is to pinpoint the root cause
of observed symptoms.

Definitions of software programs, test suites and test cases
used throughout this paper should also be mentioned:

Definition 1 A software program 11 is formed by a sequence
M of one or more statements.

Definition 2 A fest suite T = {t1,...,tn} is a collection
of test cases that are intended to test whether the program
follows the specified set of requirements. The cardinality of
T is the number of test cases in the set |T| = N.

Definition 3 A fest case t is a (i,0) tuple, where i is a
collection of input settings or variables for determining
whether a software system works as expected or not, and
o is the expected output. If I1(i) = o the test case passes,
otherwise fails.

III. TRADITIONAL DEBUGGING

In this section, traditional debugging techniques and tools
are described, namely print statements, assertions, break-
points, profiling and code coverage.

A. Print Statements

A common, ad-hoc approach to locate bugs when a
program shows some abnormal behavior is to insert print
statements to print extra information to help debug the
misbehavior. Each of these statements causes the program to
output the value of a certain variable. This way, additional
information about both the runtime state and control flow
can be shown to help developers identify the root cause of
the failure.

B. Assertions

Assertions are formal constraints that the developer may
use to specify what the system is supposed to do (rather
than how) [7]. These constructs are generally predefined
macros that expand into an if statement that aborts the
execution if the expression inside the assertion evaluates to
false. Assertions can be seen, then, as permanent defense
mechanisms for runtime fault detection.

C. Breakpoints

A breakpoint specifies that the control of a program
execution should transfer to the user when a specified
instruction is reached [8]. The execution is stopped and the
user can inspect and manipulate the program state (e.g., the
user can read and change variable values). It is also possible
to perform a step-by-step execution after the breakpoint. This
is particularly useful to observe a bug as it develops, and to
trace it to its origin.

There are other types of breakpoints, namely data break-
points and conditional breakpoints. Data breakpoints (also
called watchpoints [9]) transfer control to the user when
the value of an expression changes. This expression may
be a value of a variable, or multiple variables combined by
operators (e.g., a + b). Conditional breakpoints only stop
the execution if a certain user-specified predicate is true, thus
reducing the frequency of user-application interaction.

D. Profiling

Profiling is a dynamic analysis that gathers some metrics
from the execution of a program, such as memory usage and
frequency and duration of function calls. Profiling’s main
use is to aid program optimization, but it is also useful for
debugging purposes, such as:

« Knowing if functions are being called more or less often
than expected;

« Finding if certain portions of code execute slower than
expected or if they contain memory leaks;

« Investigating the behavior of lazy evaluation strategies.

Known profiling tools include GNU’s gprof' and the
Eclipse plugin TPTP?.

E. Code Coverage

Code coverage is an analysis method that determines
which parts of the System Under Test (SUT) have been
executed (covered) during a system test run [10].

Using code coverage in conjunction with tests, it is
possible to see which lines of code, methods or classes
were covered in a specific test (depending on the set level of
detail). With this information, it is possible to identify which
components were involved in a system failure, narrowing the
search for the faulty component that made the test fail.

Program
Base Mini
Trampoline Trampoline
) Save
Pre i
< Registers
Set up
Relocated Args
Instruction B foo()
- Snippet P
Post Restore
Registers

Figure 1: Instrumentation Code Insertion [11].

In order to obtain information about what components
were covered in each run, these code coverage tools have
to instrument the system code. This instrumentation will
monitor each component and register if they were executed.

Instrumentation code, as depicted in Figure 1, relies on a
series of trampolines to a function foo () before the desired
instructions. In the case of Cove Coverage tools, foo () will
register that the instruction was touched by the execution.

IV. PROGRAM SLICING

In 1981, Weiser introduced static program slicing [12],
[13]. This technique starts from the failure and uses the

IGNU gprof — http://sourceware.org/binutils/docs/gprof/
2Eclipse Test & Performance Tools Platform Project — http://www.
eclipse.org/tptp/

control and data flow of the program as a backwards reason-
ing method to reach the fault location. It narrows down the
covered statements of a software program by removing all
statements that have no data or control dependencies to these
variables of interest responsible for detecting the failure. A
slice can be seen as a subset of program statements that
directly or indirectly influence the values of a given set of
variables of interest. Debugging consists of inspecting the
statements that comprise the slice, rather than looking at the
entire program.

A slice that is computed only by means of static analysis
tends to be large. Lyle and Weiser were able to reduce
the number of statements that need to be examined by
constructing a program dice [14]. Program dice is the set
difference between static slices of incorrect and correct
variables. However, there are some statements that can only
be excluded by predicting run-time values. For this reason,
dynamic program slicing was introduced by Korel et al. [15].
Dynamic program slicing relies on execution information to
determine what statements belong to the slice (or dice), and
can significantly reduce the size of the slice.

Dynamic slices occasionally omit statements that were
responsible for the fault. This can happen when the faults
cause certain parts of the program to stop being executed.
To eliminate this problem, Zhang et al. introduced the
concepts of implicit dependencies and relevant slicing [16],
[17], where dependencies can also be obtained by predicate
switching.

Another dynamic approach to program slicing was pro-
posed by Wong et al., using execution slices [18] and inter-
block data dependencies [19]. This approach uses sets of
code (such as basic blocks) as the building blocks for a
slice. Two blocks are data dependent if one block contains
a definition that is used by another block or vice versa. This
approach will include additional code for inspection but is
less likely to omit potentially interesting statements.

