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Abstract 

The inflammatory process is the innate immune response for the presence of pathogens, 

toxic molecules, tissue injuries or any other harmful conditions. The inflammation process is 

characterized for redness, pain, swelling, heat and disturbance of function and comprises 

inducers, sensors, mediators and effectors components from cellular and humoral origin. 

Macrophages are one of the most important cells in the inflammatory process. Macrophages 

actively phagocyte particles with sizes superiors to 200 nm and express folate receptor 

making them of great interest for passive and active targeting strategies. Non-Steroidal Anti-

Inflammatory Drugs, like oxaprozin, are one of the most used drugs prescribed for these 

conditions, however these drugs have adverse side effects, namely at the level of the gastric 

mucosa, that must be avoided and pharmacokinetic properties that need to be improved and 

for these purpose many delivery systems arise. Lipid Nanoparticles allow an effective drug 

packaging and targeted delivery, improving drug´s pharmacokinetics and pharmacodynamics 

properties and avoiding some of their side effects. In this work, two formulations containing 

oxaprozin were developed: nanostructured lipid carriers with and without folate 

functionalization. Folate functionalization was obtained by the addition of a synthesised 

DSPE-PEG2000-FA conjugate. These formulations had low polydispersity (approximately 0.150) 

with mean diameters around 285 nm and zeta potential superior to -40 mV. The elevated 

encapsulation efficiency of the particles (superior to 95%) along with the high amount of used 

oxaprozin lead to a high loading capacity (close to 9%). The formulations avoided the 

oxaprozin release in simulated gastric fluid promoting its release on simulated intestinal fluid, 

physiologic and inflammatory medium, remaining only less than 10% of the oxaprozin 

entrapped on the lipid carrier matrix. MTT and LSH assays revealed that the formulations only 

seemed to present cytotoxicity in Caco-2 cells for oxaprozin concentrations superiors to 100 

μM. Permeability studies in Caco-2 cell lines shown that oxaprozin encapsulation did not 

interfere with oxaprozin permeability, having the final formulations an apparent permeability 

around 0.8x10-5 cm.s-1 in simulated intestinal fluid and about 1.45 x10-5 cm.s-1 PBS. 

 

Keywords— Inflammation, Oxaprozin, Nanostructured Lipid Carriers, Nanoparticles 

Characterization, Folate Functionalization, In vitro Release Study, MTT assay, LDH assay, 

Caco-2 Permeability study. 
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Chapter 1  

 

Introduction 

Chronic inflammation conditions are on the base of several diseases, reason why the 

development of effective therapies in the treatment of these conditions is of extreme 

importance [2-5]. 

Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are one of the most used drugs prescribed 

for these conditions however, like every drug they present adverse side effects [6-9]. 

In order to surpass these adverse effects, specialized delivery systems may be of extreme 

importance and may hold the answer for an effective anti-inflammatory treatment of such 

conditions. 

1.1 - The inflammatory process 

The presence of pathogens, toxic molecules, tissue injuries or any other harmful 

conditions in an organism will origin a defensive response in order to restore the cellular 

homeostasis [2]. The human body comprise three distinct defence systems that include the 

anatomic and physiologic barriers, the innate immunity and the adaptative immunity [10]. 

The innate immune response is characterized by an inflammatory process that is 

traditionally defined by four symptoms related to the immune system’s response. These well-

known symptoms are redness, pain, swelling and heat (in Latin rubor, dolor, tumor, and calor 

respectively) [2, 3, 5, 11, 12]. Another symptom is disturbance of function (in Latin functio 

laesa), which was posteriorly added to the previous four [3, 5, 12]. These symptoms have 

origin in vascular and cellular changes promoted by inflammatory mediators that are 

produced by inflammatory and tissue cells or by metabolization of their extracellular 

precursors [12]. 

The inflammatory process includes cellular elements:  monocytes, macrophages, 

neutrophils, dendritic cells, and natural killer cells (whose main functions are to phagocyte 

and kill the inflammatory agents and antigen-presentation), eosinophils, basophils and mast 

cells (responsible for the production of the inflammatory mediators) and humoral elements: 

complement, lysozime, lactoferrin and antimicrobial peptides [5, 10, 11, 13, 14]. The 

components of the inflammatory process can be characterized as inducers, sensors, 

mediators and effectors and this process is summarized in the Figure 1. 

