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Effect of material and structural factors on fracture behaviour of 

mineralized collagen microfibril using finite element simulation 

 
 
ABSTRACT 

Bone is a multiscale heterogeneous material and its principal function is to support the body 

structure and to resist mechanical loads without fracturing. Numerical modelling of 

biocomposites at different length scales provides an improved understanding of the 

mechanical behaviour of structures such as bone, and also guides the development of 

multiscale mechanical models. Here, a three-dimensional nano-scale model of mineralized 

collagen microfibril based on the finite element method was employed to investigate the 

effect of material and structural factors on the mechanical equivalent of fracture properties. 

Fracture stress and damping capacity as functions of the number of cross links were obtained 

under tensile loading conditions for different densities and Young’s modulus of the mineral 

phase. The results show that the number of cross-links and the density of mineral as well as 

Young’s modulus of mineral have an important influence on the strength of mineralized 

collagen microfibrils which in turn clarify the bone fracture on a macro-scale. 

 
Keywords: nano-scale model; cross-links; finite element method; fracture mechanical 

properties 



 

1. INTRODUCTION 

Bone is a multiscale material with a very complicated hierarchical structure. This hierarchical 

structure has different scales or levels, specific interactions between these levels and a highly 

complex architecture in order to fulfil bone biological and mechanical functions (Barkaoui 

and Hambli, 2011; Sergey, 2010). Katz et al. and Feng et al. (Katz et al.,1987; Feng et al., 

2010) divide the hierarchical structure into five levels that have been widely accepted in the 

scientific community: (i) a Nano structural level (ranging from a few nanometres to several 

hundred nanometres) - bone at this level can be considered as a multi-phase nano-composite 

material consisting of an organic phase (32 - 44% of bone volume), an inorganic phase (33 - 

43% of bone volume), and water (15 - 25% of bone volume); (ii) a Sub-micro-structural level, 

also called a single lamella level (spanning from one to a few microns); (iii) a Micro-

structural level (from tens to hundreds of microns), or a single osteon and an interstitial 

lamella level; (iv) a Meso-structural level (from several hundred microns to several 

millimetres), or the cortical bone level; and finally, (v) a Macro-structural level, or whole 

bone level (several millimetres to several centimetres, depending on the species). 

Bone strength is governed by the characteristics of collagen, including the collagen cross-

links that have an important role in the reinforcement of bone strength. The biomechanical 

effects of collagen depend largely on the cross-linking (Knott and Bailey, 1998; Viguet-Carrin, 

2006). The strength and stability during maturation of the microfibrils are attained by the 

development of intermolecular cross-links (Stančíková et al., 1999). Experimental evidence 

(Allen et al., 2008; Wu et al., 2003; Boxberger and Vashishth, 2004) has shown that collagen 

cross-linking in bone tissue significantly influences its deformation and failure behaviour. 

Additionally, experiments in vitro (Wu et al., 2003; Boxberger and Vashishth, 2004) and in 

vivo (Viguet-Carrin, 2006a; Allen et al., 2008; Wu et al., 2003) revealed that an increases in 

the number of cross-links is associated with the enhancement of certain mechanical properties 

(strength and stiffness) and a reduction in others (energy absorption). There are two types of 

cross-links: enzymatically and non-enzymatically (Seigmund et al., 2008). Considering the 

macroscopic response of bone, enzymatic cross-linking has been related to improving 

mechanical properties (Banse et al., 2002) whereas non-enzymatic cross-linking prevents 

energy absorption by micro damaged formations and may accelerate brittle fracturing 

(Vashishth et al., 2004; Tang et al., 2007; Nyman et al., 2007; Vashishth, 2007). Natural 

cross-linking gives collagen a high tensile strength and proteolytic resistance (Friess, 1998). 