V. DELTA DEBUGGING

Delta debugging is a technique that tries to systemati-
cally simplify the input that leads a certain program to a
failure [20]. The idea is to iteratively reduce the size of the
input until the smallest input that causes the execution to
fail is reached [21], [22]. This is done under the assumption
that that smaller inputs cover less lines of code than larger
inputs and thus are easier to debug. It is also assumed that
inputs can be stripped down and simplified, which may not
always be true.

Figure 2 depicts the delta debugging technique. Suppose
a program takes as input a set of integers ranging from 1 to
8. In order to use delta debugging, an initial input is devised,
which encompasses all possible elements in the set (test case
1 in the figure). As this test case fails, the next step is to
remove inputs from the next test cases, as is the case in
test case 2 and 3. One thing to note is that by manipulating

Test Case Input Test Result
1 1 2 3 4 5 6 7 8 X
2 1 2 3 4 e ?
3 5 6 7 8 X
4 5 6 v
5 7 8 X
6 7 X
7 e .8 v
Result e e e T X

Figure 2: Delta debugging example (adapted from [20]).

input, one can reach a third test case outcome besides passed
(v') and failed (X). This outcome is called unresolved (?)
and normally happens when invalid input is passed to the
program. The next steps of the delta debugging algorithm
are to keep dividing the input size for test cases that lead to
failures (X). In this example, test 3 is expanded into tests 4
and 5. After that, test 5 is expanded into tests 6 and 7. As
can be seen in the figure, test 6 produces the minimal input
for which there is still a failure, so the result of the technique
is the set of cardinality 1, encompassing the element 7.

A practical example of the use of delta debugging is
when debugging graphical user interfaces (GUIs). Suppose
that you have a sequence of GUI operations that cause an
application to crash. Assuming that the crash can be replayed
automatically, delta debugging can be used to iteratively
remove GUI operations until a minimum collection of op-
erations that still cause the program to crash is reached.
This new sequence, as it contains the same error as the
original one, but contains less operations, will cover less
code, helping developers narrow down the code locations
they need to inspect.

Delta debugging considers the input as a flat atomic list.
This list is usually large and may contain a vast amount
of information irrelevant to the failure. In order to avoid
many spurious input combinations, Misherghi et al. have
proposed the Hierarchical Delta Debugging technique [23].
This technique takes into account the input structure so that
fewer input configurations need to be attempted. Initially
using a coarser level of detail, the algorithm is able to
prune large irrelevant portions of the input early. Besides
speeding up the Delta Debugging process, this hierarchical
technique also has the advantage of producing better (and
more easily understandable) diagnostic reports, as the output
is a structured tree.

VI. COVERAGE-BASED APPROACHES

In this section, coverage-based approaches to debugging
are presented. First, the concept of program spectra is in-
troduced. Afterwards, the spectrum-based fault localization
and the dynamic code coverage techniques are detailed.

A. Program Spectra

A program spectrum is a characterization of a program’s
execution on an input collection [24]. This collection of data
consists of counters of flags for each software component,
and is gathered at runtime. Software components can be
at several detail granularities, such as classes, methods or
lines of code. A program spectrum provides a view on the
dynamic behavior of the system under test [25].

Recording program spectra is a lightweight analysis
method. In order to obtain information about which compo-
nents were covered in each execution, the program’s source
code needs to be instrumented, similarly to what happens in
code coverage tools (see Section III-E). This instrumentation
will monitor each component and register those that were
executed.

B. Spectrum-based Fault Localization

Spectrum-based Fault Localization (SFL) is a statistical
debugging technique that, for each software component,
calculates the likelihood of it being faulty [26]. It exploits
information from passed and failed system runs. A passed
run is a program execution that is completed correctly, and a
failed run is an execution where an error was detected [27].
The criteria for determining if a run has passed or failed
can be from a variety of different sources, namely test case
results and program assertions, among others. The execution
information gathered for each run is their program spectra.
As SFL focuses only on registering whether a component
is touched or not during a certain execution, so binary flags
can be used for each component. This particular form of
program spectra is also called hit spectra [25].

The hit spectra used by SFL is a binary N x M matrix A,
where N corresponds to the number of passed/failed runs
and M corresponds to the instrumented components of the
program. Information of passed and failed runs is gathered
in an N-length vector e, called the error vector. The pair
(A, e) serves as input for the SFL technique.

With this input, the next step in this coverage-based
technique consists of determining what columns of the
matrix A resemble the error vector e the most. This is done
by calculating the resemblance between these two vectors
by means of similarity coefficients [28].

