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A systematic review of algorithms with linear-time
behaviour to generate Delaunay and Voronoi tessellations
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Abstract:  Triangulations and tetrahedrizations are important geometrical dis-
cretization procedures applied to several areas, such as the reconstruction of sur-
faces and data visualization. Delaunay and Voronoi tessellations are discretization
structures of domains with desirable geometrical properties. In this work, a system-
atic review of algorithms with linear-time behaviour to generate 2D/3D Delaunay
and/or Voronoi tessellations is presented.

Keywords: Mesh generation; computer-aided design, engineering, and manufac-
turing; computational geometry and topology.

1 Introduction

Meshes are used in a huge number of applications, and especially in finite ele-
ment discretization, which is a central tool in scientific computing. Triangles are
the simplest polygon in the Euclidean plane. In simple terms, triangles are closed
polygons in planar geometry with the smallest number of sides. In the mesh gener-
ation context, there is an extensive use of triangular meshes, as shown by Gonzaga
de Oliveira, Kischinhevsky, and Tavares (2013). In this field of study, the most
common form of triangle meshes are Delaunay triangulations. The popularity of
these meshes is mainly because they can be built quickly and have very attractive
geometric characteristics; for example, Voronoi diagrams (a dual mesh of the De-
launay triangulation) may capture proximity. Moreover, Delaunay triangulations
are used to represent parts of a continuous space in a way that allows numerical
algorithms to compute characteristics of that space [Edelsbrunner (2001)]. Delau-
nay and Voronoi tessellations have been used in various applications in the fields
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of science and engineering, such as: i) computer graphics [e.g. Alliez, Meyer,
and Desbrun (2002)]; ii) industrial design [e.g. Nordin, Hopf, Motte, Bjirnemo,
and Eckhardt (2011)]; iii) medical applications [e.g. Puentes, Dhibi, Bressollette,
Guias, and Solaiman (2009)]; iv) modelling of composite and porous materials [e.g.
Dong and Atluri (2012)]; v) modelling of deformable objects [e.g. Busaryev, Dey,
and Wang (2013)]; vi) molecular modelling [e.g. Lin, Wang, and Zeng (2014)]; vii)
tessellation of solid shapes [e.g. Bishay and Atluri (2012)]; viii) terrain modeling
[e.g. Tucker, Lancaster, Gasparini, Bras, and Rybarczyk (2001)]; ix) and video
games [e.g. De Gyves, Toledo, and Rudomin (2013)]. Therefore, Delaunay and
Voronoi tessellations have been extensively studied and different techniques have
been used to build these structures.

For a set of 2D (or 3D) points, Delaunay tessellation is described as a triangulation
(tetrahedrization in 3D) that the circumcircle (circumsphere) of each triangle (tetra-
hedron) does not have inner points. Delaunay triangulation (tetrahedrization in 3D)
is unique in the case that there are not four (five) or more cocircular (cospherical)
points in the point set. For example, this uniqueness of the structure does not occur
when there are four points comprising a square. This square can be triangulated
by inserting an edge in one of the two diagonals. Clearly, four points that form a
square are cocircular.

An important step in numerical methods, such as in the finite element method or
finite volume discretizations, is the generation of well-shaped meshes; a mesh is
well-shaped if all of its polytopes have a small aspect ratio. Li (2000) noted that
the smallest angle of a simplex, such as a triangle in 2D or a tetrahedron in 3D,
is always bounded if this simplex has a bounded aspect ratio. This author also ex-
plained that the aspect ratio and the circumradius-to-shortest edge ratio of a triangle
differ by only a constant factor. However, this is not true with a simplex in three or
higher dimensions. A tetrahedron with a small circumradius-to-shortest edge ratio
and a large aspect ratio is called a sliver. In other words, a sliver is a tetrahedron
whose vertices are almost coplanar and whose circumradius is not much longer
than its shortest edge length. Shewchuk (1998a) noted that a sliver can have a
circumradius-to-shortest edge ratio as low as %2 yet it can be considered problem-
atic in other measures due to its small volume and altitude, and its dihedral angles
can also be small (close to 0°) or large (close to 180°). Slivers are the problem-
atic polyhedra in 3D meshes. Thus, a simulation may be inaccurate, or it may not
converge to the solution if the mesh used has slivers. Cavendish, Field, and Frey
(1985) already perceived the ubiquity of slivers in 3D Delaunay triangulations. Tal-
mor (1997) noted that Delaunay tessellations have slivers even from a well-spaced
point set. Thus, one of the main difficulties of 3D mesh generation comes from the

presence of slivers. Despite the slivers Delaunay methods are valuable for gener-
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ating 3D meshes, and there are many methods available to improve 3D Delaunay
meshes, such as: the final meshes of Liu, Li, and Chen (2008) and Liu, Chen, and
Sun (2009) methods are good after a local transformation or reconnection in order
to improve Delaunay tessellations.

A Voronoi diagram is a specific kind of spatial decomposition. Let S C R be a set
of n generating points (designated also as sites or generators) p; in the Euclidean
space (in the simplest and most common case), for 1 <i < n. The Voronoi polytope
P; of a generating point p; is the set of all points in R? that are at least as close
to p; as to any other generating point in S. Formally, for dimensions d equal to
2 or 3, each Voronoi polytope is a set of points P, = {p € R?: (3p; € S)(Vp; €
S)llp=pill <llp = pjll, with i # j A 1<, j <nj.

If the diametric ball of every boundary simplex of the Delaunay tessellation is
empty, then the tessellation is a boundary conforming Delaunay mesh of the simula-
tion domain. Thus, all the vertices of dual Voronoi diagram lie inside the simulation
domain. Hence, it is a mesh suitable to be used with finite volume discretization
for solving many problems. In Figure 1, a Delaunay triangulation and the corre-
sponding Voronoi diagram partition are shown.