The origin of the inducers determines their classification. Exogenous inducers can be 

divided in microbial inducers: Pathogen-Associated Molecular Patterns (PAMPs) and virulence 

factors; and non-microbial inducers which include toxic compounds, foreign bodies, irritants 

and allergens. Endogenous inducers are generally signals produced by tissues in response to 

stress, damage or malfunctioning, designated Danger-Associated Molecular Patterns (DAMPs) 

[2, 14]. 
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Sensor components comprise specific membrane receptors like Pattern-Recognition 

Receptors (PPRs) that recognise PAMPs and DAMPs, Toll-Like Receptors (TLRs), C-type Lectin 

Receptors (CLRs), NOD-like Receptors (NLRs), Mannose Binding Protein (MBP) and 

Lipopolysaccharide Binding Protein (LBP) [2, 10, 13, 14].The interaction between inducers 

and sensors leads to the production of mediator compounds derived from plasma proteins or 

secreted by cells. Mediator compounds can be classified as [2-5, 11, 13-15]: 

a) Vasoactive amines like histamine and serotonin that act on the vasculature 

leading to vasodilation or vasoconstriction, affecting also the vascular 

permeability; 

b) Vasoactive peptides like substance P, kinins, thrombin or plasmin  that also can 

cause vasodilation and increased vascular permeability; 

c) Complement Proteins that act by opsonising pathogens surface, i.e. by coating 

the surface making the pathogens more easily phagocytised. Moreover, they may 

also create a membrane-attack complex that generate a pore on the pathogen’s 

lipidic bilayer membrane; 

d) Proteolytic enzymes that act in order to allow leukocyte migration degrading the 

extra cellular matrix and the basement-membrane proteins; 

e) Cytokines that induce local vasodilation, increased blood flow and vascular 

permeability leading also to leukocytes activation. Cytokines promote as well  the 

influx of cell to the inflammation site; 

Figure 1: Overview of the inflammatory process and its mediators [15]. 
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f) Chemokines responsible for the chemotaxis that direct the leukocyte traffic 

towards the inflammation site, acting as directional signals and also by the 

recruitment of leukocytes; 

g) Reactive Oxygen Species (ROS) as superoxide, hydroxyl radicals, singlet oxygen, 

oxygen halides, hydrogen peroxide and Reactive Nitrogen Species (RNS) that 

interact with lipids, proteins, nucleic acids and other molecules of the pathogens 

leading to its dead; 

h) Lipid mediators like eicosanoids and platelet-activating factors. Arachidonic acid 

(AA)  metabolism by cyclooxygenases (COX-1 and COX-2) leads to the formation of 

eicosanoids, which in turn generate prostaglandins (PGs) that cause vasodilation 

and are responsible for fever, pain, fatigue, sleepiness, anorexia and social 

withdrawal, since they act on the central nervous system. The platelet-activating 

factors, also produced by this pathway, activate several process related to 

leukocytes activation and vascular regulation. 

These inflammatory mediators induce the effectors, generally cells, creating the 

inflammatory response and may also take action as amplifiers of the inflammatory process 

acting as chemoattractants [3, 14]. 

Because all the inflammatory components possess numerous elements, different 

inflammatory pathways can be created so each inflammatory process is unique [5]. 

The inflammatory process begins within moments from the inducer exposure which 

explain why, for some, the innate immunity is the most important type of immunity [2, 10, 

13]. 

All these processes are extremely beneficial for the host, however they must be highly 

regulated since some of them are not able to discriminate between microbial and host cells 

leading to tissue damages [14]. In order to control the inflammatory process, pro-

inflammatory cytokines are produced such as Tumor Necrosis Factor (TNF) and Interleukin 1 

and 6 (IL-1 and IL-6) [2, 4]. Negative feedback mechanisms include the inhibition of pro-

inflammatory signalling cascades, loss of mediator’s receptors, activation of regulatory cells 

and the production of anti-inflammatory cytokines such as IL-10 and IL-13, Transforming 

Growth Factor β (TGF-β) and glucocorticoids [2-4, 14]. A balance between pro-inflammatory 

and anti-inflammatory factors is essential to create an appropriate and effective 

inflammatory response.  

When the pathogen or the damaged tissue has been completely removed, the 

inflammation process should stop allowing the tissue repair and healing. So, when the 

regulatory process or the acute inflammatory response fails, the process turns into a chronic 

inflammatory condition. These chronic inflammatory conditions, in turn, lead to host tissue 

lesions and are implicated in many diseases such as rheumatoid arthritis, atherosclerosis, 

type 2 diabetes, neurodegenerative diseases asthma, inflammatory bowel diseases, cancer 

and obesity [2-5]. 