Several similarity coefficients do exist [27]. Examples of
similarity coefficients are shown below, namely the Jaccard
coefficient s; used in the Pinpoint tool [29], the sa coeffi-
cient used by the AMPLE [30] tool and the st coefficient
used in the Tarantula® tool [26], [31]:

n11(j)

ss(7) = n11(4) +no1(4) +n10(4) v

. n11 n1o
s = — 2
aU) no1 +N11 Moo + N1o @

3 Available at http://pleuma.cc.gatech.edu/aristotle/Tools/tarantula/

(";1(j) ()

n11(J)+no01(J

G () ©)
n11(J)+no1(4) n10(J)+noo(d)

st(j) =

where np,(j) is the number of runs in which the component
7 has been touched during execution (p = 1) or not touched
during execution (p = 0), and where the runs failed (¢ = 1)
or passed (¢ = 0). For instance, n11(j) counts the number of
times component j has been involved in failed executions,
whereas n1(j) counts the number of times component j
has been involved in passed executions. Formally, npq(j) is
defined as:

npq(7) = [{i | aij =p Aei = g}| @

One of the best performing similarity coefficients for fault
localization is the Ochiai coefficient [32]. The fault local-
ization tools Zoltar [33] and GZoltar* [34] use the Ochiai
coefficient to quantify the resemblance to the error vector.
This coefficient was initially used in the molecular biology
domain [35], and is defined as follows:

soli) =)
vV (111(5) + 101(5)) - (n11(j) + n10(5))

The similarity coefficients that were calculated can rank
the software components according to their likelihood of
containing the fault. This is done under the assumption that
a component with a high similarity to the error vector has a
higher probability of being the cause of the observed failure
than a component with low similarity. A list of the software
components, sorted by their similarity coefficient, is then
presented to the developer. This list is also called diagnostic
report, and helps developers prioritize their inspection of
software components to pinpoint the root cause of the
observed failure.

One problem with Tarantula and many similarity
coefficient-based fault localization techniques such as those
discussed above is that they do not distinguish the contribu-
tion of one failed test case from another, or one successful
test case from another. To overcome this problem, Wong et
al. [36] proposed that, with respect to a piece of code,
the contribution of the nth failed test in computing its
suspiciousness is larger than or equal to that of the (n+1)th
failed test. The same applies to the contribution provided by
successful tests. In addition, the total contribution of the
failed tests is larger than that of the successful. Techniques
discussed in [36] are named as H3b and H3c.

Using the same set of information as other spectrum-
based fault localization techniques, Wong et al. presented
a crosstab analysis-based approach [37], where a crosstab
is constructed for each statement with two column-wise
categorical variables “covered” and “not covered”, and two
row-wise categorical variables “successful execution” and
“failed execution.” A hypothesis test is used to provide a

®)

4Available at http://wwww.gzoltar.com

reference of “dependency/independency” between the exe-
cution results and the coverage of each statement. However,
the exact likelihood of each statement depends on the degree
of association (instead of the result of the hypothesis testing)
between its coverage (number of tests that cover it) and the
execution results (success/failure).

Wong et al. also proposed two fault localization tech-
niques using program spectra data based on a back-
propagation (BP) neural network [38] and a modified radial
basis function (RBF) neural network [39], respectively. The
coverage data of each test case and the corresponding
execution result are used to train a neural network so that it
can learn the relationship between them. Then, the coverage
of a set of virtual test cases that each covers only one
statement in the program are input to the trained network,
and the outputs can be regarded as the likelihood of each
statement containing the bug.

A technique named DStar (D*) is reported by Wong et
al. [40] such that the likelihood of a statement j being
faulty is (1) proportional to the number of failed tests that
cover it (n11(j)), (2) inversely proportional to the number
of successful tests that cover it (n19(7)), and (3) inversely
proportional to the number of failed tests that do not cover it
(np1(4)). More importantly, (1) is the most sound intuition
and should carry a higher weight than (2) and (3). That is, we
should assign greater importance to the information obtained
from observing which statements are covered by failed
tests than that obtained from observing which statements
are covered by successful tests or which are not covered
by failed tests. Together, for a statement j, its like_libood
of containing program l?ugs is comput.ed as m
where x > 1. The effectiveness of D* increases as * grows,
and then levels off when % exceeds a critical value.

Empirical data suggests that D* is in general more effec-
tive at locating bugs than the RBF-technique (which outper-
forms H3b, H3c, Ochiai, and the Crosstab-based technique).
Furthermore, they are all better than Tarantula and many
similarity coefficient-based techniques.

To solve the test oracle issue, Xie et al. developed an
SFL technique based on metamorphic slice for program
debugging without a test oracle [41]. Test cases are replaced
by corresponding metamorphic test groups, and execution
results of failure or success are indicated by whether some
metamorphic relations are violated. Another solution was
proposed by Abreu et al., using low cost, generic invariants
(“screeners™) as error detectors for fault localization [42].

Coverage-based techniques have shown good evaluation
results for a single fault, but their ability to diagnose multiple
faults is limited. To address this, Steimann et al. proposed a
technique that uses integer linear programming to partition
coverage matrices [43]. This partitioning breaks down the
fault localization problem into several smaller ones, which
can be dealt independently.

SFL can be used with program spectra of several different

granularities. However, it is most commonly used at the line
of code level. Using coarser granularities would be difficult
for programmers to investigate if a given fault hypothesis
generated by SFL was, in fact, faulty.

C. Dynamic Code Coverage

In order to solve the potential scalability issues problem
that statistics-based fault localization techniques may have
when instrumenting large programs, a dynamic approach
was proposed, called Dynamic Code Coverage (DCC) [44].

This technique automatically adjusts the detail granularity
per software component. First, this approach instruments
the source code using a desired coarse granularity (e.g.,
package level in Java) and the fault localization is exe-
cuted by performing the SFL technique. Then, it is decided
which components are zoomed-in based on the intermediate
fault localization results. In this context, zooming-in means
changing the granularity of the instrumentation on a certain
component to the next detail level (e.g., in Java, for instance,
instrument classes, then methods, and finally statements).
After deciding which components will be re-instrumented,
the fault localization procedure is executed again, by running
the tests that touch the re-instrumented components. This
process of performing SFL, filtering the results, and re-
instrument the filtered components will repeat itself until
the desired final granularity is reached.

