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This paper describes a new methodology for lane detection in Thin-Layer Chromatography images. An approach based on the
continuous wavelet transform is used to enhance the relevant lane information contained in the intensity profile obtained from
image data projection. Lane detection proceeds in three phases: the first obtains a set of candidate lanes, which are validated or
removed in the second phase; in the third phase, lane limits are calculated, and subtle lanes are recovered.The superior performance
of the new solution was confirmed by a comparison with three other methodologies previously described in the literature.

1. Introduction

This paper focuses on one of the initial components of a
screening tool for Fabry disease (FD), based on the automatic
analysis of Thin-Layer Chromatography (TLC) images: the
lane segmentation. FD is a rare X-linked hereditarymetabolic
storage disorder caused by genetic abnormalities, which leads
to an enzymatic deficiency [1] resulting in the accumulation
of excessive quantities of one class of lipids, the sphingolipids,
globotriaosylceramide (Gb3) being the most prevalent in FD
patients [2]. Although the usual onset of the first symptoms is
in childhood, by middle-age, life-threatening complications
are often developed in untreated patients [3]. The recent
availability of enzymatic replacement therapy, in conjunction
with the progressive nature of the disease, has renewed the
interest in this disorder and revealed the need for early
diagnosis, which can only be achieved with generalized
screening programs [4].

The complete diagnosis of FD is very complex, but the
first phase is simply based on the detection of an abnormal
quantity of Gb3 in urine or blood plasma of the patient. The
direct measurement of these compounds can be carried out
by using a microtandemmass spectrometer (MS/MS), but its
use is very expensive. Another approach, less expensive, is the

analysis of patient urine or blood plasma samples using TLC
[5]. TLC is a type of liquid chromatography that allows the
separation, identification, and visual quantification of a wide
variety of components in a mixture [6]. The components to
be separated by the chromatographic process are distributed
between two phases, a stationary phase and a mobile phase.
The solutes, distributed preferentially in the mobile phase,
will move more rapidly through the system than those
distributed preferentially in the stationary phase. Thus, the
solutes will elute in order of their increasing distribution
with respect to the stationary phase [7]. At the end of the
chromatographic process, the components are spread along
a lane and distributed by different bands based on their
physical properties (size, molecular weight, etc.) [6]. TLC has
the highest sample throughput amongst the chromatographic
techniques. Up to 30 different samples and standards can be
applied to a single plate in individual lanes and be analyzed
at the same time, which explains the spreading use of TLC, as
both a screening and confirmation tool, worldwide [8].

For the implementation of a screening tool for Fabry
disease, the identification of normal and suspicious individu-
als will be based on the presence or absence of the disease
biomarkers, previously separated by the TLC development
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of urine samples. The screening system is supported by a
set of image analysis and classification methods, so as to try
to automate the interpretation of TLC chromatograms. One
initial and crucial phase, usually called lane segmentation,
involves the automatic separation of the individual samples
contained in the digital image of a TLC plate.

Several software packages that include solutions for lane
segmentation can be found in the literature, althoughmost of
themwere developed for gel electrophoresis images. KODAK
1D [9] software has an “automatic lane finder” option that
uses a multiple pass algorithm to determine the lanes on
the image, as an alternative to the interaction with the
operator. GelBuddy [10] is a user-friendly Java-based software
that requires the number of lanes as input. The lane tracks
are located by detecting local maxima of intensity profiles,
obtained through the integration of pixel values over a set
of horizontal sectors. Getlanes [11] operates on four-color,
fluorescence-based, and electrophoretic gel images. Each gel
file contains four filter images, which are summed to form
a brightness image. The “brightness” profile is obtained by
a vertical integration of the brightness image, and a first-
difference approximation to the gradient is computed to
identify maxima, which are marked as lane locations. It also
usesmodels of expected lane and interlane spacing and lateral
lane behavior to improve tracking on imperfect gels. PyElph
[12] is a software tool for gel image analysis and phylogenetics.
For lane detection, it computes the maximum value of each
column and creates an intensity profile. A threshold set to
70% of the maximum intensity value of the domain is used
for lane detection. The lanes selected at this threshold level
are used for calculating the mean value for the lanes’ width.
The lanes narrower than the mean width are removed from
the set, and the mean width of the remaining lanes is again
computed. Finally, all the lanes between two thresholds (70%
and 15% of the maximum of the domain), and presenting
a width deviation of less than 25% from the mean width,
are included in the final set. LaneRuler [13] approaches the
problem by dividing the data region into “zones” such that
each zone has the same integrated intensity, thus placingmore
“nodes” in data-rich portions of the gel compared to its data-
poor portions. Generic lane width is then determined based
on a Fourier analysis in each zone.

Methods developed for lane segmentation include algo-
rithms supported by the application of spatial-domain filters
[14] and semiautomatic detection based on the assumption
that the lanes have constant width and are equispaced [15].
Bajla et al. [16] proposed a semiautomatic method for lane
separation in electrophoretic gel images. This approach is
based on a one-dimensional cumulative indicator of lane
edges, coupled with a shifted regular initial grid calculated
from the a priori information on the number of lanes. In [17],
the bands contained in each lane are enhanced and afterwards
replaced by their skeletons. Then, lane segmentation is per-
formed based on these band skeletons. In [18], two methods
are proposed, one based on an iterative moving average filter
(IMA) and the other using the continuous wavelet transform
(CWT).