1.2 - Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) 

Because of the major role that COX plays both in the acute and chronic inflammatory 

process, the use of drugs that successfully block this pathway is of extreme importance. Since 

Non-Steroidal Anti-Inflammatory Drugs have the capability to block COX, even at mM 
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concentrations, they have become an indispensable choice in some chronic inflammatory 

diseases and in pain management [16, 17]. 

1.2.1 Interplay between mechanism of action and therapeutic effects 

NSAIDs have analgesic, antipyretic, and anti-inflammatory effects being effective drugs in 

reducing swelling, redness and pain in inflammatory conditions and also general fever and 

headache. NSAIDs are one of the most effective and prescribed drugs used to treat pain and 

inflammatory conditions in patients suffering from osteoarthritis, rheumatoid arthritis, gout, 

low back pain, soft tissue pain and chronic pain [6-9]. NSAIDs act by blocking the 

cyclooxygenases in a competitive way, inhibiting therefore prostanoids synthesis [7, 12, 18].  

COX exists at least in two isoforms: COX-1 and COX-2 [12, 19, 20]. COX-1 and COX-2 are 

heme-containing bifunctional proteins that convert AA into PG-G2 by a cyclooxygenation 

reaction and this into PG-H2 by a peroxidase reaction. The activity of tissue-specific 

synthases and isomerases convert PG-H2 into different prostanoids like PG-E2, PG-D2, PG-

F2α, prostacyclin (PG-I2) and thromboxane A2 (TX-A2) [12, 19-21]. COX-1 is constitutively 

expressed being present in almost every tissue and leads to the production of PGs that help in 

the control of vascular homeostasis, platelet, gastric and renal activity and also protects the 

gastric mucosa. COX-2 is an inducible cyclooxygenase, active in cells that line blood vessels 

and that catalysis the production of pro-inflammatory PGs in response to inflammatory 

factors [6, 12, 19]. Thus, NSAIDs analgesic and anti-inflammatory effects are a consequence 

of their ability to block COX-2 activity. 

NSAIDs are characterized in two distinct classes according to their ability to selectively 

block COX-2 and this is given by the ratio of the IC50 for COX-1 and COX-2 with in vitro 

studies [22-24]: 

a) Non-selective COX inhibitors: block both COX-1 and COX-2 in a non-selective 

manner. They traditionally possess a carboxylic acid (-COOH) as a functional 

group and represent the most prescribed NSAIDs for fever, pain and inflammation 

treatment; 

b) Cox-2 selective inhibitors: selectively block COX-2. Generally they possess a 

diarylheterocyclic ring as template and less adverse effects. 

The mechanism of action and the pathways that are blocked by both NSAIDs classes are 

summarized in Figure 2. 

  
Figure 2: NSAIDs mechanism of action and non-selective (traditional) and COX-2 selective inhibited (coxibs) pathways  [1]. 
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1.2.2  Interplay between mechanism of action and side effects 

Despite its beneficial effects NSAIDs, present side effects such as toxicity in the 

gastrointestinal tract, liver, brain, cardiovascular and renal systems, skin, platelet 

aggregation and blood pressure [6, 7, 16-18, 25-28]. 

Bloating, cramping, pain, diarrhoea, constipation, acid reflux, erosins, duodenal and 

gastric ulcers, perforations, obstructions and bleeding are among the NSAIDs effects on the 

gastrointestinal tract [6, 8, 16, 18, 29]. The carboxylic acid that generally makes part of the 

NSAIDs chemical structure leads to gastrointestinal irritation when orally administrated [16, 

30]. Besides that, because non-selective COX inhibitors block COX-1 activity, they prevent 

mucosal cytoprotective PGs formation enhancing gastrointestinal toxicity [8, 9, 19, 20]. 

NSAIDs effects in renal homeostasis lead to sodium retention, peripheral oedema, weight 

gain, high blood pressure, congestive heart failure, hyperkaelemia, and acute renal failure. 

PGs produced for both COX have an important role on renal vasculature regulation and on the 

electrolyte dynamics, decreasing Na+ reabsorption, so blocking its production leads to 

deregulation on these processes and ultimately to the effects previously mentioned [6, 16, 

19, 31]. 