DCC is aimed at improving the execution time of the fault
localization procedure, and shows a substantial reduction
of the execution time and the diagnostic report size, when
compared with SFL [44]. However, for small projects, the
task of re-instrumenting and re-testing may consume more
time than performing a single iteration with a fine-grained
instrumentation. To prevent this, a lightweight topology
model was proposed to analyze a project and score it in
regards to its structure [45]. Projects whose score function
is above a certain threshold would use DCC as the fault
localization method, whereas the others would use SFL.

D. Predicate-based Fault Localization

Other techniques also use program spectra for their analy-
sis are the predicate-based fault localization methods. These
techniques exploit information from predicate count spectra,
which record how predicates are executed.

Liblit et al. propose the LIBLITO5 method [46]. For each
predicate P, two conditional probabilities are calculated:

Failure(P) = Pr(failure|P observed to be true) (6)
Context(P) = Pr(failure|P observed) (7

Predicates are then ranked according to the probability
difference PD(P) = Failure(P) — Context(P), which
is seen as an indicator of how relevant P is to the fault.
L1BLITOS considers that a predicate is fault-relevant if its
true evaluation correlates with failures, and completely
discards a predicate if PD(P) is less or equal to 0.

Liu et al. propose the SOBER statistical model to rank
predicates according to their fault suspiciousness [47]. As
predicates can be executed multiple times during a single
run, each evaluation may yield different outcomes: either
true or false. Therefore, SOBER computes for a predicate
P the evaluation bias 7(P), which is an estimation of the
probability of the predicate P being evaluated as true:

B n¢(P)
D)=)+ s ()

where n;(P) is the number of times P is evaluated as true
and, conversely, n ¢(P) is the number of times P is evaluated
as false. If the distribution of 7(P) is different in failed runs
when compared to successful runs, then P is related to the
fault.

®)

E. Spectrum-based Reasoning

A reasoning approach that exploits program spectra was
proposed by Abreu et al. [48]. This approach, coined
BARINEL, uses the Bayesian reasoning framework to diag-
nose systems with intermittent faults. The concept of health,
h;, was introduced to encode the probability of a component
j exhibiting a nominal behavior.

First, a set of diagnosis candidates D = (dy,...,dg) is
generated. Each candidate dj, is a subset of the system com-
ponents that, when at fault, can explain the faulty behavior.
Given the fact that there are 2 subsets of the system
components (entailing a large amount of valid diagnosis
candidates), heuristic approaches are used to generate only
the candidates that (1) are consistent with the observations
and (2) heuristically, have a higher chance of being correct.

One of them is the STACCATO [49] algorithm, that uses
the Ochiai similarity coefficient (introduced in Section VI-B)
to drive the candidate search towards high-potentials. In
addition, STACCATO only considers minimal candidates, i.e.,
candidates that cannot be subsumed by any valid lower
cardinality candidate.

After a set of tests is executed, the candidates in D are
sorted according to their probability of being the correct
diagnosis. This probability, Pr(dj | obs), is defined as:

Pr(obs; | d)

Pr(dy, | obs) = Pr(dy) - H Pr(obs;)

obs;€obs

€))

where obs; is the coverage vector of the ith test (i.e., denotes
the row A;,) and obs; € obs.

Pr(dy) is the a priori probability of the candidate (i.e., the
probability before any test is executed), defined as:

Pr(dy) = pl®! - (1 — p)M 1l (10)

where p is the a priori probability of a component being
faulty (normally assumed p = 0.001).
Pr(obs; | dj) represents the probability of obs; if the

candidate dj was the actual diagnostic, and is given by:

0, if obs;, €;, and dj, are inconsistent

Pr(obsi | dk) = {

, otherwise
(11)
where ¢ is defined as:
1— J[h ife=1
e = jedinaij=1 . (12)
H h; otherwise

jedk/\aiJ':l

Finally, the denominator Pr(obs;) is a normalizing term that
is equal for all di, € D needs not to be computed for sorting
purposes.

BARINEL is, then, a reasoning approach that uses an
abstraction of the program — its program spectrum — to
generate a diagnostic. It can achieve better single-fault and
multiple-fault diagnostic results when compared to other
spectrum-based analyses [48]. Two of the main weaknesses
of such methods are both the inability to absorb past
diagnosis experience and to use the application state to
distinguish observations. In [50], the authors present NFGE,
which is an approach that uses a feedback loop to update
the health estimates of each component. In addition and
in contrast to previous Bayesian methods, the health of a
component is modeled as being a non-linear function of a
set of arbitrary variables (e.g., component age) instead of the
usual h; scalar. A particularity that is shared among most
Bayesian reasoning approaches (e.g., [48], [50], [51]) is the
assumption that components fail independently.

VII. REASONING APPROACHES

Reasoning approaches to fault localization use prior
knowledge of the system, such as required component be-
havior and interconnection, to build a model of the system
behavior. An example of a reasoning technique is Model-
Based Diagnosis (MBD) (see, e.g., [52]).

A. Model-Based Diagnosis

In MBD, a diagnosis is obtained by logical inference
from the static model of the system, combined with a set
of run-time observations. Traditional MBD systems require
the model to be supplied by the system’s designer, whereas
the description of the observed behavior is gathered through
direct measurements. The difference between the behavior
described by the model and the observed behavior can then
be used to identify components that may explain possible
deviations from normal behavior [53].