Sousa et al. [19] presented an automatic procedure for
lane detection in TLC images based on the detection of

local extreme points in the image projection profile, which
had been previously smoothed using a nonweighted moving
average filter. In the approach described in [20, 21], lane
detection is accomplished by locating the lane boundaries.
The derivative of image intensities in the horizontal direction
is calculated, and its values are summed across the vertical
direction. The resulting one-dimensional curve has local
extremes at the boundaries of the lanes. In [22], the image
is horizontally divided into equal parts, and for each one a
profile is obtained from its vertical projection. Each profile
is smoothed and used to estimate the lane centers (profile
maxima) in each image part. The methodology connects
local maxima along a lane, by visiting each partitioned image
from the bottom to the top, and checking whether two
local maxima are within a range of horizontal coordinates.
Othermethods related to lane detection include algorithms to
geometrically correct images with the help of distance maps
[23] and active shape models [24].

Most of the packages and methods that were developed
for gel image analysis assume some regularity in lane distri-
bution or require additional inputs, such as the number of
lanes in the image. So, this kind of solution does not work
well when the images do not present the expected regularity
in lane distribution, as occurs in some images of our dataset.
Therefore, an approach that is able to deal with the specific
characteristics of TLC images, without lowering performance
when applied to more standard ones, is required in our
system.

This paper presents a new methodology for automating
the detection of lanes in digital images of TLC plates, which
is an improved version of the algorithm presented in [25].
The main difference between the two methods is the initial
smoothing step, which is applied to the intensity profile
resulting from the integration of the image area containing
the lanes. The initial smoothing step is essential for the suc-
cess of the following lane segmentation steps, as it allows the
removal of noise and irrelevant data. In [25], a Savitzky-Golay
(SG) filter [26] was applied to the intensity profile, while
in the solution herein proposed, the Continuous Wavelet
Transform (CWT) [27] is used for removing both noise
and other high frequency components. When compared to
other algorithms in the literature, our approach also relies on
the detection of extreme points of the intensity profile that
results from the projection of the image data. However, both
in the method herein described and in [25], after locating
the most obvious lanes associated with the extreme points
of the smoothed profile, two further steps are performed,
one for validating previously included lanes and removing
false detections and another for adding very subtle lanes
that could not be clearly distinguished. Nevertheless, a new
implementation of these two supplementary steps is now
proposed using image adaptive parameters instead of the
constant settings used in [25].

The outline of the paper is as follows. Section 2 describes
the proposed method, including the preprocessing sequence
applied to the images, the CWT-based technique for smooth-
ing the intensity profile, and the lane segmentation process.
The dataset description, lane segmentation examples, and
some performance measures are presented in Section 3.
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Figure 1: Continued.
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Figure 1: Main steps of the methodology: (a) block diagram; (b) original TLC image; (c) enhanced image ROI; (d) ROI intensity profile; (e)
smoothed profile; (f) initial set of lanes; (g) final lane segmentation.
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Figure 2: (a) ROI of a TLC image. (b) Profile intensity obtained for the same image. (c) Color map representation of the CWT coefficients
for the intensity profile. (d) The lane range limits are represented by the red lines. (e) Smoothed profile resulting from the reconstruction of
the scales within the lane range.

Furthermore, the proposed methodology is compared with
three previous solutions, described in [18, 19, 25]. Results
are discussed in Section 4. Some conclusions and further
research are included in Section 5.

2. Methodology for Lane Segmentation

2.1. Overview of the Methodology. The processing flow of the
method for lane segmentation herein proposed is illustrated
in the block diagram of Figure 1(a). The original RGB image
is acquired, and the region of interest (ROI) is obtained,
as presented by the dashed rectangle in Figure 1(b). The
ROI is preprocessed, and the enhanced image is shown in

Figure 1(c). The resulting image columns are integrated in
order to obtain an intensity profile, which is then smoothed
using the technique described in detail in Section 2.3. Fig-
ures 1(d) and 1(e) show the initial and smoothed profiles,
respectively, for the image data of Figure 1(c). The smoothed
profile will allow the selection of an initial set of potential
lanes such as those in Figure 1(e), which is afterwards updated
with the removal of false detections.The last phase focuses on
the detection of missed lanes and on the localization of lane
centers and boundaries, as can be observed in Figure 1(f).

2.2. Image Acquisition and Preprocessing. At the end of the
chromatographic process, TLC plates quickly deteriorate,
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Figure 3: (a) Representation of the scales used to smooth the intensity profile. (b) Cutoff-min set to 50. (c)The effect of the exclusion of lower
scales is reflected in the reconstructed profile. (d) Representation of the scales used to smooth the intensity profile. (e) Cutoff-max set to 150.
(f) The exclusion of scales containing low frequency information may lead to the appearance of false lanes. (g) Representation of the scales
used to smooth the intensity profile. (h) Cutoff values chosen using the proposed methodology (scales 80 and 250). (i) Reconstructed profile.

and therefore they need to be scanned as soon as possible.
The TLC digital image is acquired in true color, since
the specialist will need this information for inspecting the
images later, as it helps in the identification of specific
biomarkers. A typical TLC image, such as the one shown in
Figure 1(b), usually contains two distinct regions: a border
and a region of interest (ROI). The border is the external
region of the image, and it comes from the adhesive tape

used for protecting the plate right after the chromatographic
process. This adhesive tape usually has handwritten text
with the identification/composition of the samples. It has
no relevant information for the image analysis process, but
it interferes with the correct detection of the lanes, so this
region of the image is discarded. The ROI is the internal
region of the image, formed by lanes containing the result of
chromatographic development and empty spaces. This is the
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Figure 4: (a) ROI of a TLC image. (b) Smoothed intensity profile. (c) Regional maxima (top), regional minima (middle), and set of potential
lanes resulting from their combination (bottom). (d) Initial set of lanes represented by their central lines.
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Figure 5: (a) Intensity profile (continuous line) and results of the first phase of lane detection (initial set represented by the dashed line); (b)
the dashed line represents the removed lane.

relevant region for our methodology, which is automatically
delineated using a classification-based algorithmdescribed in
[28].

