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Abstract— This paper presents a architecture control and
model identification of a omni-Directional Mobile Robot. It is
divided into the three stages. Stage one proposes a procedure
for dynamic model identification and control of the "motor +
reduction + encoder" process of the Robot’s Motors. Second,
proposes the identification of a dynamic model for the whole
mobile robot considering it as a multi-variable system. Third,
presents a algorithm for perfect trajectory tracking of Omni-
Directional Mobile Robots, based on restriction on motor’s
velocities. This algorithm combines the restriction on motor’s
velocities and the kinematic model of mobile robot to generate
ideal drive velocities for the mobile robot to follow the trajectories
correctly with the best possible performance.

I. I NTRODUCTION

In this paper we focus attention on a omni-directional
mobile robot with four wheels, as shown in Fig.1(b), built
for the 5dpo-2005 Robotic Soccer team from the Department
of Electrical and Computer Engineering at the University of
Porto at Porto, Portugal.

The motivation of this work comes from the necessity of
mobile robot to follow trajectories in a correct and fast form.
We need a good model of the omni-Directional Mobile Robot,
for design and simulation of controllers and for test path
planning and trajectory generation algorithms.

In section II we present the identification of a discrete
system (see Fig. 2) for the "motor+reduction+encoder" process
and a calibration of the PID controller of the robot, to obtain
a more linear and fast system.

Second stage, in section III, proposes the identification of
a dynamic model for the whole mobile robot, considering it
as a multi-variable system. For both cases of estimation, we
consider a discrete linear model and we use techniques based
on Least Square Methods and Instrumental Variable methods
to estimate a transfer function or a state-space model.

In section IV we present a algorithm, called IDV(Ideal drive
velocities), that combine the restriction on motor’s velocities
and the kinematic model of mobile robot so as to generate
ideal drive velocities for the mobile robot. Always considering
the objective to follow trajectories. We take into account
aspects like the limits of motors speed of mobile robot and

(a) Mobile robot - motors. (b) Definitions of posture and velo-
cities of Mobile Robot.

Fig. 1. Omni-Directional Mobile Robot.

Fig. 2. Schematic - Robot control loop.

its non-holonomics restrictions of movement [9][11]. Finally,
the conclusion is drawn in section V.

II. MOTOR MODEL

A general model for a large class of single-input, single-
output systems as in [5], is

y(k) = H1(z)u(k) + H2(z)ξ(k), (1)

wherey(k) and u(k) are the output and input sequences,
respectively, andξ(k) is a gaussian white noise sequence with
varianceσ2 and zero mean. Equation (1) can be expressed in
vector form, as is in [7], forN samples, as

Y = Xθ + Ξ (2)



where

Y T = [y(1), ..., y(N)], (3)

XT = [x(1), ..., x(N)], (4)

ΞT = [ξ(1), ..., ξ(N)].

Applying the Least Square Method to (2) the resulting esti-
mator forθ is,

θ̂ = [XT X]−1XT Y. (5)

The Least Squares estimators are not in general consistent
when the sequenceξ(k), in (1), is correlated. Since Instru-
mental variable estimators are weakly consistent (see [5])we
implement it and compare with results from the Least Squares
Estimator, as proposed in [7]. Our Instrumental variable esti-
mator is

θ = [ZT X]−1ZT Y

We apply the excitation signal in Fig. 3(a) in the motor
drive, we obtain the curve of speed of robot’s motor 1 (front),
in meters per second, as is shown in Fig. 3(b).
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(a) Gaussian white noise.
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(b) Curve of speed - motor 1(open-
loop).

Fig. 3. Gaussian white noise and response of the motor 1 (open-loop).
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Fig. 4. Close-loop process.

To validate the Least square estimation, we apply an-
other excitation signal to the process and estimated transfer
functions, shown in Fig 5(a). Fig.5(b) shows the curves of
measured speed and simulated speed, for the transfer function
in table I, column IV. We test the efficiency of the Least Square
Estimator for eight different transfer functions(TF). Analyzing
the estimation, (see [7]), we conclude that a TF in table I, order
two, is a good approximation of the process, because the sys-
tem in Fig. 2 has one delay from the loop of communication,
represented by the pole at the origin in transfer function. The

process of DC motor can be approximated by one first-order
system, considering inductance of motor null. Table I presents
results of estimation with Instrumental variable(IV) and Least
squares(LS). After three iterations, the values of poles and gain
stabilize.
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(a) Signal of excitation 2
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Fig. 5. Signal of excitation 2, for validation.