 

Nano-scale failure properties of the mineralized collagen microfibril were studied here and 

the mechanical and structural parameters of all phases analysed. The cross-linking is one of 

the most important structural elements of type I collagen in mineralized tissues that provides 

the fibrillar structure and contributes to various mechanical properties, such as tensile strength, 

fracture toughness and viscoelasticity (Elham and Iwona, 2012). Fritsch et al., (Fritsch et al., 

2009) used the multiscale micromechanics elastic theory in an elasto-plastic analysis to 

predict the strength of cortical bone. These authors found that the failure of bone material 

initiates at the nano-scale by a ductile sliding of hydroxyapatite (HA) crystals along layered 

water films, followed by a rupture of the collagen cross-links. Siegmund et al., (Seigmund et 

al., 2008) proposed a model that addresses the effect of collagen cross-linking on the 

mechanical behaviour of a mineralized collagen fibril. Buehler (Buehler, 2008) extended a 

Molecular Dynamics Model of a single collagen molecule to an individual collagen fibril to 

obtain its mechanical response under uniaxial tension. The results showed that the 

deformation and failure mechanisms of a collagen fibril are strongly influenced by the cross-

linking density. Barkaoui and Hambli (Barkaoui and Hambli, 2011) proposed a three-

dimensional (3D) finite element method (FEM) model to represent the structure of the 

mineralized collagen microfibril with three constituents: mineral, tropocollagen (TC) 

molecules and cross-links. This model was used to study the elastic and mechanical failure 

behaviour of mineralized collagen microfibril under a varying number of cross-links, based on 

an array of five collagen molecules that are cross-linked together by spring elements and 

embedded in a mineral matrix. 

In this study, the 3B FEM model proposed by Barkaoui and Hambli (2011, 2012) was 

enhanced to allow dapping and fracture stress calculations, which were used to study the 

failure of mineralized collagen microfibril as well as the biomechanical effect of the 

constituent properties on the fracture behaviour. The enhanced 3D FEM model of mineralized 

collagen microfibril proved to be a good solution for bottom-up investigations on structure-

property relationships in human bone. 

 

2. METHODS AND TOOLS 

 
2.1. Mineralized collagen microfibril 
 

The existence of sub-structures in collagen fibrils has been a topic of extensive debate. Recent 

studies have suggested the presence of microfibrils in fibrils (Yang et al., 2012). Experimental 



 

work conducted by Orgel, Fratzl and others have proved that all collagen-based tissues are 

organized into hierarchical structures, where the lowest hierarchical level consists of triple 

helical collagen molecules (Fratzl, 2008; Orgel et al.,  2006; Orgel et al., 2001) and the 

multiscale structure is defined as TC/fibrils/fibres. Also, other authors have observed a 

longitudinal microfibrillar structure with a width of 4 - 8 nm (Habelitz et al., 2002; Baselt et 

al., 1993). Three-dimensional image reconstructions of 36 nm-diameter corneal collagen 

fibrils also showed a 4 nm repeat in a transverse section that was related to the microfibrillar 

structure (Holmes et al., 2001). Using X-ray diffraction culminating in an electron density 

map, Orgel et al. (Orgel et al., 2001) suggested the presence of right-handed super-twisted 

microfibrillar structures in collagen fibrils. The microfibril is a helical assembly of five TC 

molecules that offset one another with an apparent periodicity of 67 nm. These five molecules 

create a cylindrical formation with a diameter of 3.5-4 nm however its length is unknown. 

Smith (Smith, 1968) suggested that each microfibril consists of exactly five molecules in a 

generic circular cross section (Figure 1). Lee et al., (Lee et al., 1996) suggested that collagen 

microfibrils have a quasi-hexagonal structure. Barkaoui and Hambli (Barkaoui and Hambli, 

2011) also used the cylindrical representation of Smith's microfibril model (Figure 1) to 

develop their 3D finite element model of microfibrils. This choice was based on the fact that 

the mechanical behaviour of microfibrils under tensile load depends mainly on the area of the 

cross section, while the shape has no influence under tensile load functions. 

 

[Insert Figure 1 about here] 

 

As aforementioned, bone is a complex composite material consisting mainly of collagen (TC 

molecules) and mineral (HA crystals). Figure 2 illustrates that collagen is a very resistant 

material that give bone its toughness. The Figure also depicts that the mineral HA is very rigid, 

which gives bone its rigidity and resistance to fracture. As such, the mechanical properties of 

bone depend on the characteristics of its basic components and the interaction between them 

(Li et al., 2003; Walsh and Guzelsu, 1994). 