The ROI is converted from RGB to grayscale (GS) by
retaining the luminance information. The resulting image
(GS ROI) is represented using 256 levels of gray and is

computed by a weighted sum of the red (R), green (G), and
blue (B) components given by

GS ROI = 0.30R + 0.59G + 0.11B. (1)

The GS ROI is then processed in order to remove the back-
ground, which is estimated using a closing morphological
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Figure 6: (a) ROI of a TLC image; (b) Intensity profile (continuous line) and results of the first phase of lane detection (initial set represented
by the dashed line); (c) Image ROI with its profile derivative overlapped; (d) Results after the three phases of the lane detection process, with
the boundaries of the detected lanes represented by the vertical lines.

operator with a square structuring element [29]. The size of
the morphological operator is derived from the size of the
image and is equal to 10% of the number of image rows, thus
ensuring that the structuring element length is higher than
the size of the bands.The estimated background is subtracted
from the GS ROI, and the image data is projected onto
the direction perpendicular to lane development (vertical
projection) to integrate the information into an intensity
profile that will be used for lane detection. The intensity
profile 𝑃(𝑥) of an image 𝐼(𝑥, 𝑦) is obtained by averaging the
grey levels on each column in the image as defined by

𝑃 (𝑥) = 1
𝑁
𝑁

∑
𝑦=1

𝐼 (𝑥, 𝑦) 𝑥 = 1, . . . , 𝑀, (2)

where 𝑀 is the number of columns and 𝑁 is the number of
rows in the image.

Since during background removal the image is inverted
(as can be observed in Figure 1(c)), the intensity profile

presents maximal regions where the original image is darker
(lane zones) and minimal regions where this image is lighter
(empty zones). It is worth mentioning that TLC images are
often corrupted by noise on the top rows due to a significant
accumulation of compounds that are present in biological
materials. This noise makes the image analysis process more
difficult, as it influences the profile, and smoothes the transi-
tion between regions with and without lanes. Moreover, the
top region of a TLC image is not important for the remaining
phases of the method, as it does not contain any relevant
compounds used as biomarkers. To overcome this problem,
we decided to exclude the top 25% of rows from the averaging
into the intensity profile.

2.3. Profile Smoothing. The intensity profile obtained by
the previously mentioned projection usually presents local
variations that can lead to a high number of false lanes. Thus,
a smoothed version of the profile, containing just the main
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Figure 7: (a) Images from DB1. (b) Images from DB2.

intensity variations corresponding to the transitions between
lanes zones and empty zones, is required. Moving average
filters have been the most common solution applied in other
methods for lane segmentation, but this kind of smoothing
filter can destroy important signal information. For instance,
the peaks of the intensity profile corresponding to the center
of the lanes lose height when submitted to a moving average
filter. The ideal filter would produce smoothed data without
flattening the peaks. To overcome these problems, we propose
a smoothing approach based on the CWT.

TheWavelet transform offers simultaneous interpretation
of the signal in both time and frequency, which allows
local, transient, or intermittent components to be elucidated
[30]. The wavelet transform provides a series expansion of
a signal, using a set of orthonormal-based functions, which
are generated by scaling and translation of two functions: the
mother wavelet and the scaling function (daughter wavelet).
As a result of wavelet analysis, a family of hierarchically
organized decompositions is produced, where each level of
the hierarchy is associated with a specific scale [27].

Although the discrete wavelet transform (DWT) is a
common choice in many applications, we selected the CWT
for this particular application because the highest scale reso-
lution is provided by the continuous transform. In the DWT,
scales are chosen so that the wavelets are orthogonal, which

implies that the scale range will be the smallest one that will
not produce loss of information [31]. The scales in the CWT
are not constrained, and the wavelets are nonorthogonal.
This property, while making the CWT redundant, provides
a finely detailed description of a signal in terms of both time
and frequency [32]. These characteristics allow an accurate
selection of scales that will be important in the smoothing of
the intensity profile.

The CWT uses a set of wavelets, where each element
is constructed from the same function, the original wavelet
𝜓(𝑡) (mother wavelet). Each daughter wavelet is a scaled and
shifted version of the mother wavelet [33], according to

𝜓(𝑠,𝜏) (𝑥) = 1
√𝑠𝜓 (𝑥 − 𝜏

𝑠 ) , (3)

where 𝑠 and 𝜏 are the scale and translation parameters,
respectively [33]. The daughter wavelets include an energy
normalization term, 1/√𝑠, that keeps the energy of these
wavelets equal to the energy of the original mother wavelet.
For this application, the Morlet wavelet was used as the
mother wavelet function, because it is known for its excellent
time-frequency localization [34]. It consists of a plane wave
modulated by a Gaussian function and is defined by

𝜓0 (𝜂) = 𝜋−1/4𝑒𝑖𝜔0𝜂𝑒−𝜂2/2, (4)
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Figure 8: (a) ROI of a TLC image. (b) Intensity profile with the representation of the regions selected by the ℎ-maxima and ℎ-minima
transformations. (c). Profile derivative. The width and amplitude of each lane are represented by the width and height of each rectangle,
respectively. (d) The mean values for the lane width and amplitude are represented by the outside rectangle, while the values obtained after
the search for subtle lanes are represented by the inner rectangle.

where 𝜔0 is the nondimensional frequency and 𝜂 is a
nondimensional “time” parameter. To satisfy the wavelet’s
admissibility condition, this function must have a zero mean
and be localized in both time and frequency spaces [35].

