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Abstract In thiswork,we consider a 2n-dimensionOrnstein–Uhlenbeck (O–U)processwith
a singular diffusion matrix. This process represents a currently used model for mechanical
systems subject to randomvibrations.We study the problemof estimating the drift parameters
of the stochastic differential equation that governs theO–Uprocess. Themaximum likelihood
estimator proposed and explored in Koncz (J Anal Math 13(1):75–91, 1987) is revisited and
applied to our model. We prove the local asymptotic normality property and the convergence
of moments of the estimator. Simulation studies based on representative examples taken from
the literature illustrate the obtained theoretical results.
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1 Introduction

Many real-life mechanical and structural systems respond dynamically to random environ-
mental loads such as wind, wave or earthquake forces sometimes leading to stochastic
estimation problems (see for instance Lutes and Sarkani 1997; Peeters and Roeck 2001).
Electrical circuits and power systems are also examples of systems exhibiting stochastically
disturbed dynamics. The 2n-dimension Ornstein–Uhlenbeck (O–U) process appears in the
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engineering literature as a model for mechanical or electrical systems subject to random exci-
tations. The associated problem of estimating the drift matrix, based on observations of the
stochastic response process, has been investigated in e.g. Perninge et al. (2011). The general
multidimensional O–U model and the parameter estimation problem are studied in detail
in Le Breton (1977), Arató (1982) and Rao (1999). However, most of the results obtained
in those studies, regarding the Maximum Likelihood Estimator (MLE) of the drift matrix,
require the invertibility of the diffusion matrix. This is the case of the asymptotic normality
of the estimator. The MLE for the drift matrix of a general multidimensional O–U model,
with no restrictions on the invertibility of the diffusion matrix, has later been proposed and
explored in Koncz (1987), where the properties of the Laplace transform and the moments
of the MLE are also investigated. Irrespectively of the stability of the process, the MLE is
known to be unbiased and consistent (cf. Basak and Lee 2008 and the related work of Lin
and Lototsky 2011), under some rank condition on the matrices governing the dynamics of
the O–U process.

While extensively studied in the past, asymptotic properties of the MLE remain unknown
in a number of cases. In particular, proofs of asymptotic normality in Arató (1982), Rao
(1999) and Kutoyants (2004) require certain regularity and ergodicity conditions, under
which the estimator is asymptotically normal with the rate of convergence

√
T . In Koncz

(1987) Novikov’s approach is generalised and applied to the general estimation problem of
a stable drift matrix, for the O–U process in any dimension, and without any restrictions on
the diffusion matrix. However Koncz (1987) does not address the large sample asymptotic
behaviour of theMLEnor the convergence ofmoments and its efficiency. The results inKoncz
(1987) are based on the computation of the matrix Laplace transform. Recently, Lin and
Lototsky (2014) identified and investigated all possible modes of asymptotic distributional
behaviour of the MLE for a class of Stochastic Differential Equations (SDEs) in dimension
two with the emphasis on the non-ergodic case. In particular, local asymptotic properties and
the convergence rates were found in all stability regions. The problem in a higher dimension
still remains open.

In this paper, we investigate the asymptotic properties of the MLE for the drift matrix of a
particular 2n-dimension O–U process with a singular diffusion matrix. This problem corre-
sponds to an extension of thework carried out inLin andLototsky (2014) to higher dimensions
in the ergodic case. It is also related to the study presented in Brockwell et al. (2007), where
the estimation of the continuous time auto-regressive process of order p (CAR(p)) is analysed
and the asymptotic normality of the MLE is proved. The paper Brockwell et al. (2007) con-
siders a particular case of the problem from this paper, corresponding to 2n = p = 2. The
rank condition mentioned in Basak and Lee (2008) trivially verifies in our case, implying
consistency and asymptotic efficiency of the MLE. Therefore, we will be interested in the
Local Asymptotic Normality (LAN) property and in the convergence ofmoments. The results
from Koncz (1987) are not helpful in this context since they require the computation of the
Laplace transform matrix and we are interested in the Laplace transform of a quadratic form.

This paper implements the program proposed in Ibragimov and Khasminskii (1981) [The-
orem I.10.1] to derive asymptotic properties of theMLE.Our approach uses the representation
of the estimation error as the linear transformation θ̂T − θ = 〈MT 〉−1 · MT of a martingale
MT and is based on its Laplace transform. The main idea is to deduce all the properties of
the MLE, including the convergence of moments, from the weak convergence of the scaled
likelihoods. The asymptotic covariance matrix of the estimator is given in terms of the solu-
tion of a Lyapunov equation. In addition, we establish the convergence of all the moments of√
T (θ̂T − θ), which does not come as a direct consequence of the ergodicity. The proposed
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method will work also for partially observed models and it can be extended to more general
classes of noises.

In a number of special cases the covariance matrix of the asymptotic estimation error has
a certain useful structure. For example, for the linear harmonic stochastic oscillator with n
degrees of freedom it has a block-diagonal form. Furthermore, in the cases where this matrix
has certain commutative properties, the covariancematrix can be found explicitly. Simulation
studies illustrate the asymptotic behaviour of the estimator and show a good empirical fit with
the obtained theoretical results in the non-asymptotic setup.

The paper is organized as follows: in Sect. 2 we describe the estimation problem under
study, we introduce the notations used throughout this work (Sect. 2.1) and we formulate
the main results (Sect. 2.2). Section 3 contains some auxiliary material and Sect. 4 gives the
proofs of the main results. The computation of the Fisher information matrix is explored in
Sect. 5. The results obtained by numerical simulations are presented in Sect. 6. Section 7
summarises the conclusions of our study.

2 Statement of the problem and the main results

Let (Ω,F, {Ft }t , P) be a filtered probability space. We consider the O–U process with a
particular structure

dXt = AXtdt + B
1
2 dWt , t ≥ 0, X0 = 0, (1)

where {Xt }, {Wt } ∈ R
2n and {Wt } a standard Wiener process. The matrices A and B

1
2 are

given by

A =
(

0 I dn×n

−θ1 −θ2

)
and B

1
2 =

(
0 0

0 �
1
2

)
, (2)

where θ1 and θ2 are real n × n matrices and � is a real n × n symmetric positive definite
matrix.

