
On the Training of Artificial Neural Networks with
Radial Basis Function Using Optimum-Path Forest

Clustering

Gustavo H. Rosa, Kelton A. P. Costa,
Leandro A. Passos Júnior, João P. Papa

Department of Computing

São Paulo State University

Bauru, São Paulo, Brazil

{gustavo.rosa,kelton,leandropassosjr,papa}@fc.unesp.br

Alexandre X. Falcão
Institute of Computing

University of Campinas

Campinas, São Paulo, Brazil

afalcao@ic.unicamp.br

João Manuel R. S. Tavares
Faculdade de Engenharia

Universidade do Porto

Porto, Portugal

tavares@fe.up.pt

Abstract—In this paper, we show how to improve the Radial
Basis Function Neural Networks effectiveness by using the
Optimum-Path Forest clustering algorithm, since it computes
the number of clusters on-the-fly, which can be very interesting
for finding the Gaussians that cover the feature space. Some
commonly used approaches for this task, such as the well-
known k-means, require the number of classes/clusters previous
its performance. Although the number of classes is known in
supervised applications, the real number of clusters is extremely
hard to figure out, since one class may be represented by more
than one cluster. Experiments over 9 datasets together with
statistical analysis have shown the suitability of OPF clustering
for the RBF training step.

Index Terms—Artificial Neural Networks, Radial Basis Func-
tion, Optimum-Path Forest

I. INTRODUCTION

Machine learning techniques have been extensively studied

in the last decades. Improvements in their mathematical for-

mulation and implementation through computer programs have

led to the development of even better approaches to handle the

problem of finding separating decision functions, mainly in the

context of large datasets.

The introduction of the well-known Perceptron by the semi-

nal work of Rosenblatt [1] has started a research race to answer

the following question: “How does the brain work?”. However,

even after several years, this concern remains an open problem.

Artificial Neural Networks (ANNs) have arisen to boost the

original idea of Perceptron, in which a collection of neurons

can process the information and propagate input signals from

one layer to another. A famous approach is the ANN with

Multilayer Perceptrons (ANN-MLP), in which a common

architecture composed by three main layers (input, hidden and

output) tries to model the complex and intrinsic brain working

The authors would like to thank FAPESP grants #2009/16206-
1, #2013/05513-6 and 2013/20387-7, CAPES and also CNPq grants
#303182/2011-3, #470571/2013-6, #3479070/2013-0 and #303673/2010-9.
This work was partially done in the scope of the project “A novel framework
for Supervised Mobile Assessment and Risk Triage of Skin lesions via Non-
invasive Screening”, with reference PTDC/BBB-BMD/3088/2012, financially
supported by Fundação para a Ciência e a Tecnologia (FCT) in Portugal.

model [2]. Since the idea is to separate the feature space such

that samples with similar properties will belong to the same

cluster, an ANN-MLP employ linear decision boundaries to

address such a task. Complex separating functions can be

obtained using hidden layers with more neurons [3].

Neural networks with Radial Basis Function (RBF) are also

another interesting kind of networks which employs a three-

layered architecture for pattern recognition and regression

problems. The idea is to submit the input data to a non-linear

mapping performed by radial basis functions in the hidden

layer, and after that a linear combination of the hidden layer

outputs is then employed in the output layer [3]. Artificial

Neural Networks with Radial Basis Function (ANN-RBF) also

seek to separate the feature space as ANN-MLP does, but now

different decision boundaries are designed. Usually, such sort

of neural networks can be faster than ANN-MLP ones, since

their training step is simpler and can be conducted by using

several approaches, being one of them a single-step solution

based on pseudo-inverse solution.