In our application, for the analysis of the profile resulting
from the projection of the ROI data, the scales of interest in
the CWT are related to the width of profile peaks, being the
most significant ones determined by the presence of lanes.
Hence, the most interesting coefficients for reconstructing
a reliable smoothed version of the original profile are those
whose scales correspond to the expected range of lane widths.
After the analysis of the CWT decomposition of several
intensity profiles, it was possible to identify a common
pattern consisting of three ranges in the scale domain. At
low scales, several significant coefficients are generated by
high frequency noise (noise range). On the other hand, at
very high scales, only the coefficients associated with the

profile baseline are found (baseline range). So, the coefficients
that will contain lane information are normally located in
the middle range and usually present the highest amplitude
values (lane range).

In order to enhance lane information and at the same time
achieve an adequate smoothing, the intensity profile should
be reconstructed using only the scales belonging to the lane
range, defined by the two cut-off values for scales: the first,
herein called cutoff-min, should separate the lane range from
the noise range, while the second one, cutoff-max, sets apart
the lane and baseline ranges. Both cut-off values should be
situated within the lane range, which is limited by scales 30
and 250.

Figure 2 shows an overview of the smoothing process
using the CWT. Figure 2(a) presents the ROI of a TLC image,
whose integration into a 1D profile leads to the result depicted
in Figure 2(b). The CWT coefficients for this intensity profile
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Figure 9: Application of the proposed methodology to a DB2 image. (a) ROI of the original TLC image. (b) Smoothed intensity profile. (c)
Initial set of lanes represented by the vertical lines. (d) Set of lanes after the false lane removal phase. (e) Profile derivative overlapped on the
image, with the limits of the recovered lane represented by the vertical lines. (f) Final result of lane segmentation.

are presented in Figure 2(c), where each row represents one
scale, with the higher scales standing at the bottom. The
amplitude of each coefficient is encoded using a color map,
ranging from dark blue for low values to red for high values.
The noise, lane and baseline ranges can be easily identified.
In Figure 2(d), the signal containing the mean amplitude of
the coefficients for each scale (in the same row) is shown.
The coefficients in the predefined lane range were used
for the reconstruction of the smoothed profile depicted in
Figure 2(e).

For each particular image, adaptive cut-off values are
chosen within the predefined lane range. The selected value

for the cutoff-min threshold represents a tradeoff between
noise reduction and the detection of thin lanes. A cutoff-
min at a higher scale, thus excluding more high frequency
coefficients, would ensure a better smoothing than at a
lower scale, but the information of small width lanes may
be excluded from the reconstructed signal. The choice of
cutoff-max should take into account that a high value may
prevent the detection of subtle lanes, by hiding them with
the inclusion of very low frequency components (baseline
information).However, a low cutoff-maxwill lead to false lane
detections if the image has a large, empty zone, without lanes.
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Figure 10: (a) ROI of the original TLC image. (b) Original intensity profile. (c) Smoothed intensity profile obtained with the CWT approach
and initial set of lanes represented by the dashed lines. (d) Boundaries of the final set of lanes.

Based on the analysis of the signal containing the mean
amplitude of the coefficients for each scale, we concluded
that the highest peak in the predefined lane range contains
almost all lane information. However, higher scales may also
contain relevant information for avoiding false detections in
empty zones of the profile. Thus, to find the adequate cut-
off values for each profile, the signal containing the mean
amplitude of the coefficients for each scale is searched for
its maximum in the scale interval that corresponds to the
predefined lane range. The cutoff-min is set to the scale
value which corresponds to the local minimum of the signal
immediately before this maximum. If there is another local
maximum at a higher scale, the cutoff-max value is the scale
of the local minimum immediately after this local maximum;
otherwise, the separation between the lane and background
regions is not as straightforward, and the cutoff-max value is
set at the highest scale in order to prevent loss of important
information (i.e., all the higher scales will be included).

Three examples of how different cut-off ranges affect the
reconstruction of the profile are presented in Figure 3, for
the TLC image in Figure 2(a). The images in the first row
of Figure 3 illustrate the influence of the cutoff-min, which
was set to scale 50. The result, shown in Figure 3(c), is better
than the one obtained in Figure 2(e). In the second row, the
cutoff-max value was reduced to scale 150.The range of scales
used for the profile reconstruction is shown in Figure 3(d)
and Figure 3(e). Due to the exclusion of important scales,

the resulting profile, depicted in Figure 3(f), now contains a
local maximum in an empty zone of the image, which could
lead to a false detection. Finally, in Figures 3(g)–3(i), there
are the results obtained using the automatic process used for
selecting the two cut-off values.

2.4. Lane Segmentation

2.4.1. Detection of an Initial Set of Lanes. Lane segmentation
is performed using the smoothed profile that results from
the reconstruction using CWT coefficients in the scale range
(cutoff-min, cutoff-max). As a general rule, the local maxima
regions of the profile should correspond to occupied lanes,
and the local minima regions should correspond to the
space between them. These regional extremes are searched
for on the results of two morphological transformations, h-
maxima and h-minima. These transformations suppress all
the extremes whose heights are less than a given threshold
ℎ. For the ℎ-maxima transformation, this is achieved by
performing the reconstruction 𝑅𝛿𝑓 by dilation of 𝑓 from 𝑓−ℎ
[36]

HMAXℎ (𝑓) = 𝑅𝛿𝑓 (𝑓 − ℎ) . (5)

By analogy, the h-minima transformation is defined as

HMINℎ (𝑓) = 𝑅𝛿𝑓 (𝑓 + ℎ) . (6)
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Figure 11: Continued.
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Figure 11: (a) ROI of the original TLC image. (b) Original intensity profile after data integration. (c)–(g) Intermediate and final results of [25]
(left) and the herein proposed method (right).