COX-2 selective inhibitors toxicity is mostly related to cardiovascular complications like 

hypertension and increased risk of myocardial infarction and atrial fibrillation. These effects 

occur due to the absence of important PGs that control platelet-wall interactions, 

vasoconstriction, platelet aggregation, cholesterol accumulation and that antagonize the 

effects of hypertensive drugs [6, 7, 16, 19, 23, 24]. 

1.2.3 Chemical classification 

NSAIDs are a very heterogeneous group of molecules with different molecular structures, 

being the majority organic acids with low water solubility [18, 30, 32-34]. NSAIDs capability 

to interact with COX-1 and COX-2 is directly related to its chemical properties allowing the 

carboxylic acid the interaction with COX-1 and having lipophilic drugs a more strong 

interaction with COX-2 [35]. So, non-selective COX inhibitors generally have carboxylic acids 

or ketoenolic acids in their constitution while COX-2 selective inhibitors have sulphonamide 

functional groups on a diarylheterocyclic ring. COX-2 selective inhibitors have been created in 

order to possess low gastrointestinal adverse effects, reason why their moieties confer them 

high values of pKa and avoid their interaction with COX-1 [30]. Some NSAIDs properties are 

summarized on Table1. 
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Table 1: Structure and properties of NSAIDs [32, 36]. 

Drug Structure pKa Mol wt Log P 

Non-selective COX inhibitors 

Aspirin 

 

3.5 180.2 -1.1 

Diclofenac 

 

4.2 296.1 4.5 

Flurbiprofen 

 

4.22 244.3 4.2 

Ibuprofen 

 

4.4 206.3 4.0 

Indomethacin 

 

4.2 357.8 4.5 

Ketoprofen 

 

4.5 254 ---- 

Naproxen 

 

4.2 230.3 3.2 

Oxaprozin 

 

4.3 293 4.8 

COX-2 selective inhibitors 

Celecoxib 

 

10.7 381.4 3.9 

1.2.4 Oxaprozin 

Oxaprozin (4,5-diphenyl-2-oxazolepropionic acid; Wy-21,743;  CAS-21256-18-8) (Table 1) 

is a non-selective COX inhibitor NSAID with effective anti-inflammatory, analgesic and 

antipyretic effects. These therapeutic activities derive from its capability to inhibit COX-2 

[37-42]. Oxaprozin has an aliphatic propionic acid function attached to the oxazole as side 

chain, however contrarily to other propionic acid compounds this doesn’t possess a chiral 

centre [40, 42].  

Oxaprozin (Oxa) has a molecular weight of 293 g/mol and presents as a lipophilic white 

powder, with low water solubility and being slightly soluble in alcohol. It’s a weak acid with 

pKa around 4.3 with high gastric mucosa tolerance comparatively to other NSAIDs of the same 

class. That also leads to a slow rate of absorption on the gastric mucosa at stomach pH. 

Oxaprozin highly binds to plasma proteins (99.9%) with high affinity what leads to a long 
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plasma elimination with a half-life of 50 to 60 hours. This elevated duration of action allows 

the administration of a single oxaprozin dose per day of 600 to 1800 mg [32, 39, 40, 42, 43]. 

Oxaprozin like the other NSAIDs and every drug have possible side effects that include 

stomach pain, constipation, diarrhoea, gas, heartburn, nausea, vomiting and dizziness. More 

serious side effects include heart attack, stroke, high blood pressure, heart failure (from 

body swelling due to liquid retention), kidney problems (including kidney failure), stomach 

and intestine bleeding and ulcers, anaemia, life-threatening skin reactions, life-threatening 

allergic reactions, liver problems (including liver failure) and asthma attacks (in asthma 

patients) [44]. 

1.3 - NSAIDs delivery systems 

In order to reduce the adverse side effects of NSAIDs, improve NSAIDs pharmacokinetic 

properties and to promote a sustained, controlled and targeted drug delivery, several 

delivery systems have been created in the last years. Next, we will shortly describe some 

relevant examples of published works in this field. 

To the date, most of the developed NSAIDs delivery systems are based on polymeric 

micro/nanospheres. Many NSAIDs have been formulated into microspheres using 

biodegradable and non-biodegradable polymers and various methods for oral, ocular, 

parenteral and topical applications 

Calvo et al. prepared three independent nanocarriers made out of poly-ε-caprolactone 

loaded with indomethacin, a nanoparticle, a nanocapsule and a nanoemulsion and also a 

microparticle made out of the same polymer. They verified that these nanosystems had a 

threefold higher corneal epithelium penetration when compared to a commercial solution, 

without causing membrane damages. In contrast, the microparticle wasn’t able to increase 

indomethacin ocular bioavailability [45, 46].  