\\ A\
K

Figure 1: Delaunay triangulation in black, the corresponding Voronoi diagram par-
tition in red, and diametric circles of boundary edges in blue.

Shamos and Hoey (1975) presented the first optimal divide-and-conquer algorithm
for Voronoi diagrams. They showed that its O(n 1g n)' worst-case running time is

! Here, O(Ig n) is used instead of O(log 1), because log n implies base 10 and lg n means that the base



CMES Manuscript http://www.techscience.com

4 Copyright © 2014 Tech Science Press CMES, vol.x, no.y, pp.1-27, 2014

optimal with a real random access machine (RAM) computation model. Since the
Delaunay triangulation of a point set is linearly reducible from the Voronoi diagram
by duality, the building of the Delaunay triangulation could be carried out in ®(n 1g
n). The first direct worst-case optimal 2D Delaunay divide-and-conquer algorithm
was published by Lee and Schachter (1980). Sibson and Green (1978) published a

o (n%) average running time algorithm for 2D Delaunay triangulation.

The cost to build these structures is higher in cases with dimensions greater than
two; however, with restrictions, the algorithms to generate Delaunay or Voronoi
tessellations can be near linear computational time. These algorithms are reviewed
in this work.

Section 2 gives details about the procedures used in this systematic review. The
preliminary period from 1980 to 1988 is addressed in Section 3: the first algo-
rithms developed for the two meshes under study are based on the incremental or
the divide-and-conquer approach and were tested with up to 2!° points. A second
period in the development of these algorithms was from 1989 to 2001. In 1989,
an algorithm with linear-time behaviour was proposed, in which the points were
inserted randomly. In the same year, an algorithm for 3D Voronoi tessellation was
published. In 1992, the first robust algorithm for the generation of 2D Voronoi
diagrams with linear-time behaviour and up to one million generating points was
proposed. These and other algorithms are discussed in Section 4. From 2003 on,
the proposed algorithms have been mainly based on techniques that use a biased
randomized insertion order of the input points or insertion of the input points ac-
cording to a specific order. There was a predominance of incremental algorithms
for the generation of Delaunay tessellation in this period, and the authors tested
their algorithms using sets with millions of points. These algorithms are reviewed
in Section 5. Final remarks are presented in Section 6.

2 Systematic Review

This review, which began in November, 2013, concerns linear-time behaviour algo-
rithms for Delaunay and/or Voronoi tessellations. We conducted this review using
Scopus® and Google Scholar databases.

We searched Scopus® database using the terms: ((Topic = (“Delaunay”) AND
Topic = (“linear”)) OR (Topic = (“Voronoi”’) AND Topic = (“linear”))) refined
by: Publication types = (ALL) AND Languages = (ENGLISH). These terms were
searched in the title, abstract and keywords of the articles indexed in the database.
This search resulted in 1048 articles.

does not matter: for constants a and ¢ and sufficiently higher n values, one has log.n = logcal"ga”
=log.a-logzn = O(lg n) because log.a is constant.
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The titles and abstracts of the articles found were then read independently by two
reviewers and as there were no disagreements in the selections made, a third re-
viewer was not needed. Besides the articles that met with the eligibility criteria,
other articles were used in order to support some of the concepts involved in the al-
gorithms identified. In addition, for the papers found that were presented at confer-
ences, Google Scholar database was searched to find the possibly journal versions.

Then, to have a clear comparison of the studies selected, data were extracted ac-
cording to the following headings: authors, year of publication, tessellation gener-
ated (Delaunay, Voronoi or both), experimental data (maximum number of points
used in the tests as well as the type of point distribution), results and conclusions.

From among the 1048 articles retrieved, 34 algorithms were selected and are shown
in Table 1. The algorithms were divided into three groups, according to the pe-
riod in which they were published, and the designed techniques were divided into:
divide-and-conquer algorithms, gift-wrapping algorithms, incremental algorithms,
lifting-map algorithms, sweep-line algorithms, hybrid sweep-line and divide-and-
conquer algorithms, and algorithms without any associated technique. In addition,
the maximum number of points or segments tested in each algorithm is also shown.

Table 2 presents the number and corresponding percentage (%) of algorithms with
linear behaviour to generate Delaunay tessellations, Voronoi diagrams or both, ac-
cording to the technique used.

3 First period (1980-1988)

The first expected linear-time algorithm was proposed by Bentley, Weide, and Yao
(1978, 1980), to generate 2D Voronoi diagrams. This divide-and-conquer-based
algorithm runs in expected linear time and uses sets of input points uniformly dis-
tributed in a unit square. The basic idea is to search cells (see the division of the
domain into squares as shown in Figure 2a) in a relatively small neighbourhood of
each point in a spiral-like fashion until at least one point is found in each octant, as
shown in Figure 2b. The fentative Voronoi polygon of the centre point is formed by
considering just those points inside a circumsphere around the centre point. If the
search takes more than O(lg n) cells, it switches to an optimal divide-and-conquer
worst-case algorithm. The authors presented simulations with 10,000 points.