In practice, as a formal description of the program is
required, the task of using MBD can be difficult. This is
particularly due to (1) the large scope of current software
projects, where formal models are rarely made available,
and (2) the maintenance problems that arise throughout
development, since changes in functionality are likely to

happen. Furthermore, formal models usually do not describe
a system’s complete behavior, being restricted to a particular
component of the system.

B. Model-Based Software Debugging

In order to address some of the issues that traditional
MBD has, Model-Based Software Debugging (MBSD) ex-
changes the roles of the model and the observations. In
this technique, instead of requiring the designer to formally
specify the intended behavior, a model is automatically
inferred from the actual program. This means that the model
reflects all the faults that exist in the program. The correct
behavior specification in this technique is described in the
system’s test cases, which specify the expected output for
a certain input. There are several different kinds of models
used to feed the MBSD technique [54]:

Dependency-based models (DBM) are derived from de-
pendencies between statements in a program, by means
of either static or dynamic analysis. The model is used
to represent the flow of correct and incorrect values
through a program, and concrete values are abstracted
into correct and incorrect values. Fault localization is
performed by checking if fault assumptions are consis-
tent with the test specifications. DBMs can, however,
return many spurious diagnoses for long chains of
inter-dependent program fragments (as is the case with
object-oriented programs) with no intermediate obser-
vations. A known MBSD approach employing DBM is
that of Friedrich, Stumptner, and Wotawa [55], [56].

Value-based models (VBM) compute concrete values and
propagate these values throughout the program. When
compared to the coarser dependency-based models,
VBMs lead to fewer spurious explanations, as value-
based conformance checking is more precise. However,
a VBM is more computationally intensive than a DBM
and is only applicable for small programs [54].

Abstraction-based models are used to create a represen-
tation of consistent traces, instead of modeling only
one system execution. By means of abstract interpre-
tation [57], the concrete semantics of the program
are replaced with a lattice representing approximate
program states. Models are then generated dynamically
when checking for particular fault assumptions, and
forward and backward analyses are applied to eliminate
paths that are inconsistent to the test cases [58]. The
fault is detected if no feasible path remains.

Despite the accuracy of this technique, in most cases, the
computational effort required to create a model of a large
program forbids the use of model-based approaches in real-
life applications [54].

C. DEPUTO Framework

To address some of the computational issues that MBSD
has, an hybrid framework was proposed. This framework,

called DEPUTO, uses both coverage-based and reasoning-
based techniques to pinpoint likely fault candidates [59],
[60]. This framework initially uses a coverage-based tech-
nique to prune code regions that are unlikely to contain a
fault. Afterwards, the MBSD is employed on the top-ranking
components. As an example of the use of the DEPUTO
framework, suppose that SFL (described in Section VI-A)
is being used at a method-level of granularity and only
the first 10% candidates from the diagnostic report are
selected. Only these candidates will be inferred by MBSD,
significantly lessening the computational effort required to
perform MBSD.

VIII. COMPARISON

In this section, a comparison among the different fault lo-
calization techniques detailed in the previous sections will be
provided. For that, some comparison topics were established,
such as diagnostic quality, computational overhead, and
scalability. Afterwards, some common pitfalls are outlined.

A. Technique comparison

Table I shows the results of this comparison. The quality
of diagnosis is regarded as the effort required by the de-
veloper to pinpoint the root cause of the failure. Traditional
debugging tools still require much manual effort, therefore
they perform poorly. In program slicing, delta debugging and
coverage-based approaches, the diagnostic report presented
to the user is significantly pruned, but a considerable effort
is still required to inspect every hypothesis. Reasoning-
based approaches are able to pinpoint faulty candidates more
accurately, so their diagnostic quality is higher.

Computational overhead is the complexity of each ap-
proach to fault localization. Traditional debugging tech-
niques such as assertions and breakpoints do not require
any computational overhead, and code coverage tools and
profilers use minimal instrumentation, whose impact on
execution is negligible. Coverage-based approaches that also
use instrumentation have a low computational overhead as
well. Program slicing and delta debugging have medium
computational overhead, the former needs to calculate data
and control dependencies and the latter needs to re-run tests
until a minimum input is reached. Reasoning approaches
have a high overhead in order to solve a constraint satisfac-
tion problem, and also to infer a model from the code.

Lastly, the techniques’ scalability is compared. Despite
having a low complexity, traditional debugging techniques
tend to be less useful as the project’s size becomes
larger. Coverage-based approaches and delta debugging ap-
proaches, however, still produce good results in large code-
bases. Reasoning-based approaches do not scale due to the
effort required to design (or compute) the behavioral model.

As can be seen, none of the previously detailed techniques
performs better than the others in all considered aspects.
Therefore, the best fault localization technique should still

Table I: Fault localization techniques comparison.

| Traditional Debugging | Program Slicing | Delta Debugging | Coverage-based Approaches | Reasoning-based Approaches

Diagnostic Quality Low Medium
Computational Overhead Low Medium
Scalability Medium Medium

Medium Medium High
Medium Low High
High High Low

be considered in a case-by-case basis. However , as research
continues to explore hybrid approaches that take advantage
of the strengths of different techniques, as is the case with
the DEPUTO framework and a consensus-based strategy [61],
in the near future there may eventually be a general tech-
nique, hybrid in nature, whose performance is considerably
better in all aspects.