 

[Insert Figure 2 about here] 

 

The fundamental components of the microfibril can be distinguished as follows: 



 

(a) Collagen: Long cylindrically shaped TC molecules establishing a continuum in which 

mineral crystals are embedded. Lees and Fratzl et al. (Lees, 1981; Fratzl et al., 1993) reported 

that the effective molecular diameter of dry TC molecules is 1.09 nm and that of wet TC 

molecules is about 1.42-1.5 nm. Hydration affects the packing, as molecules are closer, and 

the sliding between molecules becomes more difficult due to increased adhesion. The length 

of TC molecules is about 300 nm (Buehler, 2008; Gautieri et al., 2011), and they are self-

assembled in the form of microfibrils. 

(b) Mineral: Plate or needle-shaped mineral crystals consisting of impure HA (Ca10 [PO4]6 

[OH]2) with a typical thickness of 1-5 nm, and length of 25-50 nm (Weiner and Wagner, 

1998). This lengthiest dimension is typically found to be oriented parallel to the collagen 

molecules. As reported by some authors, HA mineral is stiff and extremely fragile, exhibiting 

elastic isotropic behaviour (Seigmund et al., 2008; Pidaparti et al, 1996). 

The mechanical elastic properties of the TC molecules and the mineral phase used in this 

study were taken from the literature. It should be noted that a wide range of values has been 

proposed in different studies: with the TC molecule values ranging from 0.35 to 12 GPa 

(Gautieri et al., 2011; Sun et al., 2002) and from 62.75 to 170 GPa for HA mineral (Weiner 

and Wagner, 1998; Cowin, 1989; Currey, 1969). The failure properties of TC molecules and 

mineral reported in literature (Akao et al., 1981; Shareef et al., 1993) are shown in Table 1. 

 

[Insert Table 1 about here] 

 

Researchers have also used different values of volume fraction for the mineral crystals, 

varying from 32 to 52% (Nikolov and Raabe, 2008). Some values of the mineral volume 

fraction reported in the literature are listed in Table 2. 

 

[Insert Table 2 about here] 

 

(c) Different non-collagenous organic molecules: These are predominantly lipids and proteins 

that regulate HA mineralization, probably by proteins supporting or inhibiting mineralization, 

and possibly also by lipids (Urist et al., 1983). 

(d) Water: Provides the liquid environment for the biochemical activity of the non-

collagenous organic matter. Water at ultrastructure level of bone exists in the form of bound 



 

water in the collagen network, including the collagen-mineral interface, and tightly bound 

water in the mineral phase (Wang and Puram, 2004).  

(e) Cross-links: Cross-linking of TC molecules (Figure 2) plays a critical role in bone 

microfibrils, fibrils and fiber connectivity (Fratzl and Weinkamer, 2007; Gelse et al., 2003; 

Gupta et al., 2003; Wang et al., 2002). The formation of these cross-links is mediated by the 

enzyme lysine oxidase (Eyre et al., 2008). The formation of intermolecular covalent cross-

links has significant effects on the material properties, mainly on the strength and brittleness 

(Buehler, 2008), and on the mechanical behaviour (Bailey, 2001; Saito and Marumo, 2009). 

To study the mechanical behaviour of mineralized collagen microfibril, Barkaoui and Hambli 

(Barkaoui and Hambli, 2011) used the rheological model (Figure 3(c)) proposed by Uzel and 

Buehler (Uzel and Buehler, 2011) to model the cross-links by the FEM. 

As the present work focused on the elastic regime of mineralized collagen microfibril and 

initiation of fracture, only the elastic regime (Figure 3 (c)) was taken into consideration. 

Additionally, linear spring elements with stiffness crk =1181.143e-11 N/nm (Barkaoui and 

Hambli, 2013) were integrated into the model in order to attain the FEM behaviour of a cross-

link driven by a constitutive model. 

 

[Insert Figure 3 about here] 

 

2.2. 3D FEM model 

Barkaoui and Hambli (Barkaoui and Hambli, 2013; Hambli and Barkaoui, 2012) used a 3D 

model with a cylindrical form of the mineralized collagen microfibril to perform a FEM 

analysis in ABAQUS (Dassault Systèmes, USA) software. The 3D geometry model was 

meshed using tetrahedral elements and solved via the ABAQUS standard scheme (Barkaoui 

and Hambli, 2013). For the boundary conditions, it was assumed that the mineralized collagen 

microfibril retains its cylindrical form during elastic loading. The left surface of the 

microfibril was encastred and a uniaxial force ( F ) along the axis of the collagen molecules 

was applied to the right surface of the microfibril. Deformation and elongation l∆ were 

computed. 