Jayaprakash et al. designed a copolymeric nanoparticle composed by N-

isopropylacrylamide, vinyl pyrrolidone and acrylic acid loaded with ketorolac. These 

nanoparticles were produced in order to increase this NSAID bioavailability. This formulation 

showed, in vitro, a twofold NSAID permeation and a higher anti-inflammatory activity 

compared with its aqueous suspension [47]. 

By a quasi-emulsion solvent technique, Pignatello et al. have been able to produce a 

polymeric nanoparticle suspension of Eudragit RS 100® loaded with ibuprofen. These 

nanoparticles allowed a controlled delivery of ibuprofen and an improvement on its ocular 

availability by increasing its corneal retention and a gradual and prolonged drug release due 

to its positively charged surface that helps corneal adhesion without ocular tissue toxicity 

[48]. 

The same authors have also produced by the same technique a polymeric nanoparticle 

suspension of Eudragit RS 100® and RL100® loaded with flurbiprofen, in order to also improve 

its ocular availability. Once again this cationic polymeric nanoparticle suspension indicated a 

controlled drug delivery and high efficiency when compared to the aqueous drug solution 

[49].  

Eudragit RS100® NSAID loaded nanoparticle were also a matter of study for Adibkia et al.. 

They loaded these nanoparticles with piroxicam and used them to control inflammatory 

symptoms in rabbits, concluding that the nanoparticles inhibited the inflammation more 

successfully than the aqueous suspension of the drug [50]. 
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Polylactic and polyglycolic acid have been used in order to produce nanoparticles loaded 

with flurbiprofen by Vega et al. and these authors concluded that these nanoparticles were a 

promising ocular delivery system of drugs due to its excellent ocular tolerance and protection 

against sodium arachidonate induced inflammation [51]. 

Badawi et al. loaded indomethacin into chitosan nanoparticles and chitosan nanoemulsion 

creating positively charged nanocarriers with good corneal affinity and a gradual and long-

term (up to 24h) drug release to both external and internal ocular tissues [52]. 

Contreras-García et al. grafted the co-polymers of N-isopropyl acrylamide (NIPAAm) and 

N-(3-aminopropyl) methacrylamide hydrochloride (APMA) into a polypropylene film and then 

loaded the film with NSAIDs in order to analyse their cytocompatibility and frictional 

properties and as well to evaluate its capability to load and release, for long periods, 

therapeutic doses of NSAIDs. They concluded that this grafts cold be used in the design of 

products for biomedical devices in order to promote a controlled NSAIDs release [53]. 

Alginate microparticles can be used in order to store NSAIDs and deliver NSAIDs, however 

these microparticles can be destabilised in acidic environments. So in order to create 

gastroresistent alginate-OCH microparticles, Čalija et al. used an anionic copolymer, 

Eudragit® L100-55, to stabilize the alginate-OCH microparticles in acidic conditions, leading 

to a decreased drug release at gastric pH and sustained drug release at intestinal pH. These 

microparticles may be used for oral NSAIDs delivery due its pH sensitive capacities [54]. 

Polymeric micelles of poly(ethylene oxide)–poly(β-benzyl L-aspartate) (PEO–PBLA) were 

used to encapsulate indomethacin by La et al.. The drug released from the micelles was 

highly pH dependent with rapid release profiles for pH around 7.4 [55]. 

Giacomelli et al. used poly(2-(dialkylamino)ethyl methacrylate) as micellar core of 

poly(ethylene oxide)-b-poly[2-(diisopropylamino)-ethyl methacrylate] (PEO-b-PDPA) or 

poly(glycerolmonomethacrylate)-b-PDPA (PG2MA-b-PDPA) micelles. These micelles allowed a 

more stable indomethacin encapsulation and prolonged drug retention profiles due to ionic 

and hydrophobic interactions [56]. 

Marques et al. formulated nanosized micelles, with different amphiphilic chitosan based 

polymers in their constitution, loaded with ibuprofen and functionalized with deoxycholic 

acid (DOCA) and leucine (Leu) moieties. These self-assembled nanoparticles successfully 

encapsulated the NSAID and delivered it into tumor cells. The anti-tumoral effect of this 

nanosystem is comparable with that of the traditionally used chemotherapeutics [57]. 