B. Common Pitfalls

Common to most fault fault localization techniques are
some pitfalls that should be taken into consideration, either
for future research or when applying these techniques to
debug a program.

Most techniques described in the previous sections rely
heavily on the project’s test suite quality. It is essential that
the test set covers a large portion of the program otherwise
the effectiveness of automated approaches decreases.

Other pitfall that should be taken into account is that
every technique previously described assumes the developer
has a perfect understanding of a program. That is, it is
assumed that if a developer inspects a faulty line, the
fault will be identified. This perfect bug understanding
may not always hold true, as shown by a recent empirical
study [62]. Therefore, fault localization accuracy measures,
that often use metrics like the number of lines that need to
be inspected in order to find the bug, will likely deteriorate
as a consequence. An approach to fault localization that also
takes program understanding into account is the Whyline [3].
This approach enables developers to ask a set of why did and
why didn’t questions about the program output, derived from
program’s code and execution.

IX. CONCLUSIONS

This work has summarized the currently available tech-
niques used to help developers locate faults in the source
code. Five different approaches were detailed:

Traditional debugging methodologies are available for
most programming languages and are integrated in
most integrated development environments (IDEs). The
techniques are, among others, assertions, breakpoints,
code coverage analysis and profiling. These do not
offer much diagnostic quality, and still require a lot
of effort by the developer to pinpoint the root cause of
the failure.

Program slicing tries to narrow down the covered state-
ments of a software program by removing statements

that have no data or control dependencies to the vari-
ables of interest. Therefore, a slice can be seen as a
subset of program statements that directly or indirectly
influence the values of a given set of variables of in-
terest. Debugging consists of inspecting the statements
that comprise the slice.

Delta debugging tries to progressively simplify failure-
inducing input when debugging a software system. The
idea is that the smallest input that still causes the
program to fail will cover less code than the original
input and thus is easier to debug.

Coverage-based approaches exploit coverage information
from passed and failed test cases. This information, also
known as the hit spectra matrix, consists of counters or
flags for each software component (such as a line of
code) and for every system run. The fault localization
consists in identifying what components resemble the
passed and failed runs the most. Likelihood of contain-
ing bugs is calculated for every component and ranked
to yield the diagnostic report.

Reasoning-based approaches use system models and run-
time observations to debug a system. The difference
between the behavior described by the model and the
observed behavior can be used to identify components
that may explain possible deviations from normal be-
havior. In order not to require manual specification
of the system’s model, some techniques like MBSD
can even automatically infer the model from the actual
program, and compare its behavior with the system’s
test cases, which specify the expected output for a
certain input.

A comparison between the different techniques was also
performed, focusing on the strengths and weaknesses of each
one regarding diagnostic quality, computational overhead
and scalability. After a thorough analysis, it can be said that
no technique is better than all the others.

Regarding the future of this research topic, a possible new
direction, rather than to try to create a new approach to
fault localization, is to create hybrid techniques that try to
blend the strengths of different debugging techniques in a
unified framework. The DEPUTO framework [60] and the
consensus-based strategy reported in [61] are two examples.
Most of the current work in the area was done under the
assumption that there was just one fault that produced the
observed failure. However, especially during development,
there will likely be more than one bug in the source

code. Therefore, debugging techniques capable of locating
multiple bugs simultaneously are crucial when debugging
large, complex systems.

ACKNOWLEDGEMENTS

This work is financed by the ERDF through the COMPETE Programme
and by National Funds through the FCT (Portuguese Foundation for Science
and Technology) within project FCOMP-01-0124-FEDER-020484.

(1]
(2]
(3]

(4]

(5]

(6]

(71

(8]

(91
(10]

(11]

(12]

(13]

[14]

[15]

(16]

(17]

REFERENCES

P.A. Kidwell. Stalking the Elusive Computer Bug. [EEE
Annals of the History of Computing, pages 5-9, 1998.

B. Hailpern and P. Santhanam. Software debugging, testing,
and verification. IBM Systems Journal, 41(1):4-12, 2002.
AJ. Ko and B.A. Myers. Debugging reinvented: Asking
and answering why and why not questions about program
behavior. In Proceedings of International Conference on
Software Engineering (ICSE ’08), pages 301-310, 2008.

G Tassey. The Economic Impacts of Inadequate Infrastructure
for Software Testing, 2002.

W.E. Wong and V. Debroy. Software fault localization. /EEE
Transactions on Reliability, 59(3):473-475, 2010.

A. Avizienis, J.C. Laprie, B. Randell, and C.E. Landwehr.
Basic concepts and taxonomy of dependable and secure com-
puting. IEEE Transactions on Dependable Secure Computing,
1(1):11-33, 2004.

D.S. Rosenblum. A practical approach to programming
with assertions. IEEE Transactions on Software Engineering,
21(1):19-31, 1995.

M.L. Corliss, E.C. Lewis, and A. Roth. Low-Overhead
Interactive Debugging via Dynamic Instrumentation with
DISE. Proceedings of International Symposium on High-
Performance Computer Architecture (HPCA’05), pages 303—
314, 2005.

R. Stallman, R. Pesch, and S. Shebs. Debugging with gdb.
Free Software Foundation, 2006.

D. Graham, E. van Veenendaal, 1. Evans, and R. Black. Foun-
dations of Software Testing: ISTOB Certification. Cengage
Learning Business Press, 2006.

