

'A JANGADA DE PEDRA' – Geografias Ibero-Afro-Americanas

Atas do Colóquio Ibérico de Geografia

11 a 14 de Novembro Departamento de Geografia, Universidade do Minho Campus de Azurém Guimarães, Portugal 'A Jangada de Pedra'. Geografias Ibero-Afro-Americanas. Atas do XIV Colóquio Ibérico de Geografia

TÍTULO: 'A JANGADA DE PEDRA' – Geografias Ibero-Afro-Americanas. Atas do Colóquio Ibérico de Geografia

COORDENADORES: António Vieira e Rui Pedro Julião

EDITORES: Associação Portuguesa de Geógrafos e Departamento de Geografia da Universidade do Minho

ISBN: 978-972-99436-8-3 / 978-989-97394-6-8

ANO DE EDIÇÃO: 2014

GRAFISMO DA CAPA: Instituto Nacional de Estatísticas

COMPOSIÇÃO/EXECUÇÃO GRÁFICA: Flávio Nunes, Manuela Laranjeira, Maria José Vieira, Ricardo Martins

INSTITUIÇÕES ORGANIZADORAS:

Universidade do Minho

Departamento de Geografia da Universidade do Minho

Associação Portuguesa de Geógrafos

Associación de Geógrafos Españoles

Centro de Estudos em Geografia e Ordenamento do Território

Os efeitos da fragmentação da Floresta Natural sobre os padrões de diversidade de líquenes epífitos — estudo de caso na Serra da Aboboreira

C. Cruz^(a), H. Madureira^(b), J. Marques^(c)

Resumo

Este trabalho tem como objetivos evidenciar diferenças de diversidade e composição das comunidades de líquenes epífitos na Serra da Aboboreira e avaliar os efeitos decorrentes da fragmentação e das características da paisagem sobre a diversidade e composição destas comunidades. Os resultados relativos à conectividade das manchas indiciaram que locais pertencentes ao mesmo componente de conectividade não possuíam composições liquénicas semelhantes, sugerindo que diferenças métricas e fisiobiogeográficas inviabilizam o estabelecimento dos propágulos liquénicos. A análise da relação entre estrutura da mancha e riqueza e composição liquénica mostrou que a riqueza e composição das comunidades apresentavam diferenças consideráveis entre os diferentes locais e que estavam correlacionadas com a área do núcleo e com o círculo circunscrito relacionado, revelando ainda a presença de comunidades esciófilas bem estabelecidas. A crescente fragmentação da paisagem, com alteração das características das manchas de carvalhal, evidencia a urgência de medidas de conservação e recuperação da floresta natural nesta região.

Palavras chave: Fragmentação, Métricas, Líquenes, Serra da Aboboreira, Portugal

1. Introdução

A extinção de espécies é uma realidade inquestionável, sendo estimada uma extinção de cerca de 50% de todas as espécies nos próximos 50 anos (Koh et al., 2004). A situação é particularmente preocupante para as espécies liquénicas. Em 1982, a Associação Internacional de Liquenologia definiu os líquenes como uma "associação entre um fungo e um simbionte fotossintético de que resulta um talo estável com uma estrutura específica". Isto representa um enorme sucesso evolutivo e estima-se que existam aproximadamente 14.000 espécies liquénicas no Mundo (Brodo et al., 2001).

O processo de estabelecimento liquénico depende de muitos fatores ambientais. O clima e a sua interação com a morfologia explicam a maioria das variações na composição das comunidades liquénicas, tais como a elevação, a topografia, o clima, a sombra e a humidade (Nash III, 2001). A fragmentação dos habitats e outras alterações humanas do uso do solo, tais como, a urbanização, a intensidade agrícola ou pastorícia, a gestão florestal, são cada vez mais importantes enquanto previsores dos padrões de distribuição liquénica.

Os objetivos deste trabalho visam detetar diferenças de diversidade e composição das comunidades de líquenes epífitos na área de estudo e avaliar os efeitos decorrentes da fragmentação e das características da paisagem da Aboboreira sobre a diversidade e composição destas comunidades.

⁽a) Faculdade de Letras, Universidade do Porto, claudiapteruz@hotmail.com

⁽b) CEGOT/Faculdade de Letras, Universidade do Porto, hmadureira@letras.up.pt

⁽c) CIBIO/Faculdade de Ciências, Universidade do Porto, joanamarques@fc.up.pt

2. Metodologia

A delimitação da área de estudo fez-se com base no Plano Regional de Ordenamento Florestal do Tâmega (PROF-T, 2007), do qual se selecionou a sub-região homogénea da Aboboreira (Figura 1a).