The basic idea of an artificial neural network with radial

basis function is to perform a training step followed by

classification, being the former procedure composed by two

phases: (i) an unsupervised one, which is responsible to find

out the radial function’s parameters, and (ii) a supervised step,

which performs the non-linear mapping of the input vector for

further linear weight combination. Among the wide variety

of radial basis functions, the most employed is the well-

known Gaussian function, which has a simple and effective

formulation. However, the main shortcoming of ANN-RBF

networks is the requirement of a good space coverage by

Gaussian functions, which turns ANN-RBF extremely depen-

dent on the effectiveness of the clustering approach that aims

to find the parameters of the Gaussian functions, i.e., mean

and variance (the later one is commonly estimated though a

closed equation). Despite most implementations employ the

well-known k-means for such task, which is simple and easy to

be implemented, in real applications, it is not so easy to know

the number of clusters, as required by k-means. Although the

2014 22nd International Conference on Pattern Recognition

1051-4651/14 $31.00 © 2014 IEEE

DOI 10.1109/ICPR.2014.262

1472

user may have the knowledge of the number of classes, each of

them may be represented by more than one Gaussian function.

Additionally, the k value can be estimated through a validating

set, but it may be impractical for large datasets.

Nowadays, many works have addressed the problem of

finding Gaussian’s parameters using optimization approaches.

Esmaeili and Mozayani [4], for instance, employed Parti-

cle Swarm Optimization (PSO) for this task. Tsekouras and

Tsimikas [5] proposed a hybrid approach for ANN-RBF

training using PSO and a fuzzy-based clustering approach.

A Memetic-based algorithm using the concept of Differen-

tial Evolution has been also used for the same context by

Qasema and Shamsuddina [6]. Although such optimization-

based approaches are interesting and widely employed for

RBF training, it is important to point out some drawbacks: (i)

they can be trapped in local optima, (ii) some of them have a

high computational burden and may require several iterations

for convergence, and (iii) evolutionary-based algorithms often

require several parameters as input, making necessary to

find out reasonable values for each of them, which can be

empirically done or even with meta-optimization techniques,

increasing the complexity of the whole system.

Recently, Rocha et al. [7] proposed an interesting approach

for data clustering based on the Optimum-Path Forest (OPF)

methodology, which models the clustering task as a graph par-

tition problem, where the samples are the nodes and a prede-

fined adjacency relation connects them. The graph partition is

ruled by a competition between key nodes (prototypes) using a

path-cost function, being each of them the root of its optimum-

path tree (cluster), which contains the conquered nodes. The

OPF has demonstrated better results than traditional Mean-

Shift algorithm [7], and can find out the number of clusters

on-the-fly, i.e., it does not require the number of clusters as

an input, such as k-means, for instance, being an interesting

tool for RBF networks training. Additionally, the prototypes

estimated by OPF, which will encode the mean values of the

Gaussian distributions, are positioned in the center (or nearby

regions) of the clusters (high density regions), being located

at more representative positions than the ones computed by

k-means.

Therefore, this paper introduces the OPF clustering for

RBF networks training, which is compared against with tra-

ditional k-means in several synthetic and public datasets.

The experiments have been statistically analyzed, showing the

robustness of OPF clustering in situations in which k-means

would fail, such as in classes represented by more than one

Gaussian distribution (which may really happen in practice).

The remainder of this paper is organized as follows. Section II

presents the background theory related with RBF networks

and OPF clustering. Sections III and IV describe the proposed

approach for finding suitable Gaussian’s centers using OPF

and the experimental section, respectively. Finally, conclusions

are stated in Section V.

II. THEORETICAL BACKGROUND

A. Artificial Neural Networks with Radial Basis Function

Artificial Neural Networks with Radial Basis Function are

one of the most used machine learning techniques, which can

be seen as a multilayer neural network composed by three

layers: input, hidden and an output. The first layer receives the

input vector, which is submitted to a non-linear transformation

in the hidden layer. Finally, a linear combination of the outputs

of the hidden layer is performed in the last layer.