We will assume that
(A) A is a stable matrix, that is, all eigenvalues of A have negative real parts.

Notice that if, for instance,
(A′) θ1 and θ2 are commutative symmetric positive definite matrices

then (A) holds.
The matrices θ1 and θ2 are unknown and our problem is to estimate these matrices, based

on the observation of {Xt } on the interval [0, T ]. Since the matrix � can be computed with
probability one through the quadratic variation of Xt on any finite interval, we consider �

known.

Notations Throughout the paper we will use the following notations:
U∗ denotes the transpose of a matrix U ;
tr(U ) denotes the trace of a square matrix U ;
The symbol ⊗ stands for the Kronecker product of two matrices;
‖ · ‖ is the Euclidean norm;

If U = (U 1 U 2 · · ·U p) is an m × p matrix then vec(U ) is an mp column-vector built
from the columns of the matrix U , stacked one by one. More precisely

vec(U ) =

⎛
⎜⎜⎝
U 1

U 2

· · ·
U p

⎞
⎟⎟⎠ ;
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If η is a p × n random matrix, we will write that η ∼ MNp×n(0, �p×p, I(A)) (matrix
normal distribution) when vec(η) ∼ Npn(0, I(A)n×n ⊗ �p×p).

An equivalent representation of the process {Xt } is the solution Xt = (X1
t , X

2
t )

∗ of the
system {

dX1
t = X2

t dt

dX2
t = −ΘXtdt + �

1
2 dW 2

t
, (3)

with an unknown n × 2n matrix Θ = (θ1, θ2) and the standard Wiener process {W 2
t } in R

n .
The estimation problem is, obviously, equivalent to estimation of the column vector θ =

(θi ) ∈ R
n(2n)×1, which represents row-by-row concatenation of the n last rows of matrix A,

based on observation of {Xt } over the interval [0, T ].
In real world applications arising in mechanical, structural or electrical systems, the drift

matrix appears in the particular form

A =
(

0 I dn×n

−M−1K −M−1C

)
, (4)

where M is a known invertible matrix, and K , C are unknown matrices that have to be
estimated.

2.1 The maximum likelihood estimator

For a fixed value of the parameter Θ , let PΘ denote the probability measure induced by
X on the function space C[0, T ] and let FX

T be the natural filtration of X . By the Girsanov
theorem the likelihood, i.e. the Radon-Nikodymderivative of PΘ with respect to the reference
measure on C[0, T ], corresponding to Θ = 0, restricted to FX

T , is given by the conditional
expectation

LT (Θ, X) = Ẽ

(
dPΘ

d P̃0
|F X

T

)
,

where

d P̃0
dPΘ

= exp

(∫ T

0
(�− 1

2 ΘXt )
∗dW 2

t − 1

2

∫ T

0
(�− 1

2 ΘXt )
∗�− 1

2 ΘXt dt

)
.

Or, equivalently,

LT (Θ, X) = exp

(
−
∫ T

0
X∗
t Θ

∗�−1 dX2
t − 1

2

∫ T

0
X∗
t Θ

∗�−1ΘXt dt

)
. (5)

The MLE Θ̂T = argmax
Θ

LT (Θ, X), associated with model (3), is given by

Θ̂T = −
∫ T

0
dX2

t · X∗
t ·

(∫ T

0
Xt X

∗
t dt

)−1

. (6)

Hence,

Θ̂T − Θ = −�
1
2

(∫ T

0
Xt dW

2∗
t

)∗
·
(∫ T

0
Xt X

∗
t dt

)−1

. (7)
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Equivalently, Θ̂T can be written as

Θ̂T = Diag

((∫ T

0
Xt X

∗
t dt

)−1

n blocks

)
⎛
⎜⎜⎜⎜⎝

∫ T
0 XtdX

(n+1)
t∫ T

0 XtdX
(n+2)
t

...∫ T
0 XtdX

(2n)
t

⎞
⎟⎟⎟⎟⎠

=
(
I dn×n ⊗

(∫ T

0
Xt X

∗
t dt

)−1)
·

⎛
⎜⎜⎜⎜⎝

∫ T
0 XtdX

(n+1)
t∫ T

0 XtdX
(n+2)
t

...∫ T
0 XtdX

(2n)
t

⎞
⎟⎟⎟⎟⎠ . (8)

The consistency and efficiency for θ are established in Basak and Lee (2008). Since
matrix B is singular, asymptotic normality does not literally follow from Rao (1999), nev-
ertheless, ergodicity of the process {Xt } is sufficient to ensure the LAN property (cf. Arató
(1982)[Theorem 4.6-2]). However, efficiency of the MLE and control of the moments

E

(∫ T

0
‖Xt X

∗
t ‖dt

)−k

are not directly implied by the ergodicity and therefore are not straightforward. One possible
approach to these asymptotic properties, based on the Ibragimov–Khasminskii program, is
presented in the next section.

Regarding estimation of the matrices K and C in (4), note that K̂ and Ĉ can be obtained
by a linear transformation of the estimators of Θ or θ :

(K̂ Ĉ) = −M(vec−1(θ̂))∗,

where vec−1 is the inversion of the vectorization operation vec, defined above.

2.2 Main results

In this section we show that our model is regular in Ibragimov–Khasminskii’s sense, which
ensures that the LAN property holds, as well as convergence of all moments (Ibragimov and
Khasminskii 1981). The verification of conditions (C1)–(C3) is based on computation of the
Laplace transform.

The main result of this paper is the following:

Theorem 1 The MLE given by (6) satisfies

√
T (Θ̂T − Θ)

L−→
T→+∞ η,

where η is a matrix valued random variable, η ∼ MNn×2n
(
0, I−1 (A) ,�

)
, and I(A) is the

unique solution of the Lyapunov equation

AI(A) + I(A)A∗ + B = 0. (9)

Moreover, the following convergence of moments holds true

E‖√T (θ̂T − θ)‖k −→
T→+∞ E‖η‖k, k ≥ 1.
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The next result is of independent interest, and it gives the exponential moments conver-
gence.