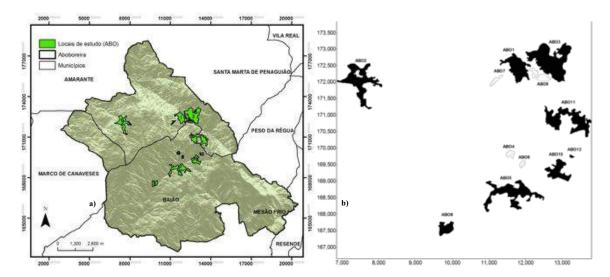


Figura 1 - Localização das áreas de estudo (ABO). a) Sub-região homogénea da Aboboreira b) Locais de estudo (ABO). Fonte: CAOP11, PROF-T e MDT.

A seleção dos locais de amostragem foi feita com base na Carta de Ocupação do Solo de 1990 (IGP, 1990), tendo sido selecionados todos os povoamentos puros de carvalho e as florestas mistas com predomínio de carvalho, perfazendo um total de 12 locais de estudo (Figura 1b). Procedeu-se posteriormente a uma análise fisiobiogeográficas e uma análise quantitativa (métricas da paisagem).

A análise fisiobiogeográfica baseou-se na localização, altitude, inclinação do terreno, orientação, percentagem de cobertura e diâmetro médio à altura do peito das árvores presentes. Foram ainda selecionadas aleatoriamente, por local, 5 árvores vivas (*Quercus robur* ou *Quercus pyrenaica*) para amostragem. Finalmente compilaram-se os dados reprodutivos, vegetativos e ecológicos para cada uma das espécies de líquenes encontradas na área de estudo.

Para a análise das métricas da paisagem recorreu-se ao *software* FRAGSTATS 3.4 e selecionaram-se as métricas: área (AREA), perímetro (PERIM), raio de giração (GYRATE), razão perímetro-área (PARA), índice de forma (SHAPE), dimensão fractal (FRAC), círculo circunscrito relacionado (CIRCLE), índice de contiguidade (CONTIG), área de núcleo (CORE), número de núcleos (NCORE) e percentagem de áreas de núcleo (CAI). Na análise dos resultados foram usados testes paramétricos e não paramétricos, testes de correlação e análise multivariada, nomeadamente técnicas de ordenação e análise de clusteres, executadas com recurso aos *softwares* SPSS, XLSTAT e PAST. Com o intuito de determinar se locais próximos são liquenicamente semelhantes utilizou-se o Teste de Mantel.

3. Análise e discussão de resultados

Os resultados da análise quantitativa mostraram que existe uma grande variação de área entre manchas, sendo as dos locais de estudo ABO2, ABO3, ABO5 e ABO11 as mais complexas e alongadas, e este resultado é reforçado pelos valores obtidos pelas métricas GYRATE, SHAPE e CIRCLE (Tabela 1). Os ABO4, ABO6, ABO7, ABO9 e ABO12 são manchas pequenas que não apresentam área de núcleo (CORE), o que implica que toda a mancha é considerada ecótono. Todos os locais apresentam valores de índice de contiguidade superiores a 0.5 significando que existe uma boa conectividade entre manchas.

	AREA	PERIM	GYRATE	PARA	SHAPE	FRAC	CIRCLE	CONTIG	CORE	NCORE	CAI
ABO1	32.7600	4680	242.1659	142.8571	2.0172	1.1126	0.5960	0.9192	9.2400	1	28.2051
ABO2	48.9600	9360	353.3959	191.1765	3.3429	1.1843	0.7205	0.8916	2.9600	2	6.0458
ABO3	73.3600	7920	370.4178	107.9607	2.3023	1.1241	0.5169	0.9392	25.4400	2	34.6783
ABO4	3.5600	1080	74.7277	303.3708	1.4211	1.0684	0.3875	0.8277	0.0000	0	0.0000
ABO5	50.0800	10360	396.3896	206.8690	3.6479	1.1977	0.7713	0.8831	3.5200	5	7.0288
ABO6	2.0400	840	59.8003	411.7647	1.4000	1.0777	0.6392	0.7712	0.0000	0	0.0000
ABO7	3.0800	1360	107.4647	441.5584	1.8889	1.1280	0.8310	0.7532	0.0000	0	0.0000
ABO8	12.3600	2120	142.3273	171.5210	1.4722	1.0700	0.5344	0.9013	1.0800	1	8.7379
ABO9	9.3200	2760	162.2774	296.1373	2.2258	1.1425	0.7434	0.8326	0.0000	0	0.0000
ABO10	21.9200	4280	212.2829	195.2555	2.2766	1.1344	0.5237	0.8911	0.9200	1	4.1971
ABO11	49.3200	8800	395.0850	178.4266	3.0986	1.1742	0.7286	0.8978	4.8800	2	9.8946
ABO12	0.7600	480	34.7932	631.5789	1.3333	1.0715	0.4624	0.6579	0.0000	0	0.0000

Tabela 1 - Resultados da análise das métricas da paisagem por local de estudo.