The original Barkaoui and Hambli’s modelling of mineralized collagen microfibril was 

improved here in order to calculate the damping capacity and fracture stress. 

 



 

2.3. Microfibril fracture evaluation 

The current study focuses on the elastic and fracture behaviour of the mineralized collagen 

microfibril. 

An approach to calculate the apparent tensile stress appσ and the corresponding strain appε  
applied to the microfibril is to consider: 

 

app
F
A

σ =            (1) 

 

and 

 

0
app

l
l

ε ∆
= ,           (2) 

 

where A , l∆  and 0l  are the apparent area of the microfibril, the total microfibril elongation 

computed by the FEM analysis and the initial length of the microfibril, respectively. 

The HA crystals which gives the bone its stiffness and resistance are much stronger than the 

TC molecules. Thus, the fracture of mineral is directly associated to the rupture of the 

mineralized collagen microfibril. As the tensile strength of HA crystals is , 52.2 MPault t
HAσ = , 

we considered that the mineralized collagen microfibril is broken when appσ  reaches this 

value. As such, the stress fracture was calculated as: 

 

( ) R
R

Fstructure
A

σ = ,          (3) 

 

where force RF  corresponds to the force that leads to a von Mises stress in HA mineral higher 

than or equal to the tensile strength of HA mineral, and A  is the microfibril section. 

 

2.4. Mineral-collagen interface 

Previous numerical studies using mineral–collagen interface modelling have indicated that the 

interfacial de-bonding of the mineral and collagen phases may have a significant influence on 

the pattern of micro damage progression, i.e., linear microcracks or diffuse damage, in bone 



 

under tensile deformation but not on fracture initiation (Dong et al., 2009). Several authors 

have developed FEM models to investigate the influence of the mineral–collagen interface on 

a fracture of mineralized collagen fibril (Qing et al., 2011; Dong et al., 2010). The simulations 

conducted were generally based on cohesive elements to model the de-bonding and sliding 

behaviour observed for the initiation of the fracture at the interface. In the current 

investigation, only the first stage of the fracture was considered; that is, the fracture initiation. 

When the mineral reaches its critical value of fracture, fracturing of the microfibril takes place. 

Sliding at the mineral and collagen interface may occur prior and/or after the mineral cracking, 

which can affect the softening of the mineralized collagen fibril (Siegmund et al., 2008; 

Buehler, 2008). Here, we focused on the role of cross-links in the fracture properties of 

mineralized collagen microfibril, and therefore, the effects of the mineral–collagen interface 

could be neglected. 

 
2.5. Damping capacity 

 
The damping capacity expresses the facility that a material can dissipate vibrational energy 

(Figure 4). We applied this principle to study the effect of cross-links on the damping capacity 

of the bone on the nano-scale. 

 

[Insert Figure 4 about here] 

 

An elastically loaded material with a constraint σ stores energy per volume unit given as: 

 

2

0

1
2

d E
ε

σ ε ε=∫ ,          (4) 

and in a cycle of loading and unloading, it dissipates energy formulated as: 

 

U  σdε∆ =∮ ,           (5) 

 

Therefore, the damping capacity was calculated here as: 

 

2
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U
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which was calculated using the analytic expression: 
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,         (7) 

 

where N  is the number of cross-links, ( )max Nσ the maximum stress given by the FEM 

simulation for the different number of cross-links, and ( )max 0Nσ =  is the maximum stress of 

the microfibril without cross-links. 

 

3. RESULTS AND DISCUSSION 

 
This study aimed to investigate the influence of the number of cross-links, Young’s modulus 

of HA mineral ( mE ) and HA mineral volume fraction ( mV ) on the failure properties of 

mineralized collagen microfibril. The improved FEM model was used under small strain 

( 5%ε < ) with a well-defined configuration in order to validate the results and data available 

in terms of characterization of the ultrastructure of bone under tension load. 

Two cases were addressed: wet collagen and dry collagen. Figure 5 illustrates the stress-strain 

curves obtained for the FEM model configuration corresponding to 114 GPamE = and a 

constant Young's modulus of the collagen phase 2.7 GPacE = . 