Proposition 1 For any y ∈ R and any symmetric positive definite 2n × 2n matrix Q there
exists T0 such that for any T ≥ T0 we have

E exp

(
y

2T

∫ T

0
X∗
t QXtdt

)
= exp

( y
2
tr(I(A)Q)

)(
1 + c|y|

T
‖Q‖

)
,

where I(A) is the unique solution of the Lyapunov equation (9) and the term c is uniformly
bounded with respect to y, Q and T .

The invertibility of I(A) is ensured by the controllability of the pair (A, B
1
2 ) while the

stability of A (assumption (A)) ensures that the solution of (9) is unique. The controllability of

the pair (A, B
1
2 ) is a consequenceof the rank condition rank(B

1
2 |AB 1

2 | · · · |A2n−1B
1
2 ) = 2n,

which, in our case, is verified by elementary calculations.
Proposition 1 is proved for all y ∈ R. For y < 0 this property can be proved in a very simple

manner by using the dominated convergence theorem. The case y > 0 implies convergence
of the exponential moments.

3 Auxiliary results

3.1 Algebraic and differential Riccati equations

This subsection gathers general results on algebraic Riccati equations and small perturbations
of a matrix Riccati equation, which will be useful when proving the main results.

Let us recall the explicit formula for the positive solution Dμ of the algebraic Riccati
equation, with symmetric positive definite matrix Q, (see Kucera 1973)

DμA + A∗Dμ − 2DμBDμ = μ

2
Q. (10)

When μ < 0, we have

Dμ = FG−1,

where F = [ f1, f2, . . . , fm], G = [g1, g2, . . . , gm] and

(
fi
gi

)
, i = 1, . . .m are the

eigenvectors of M =
(

A −B
μ
2 Q −A∗

)
, in such an order that G is invertible.

The solution exists for a small positive μ due to the Cayley–Hamilton theorem, due to the
analytical properties of the eigenvectors of M , and

‖Dμ‖ ≤ c|μ|‖Q‖
with a constant c that does not depend on μ and Q. The positive solution Dν of

Dν A + A∗Dν − 2νDνBDν = μ

2
Q

is such that ‖Dν − D0‖ ≤ c|ν| where D0A + A∗D0 − μ
2 Q = 0.

Now we consider the differential equation and the initial condition{
γ̇t = Aγt + γt A∗ + μγt Qγt + B
γ0 = 0

. (11)

123



Stat Inference Stoch Process

Its solution exists for every μ < 0 and for μ > 0 small enough. Moreover, γt (μ) is an
analytic function of μ as long as |μ| ≤ μ0 for some μ0 > 0.

This equation can be linearised and its solution can be written as

γt = 	−1
1 (t)Ψ2(t),

where
(
Ψ̇1 Ψ̇2

) = (Ψ1 Ψ2)Λμ,Ψ1(0) = I d2n×2n, Ψ2(0) = 0, with Λμ =
(−A B

0 A∗
)

+

μH and H =
(

0 0
Q 0

)
.

The following property holds:
∫ T
0 tr(μγt Q)dt = −T tr(A) + detΨ1(T ).

For all T > 0 we have

Ψ1(T ) = (I d2n×2n 0)GμD(eTλk (μ))G−1
μ

(
I d2n×2n

0

)
,

whereGμ = G0+Pμ,G0 is anupper triangular blockmatrix, Pμ is such that‖Pμ‖ ≤ cμ‖Q‖,
for some constant c, and D(·) denotes a diagonal matrix of order 4n.

3.2 Computation of the Laplace transform

For the solution {Xt }0≤t≤T of (1) we compute the Laplace transform

LT (μ, Q, X) = E exp

(
μ

∫ T

0
X∗
t QXtdt

)
,

where Q is a symmetric positive definite matrix and μ ≤ μ0 for some μ0 > 0.
The Novikov approach, generalised in Koncz (1987), gives

LT (μ, Q, X) = exp
(−T tr(BDμ) det(I d2n×2n − 2Dμ
(T )

)− 1
2 ,

with 
, ã and Dμ satisfying


̇ = ã
 + 
ã∗ + B, 
(0) = 0,

ã = A − 2BDμ

and the Eq. (10) in Sect. 3.1. For a discussion on small perturbation properties of the solution
Dμ see also Sect. 3.1.

In the paper Kleptsyna et al. (2008), the filtering approach is proposed, which in a partially
observed diffusion setting gives

LT (μ, Q, X) = exp

(
μ

2

∫ T

0
tr(Qγs)ds

)
,

where γs is a solution of Eq. (11).
The substance of the two approaches is different, but of course they lead to the same

result. The connection between them can be established in the same way as in Kleptsyna
et al. (2001).
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4 Proof of the main results

First, wewill prove Proposition 1, using a small perturbation argument (see auxiliarymaterial
in Sect. 3). In order to prove Proposition 1 wewill state and prove two lemmas. To this end we

defineΛμ =
(−A B

μQ A∗
)

and denote by λ j the eigenvalues ofΛμ such that�e(λ j (μ)) > 0.

Lemma 1 For μ = y

T
, y ∈ R,

E exp

(
y

2T

∫ T

0
X∗
t QXtdt

)
= exp

⎛
⎝ y

2

2n∑
j=1

λ′
j (0)

⎞
⎠(

1 + y

T
C(||Q||)

)

where λ′
j (0) is the derivative with respect to μ of λ j (μ) at μ = 0.

Note that, for small values of μ, the spectrum of Λμ, sp
(
Λμ

)
, contains the eingenvalues

λ j (μ) such that �e(λ j (μ)) > 0 and the eigenvalues λi (μ) such that �e(λi (μ)) < 0,
therefore sp

(
Λμ

)
is approximated by sp (Λ0) = {−λ j (A)

} ∪ {
λ j (A)

}
.