Maus (1984) proposed an incremental algorithm for Delaunay triangulation with
expected linear computational time. This behaviour was reached with sets of points
distributed somehow uniformly. In this approach, the initial domain is subdivided
into buckets, and the radix sort is used to order the set of points according to their
2D coordinates. The author used the idea that numbers are represented in comput-
ers by K bits. Therefore, radix sort can order n points in O(rnK) time, in which
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[ Period | Algorithm [ Technique | Tessellation | N |

Bentley, Weide, and Yao (1978) divide and conquer Voronoi 10000
Maus (1984) incremental Delaunay -
1 Ohya, Iri, and Murota (1984) incremental Voronoi 32768
Dwyer (1987) divide and conquer Delaunay 65536
Katajainen and Koppinen (1988) divide and conquer Delaunay 32768
Aggarwal, Guibas, Saxe, and Shor (1989) lifting map Voronoi -
Dwyer (1989, 1991) gift wrapping Voronoi -
Chew (1990) gift wrapping Voronoi -
Sugihara and Iri (1992) incremental Voronoi 1000000

. . sweep line and .
Klein and Lingas (1992) divide ;)n d conquer Voronoi -
Klein and Lingas (1993, 1996) divide and conquer Voronoi -
Tsai (1993) incremental Delaunay, 50000

Voronoi
2 Chin and Wang (1995, 1998) - CDT, CVD -
Djidjev and Lingas (1995) lifting map Voronoi -
Su and Drysdale (1997) incremental Delaunay 131072
Su and Drysdale (1997) sweep line Delaunay 131072

incremental, Delaunay,

Shewchuk (1996) sweep line or CDT, 1000000

divide and conquer Voronoi
Held (1998) incremental Voronoi 8000 (s)
Lemaire and Moreau (2000) divide and conquer Delaunay 10000000
Held (2001) incremental Voronoi 524288 (s)
Amenta, Choi, and Rote (2003) incremental Delaunay 10000000
Liu and Snoeyink (2005) incremental Delaunay 1024000
Buchin (2005) (two) incremental Delaunay -
Boissonnat, Devillers, and Hornus (2009) incremental Delaunay 256000
Buchin (2009) incremental Delaunay -
Buchin and Mulzer (2009, 2011) incremental Delaunay -
Yang and Choi (2010) incremental CDT 2000 (s)

3 Ebeida, Mitchell, Davidson,

Patney, Knupp, and Owens (2011) . epT 8271560
Yang, Choi, and Jung (2011) divide and conquer Delaunay 30000
Loffler and Mulzer (2011, 2012) incremental Delaunay -
Schrijvers, van Bommel, and Buchin (2013) incremental Delaunay 4194304
Liu, Yan, and Lo (2013) incremental Delaunay 5500000
Lo (2013) incremental Delaunay 100000000

Table 1: The 34 linear-time algorithms found for either Delaunay, Constrained
Delaunay (CDT), Voronoi or Constrained Voronoi (CVD) Tessellations, grouped
into the period in which they were published; and N is the maximum number of
points or segments tested.

K is a constant. It starts with a single Delaunay triangle and incrementally finds
other valid Delaunay triangles. For sets of points distributed non-uniformly, this
algorithm is quadratic.

Ohya, Iri, and Murota (1984) proposed an incremental algorithm to generate 2D
Voronoi diagrams with average optimal linear computational time with points uni-
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Period
. 1 2 3
Technique Tessellation Tessellation Tess. N %
VD [ DT | VD [ DT [ B | DT

Divide and conquer 1 2 1 1 1 1 7 | 20.6

Gift wrapping 0 0 2 0 0 0 2 59

Incremental 1 1 3 1 1 12 19 | 559

Lifting map 0 0 2 0 0 0 2 59

Bqth sweep line and 0 0 | 0 0 0 | 29
divide and conquer

Sweep line 0 0 0 1 0 0 1 29

Without associated technique 0 0 0 0 1 1 2 5.9

| Total [ 2] 3 [ 9 [ 3 [3] 14 [34] 100 |

Table 2: Number (N) and corresponding percentage (%) of algorithms with linear
behaviour to generate Delaunay Tessellations (DT), Voronoi Diagrams (VD) or
both (B), according to the technique used.

[N |
(@ (b)

Figure 2: Construction of a Voronoi polygon by the Bentley, Weide, and Yao (1978,
1980) algorithm: (a) spiral search around point p using cells and (b) division of the
plane into octants.

formly distributed, and quadratic in the worst case. It is possible that this algo-
rithm was the first average linear algorithm with robust characteristics. Ohya, Iri,
and Murota (1984) bucketed the points and processed the buckets to insert points
taking into account a breadth-first traversal of a quadtree so that the next edge in-
serted is probably near the correct triangle. It generates Voronoi diagrams, even
from highly non-uniform point distributions; however, it is unstable. The authors
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showed simulations with up to 2!3 points.

Dwyer (1987) proposed a divide-and-conquer algorithm for the generation of De-
launay triangulations. The domain is subdivided into O(n/lg n) square cells. The
author built the Delaunay triangulation of the points within each cell using the
Guibas and Stolfi (1985) algorithm. The triangulations within each row of cells are
grouped in pairs until the triangulation of the row has been completed. Moreover,
row triangulations are joined in pairs to complete the triangulation of the entire set
of points. Dwyer (1987) algorithm is O(n 1g n) in the worst case. However, accord-
ing to Dwyer (1987), partitioning the mesh into squared polygons reduced it to O(n
lg lg n) in the average case for a large class of points distribution. This algorithm
was tested on inputs with up to 2! points. In relation to the computational time,
this algorithm was competitive against linear-time algorithms.

Katajainen and Koppinen (1988) presented a modified Dwyer’s divide-and-conquer
algorithm to generate Delaunay triangulations with expected linear computational
time for sets of points distributed almost uniformly, and with O(n 1g #) time in the
worst case. Inspired by the work of Ohya, Iri, and Murota (1984), Katajainen and
Koppinen (1988) divided the 2D space into approximately n cells that were merged
according to a quadtree-like order. Tests carried out by the authors showed that
their algorithm performed similarly to the modified algorithm proposed by Dwyer
(1987) in simulations with up to 2! points.

The complexities and the conditions under which such complexities are reached by
the 5 algorithms found for the first period are indicated in Table 3.