FTs LS IV 3a Iteration
b1 0.00081626 0.00081538

z(z + a1) z(z − 0.6827) z(z − 0.7051)
MSE(error) 0.0010013 0.00098799

TABLE I

ESTIMATED VALUES.

We choose a PI controller (Td = 0), because the process has
characteristics of a first-order system. To choose appropriated
values for parameters of the PI controller (Kc and Ti),
we use the close-loop pole locations for annth-order plant
using prototype Bessel systems (see [3]). The equation (6) is
the calculated discrete PI transfer function, invariant tostep
responses (ZOH-zero-order hold) [1], for a sample period of
10ms:

Gc(z) =
197.68(z − 0.8726)

(z − 1)
(6)

In Fig.4 we show the results of PI controller with the desired
settling time (Ts = 0.6(seg)) applied in "motor + reduction +
encoder" process. The reference input is a step with amplitude
of 0.3(m/s) (from 0.3(m/s) to 0.6(m/s)).

III. MULTIVARIABLE ROBOT DYNAMIC MODEL

For a linear time-invariant system, the multivariable state-
space model for a 3-input 3-output system describe the behav-
ior of the system (Mobile Robot) in Fig. 2 are as follows.

X[k + 1] = AX[k] + Bu[k] (7)

With A,B ∈ ℜ3. The State and output vectorX[k], the input
vectoru[k] are,

X[k] = [v(k) vn(k) w(k)]T ,

u[k] = [vi(k) vni(k) wi(k)]T ,

(8)



The state-space can be written in the following form,

Ψ = Ω∆ , (9)

with

Ψ =




v(k)
vn(k)
w(k)



 , Ω =
[

A B
]
, ∆ =





v(k − 1)
vn(k − 1)
w(k − 1)
vi(k − 1)
vni(k − 1)
wi(k − 1)




.

(10)
Applying the Least Square Method in (9), the resulting

estimator forΩ is,

Ω̂ = [∆T ∆]−1∆T Ψ. (11)

Fig.6 shows the excitation signal (gaussian white noise) and
measured speeds of the mobile robot, in meters per second.
This signals was used for Least Square estimator.
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Fig. 6. Signals of Estimation.

The result of Least Squares estimation to the matrices A
and B was,

A =




0.8562 0.0048 0.0047
−0.0034 0.8745 −0.0180
−0.0090 0.1157 0.7637



 , (12)

B =




0.1447 −0.0045 −0.0057
0.0022 0.1263 0.0161
0.0093 −0.1205 0.2375



 (13)

To verify the Least square estimation, we apply another ex-
citation signal to the system and estimated transfer functions,
shown in Fig 7.
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Fig. 7. Signals of Validation.

IV. TRAJECTORY TRACKING FOR THE MOBILE
ROBOT

The drive velocities of the mobile robot are the linear
velocities (V (t),V n(t)) and angular velocity (W (t)). They are
converted in the linear wheel velocitiesv1(t), v2(t), v3(t) and
v4(t) (see [10]):

v1(t) = V n(t) + fW (t) (14)

v2(t) = −V (t) + gW (t) (15)

v3(t) = −V n(t) + fW (t) (16)

v4(t) = V (t) + gW (t) (17)

where (see Fig. 1(b)):
• f : the distance between the point C and wheels of the

motors M1 e M3;
• g: the distance between the point C and wheels of the

motors M2 e M4.
The drive velocities may cause saturation in motor’s speeds,

mainly when trajectories have linear velocities (V (t),V n(t))
and angular velocity (W (t)) different from zero. The
schematic in Fig. 2, shows the trajectory control loop of the
mobile robot, taking into consideration the restriction onmo-
tor’s velocities thus preventing drive velocities that themobile
robot cannot follow. By the Fig. 1(b), is possible to calculate
the kinematic equations of the mobile robot considering the
linear wheel velocities, the linear velocities (V (t) e V n(t))
and angular velocity(W (t)) of the mobile robot,

V (t) =
1

2
(−v2(t) + v4(t)) (18)

V n(t) =
1

2
(v1(t) − v3(t)) (19)

W (t) =
1

2f
(v1(t) + v3(t)) (20)



W (t) =
1

2g
(v2(t) + v4(t)) (21)

where:

• V (t) andV n(t): linear velocities of the point C;
• W (t): angular velocity of the mobile robot;
• v1(t),v2(t),v3(t) e v4(t): linear velocity of the wheels

of the mobile robot;
• θ(t): orientation of the mobile robot;
• M1,M2,M3 e M4: motors of the mobile robot, related

a each wheel.