Proof of Lemma 1 For μ ≤ μ0, define the Laplace transform

LT (μ, Q, X) = E exp

(
μ

2

∫ T

0
X∗
t QXtdt

)
.

From Kleptsyna et al. (2008) and the standard method of linearisation of the matrix Riccati
differential equations (see Sect. 3), we obtain

LT (μ, Q, X) = exp
(μ

2
T tr(A)

)
(detΨ1(T ))−

1
2 ,

where (Ψ1 Ψ2) is the solution of⎧⎪⎨
⎪⎩

( ·
Ψ 1

·
Ψ 2

)
=
(
Ψ 1 Ψ 2

)
Λμ(

Ψ 1(0) Ψ 2(0)
)

= (I d2n×2n 0)
,

with

Λμ = Λ0 + μH, Λ0 =
(−A B

0 A∗
)

and H =
(

0 0
Q 0

)
.

This means that

Ψ1(T ) = (I d2n×2n 0)GμD(eTλk (μ))G−1
μ

(
I d2n×2n

0

)
,

where Gμ is, asymptotically, an upper triangular block matrix, andD(·) is a diagonal matrix
of order 4n, in the sense discussed in Sect. 3. As a consequence, using algebraic properties
of the determinant, we have

detΨ1(T ) = exp

⎛
⎝T

2n∑
j=1

λ j (μ)

⎞
⎠ (1 + μC(||Q||)) .
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Thus,

LT (μ, Q, X) = exp

⎛
⎝μ

2
T

2n∑
j=1

(λ j (μ) − λ j (0))

⎞
⎠ (1 + μC(||Q||))

and by the Taylor’s expansion on the eigenvalues λ j (μ) of Λμ such that �e(λ j (μ)) > 0

with μ = y

T
, we get

LT

( y

T
, Q, X

)
= exp

⎛
⎝ y

2

2n∑
j=1

λ′
j (0)

⎞
⎠(

1 + y

T
C(||Q||)

)
.

��
Lemma 2 With the notation established in Lemma 1, the following equality holds

2n∑
j=1

λ′
j (0) = tr(I(A)Q),

where I(A) is the unique solution of (9).

Proof of Lemma 2 Define

P (λ, μ) = det (Λ0 + μH − λI d4n×4n) .

Applying the Implicit Function Theorem to the characteristic equation P (λ, μ) = 0 we
compute the derivative of λ with respect to μ in 0

λ′
μ(0) = − P ′

μ(λ, 0)

P ′
λ(λ, 0)

, (12)

where

P ′
μ(λ, 0) = det (Λ0 − λI d4n×4n) tr((Λ0 − λI d4n×4n)

−1 H),

P ′
λ(λ, 0) = − det (Λ0 − λI d4n×4n) tr((Λ0 − λI d4n×4n)

−1).

By some algebra we find that

tr((Λ0 − λI d4n×4n)
−1 H) = tr(ΦQ)

where Φ = (A + λI d2n×2n)
−1 B (A∗ − λI d2n×2n)

−1 .

We apply (12) to the derivative λ′
j of the eigenvalue λ j with respect to μ and obtain

∑
j : λ j (0)∈Sp(−A)

λ′
j (0) =

∑
j : λ j∈Sp(−A)

tr(Φ(λ j )Q) det
(
Λ0 − λ j I d4n×4n

)
det

(
Λ0 − λ j I d4n×4n

)
tr
(
Λ0 − λ j I d4n×4n

)−1 .

In order to complete the proof of the lemma, we must check that

I(A) =
∑

j : λ j∈Sp(−A)

Φ(λ j ) det
(
Λ0 − λ j I d4n×4n

)
det

(
Λ0 − λ j I d4n×4n

)
tr
(
Λ0 − λ j I d4n×4n

)−1 (13)

satisfies the Lyapunov equation (9).
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On one hand,

Φ = −
∑
k≥0

(
A + λ j I d2n×2n

)−1
B

(A∗)k

λk+1
j

with

(A + λ j I d2n×2n)
−1 = GD

(
1

λi (0) + λ j

)
G−1,

for some orthogonal matrix G. On the other hand,

det(Λ0 − λ j I d4n×4n) =
4n∏
k=1

(λk(0) − λ j )

and

tr(Λ0 − λ j I d4n×4n)
−1 =

4n∑
m=1

1

λm(0) − λ j
.

Thus,

det(Λ0 − λ j I d4n×4n)
−1tr(Λ0 − λ j I d4n×4n)

−1 =
4n∑

m=1

∏
k �=m

(λk(0) − λ j ).

Hence,

(A + λ j I d4n×4n)
−1 det

(
Λ0 − λ j I d4n×4n

)
det

(
Λ0 − λ j I d4n×4n

)
tr
(
Λ0 − λ j I d4n×4n

)−1 = GD̄G−1,

with the diagonal matrix D̄ with entries

1

λi (0) + λ j

∏4n

k=1

(
λk(0) − λ j

)
∑4n

m
∏

k �=m

(
λk(0) − λ j

) .

Notice that these diagonal entries equal 1 if i = j and equal 0 otherwise. Hence expression
(13) can be simplified and it can be rewritten as

I(A) =
∑
k≥0

GD

((
− 1

λi (0)

)k+1
)
G−1BA∗k =

∑
k≥0

(−1)k+1A−(k+1)BA∗k .

Elementary linear algebra shows that this matrix satisfies Eq. (9).
��

The assertion of Proposition 1 follows from Lemmas 1 and 2.
Now, we return to the proof of the main result.

Proof of Theorem 1 To prove Theorem 1 we will check that Ibragimov–Khasminskii’s con-
ditions (Ibragimov and Khasminskii (1981) [Theorem I.10.1]) hold. Suppose that Θ ∈ �,
where� is a bounded open convex subset of the space of n×2nmatrices verifying assumption
(A′) in Sect. 2.
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First, we need to write the expression for the likelihood ratio

ZT (U ) =
LT

(
Θ + 1√

T
U, X

)
LT (Θ, X)

,

where LT is the likelihood function given by (5) and U is an arbitrary n × 2n matrix such
that Θ + 1√

T
U ∈ �.

