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Abstract
The study of cancer cell invasion under the effect of dif-

ferent conditions is fundamental for the understanding of
the cancer invasion mechanism and to test possible thera-
pies for its regulation. To simulate invasion across tissue
basement membrane, biologists established in vitro assays
with cancer cells invading extracellular matrix components.
However, analysis of such assays is manual, being time-
consuming and error-prone, which motivates an objective
and automated analysis tool.

Towards automating such analysis we present a method-
ology to detect cells in 3D matrix cell assays and correctly
estimate their invasion, measured by the depth of the pen-
etration in the gel. Detection is based on the sliding band
filter, by evaluating the gradient convergence and not inten-
sity. As such it can detect low contrast cells which otherwise
would be lost. For cell depth estimation we present a focus
estimator based on the convergence gradient’s magnitude.
The final cell detection’s precision and recall are of 0.896
and 0.910 respectively, and the average error in the cell’s
position estimate is of 0.41µm, 0.37µm and 3.7µm in the
x, y and z directions, respectively.

1. Introduction

Invasion, an important step in cancer development, con-
sists on the extravasation of cells from the tissue of ori-
gin into neighbor tissues. The absence of good models to
study interactions between invasive cancer cells and other
elements of the tumor microenvironment, led to an innova-
tive 3D invasion assay [1]. However, the assay’s evaluation
is performed manually, which is time-consuming, fatiguing,
and prone to errors. These limitations constitute a clear mo-
tivation for analysis automation.

We present a tool to evaluate 3D cell invasion based on
the analysis of multiple brightfield images taken at differ-
ent depths of focus, using a new focus estimation approach.
Cell depth is in this case characterized by the best focal
plane and is based on the variation of depth of focus towards
the surface focus.

Figure 1. Cancer cell invasion assay images
at different depths.

To obtain a successful detection of clustered cells even
at low contrast we investigate the use of a particular conver-
gence filter, the Modified Sliding Band Filter (MSBF) [3].
However, due to the cell’s transparency, cells appear at sev-
eral focal planes giving rise to multiple detections. To solve
this problem we propose the stacking of multiple detections
and filtering of false detections. From these 3D stacks of
cell detection we apply a focus measure to estimate the de-
gree of focus of each detection, determining in this way the
depth and the full location of each cell.

Experimental Setup and Data Collection In their gen-
eral formulation cancer cell invasion assays consist of gels
of extracellular matrix components (collagen type I or Ma-
trigel, for instance), on top of which isolated cancer cells,
treated or not with specific drugs. After 24 hours of in-



cubation at 37◦C and 5% CO2 atmosphere, the system is
visualized. A stack of images is collected varying the depth
of focus, in 5µm steps (Figure 1).

To obtain the image data which will enable us to esti-
mate cell invasion, a stack of images is collected varying
the depth of focus. The images are collected from a depth
above the surface until past the depth of the most invasive
of all cells within the field of view, with focus being varied
in 5µm steps. The joint focal length and camera CCD reso-
lution give a spatial scale of 0.256µm per pixel, each image
size being 1388× 1040 pixels.

2 Methodology

Our methodology is divided into three steps: Cell de-
tection in each image leading to in-focus and out-of-focus
detections. After 2D detection we search for cell detections,
at adjacent planes, which are close to each other, associat-
ing them in a stack, each representing a possible cell at a
determined (x, y) location. However, the z for each cell is
still unknown. Finally, for each detection stack, we estimate
the most likely image plane for each cell. This enables the
determination the 3D position for each cell.

2D Cell Detection Our approach to cell detection is based
on finding the cell’s characteristic convex shape. To per-
form such detection we use a convergence filter, the modi-
fied sliding band filter [3], based on the SBF filter [2]. This
filter defines a support region formed by a band of fixed
width, whose position is changed in each direction to allow
the maximization of the sum of the gradient convergence at
each point. The set of band positions that maximizes the
convergence index at each point will be called as band sup-
port points. The MSBF is defined by:

MSBF =
1

Nd

N∑
i=1

 max
Rm≤n≤RM

 n+d/2∑
m=n−d/2

‖ cos(θi,m)‖

 ,

whereN is the number of support lines, d is the band width,
n is the band position in a line that varies from Rm to RM ,
and θi,m is the angle between the image gradient at location
m and the i line direction (Figure 2(a)).