Given an input vector x ∈ R
n, the outputs of the RBF

neural network can be computed as follows:

yj =
m∑
i=1

hiwi,j , j = 1, . . . , p, (1)

in which m and p denote the number of hidden neurons

(gaussians) and the number of output neurons, respectively,

wi,j ∈ R stands for the weight of the connection between

between the hidden neuron i and the output neuron j, and

h ∈ R
m denotes a vector of the outputs of the radial

basis functions. In regard to RBF neural networks, h can be

composed by any sort of radial basis function, being the most

common the n-dimensional Gaussian:

hj(x|μj ,Σj) =
1

(2π)n/2 |Σj |1/2
e(−

1
2 (x−μj)

TΣ−1
j (x−μj)),

(2)

where μj ∈ R
n and Σj stand for the centers (mean vector) and

covariance matrix of gaussian j, respectively. Notice |Σ| stands

for the determinant of Σ. As such, the ANN-RBF training step

aims to find out suitable values for μ, Σ and the weights w.

Basically, μ and Σ are computed through unsupervised

learning. Commonly, it is assumed an isotropic distribution,

which means we can use the same variance for all Gaussians.

Among several possibilities for that purpose, we adopted the

following:

σ = 2D, (3)

in which D stands for the average distance between centers.

As we are working with n-dimensional Gaussian distributions

(Equation 2), we can build diagonal covariance matrices with

size n× n, as follows:

Σi =

⎡
⎢⎢⎢⎣

σ 0 . . . 0
0 σ . . . 0

...
. . .

...
...

0 0 . . . σ

⎤
⎥⎥⎥⎦ , (4)

in which Σi denotes the covariance matrix for Gaussian

distribution i. Regarding the weights w, there are some in-

teresting approaches such as the pseudo-inverse method and

the generalized delta rule. As in this paper we have employed

the former approach, next section describes it in more details.

1473

Pseudo-Inverse Method: The pseudo-inverse method can

be seen as the solution for a least square problem, in which

we can compute the matrix of weigths Wm×p. Let X =
{x1, x2, . . . , xr} be a training dataset, such that xi ∈ R

n. We

can find W by using X as the inputs to the neural network.

Let Φ be defined as follows:

Φ =

⎡
⎢⎢⎢⎣
h1(x

1|μ1, σ1) h2(x
1|μ2, σ2) . . . hm(x1|μm, σm)

h1(x
2|μ1, σ1) h2(x

2|μ2, σ2) . . . hm(x2|μm, σm)
...

. . .
...

...

h1(x
r|μ1, σ1) h2(x

r|μ2σ2) . . . hm(xr|μm, σm)

⎤
⎥⎥⎥⎦,

(5)

where Φr×m is a matrix with the responses of the m hidden

layer neurons to the r training input samples. We also have:

W =

⎡
⎢⎢⎢⎣
w1,1 w1,2 . . . w1,p

w2,1 w2,2 . . . w2,p

...
. . .

...
...

wm,1 wm,2 . . . wm,p

⎤
⎥⎥⎥⎦ , (6)

that is our already known weight’s matrix, in which wi,j means

the weight of the connection between hidden neuron i to the

output neuron j. Finally, let Yr×p be the output matrix:

Y =

⎡
⎢⎢⎢⎣
y1,1 y1,2 . . . y1,p
y2,1 y2,2 . . . y2,p
...

. . .
...

...

yr,1 yr,2 . . . yr,p

⎤
⎥⎥⎥⎦ , (7)

in which yi,j means the desired value for the training sample i
at output neuron j. Notice yj has been defined in Equation 1,

but for only one sample x ∈ R
n. Now, we have a set X with

r samples, and each yi,j is now redefined to be part of the

matrix Y , but it can be computed as the same way before,

i.e., using Equation 1, which can be rewritten to handle the

whole training set:

Y = ΦW. (8)

By now, we have to discover W , which can be computed

as follows:

W = Φ−1Y, (9)

in which Φ−1 stands for the inverse of Φ. As Φ may not be

square, we need to compute its pseudo-inverse Φ+, which can

be performed as follows:

Φ+ = V S+UT , (10)

which is the so-called Moore-Penrose pseudo-inverse. In this

case, Equation 9 can be rewritten as:

W = Φ+Y. (11)

Therefore, W can be computed and the weights estimated.