Notice that

ZT (U ) = exp

(
− 1√

T

∫ T

0
X∗
t U

∗�− 1
2 dW 2

t

− 1

2T

∫ T

0
X∗
t U

∗�−1UXt dt

)
. (14)

Let us prove that conditions (C1) to (C3) hold:

(C1) ZT (U )
L−→

T→+∞ exp
(
vec∗(U∗)vec(ζ ) − 1

2vec
∗(U∗) · (�−1 ⊗ I(A)) · vec(U∗)

)
,

for some matrix-valued random variable ζ ∼ MNn×2n
(
0, I (A) ,�−1

)
.

Indeed, (14) can be written as

ZT (U ) = exp

(
− 1√

T
NT − 1

2

〈N 〉T
T

)
, (15)

where Nt = ∫ t
0 X∗

s U
∗�− 1

2 dW 2
s is a F X

t – scalar martingale.
Proposition 1 implies that

1

T
〈N 〉T P−→

T→+∞ tr
(I(A)U∗�−1U

)

hence
1√
T
NT

L−→
T→+∞ ξ , where ξ is a centered Gaussian variable with vari-

ance Eξ2 = tr
(I(A)U∗�−1U

)
. In fact, ξ = vec∗(U∗)vec(ζ ) for some ζ ∼

MNn×2n
(
0, I (A) ,�−1

)
.

(C2) for some χ > 0 and C > 0 we have

EΘ Z
1
2
T (U ) ≤ C exp(−χ‖U‖2), ∀U such that Θ + 1√

T
U ∈ �.

Indeed, from (15), considering ΘT
1 = Θ + 1

2
U√
T
the actual value of Θ , for A(Θ) as

defined in (1), we have

EΘ Z
1
2
T (U ) = EΘT

1
exp

(
− 1

8T

∫ T

0
X∗
t U

∗�−1UXt dt

)
.

Applying the same kind of computations as in Koncz (1987) (See Statement 1 and
Remark 2) we obtain

EΘ Z
1
2
T (U ) = exp (−T tr(BD)) · det (I d2n×2n − 2D
(T ))−

1
2 ,

where the matrix D is the solution of the Riccati equation

DA

(
Θ + U√

T

)
+ A∗

(
Θ + U√

T

)
D − 2DBD = −1

4

U∗
√
T

�−1 U√
T

.
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Notice that D depends only on V = U√
T
and D = 0 if and only if U = 0. The matrix

Dν = D
‖V ‖2 , with ν = ‖V ‖, satisfies the equation

Dν A
(
Θ + νV̄

) + A∗ (Θ + νV̄
)
Dν − 2νDνBDν = −1

4
V̄ ∗�−1V̄ ,

with V̄ = V
‖V ‖ . Now, let

χ = inf
V �=0,‖V ‖≤diam(�)

tr (BD)

‖V ‖2 .

On one hand,

χ ≥ inf
V̄ : ‖V̄ ‖=1, 0<ν≤diam(�)

tr (BDν) ≥ inf
V̄ : ‖V̄ ‖=1, 0≤ν≤diam(�)

tr (BDν) > 0,

since Dν is a continuous and positive definite matrix function on a compact set and

tr (BD0) = 1

4
tr
(
V̄ ∗I(A)�−1V̄

)
> 0.

Thus, tr (BD) ≥ χ‖V ‖2 holds for this constant χ > 0, that is

exp (−T tr(BD)) ≤ exp(−χ‖U‖2). (16)

On the other hand, for all T > 0 we have

inf
V �=0,‖V ‖≤diam(�)

det (I d2n×2n − 2D
(T )) > 0.

Let 
∞ = lim
T→+∞
(T ) be the solution of the Lyapunov equation

ã
∞ + 
∞ã∗ + B = 0,

with ã = A − 2BD. The matrix D−1 − 2
∞ is positive definite, since it is a solution
of the equation

ã(D−1 − 2
∞) + (D−1 − 2
∞)ã∗ + 1

4
D−1V ∗�−1V = 0.

Therefore, for all V such that ‖V ‖ ≤ diam(�), we have det (I d2n×2n − 2D
∞) > 0.
As a consequence, for all T

det (I d2n×2n − 2D
(T )) ≥ C1 > 0.

This bound and (16) verifies (C2).
(C3) for any compact K ⊂ � there exists C > 0, β > 0 such that for m > n2 we have

sup
G

‖U1 −U2‖−2mEΘ

∣∣∣∣Z
1
2m
T (U1) − Z

1
2m
T (U2)

∣∣∣∣
2m

≤ C(1 + Rβ),

where G = {
Ui : ‖Ui‖ ≤ R, Θ ∈ K , Θ + Ui√

T
∈ �

}
.

We follow the ideas developed in Kutoyants (2004). Let �U = U2 − U1. In order to
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verify this condition, first notice that

sup
G

‖�U‖−2mEΘ

∣∣∣∣Z
1
2m
T (U1) − Z

1
2m
T (U2)

∣∣∣∣
2m

= sup
G

EΘ ZT (U1)

∣∣∣∣∣∣∣∣
1 −

(
ZT (U2)
ZT (U1)

) 1
2m

‖�U‖

∣∣∣∣∣∣∣∣

2m

= sup
G

EΘT
1

∣∣∣∣1 − ϒT (ν)

ν

∣∣∣∣
2m

,

where ΘT
1 = Θ + U1√

T
, ν = ‖�U‖ and ϒT (ν) is given by

ϒT (ν) = exp

(
− ν

2m
√
T

∫ T

0
X∗
t V̄

∗�− 1
2 dW̄t − ν2

2mT

∫ T

0
X∗
t V̄

∗�−1V̄ Xt dt

)
,

with V̄ = �U
‖�U‖ and a Wiener process {W̄t } with respect to the measure with density

ZT (U1).
In this context, we can write

ϒT (ν) − 1

ν
=

∫ 1

0
ϒT (αν)

[
− 1

2m
√
T

∫ T

0
X∗
t V̄

∗�− 1
2 dW̄t

− αν

mT

∫ T

0
X∗
t V̄

∗�−1V̄ Xt dt

]
dα.