After the application of the MSBF filter, cells are asso-
ciated with the filter’s maxima response. We can now es-
timate cells’ shapes by investigating, for each filter maxi-
mum, the positions of the sliding band that contributed to
that particular maximum. These are the band support points
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Figure 2. MSBF based cell detection:(a)
MSBF filter schematics, (b) brightfield image,
(c) filter response, (d) final detection.

where no(i) corresponds to the radius of the support point
for line i. The final border for the cell detection is the line
connecting the band support points.

Cell Detection Stacking Given all the cells detected in
each individual 2D image plane of the 3D stack of images
we must now relate each cell in a 2D plane with all possi-
ble corresponding cells. This is performed based on a 2D
distance between cells in adjacent planes, with the require-
ment of reciprocity. The final 3D stack is composed of the
detection indices for each image plane in the stack, or zero
in the case where the stack has no detections.

Additionally we also impose continuity of stacks (split-
ting stacks if there is no correspondence) and impose a min-
imum number of detections for a stack of cells to be valid.
Using these constraints reduces the probability that erro-
neous detections may be stacked as it is unlikely for noise to
be spatially consistent in z. More details on the specific val-
ues used for this implementation are presented in the result
section.

Depth Estimation One of the MSBF filter main proper-
ties is that its result is not depending on the magnitude of
the image’s gradient. We propose a focus estimator based
on the magnitude of the convergence at the band support
points. It is a know property from depth from focus methods
that an object is more focused if its borders are sharper [4].
As such we define the focus estimation measure as:

FE =
1
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where ‖grad(i,m)‖ is the gradient magnitude of the image
at location m in the i filter’s support line and no(i) is the
support point for line i.

We can now obtain a focus estimation for each detection.
By evaluating the focus for all detections in each stack we
find the better focused detection obtaining in this way the
depth for that detection and the full 3D location.



Table 1. Cell detection results:precision, re-
call and error values for each experiment and
the overall average.

FP FN Pre. Rec. n. of cells
experiment 1 11 14 0.885 0.859 96
experiment 2 4 6 0.939 0.910 67
experiment 3 12 6 0.876 0.934 91
experiment 4 8 4 0.886 0.939 66
Overall (average) 8.75 7.5 0.896 0.910 80

Table 2. Cell’s position estimation average er-
ror in the (x,y,z) cell’s position (in µm).

x error y error z error
experiment 1 0.44 0.41 4.8
experiment 2 0.40 0.32 3.5
experiment 3 0.35 0.36 3.2
experiment 4 0.45 0.40 3.5
Overall 0.41 0.37 3.7

3 Results and Discussion

To evaluate our methodology we use a dataset of 4 in-
dependent invasion assays comprising a total of 84 image
planes (every 5µm in depth) and 320 cells. For parame-
ter setting we used an auxiliary dataset with 25 images (70
cells). The dataset was annotated, by a researcher under
supervision of the project’s leading biologist, by selecting
the best (x, y, z) coordinate for each cell. We applied the
MSBF filter to all images and obtained detections for each
plane, we then stacked and searched for the in-focus detec-
tion. We evaluated the correspondences between detections
and annotation (Table 1). In addition to evaluating cell de-
tection we evaluate the positional errors in the final cell’s
coordinates (Table 2).

4 Conclusion

We evaluated a new focus estimator for cell invasion
depth estimation in brightfield images, based on of the Slid-
ing Band Filter for cell detection. The results obtained using
a database of 4 experiments, corresponding to 84 images
and 320 cells, show a good cell detection precision (0.89)
and recall (0.91). Additionally we evaluated the detection’s
positional errors and found that in average the x, y and z
errors were of 0.41µm, 0.37µm and 3.7µm respectively
(Table 2). Overall the results were both numerically and
visually promising towards full automation of cell invasion
quantification (Figure 3).

The next steps in the search for an objective invasion as-

Figure 3. Final 3D detection example. Blue
cells are deeper than red cells, transparent
cells are annotation locations.

say evaluation are the determination of the surface z loca-
tion and the computation of the percentage of cells invading.
However, determining the surface is both obscured by the
noise in depth detection and complicated since cells stack
and move the gel matrix causing an undetermined depth
variation.
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