B. Optimum-Path Forest Clustering

The design of classifiers based on Optimum-Path Forest

has been proposed as a graph-based methodology to exploit

connectivity relations between data samples in a given feature

space. The methodology interprets a training set as a graph,

whose nodes are the samples and the arcs connect pairs of

samples that satisfy a given adjacency relation. For a suitable

path-value (connectivity) function, the optimum-path forest

algorithm [8] partitions the graph into optimum-path trees

rooted at some key samples, named prototypes. The prototypes

compete among themselves for the most closely connected

samples in the training set, such that each sample is assigned

to the tree whose prototype offers to it an optimum path.

Classification of a new sample is done by finding its most

closely connected root in an incremental way through the

evaluation of the optimum-path values of the training samples.

Let Z be a dataset such that for every sample s ∈ Z there

exists a feature vector �v(s). Let d(s, t) be the distance between

s and t in the feature space. A graph (Z,Ak) can be defined

such that the arcs (s, t) ∈ Ak connect k-nearest neighbors

(k-nn) in the feature space (Ak stands for the k-nn adjacency

relation). The arcs are weighted by d(s, t) and the nodes s ∈ Z
are weighted by a probability density value ρ(s):

ρ(s) =
1√

2πσ2|Ak(s)|
∑

∀t∈Ak(s)

exp

(−d2(s, t)
2σ2

)
,(12)

where |Ak(s)| = k, σ =
df

3 , and df is the maximum arc

weight in (Z,Ak). This parameter choice considers all adja-

cent nodes for density computation, since a Gaussian function

covers most samples within d(s, t) ∈ [0, 3σ]. Moreover, since

Ak is asymmetric, symmetric arcs must be added to it on the

plateaus of the probability density function (PDF) in order to

guarantee a single root per maximum.

The traditional method to estimate a PDF is by Parzen-

window. Equation 12 can provide Parzen-window estimation

based on an isotropic Gaussian kernel when we define the

arcs by (s, t) ∈ Ak if d(s, t) ≤ df . This choice, however,

presents problems with the differences in scale and sample

concentration. Solutions for this problem lead to adaptive

choices of df depending on the region of the feature space [9].

By taking into account the k-nearest neighbors, the method

handles different concentrations and reduces the scale problem

to the one of finding the best value of k, say k∗ within

[kmin, kmax], for 1 ≤ kmin < kmax ≤ |Z|.
The solution proposed by Rocha et al. [7] to find k∗

considers the minimum graph cut among all clustering results

for k ∈ [1, kmax] (kmin = 1), according to the normalized

1474

measure GC(Ak, L, d) suggested by Shi and Malik [10]:

GC(Ak, L, d) =

c∑
i=1

W ′
i

Wi +W ′
i

, (13)

Wi =
∑

∀(s,t)∈Ak|L(s)=L(t)=i

1

d(s, t)
, (14)

W ′
i =

∑
∀(s,t)∈Ak|L(s)=i,L(t)�=i

1

d(s, t)
, (15)

where L(t) is the label of sample t, W ′
i uses all arc weights

between cluster i and other clusters, and Wi uses all arc

weights within cluster i = 1, 2, . . . , c.
The method defines a path πt as a sequence of adjacent

samples starting from a root R(t) and ending at a sample t,
being πt = 〈t〉 a trivial path and πs · 〈s, t〉 the concatenation

of πs and arc (s, t). It assigns to each path πt a value f(πt)
given by a connectivity function f . A path πt is considered

optimum if f(πt) ≥ f(τt) for any other path τt.
Among all possible paths πt from the maxima of the PDF,

the method assigns to t a path whose minimum density value

along it is maximum. That is, the method finds V (t) =
max∀πt∈(Z,Ak){f(πt)} for f(πt) defined by:

f(〈t〉) =

{
ρ(t) if t ∈ R
ρ(t)− δ otherwise

f(〈πs · 〈s, t〉〉) = min{f(πs), ρ(t)}, (16)

for δ = min∀(s,t)∈Ak|ρ(t)�=ρ(s) |ρ(t)−ρ(s)| and R being a root

set, discovered on-the-fly, with one element per each maximum

of the PDF. Note that higher values of δ reduce the number

of maxima. We are setting δ = 1.0 and scaling real numbers

ρ(t) ∈ [1, 1000] in this work. The OPF algorithm maximizes

the connectivity map V (t) by computing an optimum-path

forest — a predecessor map P with no cycles that assigns

to each sample t /∈ R its predecessor P (t) in the optimum

path from R or a marker nil when t ∈ R.

III. OPTIMUM-PATH FOREST-BASED TRAINING

In this section, we present the proposed approach that

employs OPF clustering to find out the centers of Gaussian

distributions. Given a supervised dataset, we partition it in a

training and testing sets, being the former used by OPF to

cluster samples and then to compute prototypes. After that,

their positions are stored and used as the mean values for the

Gaussian distributions (the covariance matrices are computed

using Equation 4).

Let C be the number of prototypes (clusters) found by OPF

in the ANN-RBF unsupervised training step. After building

the Gaussian models, we employ a neural architecture with

n input neurons and |C| neurons for the hidden and output

layers. Although we may have more hidden layers than the

number of classes (it may have more Gaussian distributions

than classes), OPF can find out a suitable number of clusters

(Gaussians), and then we can use the position of the root of

each them (i.e., the prototypes) to encode the mean values of

each Gaussian. Figure 1 illustrates the proposed procedure.

�������

������
���	

�

�
	�����	
�

��

���	�
����

���		�������
�	

��������
	�
�

�
	�����	�
�

Fig. 1. Proposed pipeline for OPF-based neural network training.

IV. EXPERIMENTAL RESULTS

The experiments have been carried out in two distinct

phases: (i) in the former one, we have shown the similarity (lo-

cation) between prototypes found by OPF and the means com-

puted by k-means in four two-dimensional synthetic datasets,

as well as we discussed the robustness of OPF with respect

to kmax parameter; (ii) in the latter experiment, we employed

the proposed approach (Section III) for the same synthetic

datasets used in the previous step and also for three more

real problems. Notice for all experiments we have employed a

computer equipped with an Intel I5 R© processor, 8Gb RAM

and OS X 10.8.5 as the operational system.

Table I presents the datasets employed in this paper. Notice

the top four datasets were created (synthetic) for this work,

and the remaining ones are public available datasets.

TABLE I
DESCRIPTION OF THE DATASETS EMPLOYED IN THIS WORK.

Dataset # samples # features # classes

Db1 500 2 2
Db2 200 2 2
Db3 150 2 3
Db4 445 2 3
Wine [11] 178 13 4
Iris [11] 150 4 3
Breast-cancer (BC) [11] 683 10 2
Saturn [12] 200 2 2
Cone-Torus (CT) [12] 200 2 3

A. Experiments

1) OPF versus k-means: As aforementioned, the first round

of experiments aimed to compare the OPF prototypes’ position

with the centers obtained by k-means. Figure 2 depicts such

results, in which the left and right columns stand for k-means

(centers in red) and OPF (prototypes in orange) results, being

kmax = 50 used for all datasets. One can see that both k-

means and OPF achieved similar results for Db1 (Figures 2a

and 2b) and Db3 (Figures 2e and 2f) datasets. However, in

situations when we have more than one cluster per class, k-

means may not achieve reasonable results, as one can notice

1475

for Db2 (Figures 2c and 2d) and Db4 (Figures 2f and 2g)

datasets. Therefore, such behavior can degrade the ANN-RBF

effectiveness, since the feature space will not be properly

covered by the Gaussians distributions. Additionally, one can

check that OPF found out the centers of all clusters for both

datasets.