Hence, for some constants Cm, C̃m > 0 depending on m we have the upper bounds

EΘT
1

∣∣∣∣1 − ϒT (ν)

ν

∣∣∣∣
2m

≤ CmEΘT
1

∫ 1

0
ϒ2m
T (αν)

[(
1√
T

∫ T

0
X∗
t V̄

∗�− 1
2 dW̄t

)2m

+
(
1

T

∫ T

0
X∗
t V̄

∗�−1V̄ Xt dt

)2m]
dα

≤ C̃m

∫ 1

0
EΘ

(
1

T

∫ T

0
X̃∗
t V̄

∗�−1V̄ X̃t dt

)2m

dα,

where X̃t satisfies the equation

d X̃t = A

(
Θ + U1√

T
+ α

�U√
T

)
X̃t dt + B

1
2 dWt .

So, the remaining problem is the uniform estimation of the polynomial moments of
1

T

∫ T

0
X̃∗
t Q X̃t dt , with Q = V̄ ∗�−1V̄ . Again, let us use the Laplace transform, since

for any k ≥ 1

EΘ

(
1

T

∫ T

0
X̃∗
t Q X̃t dt

)k

= ∂k

∂μk
LT

(
μ, Q, X̃

)
|μ=0.
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It is sufficient to estimate
∂k

∂μk
Dμ|μ=0, where the matrix Dμ satisfies

DμA

(
ΘT

1 + α
�U√
T

)
+ A∗

(
ΘT

1 + α
�U√
T

)
Dμ − 2DμBDμ = −μ

T
Q.

Notice that D0 = 0 and that Dμ is an analytical function in a neighborhood of 0 (see

Sect. 3.1). The derivative Hk = ∂k

∂μk
Dμ|μ=0 satisfies the Lyapunov equation

Hk A

(
Θ + α

�U√
T

)
+ A∗

(
Θ + α

�U√
T

)
Hk = P(Hi ),

where P is a linear combination of Hi and the explicit formula for the solution (see
Sect. 3.1) gives

‖Hk‖ ≤ Cε−1(1 + ‖Ui‖2kn2) ≤ Cε−1(1 + R2kn2),

where ε = ( min
Θ∈K , j≤2n

|λ j (A)|)2n2 > 0 and λ j (A) are the eigenvalues of A(Θ).

��

5 Computation of the Fisher information matrix

From the Lyapunov equation (9) we can obtain properties and, in some cases, the explicit
form of the Fisher information matrix and its inverse, the asymptotic covariance matrix of the
MLE θ̂ = v̂ec(Θ). Arató et al. (2002) and, more recently, Brockwell et al. (2007) considered
the case n = 1. The generalisation in Brockwell et al. (2007) to higher dimensional models
does not include themodel investigated in this paper, given by (1)–(2). In the next paragraphs,
we study the two cases n = 1 and n ≥ 2 separately.

5.1 The case n = 1

In this case, we can explicitly compute the asymptotic covariance matrix of the MLE θ̂ =
v̂ec(Θ).

The matrices A and B
1
2 are

A =
(

0 1
− k

m − c
m

)
and B

1
2 =

(
0 0
0 σ

)
,

with m, k and c > 0.
The estimator in (6) can be written as

θ̂T =
(∫ T

0
Xt X

∗
t dt

)−1

·
∫ T

0
Xt dX

(2)
t .

Solving (9), we can compute the Fisher information matrix, I (A) , and by Theorem 1 we
can conclude that

√
T (θ̂T − θ) −→

L
N (0, Q∞),
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with Q∞ =
⎛
⎜⎝

2kc

m2 0

0
2c

m

⎞
⎟⎠ .

Arató et al. (2002) also calculated the asymptotic covariance matrix. This asymptotic
convergence is a particular case of the result obtained by Lin and Lototsky (2014) in a more
general context, see [Theorem 3.2].

5.2 The case n ≥ 2

In this case, we can also explicitly compute the asymptotic covariance matrix of the MLE
θ̂ = v̂ec(Θ), provided that the product of the matrices θ1, θ2 and � in model (1)–(2) is
commutative. The result is obtained by splitting the Lyapunov equation (9) into blocks of
dimension n × n(

0 I dn×n

−θ1 −θ2

)( I1 I2
I∗
2 I4

)
+
( I1 I2
I∗
2 I4

)(
0 −θ∗

1
I dn×n −θ∗

2

)
+
(
0 0
0 �

)
= 0,

where I1, I2 and I4 are square n×n matrices representing the blocks in the upper triangular
symmetric matrix I(A). Hence, we have the following system⎧⎪⎪⎨

⎪⎪⎩

I∗
2 + I2 = 0

I4 − I1θ∗
1 − I2θ∗

2 = 0
−θ1I1 − θ2I∗

2 + I4 = 0
−θ1I2 − θ2I4 − I∗

2 θ∗
1 − I4θ∗

2 = −�

.

If the matrices θ1, θ2 and � commute we can write the solution of the Lyapunov equation
(9) as the following block-diagonal matrix

I(A) =
( 1

2θ
−1
1 θ−1

2 � 0
0 1

2θ
−1
2 �

)
.

Since we assumed that all eigenvalues of A have negative real parts, this is the unique solution
of the Lyapunov equation. Thus, the Fisher information matrix is

�−1 ⊗ I(A).

Notice that if � is diagonal then the Fisher information matrix (and its inverse) is block-
diagonal.

6 Simulation results

We present examples of 2-dimension and 4-dimension O–U processes. For all the examples
we generated 200 sample paths from model (1)–(4) on the time interval [0, 2000] seconds
(s). We computed statistics for the estimates on different time intervals.