The algorithm IDV calculates the robot velocities
V (t),V n(t) and W (t), taking into account the limitations of
motor’s speeds. So, its equation can be described with three
control variables (V (t),V n(t) and W (t)), related with linear
wheel velocities of the mobile robot(v1(t),v2(t),v3(t) and
v4(t)), proposed in [6].

The Fig. 8 shows eight planes with the follow limits of
velocities for the wheels robot:v1 = v3 = 1(m/s) andv2 =
v4 = 1.5(m/s). The Fig. 8 was generated withW positives
and negatives, until the instant that velocityV n reached zero
(V n = 0).

Analyzing Fig. 8, the drive velocities, should be inside
the solid. To define the correct drive velocitiesVref ,V nref ,
Wref , that are outside the solid of the Fig.8, we can find the
intersection point(P ref ) of the linel and the planes in Fig.9(a).

Referring to Fig.9(a), let the linel from the origin to
the point Pref = (Vref , V nref ,Wref ). Then, intersection
point(P ref ) give us the maximum robot velocities, respecting
the limits of robot motors.

Now, we present a example with the pointPref =
(1,−1.2, 2), representing the robot velocitiesV ,V n eW of the
mobile robot, with following parameters:v1 = v3 = 1(m/s),
v2 = v4 = 1.5(m/s) andf = g = 0.2(m). The pointPref =
(1,−1.2, 2) is outside of solid (see Fig.9(a) and Fig.9(b)),
after redefine the robot velocities, with the formulation above,
we obtain the pointP ref = (0.625,−0.75, 1.25) (point of
the intersection with the plane).The Fig. 9(b) shows the axis
(V n,W ), where we can see the point of intersectionP ref with
the plane.
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Fig. 8. Robot Velocities in coordinates systemV, V n, W .

We used to test the algorithm developed, for calculates the
ideal drive velocities(IDV), the trajectory shown in Fig. 10.
The initial position of mobile robot wasxi = 0(m), yi =

−2

−1

0

1

2

−1.5
−1

−0.5
0

0.5
1

−5

−4

−3

−2

−1

0

1

2

3

4

5

VVN

W

Pref 

Pref 

(a) Axis V ,V n,W .
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Fig. 9. Robot Velocities, pointsPref andP ref .

0(m) and θi = 0(rad). The final position wasxf = −2(m),
yf = 0(m) andθf = π(rad).
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Fig. 10. Axis coordinates XY - trajectory for test.

Three cases had been tested: with a ideal model of the
mobile robot, with the real model of the mobile robot without
the algorithm IDV and with the real model of the mobile robot
with the algorithm IDV.

The Fig. 11 shows the drive velocities executed by a ideal
model of the omni-directional mobile robot with four wheels,
this model does not have velocity restrictions, following high
drive velocities(Vref , V nref ,Wref ). In Fig. 14 we show that
the trajectory was tracked correctly.

The Fig. 12 shows the drive velocities executed by the
real model of the mobile robot, that take into account the
limitations of motors speed, but without use the algorithm
IDV. It results that the motors speed has reached saturation
point, generating errors in robot’s velocities and consequently,
executing the trajectory in a wrong form, as in Fig. 14.

The Fig. 13 shows the drive velocities executed by the
real model of the mobile robot, with the algorithm IDV.
The velocities of the mobile robot respects the motors limits,
following the trajectory correctly, as in Fig. 14.

V. CONCLUSION

In this paper we identify a discrete process("motor + re-
duction + encoder") shown in Fig. 2, of the a mobile robot.
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We use Least Squares and Instrumental Variable estimator.
These estimations permit the selection of appropriate values
for PI controller, implemented in the mobile robot. This
is the first step for the identification of a dynamic model
for the whole mobile robot. Thus, the second step was the
estimation of whole mobile robot considering it as a multi-
variable system. Moreover, this paper formulates a algorithm
(IDV) to define the robot’s reference velocities in order to
enable the trajectories to be followed without significant errors.
The procedure presented in this paper can be used for omni-
directional robots, with different configurations (three wheels)
and in all applications where critical trajectories must be
perfectly executed. In future works, we will test technics of
control(Adaptative control) in the robot and estimated models.
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