De modo a determinar que espécies aparecem conjuntamente e em que locais, foi realizada uma análise de clusteres. Os resultados revelaram a formação de 9 grupos em que os grupos 1, 3, 6, 7 e 9 são constituídos por espécies bastante fotófilas e nitrotolerantes (*Parmelia sulcata, Melanelia glabratula, Cetraria clorophylla, Hypogymnia physodes*, entre outras), frequentes em ambientes marginais, expostos e antropizados. Os grupos 2, 4, 5 e 8 são constituídos pelas espécies típicas da comunidade *Lobarion pulmonariae* (*Lobaria scrobiculata, L. amplíssima, Nephroma laevigatum*, etc.) e têm em comum o facto de serem higrófitas, esciófilas e aparecerem em habitats com boas condições de conservação. Estas espécies são indicadoras de continuidade ecológica e são pouco tolerantes à contaminação atmosférica.

Ao analisar a distribuição dos grupos por local de estudo verificou-se que o grupo 6 é um dos mais frequentes e com exceção do ABO2 e ABO12 é o grupo dominante (Figura 2). O local ABO3 apresenta a maior frequência dos grupos 4 e 5 e uma das maiores do grupo 2, espécies indicadoras de continuidade ecológica, e a menor frequência do grupo 1, espécies fotófilas e nitrotolerantes. Os ABO7 e ABO10 possuem uma grande percentagem de espécies dos grupos 1, 3, 7 e 9, grupos constituídos por espécies nitro- e toxitoletantes (Figura 2).

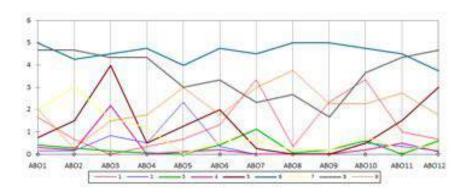


Figura 2 - Gráfico de distribuição dos grupos por local de estudo (ABO).

A relação entre a composição específica e as métricas da paisagem foi avaliada através da Análise de Componentes Principais (PCA). Os resultados do PCA mostram que as variáveis com os pesos mais elevados eram o CORE para o fator 1 (score=0.747) e o CIRCLE para o fator 2 (score=0.454). Para determinar a correlação entre métricas da paisagem e por conseguinte diminuir o número de variáveis procedeu-se ao teste de K-S. Este revelou que a área (r_s =0.906, p <0.0001), o perímetro (r_s =0.937, p <0.0001), a forma (r_s =0.888, p <0.0001), o índice de contiguidade (r_s =0.811, p =0.0002), o grão de giração (r_s =0.965, p <0.0001), o número de núcleos (r_s =0.935, p <0.0001), o índice de área do núcleo (r_s =0.848, p =0.0001) e a razão perímetro-área (r_s =-0.811, p =0.0001) estão fortemente relacionados com a área do núcleo (CORE) e que o CIRCLE apenas está correlacionado com o índice de dimensão fractal (r_s =-0.713, p=0.0001).

O PCA revelou ainda a forte correlação dos ABO3, ABO6, ABO8 e ABO9 com o componente 1 e dos ABO2, ABO4, ABO5, ABO7, ABO10, ABO11 e ABO13 com o componente 2 (Tabela 2). O ABO1 é igualmente correlacionado com os dois eixos. Os locais ABO6, ABO8 e ABO9 não possuem núcleo ou a sua área é muito pequena e estão inversamente correlacionados com o fator 1, enquanto o ABO1, com grande área de núcleo, está diretamente correlacionado com o fator. É de relembrar que os ABO8 e ABO9 são os locais com menor riqueza específica caracterizada por espécies fotófilas e nitrotolerantes. O ABO6 não possui núcleo, mas possui espécies associadas a continuidade ecológica, uma explicação poderá passar por este local ter pertencido a uma mancha florestal estável ou à existência de "conectividade histórica", estas espécies encontrar-se-iam distribuídas por áreas que já possuíram conectividade com outras manchas permitindo a sua colonização e persistência ao longo do tempo. O ABO3 é o local mais diverso e rico em termos de número de espécies liquénicas.

Tabela 2 - Co-senos quadrados dos locais.

	ABO1	ABO2	ABO3	ABO4	ABO5	ABO6	ABO7	ABO8	ABO9	ABO10	ABO11	ABO12
Fator 1	0.5	0.212	0.957	0.023	0.016	0.598	0.226	0.659	0.962	0.311	0.278	0.006
Fator 2	0.5	0.788	0.043	0.977	0.984	0.402	0.774	0.341	0.038	0.689	0.722	0.994

Posteriormente verificou-se através da Análise de Redundâncias (RDA) que a riqueza específica e a sua distribuição eram dependentes das métricas da paisagem. Assim e como vimos anteriormente, uma grande área de núcleo está normalmente correlacionada com áreas e perímetros elevados. Manchas com maior área estão por norma associada a maior estabilidade estrutural e a maior isolamento de fatores de perturbação externa, como poluição e gestão florestal, exceção feita às áreas de ecótono (Boudreault et al, 2008; Gauslaa & Solhaug, 1996), o que favorece o aparecimento de espécies esciófilas e higrófilas. Assim se explica a forte correlação (positiva e negativa) destes locais com o CORE e a sua consequente variação em termos de composição e riqueza de espécies liquénicas.