Algorithm Complexity Comment
expected set of points distributed
Bentley, Weide, and Yao (1978, 1980) linear time uniformly in a unit square
worst case: O(n 1g n) analyzed by the authors
expected set of points distributed in
linear time a quasi-uniform manner
Maus (1984) in data distributions such as delta-shaped
worst-case:

distributions, in which essentially all data

ted O(n? ) .
expected O(r”) points are centered around one point

average n generating points distributed
Ohya, Iri, and Murota (1984) case: O(n) uniformly in the unit square
worst case: O(n?%) reported in Sibson and Green (1978)
average case: points drawn independently according

Dwyer (1987) O(nlglgn) to a large class of distributions

worst case: O(n 1g n) analyzed by the author
expected set of points distributed in

Katajainen and Koppinen (1988) linear time a quasi-uniform manner
worst case: O(n 1g n) analyzed by the authors

Table 3: The 5 linear-time behaviour algorithms found for the first period, their
complexities, and the conditions under which such complexities are reached.
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4 Second period (1989-2001)

Aggarwal, Guibas, Saxe, and Shor (1989) proposed an algorithm for the generation
of 2D Voronoi diagrams. Probably, this was the first algorithm with linear-time
behaviour for sets of random points. In theory, this algorithm is ®(n) in situations
that the input set forms a convex polygon in a counter-clockwise order, and uses a
lifting map for the construction of Voronoi diagrams.

Dwyer (1989, 1991) presented the first d-dimensional algorithm with expected lin-
ear computational time behaviour using gift-wrapping and bucketing techniques for
the generation of Voronoi tessellations in dimensions higher or equal to two. This
was probably the first algorithm with linear-time behaviour to generate 3D Delau-
nay or Voronoi tessellations. This algorithm has linear computational time for sets
of almost uniformly distributed points in a unit d-ball by using a dictionary to rep-
resent a linear array of buckets and stores the facets in which only one adjacent
polygon is known.

Chew (1990) proposed a gift-wrapping expected linear-time algorithm to generate
2D Voronoi diagrams. In this algorithm, a clockwise convex polygon is built from
the input points and the gift-wrapping technique is applied. According to Chew
(1990), this algorithm is easier to implement and probably faster than the Aggarwal,
Guibas, Saxe, and Shor (1989) algorithm.

Sugihara and Iri (1992) presented an incremental algorithm for the generation of 2D
Voronoi diagrams. This algorithm is numerically stable and its average complexity
is linear in terms of the number of generators. In this topology oriented approach,
there are guaranties of building Voronoi diagrams with up to one million generating
points. In Figure 3, one can see an example of an initial Voronoi partition and the
resulting Voronoi partition after inserting a generating point p according to this
algorithm.

Klein and Lingas (1992) showed that a constrained Voronoi diagram of a simple
polygon can be built with linear computational time by using Manhattan metric.
Their algorithm uses sweep-line and divide-and-conquer techniques to generate 2D
Voronoi diagrams. This approach was extended to Euclidean measure by Klein and
Lingas (1993, 1996). These authors also presented an expected linear-time algo-
rithm applying a divide-and-conquer approach, to compute constrained 2D Voronoi
diagrams.

Tsai (1993) proposed a convex-hull incremental algorithm for Delaunay triangula-
tions and 2D Voronoi diagrams. Using simulations with up to 50,000 points, Tsai
showed that his algorithm is approximately linear with randomly spaced points,
and quadratic in the worst case.

Chin and Wang (1995, 1998) presented an algorithm for the computation of con-
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(a) (b)

Figure 3: Incremental-type Sugihara and Iri (1992) method for building Voronoi
diagrams: (a) initial Voronoi partition and (b) resulting Voronoi partition after in-
serting a generating point p.

strained Delaunay triangulations or Voronoi diagrams in a simple polygon. The
authors showed that their algorithm presents linear time by using the potential
method. It should be noted that such analysis guarantees the average performance
of each operation in the worst case. Given a set of points sorted by their 2D coor-
dinates, Djidjev and Lingas (1995) proved that Voronoi diagrams can also be built
with linear computational time using lifting map, based on the work by Aggarwal,
Guibas, Saxe, and Shor (1989).

Su and Drysdale (1995) carried out comparisons with nine algorithms to build De-
launay or Voronoi structures: i) Dwyer (1987) divide-and-conquer algorithm; if)
Fortune (1987) sweep-line algorithm; iii) Ohya, Iri, and Murota (1984) incremen-
tal algorithm; iv) the incremental and v) the gift-wrapping algorithms, proposed by
Su and Drysdale (1995) for Delaunay triangulations. According to Su and Drys-
dale (1995), their incremental algorithm showed a linear-time behaviour in uniform
point distribution in a unit square. In addition, Su and Drysdale (1997) carried out
comparisons among these five algorithms and also with four other algorithms: vi)
Guibas and Stolfi (1985) incremental algorithm; vii) Devillers’ implementation of
Delaunay Tree code; viii) Barber, Dobkin, and Huhdanpa (1996) convex-hull al-
gorithm; ix) and the version of Delaunay Tree code implemented in the Library
of Efficient Data types and Algorithms (LEDA). In Su and Drysdale (1997), the
algorithm of Dwyer (1987) was modified to use Fortune’s stable in-circle test. In
addition, Su and Drysdale (1997) modified the data structure used in the algorithm
of Ohya, Iri, and Murota (1984) and in the incremental algorithm proposed in Su
and Drysdale (1995). The Su and Drysdale (1995, 1997) comparisons were based
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on sets of up to 131,072 points according to several distributions. Based on the nu-
merical tests performed, the best three algorithms were Dwyer’s, Su and Drysdale
(1997) incremental algorithm, and Fortune’s algorithm using a heap. Moreover, Su
and Drysdale (1997) reported that Dwyer (1987) divide-and-conquer algorithm was
the fastest overall and was the most resistant to bad data point distribution with O(n
lg n) computational time in the worst case. The runtime of Su and Drysdale (1997)
incremental algorithm increased more quickly than the runtimes of both modified
Fortune’s and Dwyer’s algorithms.