 

[Insert Figure 5 about here] 

 

A very close agreement was found for hydrated collagen microfibril in the small strain regime 

between the FEM based results and experimental ones obtained by X-ray diffraction (Sasaki 

and Odajima, 1996) and also by atomic force microscopy (AFM) (Van der Rijt et al. 2006; 

Aladin et al., 2010). 

To study the influence of Young’s modulus of HA mineral on the fracture behaviour of the 

microfibril, we chose a constant Young's modulus of the collagen phase 2.7 GPacE =  and 

constant mineral volume fraction of 48%mV = . 



 

Figure 6 depicts that the equivalent fracture stress of the microfibril depends on Young's 

modulus of the mineral phase and the number of cross-links. It should be noted that, as we are 

dealing with a complex and living material, the values found are approximate and depend on 

several factors, such as age, phase properties, number of cross-links, geometry, bone mineral 

density BMD, type of collagen and disease. 

Figure 7 clarifies that the damping capacity of the microfibril depends on the number of cross-

links. On the contrary, the effect of Young’s modulus of HA mineral revealed to be 

insignificant.  

 

[Insert Figures 6 and 7 about here] 

 

Figure 8 illustrates that Von Mises stress increases when the number of cross-links increases, 

which means that the microfibril becomes more rigid and resistant. 

 

[Insert Figure 8 about here] 

 

In the second investigation, the improved FEM model was used to study the influence of the 

mineral volume fraction of phase and of the number of cross-links on the failure behaviour of 

the microfibril. Three FEM models with different distribution phases were built. The idea was 

to vary the TC molecule diameter from 1.2 to 1.5 nm, with Young's modulus of the two 

constant phases ( 114 GPamE =  and 2.7 GPacE = ).  

Figures 9 and 10 demonstrate that the equivalent fracture stress and damping capacity depend 

largely on both mineral volume fraction and the number of cross-links. 

 

[Insert Figures 9 and 10 about here] 

 

Figure 11 depicts the initiation of the microfibril cracking with the variation of the number of 

cross-links. This Figure suggests that the number of cross-links affects the acceleration of 

cracking, which can be explained by the fact that as the number of cross-links increases, the 

microfibril rigidity increases. 

 

[Insert Figure 11 about here] 



 

 

The graphs in Figures 6, 7, 9 and 10, show that the number of cross-links has the highest 

influence on the increase of the fracture stress. Increasing the number of cross-links leads to a 

significant non-linear increase in the microfibril stiffness. However, when 20N > , the 

fracture stress of microfibril and the damping capacity do not depend on the number of cross-

links, and they remain at a constant value or "plateau value". The same phenomenon was also 

observed by Buehler (Buehler, 2008) using Molecular Dynamic (MD) computation. Buehler 

found that the yield and the fracture stress depend on the cross-link density β . The plateau 

value that was obtained by our findings is explained by a change in the molecular deformation 

mechanism from predominantly shear (when 25β < ) to molecular fracture (when 

25β > ).This plateau value can also be explained by the fact that whenever the number of 

cross links increases, their stiffness increases up to a threshold value at which the behaviour 

of all collagen cross-links becomes insensitive to this number of cross links to any further 

increase. In the macroscopic response of bone, cross-links have been coupled to improve 

mechanical properties (Banse et al., 2002) and prevent energy absorption by micro-damage 

formation and may accelerate brittle fracture (Tang et al., 2007; Nyman et al., 2007). The 

same results were found here for the nano-scale collagen microfibril. 

Studies in vitro (Viguet-Carrin et al., 2006; Wu et al., 2003) and in vivo (Allen et al., 2008) 

have reported that increases in the cross-linking numbers are associated with enhancement of 

some mechanical properties and reductions of others. These experimental data are limited in 

their ability to define individual biomechanical effects of altered cross-linking numbers 

(Buehler, 2008). The study of the effect of cross-links conducted here is more precise and 

realistic because the used FEM model success to combines the collagen, mineral and cross-

links. Moreover, the improved model is able to varying the mechanical and geometry 

properties of each phase and to foresee their influence on the corresponding equivalent 

properties of the collagen microfibril. 

This study also shows that collagen cross-linking in bone tissue significantly affects the bone 

mechanical properties. For example, an increase in the amount of cross-linking is not only 

associated to an improvement in strength and stiffness, but also to a reduction of energy 

absorption and ductility. The microfibril structure is stabilized through intermolecular cross-

links joining two TC molecules. Mutations in collagen structure and changes in collagen 

cross-linking pattern have been observed in some bone diseases such as osteoporosis and 



 

osteogenesis (Elham and Iwona, 2012). The challenge is to define which parameters to use to 

capture the actual nature of cross-linking of collagen molecules in healthy or diseased bone. 