Roullin et al. prepared biodegradable nanospheres using poly(lactide-co-glycolide) 

(PLGA). These non toxic nanoparticles showed good NSAIDs encapsulation and local controlled 

NSAIDs release for up to 48 h. These nanospheres were found to be suitable for oral 

administration and for prosthesis surface coating [58]. 

Bédouet et al. created a hydrogel biodegradable microspheres prepared by co-

polymerization of a methacrylic derivative of ibuprofen with oligo(ethylene-

glycol)methacrylate and poly(lactide-co-glycolide-ethylene-glycol) (PLGA-PEG) 

dimethacrylate as degradable crosslinker. These microspheres were able to prolong the drug 

release time avoiding the initial burst release, keeping the drug anti-inflammatory activity. 

So they are suitable for drug delivery by intra-articular injection [59]. 

Koç et al. designed a class of polyamidoamine (PAMAM) dendrimers for high NSAIDs 

performance and solubility. For that they introduced a polypropylene oxide as core of the 

PAMAM (PPO@PAMAM) dendrimers and loaded the dendrimers with ketoprofen, ibuprofen and 
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diflunisal. These formulations augmented NSAIDs solubility, increasing this solubility with the 

dendrimer concentration and generation in an almost proportional way [60]. 

Hasegawa et al. reported the creation of a NSAID micellar prodrug using hydrophilic 

poly(ethylene glycol) (PEG) and a polyacrylamide derivative of ibuprofen as amphiphilic 

diblock copolymers. Ibuprofen release occurs due to chemical and enzymatic hydrolysis of the 

micelles and takes place over several days to weeks. These micelles increased ibuprofen 

solubility and were able to efficiently inhibit two cancer cell lines proliferation [61]. 

In order to promote corneal residence of indomethacin and consequently augment its 

ocular availability Balasubramaniam et al. created a Gelrit gellan gum in situ gelling system 

for topical drop administration. This system was therapeutically effective in rabbits and 

allowed an in vitro release for up to 8h [62]. 

Bycopolymerization of poly(hydroxyethyl methacrylate) (pHEMA) with low APMA or 4-

vinyl-pyridine (VP) proportions Andrade-Vivero et al. created a hydrogel with high NSAIDs 

loading capacity. Due to this hydrogel properties such as high biocompatibility, thermal 

stability, acidic and alkaline hydrolysis resistance and easily adaptable mechanical 

properties, it can be used in oral controlled NSAIDs delivery systems, implants for drug 

delivery, soft contact lenses (in order to prevent bacterial colonization) or other biomedical 

devices [63]. 

In order to provide NSAIDs oral administration Corrente et al. formulated a diclofenac 

loaded pH sensitive hydrogel using Scl-CM-300 from the scleroglucan polymers class. This 

hydrogel revealed mucoadhesive properties, affinity to aqueous media, pH sensitive 

behaviour and biocompatible properties, providing a prolonged drug release time, avoiding 

the ulcerogenic effects of this NSAID. The authors suggested that this formulation could be 

used for oral delivery of ulcerogenic NSAIDs or for colon targeting [64]. 

Saxena et al. created an emulgel (gel emulsion) with Gelucire 39/01 as lipid phase and 

low viscosity sodium alginate aqueous solution as aqueous phase. These emulgel was loaded 

with piroxicam for oral administration. These gel jellifies in situ, which prevents the NSAID 

direct contact with the gastric mucosa avoiding the NSAID side effects while providing sustain 

drug release [65]. 

Del Gaudio et al. created almost spherical alginate-based aerogels loaded with 

ketoprofen with porous texture similar to the related hydrogels. The system responded 

rapidly to pH changes dissolving the drug.  The interesting properties of the aerogel make it 

suitable for the fast delivery of NSAIDs in the upper gastrointestinal tract which could be 

useful for NSAID fast delivery for analgesic effects in postoperative pain, dental surgery, 

renal and uretal acute colic [66]. 

Sousa et al. produced, by an alumina template assisted synthesis, silica nanotubes with 

Si-O-H chemical bounds in the inner surface used to create a polycationic surface. The 

naproxen loaded nanotubes allowed a pH controlled sustainable drug release. The authors 

suggested the external functionalization of the nanotubes with folate in order to target the 

pH sensitive delivery systems for the inflamed tissue [67]. 