Shewchuk (1996, 2002) proposed an algorithm named Triangle for building 2D De-
launay triangulations, constrained Delaunay triangulations and Voronoi diagrams.
The Shewchuk (1996) implemented versions of this algorithm were based on: the
incremental insertion algorithm of Lawson (1977), sweep-line algorithm of Fortune
(1987), and two divide-and-conquer algorithms of Dwyer (1987) with alternating
or vertical cuts. According to Shewchuk (1996), the divide-and-conquer approach
with alternating cuts was the fastest algorithm in almost all tests. Although Tri-
angle may be slow in the case of triangulating uniformly distributed point sets, it
exhibited fast running times on more complex inputs. Shewchuk (1996) performed
tests using sets of up to one million points. Shewchuk (1996) used Delaunay re-
finement of Ruppert (1995) to generate Delaunay triangulations with guarantees of
mesh quality. According to Shewchuk (1996), Delaunay refinement commonly is
O(n) in practice; but for using a heap, Triangle is O(n 1g n), regardless of the distri-
bution of points. This algorithm became popular mainly because the author made
the code available and gave details of the implementation. Moreover, according to
Ebeida, Mitchell, Davidson, Patney, Knupp, and Owens (2011), Triangle is nearly
linear in practice.

Held (1998) proposed an incremental algorithm for the generation of 2D Voronoi
diagrams. This algorithm uses wave propagation to compute the diagrams for curvi-
linear polygons, which are simple and closed polygons, and for areas delimited by
straight lines. According to Held (1998), the computational cost of this algorithm
seemed to grow linearly. Using inputs up to 8,000 line segments, Held (1998) com-
pared his algorithm experimentally against an adapted version of the Lee (1982)
divide-and-conquer algorithm. According to the author, the Lee (1982) algorithm
was approximately 46%-47% slower in the tests than the Held (1998) algorithm.

Lemaire and Moreau (2000) proposed a divide-and-conquer algorithm for the gen-
eration of Delaunay tessellations. It is an expected linear-time algorithm when ap-
plied to a unit hypercube with point density of almost uniform probability. Lemaire
and Moreau (2000) compared this algorithm against the Lee and Schachter (1980),
Dwyer (1987), Katajainen and Koppinen (1988) and Adam, Elbaz, and Spehner
(1996) algorithms. In experiments carried out using over 10 million points, the
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Lemaire and Moreau (2000) algorithm was faster than the Lee and Schachter (1980)
and Adam, Elbaz, and Spehner (1996) algorithms with uniform point distributions,
and it was also the fastest algorithm for non-uniform point distributions in a unit
square.

Held (2001) proposed an incremental algorithm for the generation of 2D Voronoi
diagrams, with n input segments. According to Held (2001), this algorithm needed
about 0.01-n logs n milliseconds to compute Voronoi diagrams of n line segments
in tests carried out with up to 2! segments in a Sun Ultra 30 computer with Solaris
2.6 as the operational system, a 296MHz processor and 384MB of main memory.
According to Held (2001), this behaviour was valid for a wide variety of synthetic
and real data.

The complexities and the conditions under which such complexities are reached by
the 15 algorithms found for this period are indicated in Table 4.

5 Third period (2003-2013)

The generation of Delaunay or Voronoi tessellations of sets of points is independent
of the order in which these points are processed. However, the computational cost
of an algorithm for each of these meshes depends on the order in which the points
are processed.

Amenta, Choi, and Rote (2003) observed that the hierarchy of modern computer
memory and paging policies favour the locality of reference. Current computer
memory systems cache recently used data on the assumption that those data will
be probably used again very soon. The insertion of points in a biased randomized
insertion order (BRIO) is an incremental algorithm, in which the order of point
insertion is biased randomly. This means that this algorithm preserves enough
randomness in the input points so that the performance of a randomized incre-
mental algorithm is not changed, but orders the points by spatial locality to gain
cache coherence and to retain optimality for generating 3D structures. The points
are inserted in rounds, in which each point is chosen independently with 50% of
probability to be inserted in the current round. Amenta, Choi, and Rote (2003)
indicated that the expected running time is O(n?) in the worst case and O(n Ig n)
in the realistic case; moreover, it runs quickly for many point distributions. Ac-
cording to Amenta, Choi, and Rote (2003), BRIO’s performance is nearly linear.
The authors presented tests with up to 10 million points. However, according to
other researchers [Liu and Snoeyink (2005); Zhou and Jones (2005)], the practical
performance of BRIO is not promising. Indeed, Amenta, Choi, and Rote (2003)
considered BRIO as a concept instead of a specific order, and that BRIO could be
combined with other insertion schemes. This algorithm led to a conceptual change
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Algorithm Complexity Comment
Aggarwal, Guibas, o(n) points form the vertices
Saxe, and Shor (1989) of a convex polygon
expected linear behaviour set of points quasi-uniformly distributed
worst case: O(S,n 1g n), if a balanced-tree
in which S, is the number of implementation of
Dwyer (1989, 1991) dual simplices in the result priority queues is used

if the use of buckets is abandoned on any
point search that examines /n buckets
set of points in the plane such

worst case: O(S,n)

expected linear time that the points taken in order form
Chew (1990) the vertices of a convex polygon
worst case: e.g. considering points along
on?) one branch of a parabola
Sugihara and Iri (1992) average case: behaviour. observed in
linear the experimental tests
Klein and Lingas (1992) linear using Manhattan metric
Klein and Lingas expected builds the bounded Voronoi
(1993, 1996) linear time diagram of a simple polygon
expected randomly distributed points
Tsai (1993) linear time in the Euclidean plane
worst case: O(n?) analyzed by Larkin (1991)
Chin and Wang (1995, 1998) linear using amortized analysis

points in the plane in sorted order with
respect to two perpendicular directions
for difficult inputs; but it may be slow