M.M. Tikir and J.K. Hollingsworth. Efficient instrumentation
for code coverage testing. In Proceedings of International
Symposium on Software Testing and Analysis (ISSTA’02),
pages 86-96, 2002.

M. Weiser. Programmers use slices when debugging. Com-
mun. ACM, 25(7):446-452, 1982.

M. Weiser. Program slicing. IEEE Transactions on Software
Engineering, SE-10(4):352-357, 1984.

J. Lyle and M. Weiser. Automatic program bug location by
program slicing. In Proceedings of International Conference
on Computers and Applications (ICCA’87), pages 877-883,
1987.

B. Korel and J.Laski. Dynamic program slicing. Information
Processing Letters, 29(3):155-163, 1988.

X. Zhang, H. He, N. Gupta, and R. Gupta. Experimental
evaluation of using dynamic slices for fault location. In
Proceedings of International Workshop on Automated and
Analysis-Driven Debugging (AADEBUG’05), pages 33-42,
2005.

X. Zhang, S. Tallam, N. Gupta, and R. Gupta. Towards
locating execution omission errors. In Proceedings of Confer-
ence on Programming language design and implementation
(PLDI’07), pages 415-424, 2007.

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

H. Agrawal, J.R. Horgan, S. London, and W.E. Wong. Fault
localization using execution slices and dataflow tests. In Pro-
ceedings of International Symposium on Software Reliability
Engineering (ISSRE’95), pages 143-151, 1995.

W.E. Wong and Y. Qi. Effective program debugging based
on execution slices and inter-block data dependency. Journal
of Systems and Software, 79(7):891-903, 2006.

A. Zeller and R. Hildebrandt. Simplifying and isolating
failure-inducing input. IEEE Transactions on Software En-
gineering, 28(2):183-200, 2002.

A. Zeller. Isolating cause-effect chains from computer pro-
grams. In Proceedings of ACM SIGSOFT Symposium on
Foundations of software engineering (SIGSOFT’02/FSE’10),
pages 1-10, 2002.

H. Cleve and A. Zeller. Locating causes of program failures.
In Proceedings of International Conference on Software En-
gineering (ICSE’05), pages 342-351, 2005.

G. Misherghi and Z. Su. HDD: Hierarchical Delta Debug-
ging. In Proceedings of International Conference on Software
Engineering (ICSE ’06), pages 142—151, 2006.

T. Reps, T. Ball, M. Das, and J. Larus. The use of program
profiling for software maintenance with applications to the
year 2000 problem. In Proceedings of ACM SIGSOFT inter-
national symposium on Foundations of software engineering
(ESEC’97/FSE’5), pages 432-449, 1997.

M.J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi.
An empirical investigation of the relationship between fault-
revealing test behavior and differences in program spectra.
STVR Journal of Software Testing, Verification, and Reliabil-
ity, (3):171-194, 2000.

R. Abreu, P. Zoeteweij, and A.J.C. van Gemund. On the
accuracy of spectrum-based fault localization. In Proceedings
of the Testing: Academic and Industrial Conference Practice
and Research Techniques — Mutation (Mutation’07), pages
89-98, 2007.

R. Abreu, P. Zoeteweij, R. Golsteijn, and A.J.C. van Gemund.
A practical evaluation of spectrum-based fault localization.
Journal of Systems and Software, 82(11):1780-1792, 2009.
A.K. Jain and R.C. Dubes. Algorithms for clustering data.
Prentice-Hall, Inc., 1988.

M.Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer.
Pinpoint: Problem determination in large, dynamic internet
services. In Proceedings of International Conference on
Dependable Systems and Networks (DSN’02), pages 595-604,
2002.

V. Dallmeier, C. Lindig, and A. Zeller. Lightweight defect
localization for java. In Proceedings of European Conference
on Object-Oriented Programming (ECOOP’05), pages 528—
550, 2005.

J.A. Jones and M.J. Harrold. Empirical evaluation of the
tarantula automatic fault-localization technique. In Proceed-
ings of International Conference on Automated Software
Engineering (ASE’05), pages 273-282, 2005.

R. Abreu, P. Zoeteweij, and A.J.C. van Gemund. An evalu-
ation of similarity coefficients for software fault localization.
In Proceedings of Pacific Rim International Symposium on
Dependable Computing (PRDC’06), pages 39—46, 2006.

T. Janssen, R. Abreu, and AJ.C. van Gemund. Zoltar: A
Toolset for Automatic Fault Localization. In Proceedings of
International Conference on Automated Software Engineering
(ASE’09), pages 662—664, 2009.

J. Campos, A. Riboira, A. Perez, and R. Abreu. GZoltar: An
eclipse plug-in for testing and debugging. In Proceedings of

(35]

(36]

(37]

(38]

[39]

[40]

[41]

(42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(501

(51]

International Conference on Automated Software Engineering
(ASE’12), pages 378-381, 2012.

A. da Silva Meyer, A.A.F. Garcia, A.P. de Souza, and C.L.
de Souza. Comparison of similarity coefficients used for
cluster analysis with dominant markers in maize (zea mays
1.). Genetics and Molecular Biology, 27:83-91, 2004.