The results of the detection of extremes are two binary
functions, one marking the regions of the profile which are
local maxima and the other marking the local minima.These
two binary functions are combined into a single one, which
is true for regions corresponding to local maxima but not
marked as local minima. The integration of information
regarding local minima is important, to prevent the inclusion
of regional maxima of very low intensity. Each region of this
combined profile is considered as a potential lane, whose
center and width are, respectively, the middle point and the
width of the region.

The selection of an initial set of lanes is exemplified in
Figure 4. The ROI of a TLC image after the preprocessing
step is presented in Figure 4(a), and Figure 4(b) depicts
the smoothed profile obtained with the CWT technique.
Figure 4(c) shows the two binary functions with regional
extremes together with their combination, which defines the
initial set of lanes, whose central positions are represented by
the vertical lines in Figure 4(d).

2.4.2. Removal of False Lanes. The validation of the initial
set of lanes is based on three measures: relative lane width,
lane distance, and lane intensity. An initial estimation of
lane widths is obtained from the signal resulting from the
combination of the detected regional extremes. For each

identified lane, the maximum value that occurs within its
region is defined as the lane intensity. The distance between
the central positions of two consecutive lanes (lane distance)
is also measured. For each image, the mean and standard
deviation of lane width (𝑚𝑤, std𝑤), lane distance (𝑚𝑑, std𝑑),
and lane intensity (𝑚𝑖, std𝑖) are also calculated.

All the lanes that have intensity below half of the mean
lane intensity, 𝑚𝑖/2, will be removed if either the width is
outside the range defined by 𝑚𝑤 ± std𝑤 or if the distance to
one of the adjacent lanes (or image border, for the lanes in
the image extremes) is below a threshold value established by
𝑚𝑑 − std𝑑.

The removal of a false lane is shown in Figure 5. The
intensity profile obtained after smoothing is depicted in
Figure 5(a) by the solid line. The dashed line represents the
outcome of the initial set of lanes. In Figure 5(b), a false
detection, represented by the dashed line, was removed at this
stage, due to the proximity to the adjacent lanes.

2.4.3. Recovery of Missed Lanes and Detection of Lane Limits.
This step is mainly based on the analysis of the derivative of
the profile. For each true lane, there are two local extremes
in the derivative of the profile, a local maximum and a
local minimum, that can be associated with lane limits.
These extreme points allow accurate lane segmentation, since
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Figure 12: (a) ROI of the original TLC image. (b) Original intensity profile. (c) Detected lanes using the approach described in [18]. (d) Profile
obtained using the approach described in [18]. (e) Detected lanes using the approach described in [19]. (f) Detected lanes using the proposed
methodology.

they are related with the inflection points of the intensity
profile usually delimitating the transition between lanes and
empty zones. Because of the intensity fluctuations that are
present in the derivative, the two local extreme points that are
considered are those with the highest and lowest amplitude
values occurring on opposite sides of the lane. When all the

lane limits are determined, we can get the mean lane width,
𝑚𝑙𝑤, along with the mean difference between the amplitude
values of two corresponding extreme points in the profile
derivative, 𝑚𝑙𝑎. Both values are used as references to look for
low intensity lanes.
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Table 1: Results obtained for each phase of the proposed methodology, when applied to the images in DB1.

True lanes detected True lanes missed False lanes detected Recall (𝑅) Precision (𝑃) F𝛽-measure (𝛽 = 1)

Real class
First phase 647 4 28 99.3% 95.8% 97.5%

Second phase 647 4 12 99.3% 98.2% 98.7%
Third phase 649 2 12 99.7% 98.2% 98.9%

Table 2: Results obtained for each phase of the proposed methodology, when applied to the images in DB2.

True lanes detected True lanes missed False lanes detected Recall (𝑅) Precision (𝑃) F𝛽-measure (𝛽 = 1)

Real class
First phase 1350 72 46 94.9% 96.7% 95.8%

Second phase 1348 74 37 94.7% 97.3% 96.0%
Third phase 1395 27 38 98.1% 97.3% 97.7%

After detecting the limits for all validated lanes, some
“empty zones” (zones without detected lanes) can still remain
in the profile. For those regions which have width larger than
the𝑚𝑙𝑤, the local extremes of the derivative are retrieved and
grouped into maximum-minimum pairs. For each pair, the
distances between the extreme positions and their amplitude
difference are compared with the two previously mentioned
reference values, in order to decide on the inclusion of
this potential lane into the set of validated lanes. For each
“empty zone,” more than one lane can be recovered using
Algorithm 1:

Figure 6 presents an example of the lane recovery step,
as well as the final lane segmentation result. The smoothed
intensity profile for the image presented in Figure 6(a) is
depicted in Figure 6(b), and one lane (the 8th) was not
included in the initial set due to its low intensity. Figure 6(c)
shows the ROI of the image with the profile derivative
overlapped. The analysis of the profile derivative allows the
detection of the missed lane, thus leading to the updated set
in Figure 6(d) with the lanes properly segmented.