(a) (b)

(c) (d)

(e) (f)

(f) (g)

Fig. 2. Synthetic datasets: OPF prototypes in orange for datasets Db1, Db2,
Db3 and Db4 in the right column, respectively, and k-means centers found
in red for datasets Db1, Db2, Db3 and Db4 in the left column, respectively.

There is one more question regarding OPF clustering that

one may face: “What about kmax parameter?”. One can argue

OPF does not require the number of classes (clusters), but the

user needs to input kmax. This parameter controls the area

of coverage of one sample during the competition process,

and its value may previously define the number of clusters

(Section II-B). However, kmax is much less prone to error

for clusters’ estimation than k value for k-means. Figure 3

shows an experiment over Db1, Db2, Db3 and Db4 datasets

using different values of kmax. One can see there that are

several plateus in the curves, i. e., there are several kmax values

in which the number of clusters do not change. Notice the

number of clusters increases drastically with small values of

kmax, since the compared datasets have hundreds of samples.

For smaller datasets, this may not happen. Therefore, an user

with a low level of experience with OPF can learn suitable

input vales for kmax.

Fig. 3. Robustness of OPF regarding different kmax values.

2) Evaluating OPF effectiveness for ANN-RBF neurons
estimation: In this set of experiment, we have evaluated the

quality of the neurons found out by OPF against with the ones

computed by k-means. For such purpose, we employed the

datasets presented in Table I in a cross-validation procedure

with 10 runnings, being 50% of the dataset used to compose

the training set, and the remaining samples for testing. After

that, we assessed the robustness (both efficiency and effective-

ness) of experiments over a paired-sample t-test with 95% of

confidence. Table II presents the mean accuracy of ANN-RBF

with the neurons obtained by OPF and k-means. Notice we

employed an accuracy measure proposed by Papa et al. [13],

which considers imbalanced classes.
One can verify that the results using the neurons obtained

by OPF are clearly better than the ones computed by k-means.

In some cases, the ANN-RBF recognition rate using OPF

neurons has been 48.13% better than using k-means (Db4

dataset, for instance). Such difference mainly rely on situations

in which the number of Gaussians that cover the feature space

is different from the number of classes. In practice, as one can

found in all real applications, OPF presented a considerable

advantage over k-means for neurons’ estimation.
In regard to the statistical evaluation, the paired-sample t-

test with 95% of confidence rejected the null hypothesis, which

states OPF and k-means are similar to each other (i.e., both

approaches can lead ANN-RBF to results over all datasets with

1476

TABLE II
MEAN ACCURACIES FOR ANN-RBF CLASSIFICATION USING OPF AND

k-MEANS. IT SHOULD BE NOTICED THAT THE STANDARD DEVIATIONS ARE

TOO SMALL TO BE INDICATED. THE SQUARE BRACKETS IN OPF COLUMN

STAND FOR kmax .

Dataset OPF k-means

Db1 98.33%[50] 97.16%
Db2 100.00%[50] 74.00%
Db3 99.00%[50] 99.00%
Db4 97.49%[50] 65.81%
Wine 81.99%[5] 74.38%
Iris 99.00%[10] 94.00%
Breast-cancer 96.34%[50] 80.24%
Saturn 53.99%[50] 44.00%
Cone-Torus 84.33%[10] 73.17%

the same mean accuracies). Therefore, one can conclude OPF

provides more suitable neurons for ANN-RBF training than

k-means considering the datasets employed in this work.

In addition, we have computed the execution times (sec-

onds) for ANN-RBF training step through OPF and k-means.

Figure 4 illustrates this information for each dataset. The

mean execution time for k-means (considering all datasets)

was about 0.0041s, while OPF-based training time was about

0.0348s. Therefore, the training step using k-means is 8.48

times faster than employing OPF. Once again, we applied the

paired-sample t-test with 95% of confidence in the execution

times data, which evidenced that k-means is statistically faster

than OPF, i.e., the t-test rejected the null hypothesis. However,

OPF can be a suitable alternative to k-means, since the former

recognition rates are considerable better than the last one.