W.E. Wong, V. Debroy, and B. Choi. A family of code
coverage-based heuristics for effective fault localization.
Journal of Systems and Software, 83(2):188-208, 2010.
W.E. Wong, V. Debroy, and Dianxiang Xu. Towards Bet-
ter Fault Localization: A Crosstab-Based Statistical Ap-
proach. [EEE Transactions on Systems, Man, and Cyber-
netics, 42:378-396, 2012.

W.E. Wong and Y. QL. Bp neural network-based effective fault
localization. International Journal of Software Engineering
and Knowledge Engineering, 19(04):573-597, 2009.

W.E. Wong, V. Debroy, R. Golden, Xiaofeng Xu, and B. Thu-
raisingham. Effective Software Fault Localization Using an
RBF Neural Network. [EEE Transactions on Reliability,
61(1):149-169, 2012.

W.E. Wong, V. Debroy, R. Gao, and Y. Li. DStar (D*) - A
More Effective Software Fault Localization Technique. /EEE
Transactions on Reliability, 2013 (accepted for publication.).
X. Xie, W.E. Wong, T. Yueh Chen, and B. Xu. Metamorphic
slice: An application in spectrum-based fault localization.
Information and Software Technology, 55(5):866-879, 2013.
R. Abreu, A. Gonzilez, P. Zoeteweij, and A.J.C. van Gemund.
Automatic software fault localization using generic program
invariants. In Proceedings of ACM Symposium on Applied
Computing (SAC ’08), pages 712717, 2008.

F. Steimann and M. Frenkel. Improving coverage-based local-
ization of multiple faults using algorithms from integer linear
programming. In Proceedings of International Symposium on
Software Reliability Engineering (ISSRE’12), pages 121-130,
2012.

A. Perez. Dynamic Code Coverage with Progressive Detail
Levels. MSc Thesis, Faculdade de Engenharia da Universi-
dade do Porto, 2012.

A. Perez, A. Riboira, and R. Abreu. A topology-based model
for estimating the diagnostic efficiency of statistics-based
approaches. In Proceedings of International Workshop on
Program Debugging (IWPD’12), pages 171-176, 2012.

B. Liblit, M. Naik, A.X. Zheng, A. Aiken, and M.I. Jordan.
Scalable statistical bug isolation. SIGPLAN Not., 40(6):15—
26, 2005.

C. Liu, L. Fei, X. Yan, J. Han, and S. P. Midkiff. Statistical
debugging: A hypothesis testing-based approach. /IEEE Trans-
actions on Software Engineering, 32(10):831-848, 2006.

R. Abreu, P. Zoeteweij, and A.J.C. van Gemund. Spectrum-
based multiple fault localization. In Proceedings of In-
ternational Conference on Automated Software Engineering
(ASE’09), pages 88-99, 2009.

R. Abreu and A.J.C. van Gemund. A low-cost approximate
minimal hitting set algorithm and its application to model-
based diagnosis. In Proceedings of Symposium on Abstrac-
tion, Reformulation, and Approximation (SARA’09), 2009.
N. Cardoso and R. Abreu. A Kernel Density Estimate-based
Approach to Component Goodness Modeling. In Proceedings
of AAAI Conference on Artificial Intelligence (AAAI’13),2013
(to appear).

J. de Kleer. Diagnosing multiple persistent and intermittent
faults. In Proceedings of International Joint Conference on
Artificial Intelligence (IJCAI’09), pages 733-738, 2009.

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

J. de Kleer and B.C. Williams. Diagnosing multiple faults.
Artificial Intelligence, 32(1):97-130, 1987.

W. Mayer and M. Stumptner. Model-Based Debugging State
of the Art And Future Challenges. Electronic Notes in
Theoretical Computer Science, 174(4):61-82, 2007.

W. Mayer and M. Stumptner. Evaluating Models for Model-
Based Debugging. In Proceedings of International Confer-
ence on Automated Software Engineering (ASE’08), pages
128-137, 2008.

G. Friedrich, M. Stumptner, and F. Wotawa. Model-based
diagnosis of hardware designs. Artificial Intelligence, 111(1-
2):3-39, 1999.

G. Friedrich, M. Stumptner, and F. Wotawa. Model-based
diagnosis of hardware designs. In Proceedings of European
Conference on Artificial Intelligence (ECAI’96), pages 491—
495, 1996.

P. Cousot and R. Cousot. Abstract Interpretation: A unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. In Proceedings of Symposium
on Principles of Programming Languages (POPL’77), pages
238-252, 1977.

W. Mayer and M. Stumptner. Model-based debugging using
multiple abstract models. In Proceedings of International
Workshop on Automated and Analysis-Driven Debugging
(AADEBUG’03), pages 55-70, 2003.

W. Mayer, R. Abreu, M. Stumptner, and A.J.C. van Gemund.
Prioritising model-based debugging diagnostic reports. In
Proceedings of International Workshop on Principles of Di-
agnosis (DX’08), pages 127-134, 2008.

R. Abreu, W. Mayer, M. Stumptner, and A.J.C. van Gemund.
Refining spectrum-based fault localization rankings. In Pro-
ceedings of Symposium on Applied Computing (SAC’09),
pages 409-414, 2009.

V. Debroy and W.E. Wong. A consensus-based strategy to
improve the quality of fault localization. Software: Practice
and Experience, 2011.

C. Parnin and A. Orso. Are automated debugging tech-
niques actually helping programmers? In Proceedings of
International Symposium on Software Testing and Analysis
(ISSTA’11), pages 199-209, 2011.