3. Results

3.1. Datasets. The proposed methodology was evaluated
using two distinct datasets. These two datasets have in
common the presence of empty lanes as a result of the
sample acquisition protocol. Immediately before the start of
the TLC analysis process, a set of tasks is sequentially applied
to each sample in order to increase the concentration of
biomarkers. However, when the samples are applied to the
plate, some of them may not be prepared for analysis and
thus will not run correctly in the mobile phase, leading to
the formation of empty lanes in between occupied lanes.
Furthermore, a shortage of samples causing incomplete filling
of a TLC plate may lead to a region of empty lanes. These
situations happen more often in the first dataset (DB1),
which contains 66 images (651 lanes), the majority of which
were obtained using human urine and blood. The images
of this dataset are also characterized by a high variability
in size, resolution, and number of lanes. The second dataset
(DB2) is composed of 169 images (1422 lanes) of TLC plates,
containing urine chromatograms of individuals suffering
from several lysosomal storage diseases [37].

Due to size differences, all the images were rescaled to
a fixed number of lines (1024), while keeping the columns-
lines ratio constant (rescaling factor = 1024/initial number of
lines). A bicubic interpolation function was used to calculate
the intensities of the rescaled image. As a result of this resizing
operation, the sizes of lanes and bands become more or less
identical, independent of the original image size. Figure 7
contains four TLC images demonstrating the differences
between the two datasets.

3.2. Parameter Settings. The proposed methodology is sup-
ported by a set of values that can be separated into two
distinct classes: reference values and constant parameters.
Reference values are adaptive quantities, automatically cal-
culated for each specific image and can vary from image to
image. Parameters are preestablished numerical values and
are identical for each image of the dataset.

The algorithm depends on three parameters that should
be specified for each dataset: the ℎ value, the 𝜔0 value of the
Morlet wavelet, and the scale range where the cutoff-min and
cutoff-max values are searched for. The ℎ value used in the
ℎ-maxima and ℎ-minima transformations was established as
a percentage of the image intensity profile maximum; this
percentage value was set as 5% for DB1 and 10% for DB2.
The parameter 𝜔0 of the Morlet wavelet was set to 6 to satisfy
the admissibility condition. A specific scale range (ranging
from scales 30 to 250 in both datasets) was used for searching
the cutoff-min and cutoff-max values. These two limits were
established based on the spatial distance between lanes.

The reference values used in the false lane removal and
subtle lane recovery phases are adaptive quantities that are
calculated for each specific image.The false lane removal uses
the mean value and standard deviation of the lane’s width,
distance, and intensity, as criteria, to validate the initial set of
lanes. In the lane recovery phase, a new lane is accepted if its
width is larger than 60% of 𝑚𝑙𝑤 and the difference between
its extreme values is larger than 30%of𝑚𝑙𝑎.These valueswere
fixed after the observation of a set of empty lanes.

The lane recovery process is represented in Figure 8.
The maxima and minima regions selected by the ℎ-
transformations for the profile of the original image of
Figure 8(a) are shown in Figure 8(b) in red and green,
respectively. In Figure 8(c), the width and amplitude of each
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(1) Compute profile derivative, 𝐷
(2) Locate lane boundaries (𝑛 = number of lanes in the current set)

(a) Right borders, 𝑅𝑖; 𝑖 = 0 , ⋅ ⋅ ⋅ , 𝑛; 𝑅0 = 1
(b) Left borders, 𝐿 𝑖; 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛 + 1; 𝐿𝑛+1 = image width

(3) Estimate mlw = 1
𝑛 ∑𝑛𝑖=1 𝑅𝑖 − 𝐿 𝑖

(4) Estimate mla = 1
𝑛 ∑𝑛𝑖=1𝐷(𝑅𝑖) − 𝐷(𝐿𝑖)

(5) For 𝑖 = 1 , ⋅ ⋅ ⋅ , 𝑛 + 1
(a) If 𝐿 𝑖 − 𝑅𝑖−1 > mlw

(i) Compute local maxima positions, 𝑀𝑗
(ii) Compute local minima positions, 𝑚𝑘
(iii) Create the pairs (𝑀𝑗, 𝑚𝑘), 𝑚𝑘 > 𝑀𝑗
(iv) For each pair

If 0.6 mlw < 𝑚𝑘 − 𝑀𝑗 < 1.4 mlw and 𝐷 (𝑚𝑘) − 𝐷 (𝑀𝑗) > 0.3 𝑚𝑙𝑎
add the new lane to the set.

Algorithm 1: Subtle lane recovery.

Table 3: Comparison of final results obtained using the methods [18] and [19] with the intermediate values after the first phase of both the
proposed methodology and that described in [25] (DB1).

True lanes detected True lanes missed False lanes detected Recall (𝑅) Precision (𝑃) F𝛽-measure (𝛽 = 1)

Real class

Akbari et al. [18] 480 171 140 73.7% 77.4% 75.5%
Sousa et al. [19] 622 29 58 95.6% 91.4% 93.5%

Moreira et al. [25] 644 7 31 98.9% 95.4% 97.1%
Proposed method 647 4 28 99.3% 95.8% 97.5%

lane in the initial set are represented by a rectangle whose
sides are equal to those lane features. Figure 8(d) shows a lane
recovered in the last phase of the algorithm,where the outside
rectangle has dimensions 𝑚𝑙𝑤 and 𝑚𝑙𝑎; the mean values
obtained after averaging for the lanes present in Figure 8(c),
and the inside rectangle represents the corresponding values
for the recovered lane.