Fig. 4. Execution times for OPF- and k-means-based ANN-RBF training.

V. CONCLUSIONS

The RBF training procedure is composed by two steps: (i)

an unsupervised one, which aims to find the hidden neurons;

and (ii) a supervised step, that properly computes the weights

that will be used to combine the output of hidden neurons.

The most commonly used approach to find out Gaussian’s

neurons is to employ k-means for such purpose, since the

neurons encode the mean parameter of the Gaussian distribu-

tion. Therefore, as k-means tries to find the center point of

a given cluster, such approach is a good candidate for this

task. However, the user needs to input the number of means

(k), which may not correspond to the real number of clusters,

since a class can be represented by more than one cluster.

In this paper, we proposed to introduce the OPF clustering

approach for such task, since it computes the number of

clusters (neurons) on-the-fly, being more intuitive to be used

than k-means.

The experiments have shown that the OPF neurons’ position

are similar to the ones found out by k-means, and OPF can

outperform k-means in situations that require more Gaussians

than classes to cover the feature space. Experimental results

over 9 datasets showed the robustness of OPF-based RBF

training step. The main drawback of using OPF concerns with

its computational load, which is greater than k-means one.

REFERENCES

[1] F. Rosenblatt, “The perceptron: A probabilistic model for information
storage and organization in the brain,” Psychological Review, vol. 65,
no. 6, pp. 386–408, 1958.

[2] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification (2nd
Edition). Wiley-Interscience, 2000.

[3] S. Haykin, Neural Networks: A comprehensive foundation. Prentice-
Hall, 1998.

[4] A. Esmaeili and N. Mozayani, “Adjusting the parameters of radial basis
function networks using particle swarm optimization,” in Proceedings
of the IEEE International Conference on Computational Intelligence for
Measurement Systems and Applications, 2009, pp. 179–181.

[5] G. E. Tsekouras and J. Tsimikas, “On training RBF neural networks
using input-output fuzzy clustering and particle swarm optimization,”
Fuzzy Sets and Systems, vol. 221, pp. 65–89, 2013.

[6] S. N. Qasem and S. M. Shamsuddin, “Memetic elitist pareto differential
evolution algorithm based radial basis function networks for classifica-
tion problems,” Applied Soft Computing, vol. 11, no. 8, pp. 5565–5581,
2011.

[7] L. M. Rocha, F. A. M. Cappabianco, and A. X. Falcão, “Data clustering
as an optimum-path forest problem with applications in image analysis,”
International Journal of Imaging Systems and Technology, vol. 19, no. 2,
pp. 50–68, 2009.

[8] A. Falcão, J. Stolfi, and R. Lotufo, “The image foresting transform
theory, algorithms, and applications,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 26, no. 1, pp. 19–29, 2004.

[9] D. Comaniciu, “An algorithm for data-driven bandwidth selection,” IEEE
Transaction on Pattern Analysis and Machine Intelligence, vol. 25, no. 2,
pp. 281–288, 2003.

[10] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22,
no. 8, pp. 888–905, Aug 2000.

[11] A. Frank and A. Asuncion, “UCI machine learning repository,” 2010.
[Online]. Available: http://archive.ics.uci.edu/ml

[12] J. P. Papa, C. T. N. S., and A. X. Falcão, LibOPF: A library for the
design of optimum-path forest classifiers, 2009, software version 2.0
available at http://www.ic.unicamp.br/∼afalcao/LibOPF.

[13] J. P. Papa, A. X. Falcão, and C. T. N. Suzuki, “Supervised pattern
classification based on optimum-path forest,” International Journal of
Imaging Systems and Technology, vol. 19, no. 2, pp. 120–131, 2009.

1477