Djidjev and Lingas (1995) linear

nearly linear in practice

Shewchuk (1996) for uniformly distributed point sets
worst case: O(n lg n) regardless of the points distribution
Su and Drysdale (1997) incremental:
expected linear time
modified Fortune’s points uniformly distributed
Su and Drysdale (1997) algorithm: linear
behaviour
almost linear results in tests
Held (1998) worst cases: O(n Ig n), for a generalization of convex areas
and O(n? 1g n) analyzed by the author

if merging two subsets is assumed to
take time proportional to the number
of the involved unfinished points

expected linear time
Lemaire and Moreau (2000)

worst case: O(n 1g n) analyzed by the authors
wide variety of data in
Held (2001) 0,01n logon ms 2296 MHz Sun Ultra 30

Table 4: The 15 linear-time behaviour algorithms found in the second period, their
complexities and the conditions under which such complexities are reached.

in the development of algorithms with linear-time behaviour for Delaunay tessella-
tions.

Liu and Snoeyink (2005) proposed an incremental algorithm for 3D Delaunay tes-
sellations based on space-filling curves. In an algorithm that uses a space-filling
curve, the order of points to be inserted is defined by the order of the curve.
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In the Liu and Snoeyink (2005) algorithm, the Hilbert curve (see Figure 4) was
used to determine the order of the input points. Liu and Snoeyink (2005) com-
pared the algorithm with the Hilbert curve against QHull [Barber, Dobkin, and
Huhdanpa (1996)], CGAL [Devillers (1998); Boissonnat, Devillers, Pion, Teillaud,
and Yvinec (2002)], Hull [Clarkson (1992)] and Pyramid [Shewchuk (1998b)] al-
gorithms. According to Liu and Snoeyink (2005), in tests with up to 1,024,000
points, their algorithm was the fastest, particularly for uniform point distributions.
The Liu and Snoeyink (2005) algorithm was also a conceptual change in the devel-
opment of algorithms with linear-time behaviour for Delaunay tessellations. Since
the publication of this algorithm, the algorithms with linear-time behaviour for De-
launay tessellations are mostly incremental and use the insertion of points in a
pre-determined order. For example, the Hilbert curve, combined with concepts of
BRIO, is employed in CGAL [Delage and Devillers (2013)].

Figure 4: 3D Hilbert space-filling curve.

Buchin (2005) proposed an incremental algorithm for Delaunay triangulations
based on BRIO and space-filling curves. According to Buchin (2005), this algo-
rithm was expected to have linear time for uniform point distributions in a bounded
convex region. Buchin (2005) also presented a second incremental algorithm for
the generation of Delaunay tessellations with expected linear time in cases with
input points distributed uniformly in a d-dimensional bounded convex open region.

Boissonnat, Devillers, and Hornus (2009) proposed an incremental algorithm for
Delaunay tessellations and carried out tests with up to 6 dimensions. According to
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the authors, tests carried out with up to 256,000 points in 6 dimensions showed that
this algorithm surpassed in time and memory, the implementations that were avail-
able for the exact calculation of the Delaunay triangulation. In addition, in terms
of performance, this algorithm could be compared with QHull [Barber, Dobkin,
and Huhdanpa (1996)], which is a non-robust algorithm for the generation of De-
launay tessellations. In the Boissonnat, Devillers, and Hornus (2009) algorithm,
the points are previously sorted along a d-dimensional Hilbert curve. According to
these authors, the worst cases of this algorithm is O(n lg n) for 2D structures and

O(n[%w) for structures with higher dimensions. However, the authors explained
that the worst case does not occur in practice. Also according to them, the main
limitation of their algorithm is its memory usage. In order to overcome this prob-
lem, the authors proposed a variant of the algorithm, but it is 6 or 8 times slower
than the original version.

The generation of Delaunay triangulations using space-filling curves was also stud-
ied by Buchin (2009). Buchin (2009) developed a theoretical analysis for the linear
or near-linear running time in experiments using the incremental construction con
BRIO [Amenta, Choi, and Rote (2003)] with space-filling curve orders; briefly, his
algorithm incrementally builds the Delaunay triangulation using the order of the
Hilbert curve previously computed. According to the author, the use of the two
combined techniques results in quadratic algorithms in degenerated input cases.
Also according to the author, the use of these two combined techniques results in
algorithms that are, generally, O(n Ig n) for point sets with a polynomially bounded
spread. For Buchin (2009), spread is the quotient between the highest and the low-
est point-to-point distance. Buchin (2009) showed that this algorithm has expected
linear time for different random point distributions.

Buchin and Mulzer (2009, 2011) presented several results related to the genera-
tion of Delaunay triangulations. Among the most relevant results, one can point
out: Delaunay triangulation can be computed in O(sort(n)) on a word RAM model,
in which sort(n) is the necessary time to sort n numbers; if both axis for sorting
a set of points is known, a Delaunay triangulation can be generated with a ran-
dom algebraic computation tree with expected linear depth. Buchin and Mulzer
(2011) used a variant of the Random Incremented Construction (RIC). For the gen-
eration of Delaunay triangulation, BRIO with Dependent Choices (BrioDC) was
used for the insertion of points in the domain. In the BrioDC algorithm, the prob-
lem of building a Delaunay triangulation was reduced to the problem of building
the nearest-neighbour graph based on BRIO concepts. According to these authors,
if the nearest-neighbour graph can be computed in linear time, the reduction of
a Delaunay triangulation to the nearest-neighbour graph will be proportional to
the structural changes in RIC, which would always be in linear time for copla-
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nar points. This algorithm is linear for small integers by sorting them using the
radix-sort technique. Schrijvers, van Bommel, and Buchin (2012) stated that this
algorithm presented a linear-time behaviour in experiments, but the constant factor
in the running time was high. The high constant is due to the construction of the
worst-case optimal nearest-neighbour graph.