The following discretisations of the integrals, involved in expression (6),

–
∫ j�t

i�t
X2
r,t dt ∼=

j−1∑
l=i

�t X2
r,tl , r = 1, . . . , 2n

–
∫ j�t

i�t
Xr,t d Xs,t ∼=

j−1∑
l=i

Xr,tl

(
Xs,tl − Xs,tl−1

)
, r = 1, · · · , 2n, s = n + 1, . . . , 2n,

r �= s
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–
∫ j�t

i�t
Xs,t d Xs,t ∼= 1

2

j−1∑
l=i

(
X2
s,tl − X2

s,tl−1
− σ�t

)
, s = n + 1, . . . , 2n

–
∫ j�t

i�t
Xr,t Xs,t dt ∼=

j−1∑
l=i

�t Xr,tl Xs,tl , r, s = 1, . . . , 2n,

were used in our computations. The simulations are based on this discretisation of the solution
of the linear SDE.

6.1 The case n = 1

We study two examples. In Example 1, we consider a scenario encountered in structural
engineering (cf. Clough and Penzien 1982). Example 2 is the one considered in Samson and
Thieullen (2012), but with continuous time observations.

Figures 1, 2 and 3 show the results for the estimator in (6) on the simulated paths of
Example 1 for different values of T . Tables 1 and 4 summarise the results for each example.
The Gaussian curves exhibited in Figs. 2 and 3 (dotted lines), as well as the p-values for
the Kolmogorov-Smirnov test in Table 2 (and also in Table 5), where determined using the
marginal distribution parameters derived fromTheorem1. The solid lines represent the curves
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Fig. 1 95%probability ellipsis for (k̂, ĉ) and for different values of T (Example 1): a T = 200 s, b T = 500 s,
c T = 1000 s, d T = 2000 s. The mean point is indicated by a “+” sign and a “×” sign indicates the true
value of the parameters. The ellipses are built upon the asymptotic distribution set by Theorem 1
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Fig. 2 Histograms for k̂ for different values of T (Example 1): a T = 200 s, b T = 500 s, c T = 1000 s,
d T = 2000 s. The dotted line represents the Gaussian curve derived from Theorem 1 while the solid line
represents the Gaussian fit

obtained by fitting Gaussian distributions to the estimates that were obtained for k and c.
Results on the correlation between estimates are given in Table 3 (and also in Table 6).

Example 1 k = 35.2 kN/m, c = 0.57 kNs/m, m = 0.933 ton, σ = 1.

Example 2 k = 4 kN/m, c = 0.5 kNs/m, m = 1 ton, σ = 1.

We can see that the estimates of parameters k and c exhibit a considerable bias, while
time T is not large enough, but this bias vanishes with time. The parameters can be quite
accurately estimated, with the asymptotic marginal distributions showing no evidence of
non-Gaussianity. A larger bias was observed in Example 2 of Samson and Thieullen (2012)
but considering discrete time observations. The correlation of the estimators of k and c was
studied. The null hypotheses of non-correlation was not rejected for all cases (p-values are
shown in Tables 3 and 6).

123



Stat Inference Stoch Process

estimates of c (kNs/m)

fr
eq

ue
nc

y

0.50 0.52 0.54 0.56 0.58 0.60 0.62

0
5

10
15

20

estimates of c (kNs/m)

fr
eq

ue
nc

y

0.45 0.50 0.55 0.60 0.65 0.70 0.75

0
2

4
6

8
10

estimates of c (kNs/m)

fr
eq

ue
nc

y

0.50 0.55 0.60

0
5

10
15

estimates of c (kNs/m)

fr
eq

ue
nc

y

0.4 0.5 0.6 0.7 0.8

0
1

2
3

4
5

6

(a)

(c) (d)

(b)

Fig. 3 Histograms for ĉ for different values of T (Example 1): a T = 200 s, b T = 500 s, c T = 1000 s,
d T = 2000 s. The dotted line represents the Gaussian curve derived from Theorem 1 while the solid line
represents the Gaussian fit

6.2 The case n = 2

We analyse two examples, Examples 3 and 4, from Magalhães (2010) [Chap. 2, p. 63]. They
differ from each other in thematricesM andC .We considered the units: kN/m for K , ton for

M and kNs/m for C . In both examples, we considered K =
(
100 0
0 100

)
and � = I d2×2.

The results obtained in the simulations are summarised in Table 7 (Example 3) and Table 8
(Example 4).

Example 3 M =
(
1.25 0.25
0.25 1.25

)
and C =

(
0.3275 −0.0725

−0.0725 0.3275

)
.
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Table 1 Mean value and standard deviation computed over the estimates of parameters k and c for different
values of T (Example 1)

T 200s 500s 1000s 2000s

mean(k) (st.dev.(k)) 35.21 (0.405) 35.22 (0.273) 35.22 (0.189) 35.21 (0.142)

mean(c) (st.dev.(c)) 0.556 (0.070) 0.565 (0.050) 0.559 (0.032) 0.569 (0.023)

Table 2 Results of the
Kolmogorov-Smirnov normality
test applied to the estimates of
parameters k and c for different
values of T (Example 1)

T 200s 500s 1000s 2000s

p-value for k̂ 0.5336 0.4966 0.6691 0.9900

p-value for ĉ 0.7447 0.4852 0.8844 0.9747

Table 3 Results of the
non-correlation test for k̂ and ĉ
(Example 1)

T 200s 500s 1000s 2000s

p-value 0.3101 0.3878 0.4895 0.8627

Table 4 Mean value and standard deviation computed over the estimates of parameters k and c for different
values of T (Example 2)

T 200s 500s 1000s 2000s

mean(k) (st.dev.(k)) 3.997 (0.148) 4.001 (0.087) 3.999 (0.061) 3.999 (0.044)

mean(c) (st.dev.(c)) 0.509 (0.072) 0.497 (0.043) 0.495 (0.032) 0.495 (0.023)

Table 5 Results of the
Kolmogorov-Smirnov normality
test applied to the estimates of
parameters k and c for different
values of T (Example 2)