Ao fator 2 estão correlacionados positivamente locais com alguma complexidade de forma (ABO2, ABO5, ABO7 e ABO10) e correlacionados negativamente locais de formas mais simples (ABO4 e ABO12). Locais com formas mais simples possuem, por norma, maior diversidade de espécies, pois são indicativas de florestas estáveis (Boudreault et al., 2008). Neste caso tal não acontece já que o ABO12 e, sobretudo, o ABO4 possuem um número de espécies bastante reduzido. Este resultado pode significar uma menor variação na forma devido ao pequeno tamanho das manchas e não à maior estabilidade florestal. A reduzida área dos locais leva a uma ausência de núcleo limitando as espécies a áreas de ecótono. Os ABO2, ABO5, ABO7 e ABO10 são locais que possuem formas complexas (CIRCLE elevado) e, portanto, uma maior superfície exposta a fatores externos, mas ao contrário do que seria de esperar estes locais são bastante ricos e diversos em termos de espécies liquénicas. Esta explicação poderá estar relacionada com a existência de áreas de núcleo, logo aparecimento de espécies esciófilas e higrófilas, ou com o aumento da área em contacto com a vizinhança o que leva a um maior aporte e fixação de propágulos liquénicos. Assim, acresce às espécies existentes no núcleo as espécies típicas de ecótono aumentando significativamente a número e composição de espécies liquénicas.

A hipótese de que locais próximos seriam liquenicamente relacionados foi testada através do teste de Mantel, o que permitiu concluir que locais próximos não têm necessariamente as mesmas espécies.

4. Conclusão

Este estudo mostra a preferência de grupos liquénicos mais sensíveis à poluição, à intensidade luminosa e a alterações da estrutura florestal por locais com maior área de núcleo e por conseguinte maior perímetro e área de mancha. A razão para que isto aconteça deve prender-se com a existência de condições ambientais que favorecem a fixação dessas espécies, como maior estabilidade estrutural, maior isolamento de perturbações externas (poluição e gestão florestal), menor radiação solar, velocidade dos ventos e variações de temperatura, como também maior humidade (Boudreault et al., 2008).

Os locais que pertencem ao mesmo componente de conectividade não possuem composições liquénicas semelhantes, o que parece indicar diferenças métricas e fisiobiogeográficas entre locais que inviabilizam o estabelecimento dos propágulos liquénicos. As espécies fotófilas e nitrotolerantes tendem a aparecer em manchas menores onde a exposição à intensidade luminosa e à contaminação é maior. Contudo, algumas espécies associadas a florestas estáveis também apareceram em manchas reduzidas, sem área de núcleo. Uma explicação possível para estas ocorrências pode ser resultado de "conectividade histórica" e permanecendo ainda como reduto da espécie. No entanto, estes resultados alertam para o pouco conhecimento que ainda se tem da região da Aboboreira do ponto de vista da flora liquénica.

A ocorrência de espécies liquénicas indicadoras de continuidade florestal e em declínio por toda a Europa alertam para a importância dos carvalhais da Serra da Aboboreira e para a necessidade de medidas de preservação e recuperação urgentes.

5. Bibliografia

Brodo, I., Sharnoff, S. D., & Sharnoff, S. (2001). Lichens of North America: Yale University.

Boudreault, C., Bergeron, Y., Drapeau, P., & Mascarúa López, L. (2008). Edge effects on epiphytic lichens in remnant stands of managed landscapes in the eastern boreal forest of Canada. *Forest Ecology and Management*, 255(5–6), 1461-1471. doi: 10.1016/j.foreco.2007.11.002

Gauslaa, Y. (1995). The Lobarion, an epiphytic community of ancient forests threatened by acid rain. *The Lichenologist*, 27(1), 59-76. doi: 10.1006/lich.1995.0005

IGP. (1990). Carta de Ocupação do Solo 1990 na escala 1:25 000

Koh, L., Dunn, R., Sodhi, N., Colwell, R., Proctor, H., & Smith, V. (2004). Species coextinctions and the biodiversity crisis. *Science*, *305*(5690), 1632-1634.

Nash III, T. (2001). *Lichen Biology*. United Kingdom: Cambridge University Press.

PROF-T. (2007). Plano Regional de Ordenamento do Tâmega. Lisboa: Comissão de acompanhamento.