Yang and Choi (2010) proposed a compact incremental algorithm for the generation
of constrained 3D Delaunay tessellations. This algorithm is especially useful for
3D visualizations in mobile devices with low memory capacity and CPU speed.
In general, mobile devices are provided with previously built tessellations models,
because a large amount of memory is required to generate these structures. In
particular, the algorithm of Yang and Choi (2010) uses a small amount of memory
to generate Delaunay tessellations. According to the authors, this algorithm is O(n
lg n) in the worst case, and presented a linear-time behaviour in experimental tests
with sets of up to 2,000 segments.

Ebeida, Mitchell, Davidson, Patney, Knupp, and Owens (2011) proposed an algo-
rithm to generate constrained Delaunay triangulations composed of triangles with
angles from 30° to 120°. In this algorithm, vertices are added, step by step, in an
empty disc and the probability of inserting a vertex in a disc was proportional to its
area, except in a neighbourhood of the domain boundary. This algorithm is based
on Delaunay refinement algorithms and, according to the authors, can be paral-
lelized. Also, this algorithm requires O(n lg n) operations and O(n) of memory. In
tests with sets of up to 8,271,560 points, this algorithm presented a nearly linear
performance in a squared uniform mesh, and had a performance similar to Triangle
[Shewchuk (1996, 2002)]. Moreover, implementation of Ebeida, Mitchell, David-
son, Patney, Knupp, and Owens (2011) and Triangle required more or less the same
time to triangulate. On the other hand, Triangle generated points much faster.

Yang, Choi, and Jung (2011) proposed a divide-and-conquer algorithm to build
Delaunay triangulations in which the merge process is based on edge flip operations
without deleting any of the existing edges or triangles. According to the authors,
empirical results with sets of up to 30,000 points showed that this is an expected
O(n 1g n) algorithm. Nevertheless, the test results showed linear-time complexity
for a quasi-uniformly distributed sites set. The maintenance of this algorithm is
easily performed as it uses a compact data structure with easy access to the data.

Loffler and Mulzer (2011, 2012) proved that Delaunay triangulations and quadtrees
are equivalent structures. In the proposed incremental algorithm, a compressed
quadtree is built from a set of points in the plane and from this tree a Delaunay
triangulation is generated. In a compressed quadtree, long paths with only one
non-empty child node are changed to single edges. According to the authors, given
a compressed quadtree, this algorithm has linear time for Delaunay triangulations
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in a pointer machine model, and it is linear for small integers also by sorting them
using radix sort.

Schrijvers, van Bommel, and Buchin (2012, 2013) proposed incremental algo-
rithms to generate Delaunay triangulations with linear time for small integers.
Schrijvers, van Bommel, and Buchin (2012) evaluated variants of BRIO and
BrioDC techniques that showed linear-time behaviours in tests with sets of up to 222
points. The variants evaluated were RIC and BRIO algorithms using Peano, Sier-
pinski, and Hilbert curves and their variants. According to the authors, the proposed
variants tended to avoid the worst-case behaviour and the squarified versions of the
curves allowed quick location of points. Also according to the authors, the fastest
algorithm in the experiment was the one based on the BRIO technique. Schrijvers,
van Bommel, and Buchin (2013) claimed that using the nearest-neighbour graphs
of each round in BrioDC, the number of simplices visited is reduced by more than
25% compared to the various fast space-filling curves they had tested.

Liu, Yan, and Lo (2013) proposed an incremental algorithm for Delaunay trian-
gulations that was generalized for structures with dimension higher than 2. With
this algorithm, the authors proposed a sequence of point insertions based on a new
order from breadth-first search on a kd-tree. A standard kd-tree is built splitting the
point subset by the median point in an axis, and this point is stored in the root of the
tree. The remaining two subset points are stored into left and right leaf nodes. In a
2D point set, each subset point is divided along the x-median (if the y-median was
used to split the original point set), then the y-median is used and so forth, splitting
the remaining point subsets until each leaf node contains only one point. How-
ever, Liu, Yan, and Lo (2013) used a slightly different splitting scheme to divide
the input point subsets, and called it cutting-longest-edge rule. A bounding box
is determined from a set of points, and their rule is to cut the longest edge of the
bounding box in order to create regions of more homogeneous size along different
dimensions. In Figure 5, one can see an example of this building process for a set
of seven 2D points by the cutting-longest-edge rule.

According to Liu, Yan, and Lo (2013), their algorithm was faster than the algo-
rithm that uses the Hilbert curve, than the algorithm that uses the BRIO and than a
random algorithm. Still, according to these authors, tests with sets of up to 5.5 mil-
lion points in non-uniform 3D point distributions in seven scholastic models (cube,
plane, paraboloid, spiral, disc, cylinder, and axes) showed that the algorithm based
on kd-tree was very stable, and the algorithm that used Hilbert curve and the algo-
rithm that used BRIO technique had drastically deteriorated performances. Using
a set of up to 5.5 million points, Liu, Yan, and Lo (2013) found that the algorithm
used with the Hilbert curve failed, and that the algorithm with random insertion
of points was aborted because the necessary time to generate the triangulation was
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Figure 5: Steps to build a kd-tree following the cutting-longest-edge rule proposed
by Liu, Yan, and Lo (2013): In (a), the point distribution is divided by the median
point p;7 because the vertical side of the bounding box is longer than the horizontal
side. Then, the bounding box is divided into two rectangles, and the process of
assembling the kd-tree is started. (It should be noticed that with this partition, the
horizontal side is longer than the vertical side of the bottom rectangle.) In (b),
the two consequent point subsets are divided again, resulting in the new insertion
sequence for this point set by the breadth-first travel across the kd-tree, that is, p7,
P4, Ps, P2, P1» P3, Pe that are relabelled in a new insertion sequence as shown in

(c).

superior to 30 minutes.