T 200s 500s 1000s 2000s

p-value for k̂ 0.8500 0.8732 0.9002 0.9398

p-value for ĉ 0.3724 0.6371 0.7979 0.8730

Table 6 Results of the
non-correlation test for k̂ and ĉ
(Example 2)

T 200s 500s 1000s 2000s

p-value 0.1073 0.4417 0.6748 0.7885

The solution of the Lyapunov equation (9) is (see Sect. 5)

I(A) =

⎛
⎜⎜⎝

0.0283 0.0158
0.0158 0.0283

O

O
2.0956 0.8456
0.8456 2.0956

⎞
⎟⎟⎠
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Table 7 Mean value and standard deviation computed over the estimates of matrix parameters K and C for
different values of T (Example 3)

T 200s 500s 1000s 2000s

mean(k11) (st.dev.(k11)) 100.61 (2.49) 100.11 (1.24) 100.04 (0.86) 100.05 (0.57)

mean(k12) (st.dev.(k12)) −0.32 (2.40) −0.11 (1.28) −0.05 (0.83) −0.05 (0.55)

mean(k21) (st.dev.(k21)) −0.37 (2.46) −0.14 (1.28) −0.11 (0.86) −0.06 (0.55)

mean(k22) (st.dev.(k22)) 100.84 (2.91) 100.19 (1.29) 100.16 (0.86) 100.09 (0.58)

mean(c11) (st.dev.(c11)) 0.4861 (0.499) 0.3899 (0.323) 0.3223 (0.152) 0.2958 (0.103)

mean(c12) (st.dev.(c12)) −0.0900 (0.976) −0.1651 (0.518) −0.1001 (0.291) −0.0809 (0.206)

mean(c21) (st.dev.(c21)) 0.0088 (1.010) 0.0211 (0.486) −0.0323 (0.294) −0.0600 (0.213)

mean(c22) (st.dev.(c22)) 0.4207 (0.539) 0.2844 (0.291) 0.2973 (0.153) 0.2912 (0.106)

Table 8 Mean value and standard deviation computed over the estimates of matrix parameters K and C for
different values of T (Example 4)

T 200s 500s 1000s 2000s

mean(k11) (st.dev.(k11)) 121.51 (37.58) 105.80 (8.80) 102.91 (4.67) 101.70 (2.49)

mean(k12) (st.dev.(k12)) −0.93 (3.27) −0.17 (1.28) −0.13 (0.82) −0.04 (0.54)

mean(k21) (st.dev.(k21)) −0.17 (3.45) −0.19 (1.18) −0.10 (0.77) −0.05 (0.48)

mean(k22) (st.dev.(k22)) 121.16 (37.88) 106.01 (8.63) 102.98 (4.43) 101.77 (2.41)

mean(c11) (st.dev.(c11)) 0.664 (3.36) 0.259 (1.37) 0.275 (1.02) 0.294 (0.75)

mean(c12) (st.dev.(c12)) 0.453 (8.81) 0.061 (3.04) −0.032 (2.06) −0.147 (1.53)

mean(c21) (st.dev.(c21)) −0.785 (7.35) −0.229 (3.09) −0.144 (2.03) −0.045 (1.48)

mean(c22) (st.dev.(c22)) 0.422 (3.35) 0.447 (1.37) 0.334 (1.02) 0.260 (0.76)

and the Fisher information matrix of θ is

�−1 ⊗ I(A) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0283 0.0158 0 0
0.0158 0.0283 0 0

0 0 2.0956 0.8456
0 0 0.8456 2.0956

O

O

0.0283 0.0158 0 0
0.0158 0.0283 0 0

0 0 2.0956 0.8456
0 0 0.8456 2.0956

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Example 4 M =
(
1.0125 0.0125
0.0125 1.0125

)
and C =

(
0.303 −0.098

−0.098 0.303

)
.

The solution of the Lyapunov equation (9) is

I(A) =

⎛
⎜⎜⎝

0.0190 0.0066
0.0066 0.0190

O

O
1.8734 0.6266
0.6266 1.8734

⎞
⎟⎟⎠
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and the Fisher information matrix of θ is

�−1 ⊗ I(A) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0190 0.0066 0 0
0.0066 0.0190 0 0

0 0 1.8734 0.6266
0 0 0.6266 1.8734

O

O

0.0190 0.0066 0 0
0.0066 0.0190 0 0

0 0 1.8734 0.6266
0 0 0.6266 1.8734

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Notice that the estimates of the matrices K and C are reasonably close to the true val-
ues, exhibiting deviations that are compatible with the asymptotic distribution obtained in
Theorem 1 and further addressed in Sect. 5.2. According to Magalhães (2010), in terms of
estimation error, matrices in Example 3 should be easier to estimate than those of Example 4,
because the latter is characterised by closely spaced vibration modes, while the vibration
modes that characterise Example 3 are well separated modes. Our computational experi-
ments are in agreement with the results in Magalhães (2010).

7 Conclusions

Although the 2n-dimension model investigated in this paper fails to verify the restrictions on
the invertibility of the diffusion matrix, it is still possible to obtain asymptotic properties of
the MLE by studying the Laplace transform of a martingale associated with the observation
process. The convergence of all the moments of the estimation error

√
T (θ̂T − θ) is proved.

The asymptotic covariance matrix of the estimator is given in terms of the solution of a
Lyapunov equation. If the lower blocks in the considered drift matrix (that is, matrices
M−1K and M−1C , where M , K and C represent, respectively, the mass, the stiffness and
the damping matrices in the SDE modelling a one degree of freedom mechanical system)
and � happen to verify the commutativity property of multiplication of matrices then an
explicit expression of the covariance matrix of the MLE can be found. Furthermore, if the
matrix � is diagonal, the Fisher information matrix is a block diagonal matrix. Simulation
studies are presented considering 2-dimension and 4-dimension O–U processes examples.
The simulation results illustrate the asymptotic behaviour of the MLE and are in agreement
with the theoretical results.

We believe that the proposed method will also work for the partially observed models and
that it can be extended to more general classes of noises.
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