3.3. Comparison of Lane Segmentation Methods. In this sub-
section, some results of application of the proposed method-
ology are presented and compared with those obtained using
the methods described in [18, 19, 25].

Figure 9 illustrates the different phases of the herein
proposed method for a DB2 image, whose ROI is shown in
Figure 9(a). The intensity profile of Figure 9(b) was obtained
after smoothing using the CWT. The regions marked by the
dashed line are the result of the first phase of lane detection
and include seven true lanes correctly located, one true
lane incorrectly detected because two central positions (one
correct and one false) were assigned for that single lane,
and one true lane missed. These results can be observed in
Figure 9(c) where the vertical lines correspond to the center
of the lanes detected by the algorithm. The false central line
was removed in the second phase, and the updated set of lanes
is shown in Figure 9(d). The third phase allows the recovery
of themissed lane (Figure 9(e)), alongwith the determination
of lane boundaries as depicted in Figure 9(f).

The image shown in Figure 10(a), selected from DB1,
presents an example where themethodology fails to correctly

detect all the existent true lanes. At the final phase, there is
still one undetected lane, on the right of the image. This lane
has a band located on the top rows that are not included
in the intensity profile. However, it is worth mentioning
that lanes presenting bands only in the image top rows
are not important for our specific application, because FD
biomarkers are located in the bottom half of the image.

For assessing the importance of the initial smoothing
step, a comparison between the approach herein presented
and the one described in [25] is shown in Figure 11.Themain
difference between these two methods is the initial smooth-
ing step. The ROI of a DB1 image and its original intensity
profile are shown in Figures 11(a) and 11(b), respectively.
Figures 11(c) to 11(h) present intermediate results of both the
methods proposed in [25] (left) and the herein described
methodology (right).The profile smoothed using the SGfilter
still presents high frequency components that are enhanced
in the profile derivative. As a consequence, the subtle lane
included in the image is only segmented when the CWT-
based smoothing is applied (Figure 11(h)).

In Figure 12, the proposed methodology is compared
with the ones described in [18, 19]. In [19], the intensity
information is projected onto the horizontal direction, and
afterwards, a nonweighted moving average filter is itera-
tively applied to the profile until the number of potential
lanes, which is estimated based on the number of local
maxima, remains unchanged. Each lane is delimited by two
consecutive maxima of the profile, while the points where
the projection is minimal are associated with lane central
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Table 4: Comparison of final results obtained using the methods [18] and [19] with the intermediate values after the first phase of both the
proposed methodology and that described in [25] (DB2).

True lanes detected True lanes missed False lanes detected Recall (𝑅) Precision (𝑃) F𝛽-measure (𝛽 = 1)

Real class

Akbari et al. [18] 1359 62 49 95.6% 96.5% 96.0%
Sousa et al. [19] 1302 120 11 91.2% 99.2% 95.0%

Moreira et al. [25] 1316 106 75 92.5% 94.6% 93.5%
Proposed method 1350 72 46 94.9% 96.7% 95.8%

Table 5: Results obtained for the three methodologies on DB1.

True lanes detected True lanes missed False lanes detected Recall (𝑅) Precision (𝑃) F𝛽-measure (𝛽 = 1)

Real class

Akbari et al. [18] 480 171 140 73.7% 77.4% 75.5%
Sousa et al. [19] 622 29 58 95.6% 91.4% 93.5%

Moreira et al. [25] 647 4 20 99.4% 97.0% 98.2%
Proposed method 649 2 12 99.7% 98.2% 98.9%

positions.We have implemented themethod in [18] following
the description found in the literature and using as an
input parameter the total number of occupied lanes in the
chromatographic plate.

In order to compare the performance of the methods, the
results of the proposed methodology and the ones obtained
with the methods described in [18, 19] are presented in
Figure 12. Figure 12(a) shows the original TLC image (which
includes two empty lanes), with the respective intensity
profile depicted in Figure 12(b). The set of lanes detected
when using the methodology described in [18] is shown in
Figure 12(c). This set includes two false detections resulting
from local maxima of the CWT-based smoothed intensity
profile presented in Figure 12(d). The number of false lane
detections was reduced to one when the method described in
[19] was applied, but a true lane wasmissed (Figure 12(e)). All
lanes were correctly detected by the methodology proposed
in this paper, as illustrated by Figure 12(f).

3.4. Comparative Analysis of Methods’ Performance. This
section is devoted to the analysis of the performance of
methods mentioned in the previous subsections. The four
approaches were applied to all the images of the two datasets
described in Section 3.1.The parameters for ourmethod were
set as detailed in Section 3.2. For the method in [19], the code
was provided by the author.

Tables 1 and 2 show the results obtained after each of the
three phases of the described methodology, when applied to
DB1 and DB2, respectively.

In order to get a more reliable evaluation of the influence
of the smoothing phase, we have compared the results from
the methods in [18, 19] with those obtained after the first
phase for both the proposed methodology and the one
described in [25]. Thus, the refinement steps (the second
and third phases of lane segmentation) are excluded from
the results, as the improvements of these two last lane
segmentation phases could give an unfair advantage to the
methods that use them. These results are presented in Tables
3 and 4.

The final results obtainedwith the fourmethodologies are
resumed in Tables 5 (DB1) and 6 (DB2).

4. Discussion

A robust smoothing technique combined with the last two
phases of the lane segmentation process achieved the best
overall performance for both datasets. From the results in
Tables 1 and 2, it is possible to conclude that each of the
refinement steps addresses a different problem. In DB1,
because most of the true lanes were detected during the first
phase of the lane segmentation process, the improvement
introduced by the lane recovery step is residual, but several
false lanes were removed during the second phase. The
images in DB2 contain a significant number of subtle lanes
that, although not included in the initial set of lanes, were
recovered during the third phase.