Lo (2013) proposed an incremental algorithm for Delaunay triangulations. The au-
thor presented a scheme of multi-grid insertions that showed better results in the 2D
case than the Liu, Yan, and Lo (2013) algorithm. The scheme used resulted from
the recursive application of a regular grid to each polygon. According to this author,
it resulted in a scheme with an almost linear-time behaviour for sets of points that
are locally uniformly distributed. Also, the scheme of multi-grid insertion was the
most stable and the most efficient when compared to schemes of kd-tree insertion
and of a regular grid. According to the same author, the scheme of the regular grid
was very sensitive to the point distribution and the kd-tree scheme had a high com-
putational cost for triangulations with a high number of elongated triangles. This
author observed an almost linear-time behaviour when using a scheme of multi-grid
insertion. The presented tests were performed with up to 100 million points in uni-
form, line, cross, spiral, circle, and cluster point distributions. It should be noticed
that Lo’s comparisons were limited to the 2D case, in which either the regular grid
or the multi-grid scheme could be used with a low computational cost.

The complexities and the conditions under which such complexities are reached by
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the 14 algorithms found for the third period are shown in Table 5.

6 Conclusions

A systematic review of algorithms with linear computational time behaviour for the
generation of 2D/3D Delaunay and Voronoi tessellations was presented. The main
strategies that have been employed for the development of algorithms with linear-
time behaviour for the generation of these tessellations over the past 36 years were
enumerated. From the search conducted it was possible to identify the algorithms
that are the probable state-of-art solutions for the generation of Delaunay tessella-
tions: Lo (2013) and Liu, Yan, and Lo (2013) algorithms for the generation of 2D
and 3D Delaunay tessellations, respectively.

The divide-and-conquer strategy has been reasonably well employed for the devel-
opment of algorithms with linear-time behaviour for the generation of Delaunay or
Voronoi tessellations. On average at least one divide-and-conquer algorithm with
linear-time behaviour for the generation of Delaunay or Voronoi tessellation has
been published each 4 and a half years over the past 36 years.

On the other hand, the incremental approach has been employed even more than
the divide-and-conquer approach for the development of algorithms with linear-
time behaviour for these meshes. On average at least one incremental algorithm
with linear-time behaviour for the generation of Delaunay or Voronoi tessellations
has been published almost every year and a half over the last 30 years. More specif-
ically, since the publications of BRIO [Amenta, Choi, and Rote (2003)] concepts
and the algorithm of Liu and Snoeyink (2005), the tendency in the development
of algorithms for Delaunay tessellations has been by the incremental approach and
by a means of insertions in which the reference locality is preserved. Furthermore,
since 2003, more than one new incremental algorithm has been proposed on aver-
age per year against one divide-and-conquer algorithm in the same period.
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Algorithm Complexity Comment
Amenta, Choi, Worstrif:;lz lgl(enazr) — results obtained in tests
and Rote (2003) O(n g n) in the “realistic” case verified by the authors
. . tess3 was faster than QHull, o S
Liu and Snoeyink (2005) CGAL, Hull and Pyramid results obtained in tests
Ist algorithm: points
Buchin (2005) distributed independently and
uniformly in a bounded convex area
expected linear time 2nd algorithm: points
Buchin (2005)

distributed independently and
uniformly in a d-dimensional
bounded convex open region
fast in practice, authors presented
comparisons showing that their
implementation outperformed available

worst case when

d>2:0 (n 4/ ﬂ) codes for Delaunay triangulations
Boissonnat, Devillers, and can be used with large input sets
and Hornus (2009) in spaces of dimensions up to 6
by generating an “onion-like”
. layered simplicial subdivision of
worst case (2D): O(n g n) the convex hull, which is also

used as a locating data-structure

expected linear time

many random point distributions
worst cases: O(n?), degenerate cases
Buchin (2009) if the quotient between the highest
and O(n 1g n) and the lowest point to point
distance is polynomially bounded
Buchin and Mulzer linear for small integers, but
(2009, 2011) the constant factor is high
Yang and Choi (2010) Worstc ;;r::aé . experimental results

regardless of the site distribution
Ebeida, Mitchell, nearly linear in practice given sample points prelocated
Davidson, Patney, in a squared uniform grid
Knupp, and Owens (2011) the Ig n dependence is very mild
lincar behaviour test results in the quasi-uniformly
Yang, Choi, and Jung (2011) distributed points set

observed in the experiments
Loffler and Mulzer linear on a pointer machine
(2011, 2012)

O(n 1g n) expected time

O(n 1g n) expected time

and for small integers
Schrijvers et al. (2012, 2013) linear on small integers
) ' ’ worst case: O(n 1g n) g
it runs faster than the algorithms especially for
Liu, Yan, and Lo (2013) with the Hilbert curve order

non-uniform point
distributions over a wide
range of benchmark examples
for the triangulation of distribution
quasi-linear sets with local_ characte‘risti‘cs siimiliar
to those of a uniform point distribution,
such as line, circle and cluster

Table 5: The 14 linear-time behaviour algorithms found for the third period, their
complexities, and the conditions under which such complexities are reached.

and with BRIO, and also faster
than a random algorithm

Lo (2013)
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