 

4. CONCLUSION 

 
Here, the nano-mechanical properties at microfibril failure were investigated using 3D FEM 

simulation. Regarding the macroscopic scale, consistent and similar results to the ones found 

in the literature were achieved. The findings here demonstrate the important role of cross-

links for good mechanical properties and the prevention of energy absorption, which increases 

the damping capacity. This work also gives an improved understanding of bone on a nano-

scale and a closer look at the upper level scale which is the collagen fibril. 

With the 3D improved FEM model we aimed to model the microfibril realistically, but this 

model is still limited owing to the specific arrangement of collagen molecules, the orientation 

of mineral crystals, the complex distribution of each phase and in the manner of modelling the 

two types of cross-links. Besides, the model does not take into account the mineral-collagen 

interface, which is also an issue to study in the near future. 
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TABLE CAPTIONS 
 

Table 1 - Uniaxial failure properties of hydroxyapatite and collagen. 

 

Table 2 - HA mineral volume fractions reported in the literature. 



 

FIGURE CAPTIONS 
 
Figure 1 - Microfibril structure: (a) Illustration of assembling TC molecules and the mineral 

crystals (adapted from Rho et al., 1998), (b) Double period model of cylindrical microfibril 

composed of (i) five TC molecules shifted by the interval D forming a cylindrical shape, (ii) 

mineral phase filling the gap space and the extra-collagenous space, and (iii) Cross-links 

joining two TC molecule ends (Hambli and Barkaoui, 2012). 

 

Figure 2 - Toughness vs. stiffness diagram for bone and biological materials mainly 

composed of TC and HA (adapted from Yuan et al., 2011). 

 

Figure 3 - Collagen cross-links: (a) Location of enzymatic cross-links (Bailey et al., 1998), (b) 

finite element modelling of cross-links, (c) Rheological model of the non-linear spring 

element representing a cross-link behaviour with three regimes: (i) elastic behaviour, (ii) 

delayed spring response and (iii) friction due to the intermolecular slippage (adapted from 

Uzel and Buehler, 2011). 

 

Figure 4 - Elastic energy and damping capacity. 

 

Figure 5 - Microfibril tensile stress-strain behaviour at small strain regime for different 

models and TC states (dry and wet): predicted 3D FEM and experimental results (SAX) from 

(Sasaki and Odajima, 1996), by atomic force microscopy (AFM) from (Van der Rijt et al. 

2006; Aladin et al., 2010) and molecular dynamics (MD) computation from (Li et al., 2003). 

 

Figure 6 - Fracture stress of a collagen microfibril as a function of the cross-link number 

under different HA mineral Young’s modulus (Em). 

 

Figure 7 - Damping coefficient of a collagen microfibril as a function of the cross-link 

number (N) under different mineral fraction volumes (Vm). 

 

Figure 8 - FEM Von Mises stress (N/nm2) contours under different mineral cross-link 

numbers (N) and 114 GPamE = , 2.7 GPacE =  and 48%mV = . 

 



 

Figure 9 - Fracture stress of a collagen microfibril as a function of the cross-link number and 

varying HA mineral volume fraction (Vm). 

 

Figure 10 - Damping coefficient of a collagen microfibril as a function of the HA mineral 

volume fraction with different cross-link numbers (N). 

 

Figure 11 - Mineralized collagen microfibril crack initiation for different number of cross-

links (N). 



 

TABLES 
 

Table 1 
 

 Uniaxial tensile 

strength (MPa) 

Uniaxial shear 

strength (MPa) 

HA Crystal , 52.2ult t
HAσ =  ,s 80.3ult

HAσ =  

TC molecules , 144ult t
coσ =  NA 

 
Table 2 

Reference HA mineral volume fraction (%) 

Currey, 1969 

Lees, 1987 

Sasaki et al., 1991 

Wagner and Weiner, 1992 

Jager and Fratzl, 2000 

Kotha and Guzelso, 2000 

Ji and Gao, 2000 

Nikolov and Raabe, 2008 

50 

45 

50 

35 

43 

50 

45 

52 
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