Consola et al. described the formation on a cationic vesicle assembled with an amino 

sugar surfactant and NSAIDs in an aqueous solution. The result was a water soluble cationic 

vesicle that when used for dermal administration of the NSAIDs showed an improved anti-

inflammatory activity and prolonged time of NSAIDs residence due to a slower skin diffusion 

of the system. Besides that, this formulation assembles spontaneously, use biocompatible 

surfactants and an aqueous vehicle [68]. 
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A lipo-preparation made out of lecithin coated lipid grains with a soybean oil core 

allowed the formation, by Ohmukai et al., of a lipid microsphere (LM) loaded with 

flurbiprofen axetil dissolved on the soybean oil. This LM reduced the adverse effects of 

flurbiprofen prompting its analgesic effects. It can be used for intravenous administration 

especially on postoperative pain since it lacks central nervous system adverse reactions [69]. 

Joshi et al. compared a commercial alcoholic solution of valdecoxib with a 

Nanostructured Lipid Carriers (NLC) loaded with the same drug. In vitro studies revealed a 

sustained drug release from the NLC contrarily to what happens with the commercial 

solution, this drug release goes for up to 24h in a in vivo study [70].  

The same authors also compared in vivo a NLC based gel loaded with colecoxib with a 

micellar gel with the same composition. The NLC had a better behaviour than the micellar gel 

having a better penetration and sustained drug release leading to oedema inhibition for up to 

24h [71]. 

Han et al. formulated a flurbiprofen loaded NLC and compared its physical stability and 

permeation with a NSAID buffer solution. They concluded that the NLC was stable for the 

study period and that the skin permeation was improved in relation to the NSAID solution 

making this a suitable system for NSAIDs dermal delivery system [72]. 

Attama et al. designed Solid Lipid Nanoparticles (SLN), with phospholipids in its 

constitution, loaded with sodium diclofenac. The technique used by the authors allowed high 

drug encapsulation and the SLN were able to successfully release the drug in a sustained 

manner and this way these nanoparticles revealed a good performance for ocular application 

[73]. 

The production of cationic liposomes loaded with diclofenac sodium to be used as a 

aqueous eye drop formulation was reported by Sun et al.. This nanosystem allowed the NSAID 

pre-corneal retention with a 211% improvement in aqueous humour concentrations [74]. 

Tsukamoto et al. created submicron-sized liposomes coated with chitosan loaded with 

sodium bromfenac, with high encapsulation efficiency, for ocular drug delivery. Varying lipid 

concentrations, inner water phase, initial drug liposomal concentration and surface 

properties the authors were able to control drug release time in vitro for up to hours [75]. 

Despite all these efforts to improve NSAIDs features and NSAIDs based treatments only 

few NSAIDs delivery systems are on the line to get Food and Drug Administration (FDA) 

approval [1]. 

1.4 - Passive and Active Targeting 

Targeting systems are designed in order to direct delivery systems to its specific target 

like an organ, tissue or a cell. So this will, consequently, increase drug concentration in the 

site of action and improve the selectivity of the delivery systems. Targeting systems can be 

classified as passive and active [76]. 

1.4.1 Passive targeting 

This type of targeting can be achieved without the incorporation of specific targeting 

moieties on the drug system surface [76]. 

In the presence of an inflammatory process, vasculature permeability and dilation may 

suffer alterations due to the expression of several mediators. So, in inflammation sites the 

permeability of the vasculature is increased allowing the penetration to the interstitial site of 
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particles that normally wouldn’t be able to pass through the vasculature [77, 78]. This 

process is generally known as the Enhanced Permeability and Retention (EPR) effect [77, 79]. 

This EPR effect can be used for passive targeting of inflammation sites. For this, the drug 

system size is an important factor and must be between approximately 50 kDa and 200 nm in 

order to pass through the vessels by the EPR effect and also avoiding glomerular filtration 

[79]. The circulation time of these systems is also important since long circulation times will 

increase its accumulation on the inflammation site [79].  

Taking advantage of EPR effect, Srinath et al. produced indomethacin loaded liposomes. 

The indomethacin was entrapped in the bilayer of the liposome due to its amphiphilic 

characteristics. The mean size of these liposomes was 100 nm what allowed them to pass the 

vessel walls into the inflammation site which can justify why these liposomes where able to 

successfully reduce joint inflammation in rats while a two times higher dose of free 

indomethacin showed only a limited effect [80].  