Themethodology described in [18] relies on the selection
of a specific scale of the CWT, followed by a detection
of local extremes on the profile, reconstructed using the
coefficients associated with that scale. This characteristic
of the method makes it more effective when the lanes to
be segmented are uniformly distributed all over the image,
creating a periodicity that matches the reconstructed profile,
thus justifying the good performance on the detection of
true lanes even when they are very subtle. Nonetheless, this
same characteristic is responsible for the high number of
false detections when the images contain large empty regions
corresponding to empty lanes, as happens in some images of
DB1.

The main drawback of the method in [19] is the attenua-
tion of the small peaks caused by the iterative nonweighted
average filtering, making the detection of subtle lanes a
very hard task. Indeed, the majority of the 27 missed lanes
that result from the application of this method to DB1 are
associated with lanes represented by very low intensity peaks
in the profile. InDB2, the detection of lanes in image extremes
is also a problem, since most are not represented by a
significant maximum in the intensity profile after filtering.
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Table 6: Results obtained for the three methodologies on DB2.

True lanes detected True lanes missed False lanes detected Recall (𝑅) Precision (𝑃) F𝛽-measure (𝛽 = 1)

Real class

Akbari et al. [18] 1359 62 49 95.6% 96.5% 96.0%
Sousa et al. [19] 1302 120 11 91.2% 99.2% 95.0%

Moreira et al. [25] 1360 62 54 95.6% 96.2% 95.9%
Proposed method 1395 27 38 98.1% 97.3% 97.7%

Themethodology described in [25] achieved good results
with the DB1 images through the elimination of false lanes
and the recovery of subtle ones, in spite of the use of identical
parameter values for all the images in the dataset. However,
when the methodology was applied to DB2 images, a lower
performance was obtained, in the numbers of both false
detections and missed lanes (Table 4).

Finally, the importance of the new smoothing solution
based on the CWT is clearly demonstrated by the results
obtained after the first phase of the lane segmentation process
(Table 5), which outperform all the values achieved by the
other three methods.

5. Conclusions

We have described a new methodology for lane detection in
chromatography images using an innovative technique based
on the CWT for decomposing the original signal, followed
by the reconstruction of a new smoothed profile, using a set
of coefficients in a selected range of scales adapted to each
image. This technique has proven to be able to deal with
the noise present in the intensity profile, while preserving
the main features that are required for the subsequent three
phases of the lane segmentation process. Although the first
one relies on the detection of profile maxima as proposed
in other solutions, the novelty of the methodology presented
in this paper is the inclusion of two refinement stages, using
parameters adapted to image features, to overcome some of
the limitations of other approaches. The proposed method-
ology is fully automatic and does not require the number of
lanes as an input, neither a constant spacing between lanes,
nor the absence of empty lanes.The smoothing solution based
on the CWT also proved to perform better than those found
in [19, 25], even without the improvement introduced by the
refinement phases.

Lane segmentation is the initial phase of the development
of a screening tool for genetic disorders, and in particular
Fabry disease. However, this is a crucial part of the system, as
an erroneous detection of lanes will prevent its use. As future
work, we intend to develop advancedmethods for the analysis
of lane patterns aiming at automating the identification of
major disease’s biomarkers.
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[28] A. V. Sousa, M. C. Sá-Miranda, A. M. Mendonça, and A. C.
Campilho, “Classification-based segmentation of the region of
interest in chromatographic images,” in Image Analysis and
Recognition, LNCS 6754, A. C. Campilho andM. S. Kamel, Eds.,
pp. 68–78, Springer, Berlin, Germany, 2011.

[29] M. H. Sedaaghi and Q. H. WU, “The power of morphological
filters alone and when combined with linear filtering,” inMath-
ematical Morphology and Its Applications to Image and Signal
Processing, H. J. A. M. Heijmans and J. B. T. M. Roerdink, Eds.,
pp. 375–382, Kluwer Academic, Dordrecht, The Netherlands,
1998.

[30] P. S. Addison, “Wavelet transforms and the ECG: a review,”
Physiological Measurement, vol. 26, no. 5, pp. R155–R199, 2005.

[31] J. C. van den Berg, Wavelets in Physics, Chapter 10, Cambridge
University Press, Cambridge, UK, 2004.

[32] R. K. Young, Wavelet Theory and Its Applications, Chapter 1,
Kluwer Academic Publishers, Norwell, Mass, USA, 1993.

[33] S. Mallat, A Wavelet Tour of Signal Processing, Chapter 1,
Elsevier, Burlington, Mass, USA, 2009.

[34] I. Daubechies, “Wavelet transform, time-frequency localization
and signal analysis,” IEEE Transactions on Information Theory,
vol. 36, no. 5, pp. 961–1005, 1990.

[35] A. Grinsted, J. C. Moore, and S. Jevrejeva, “Application of the
cross wavelet transform and wavelet coherence to geophysical
times series,” Nonlinear Processes in Geophysics, vol. 11, no. 5-6,
pp. 561–566, 2004.

[36] P. Soille, Morphological Image Analysis-Principles and Applica-
tions, Chapter 6, Springer, New York, NY, USA, 2004.

[37] A.V. Sousa, A.Mendonça, andA.Campilho, “Chromatographic
pattern classification,” IEEE Transactions on Biomedical Engi-
neering, vol. 55, no. 6, pp. 1687–1696, 2008.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