Similarly, Palakurthi et al. encapsulated indomethacin in the oily core of lipid 

nanospheres composed by soybean oil, phosphatidylcholine and cholesterol. These 

nanospheres had mean sizes of 150 nm and some of these nanospheres were coated with PEG 

in order to achieve long circulation times. The in vitro clearance of the free drug was 

reduced when encapsulated being this reduction superior for the PEGylated nanospheres. The 

PEGylated nanospheres had also better drug targeting efficiency and high drug accumulation 

in the rat arthritic paw [81]. 

Particles that are too big to be cleared renally will be fagocyted in the liver and spleen, 

however the therapeutic consequences of this are more complex when we talk of macrophage 

passive targeting since particles with sizes superior to 200 nm are taken up by macrophages 

[77, 79].  

Although the inflammatory pathways may differ with the inflammation inducer, the 

macrophages are an essential and common component of these processes which make them a 

good target [76, 77]. 

The pH of an inflammation site environment is significantly lower than the surrounding 

environment being around 6.4 for inflammation sites and 7.4 for healthy tissues [82]. So, this 

factor can be used in the creation of pH sensitive targeting systems that will only release the 

drug in low pH. 

Other factors such as particle charge, inflammation site temperature (generally 

hyperthermia is associated with inflammation), elevated elastase levels and high enzymatic 

activity may also be used for passive targeting of inflammation [76, 77]. Kim et al. created 

poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)/poly(ε-caprolactone)  

amphiphilic block copolymeric nanospheres loaded with indomethacin. These nanospheres 

showed reversible size changes depending on the temperature as well the indomethacin 

release behaviour. Indomethacin cytotoxicity was also evaluated and the authors concluded 

that the nanospheres diminished indomethacin cell damages [83]. 

1.4.2 Active targeting 

Active targeting is achieved by particles surface modifications with targeting moieties 

which leads to specific interactions between the drug system and the target site through 

specific ligand-receptor interactions being the drug specifically delivered to the site of action 

[76, 77]. 
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Activated phagocytes tend to phagocyte PEG-coated vesicles at inflammation sites. This 

may happen due to the presence of high levels of phospholipase and its high catalytic activity 

toward these PEG-coated vesicles [84]. Besides that, PEG prolongs the circulation time of the 

particles enhancing also its retention by passive targeting due to EPR effect [84]. 

Due to the vascular alterations, endothelial cells enhance the expression of numerous 

types of adhesions molecules like selectins, integrins and immunoglobulins that are essential 

in the regulation of the inflammatory process and the migration of inflammatory cell from 

the vessel to the inflammation site [78]. One example of these molecules is the extensively 

studied Intercellular Adhesion molecule-1 (ICAM-1) which participates in the trafficking of 

inflammatory cells and is considered one of the most important adhesion factors for 

leukocyte recruitment to inflamed sites. So ICAM-1 is a prominent target for active targeting 

systems [78, 85]. 

In inflammatory conditions the oxygen and nutrients deficiency induces the angiogenesis, 

i.e. the formation of new blood vessels. This process is carried by the influence of both 

vascular endothelial cells and monocyte-derived cells (which includes the macrophages), so 

these cells are good candidates for active targeting [79, 86, 87]. In the angiogenesis process 

several cell-surface receptors, adhesion proteins and growth factors are evolved making of 

them potential targets for therapeutic intervention [78]. 

Although several molecules may be recognized as potential targets the most used targets 

for active targeting purposes are the Folate Receptor (FR) and the αvβ3 integrin [88-90]. 

FR is overexpressed in activated macrophages and tumor cells. There are two isoforms of 

the FR: FR-α (expressed in cancer cells) and FR-β (expressed in activated macrophages) [91, 

92]. This way there is a potential in the targeting of activated macrophages using FR-β as 

target. It’s possible to perform this targeting conjugating folate or folic acid on the drug 

system surface [79, 93]. Chandrasekar et al., for example, created a folate-dendrimer 

conjugate loaded with indomethacin for specific drug delivery to inflammatory sites. In order 

to achieve it, they coupled folic acid to PAMAM dendrimers of four generation. When 

compared to non-conjugated polymers, its in vitro release rate decreased and the drug’s half-

life, residence time and targeting efficiency augmented [94]. 

αvβ3 integrin is a surface receptor expressed in several cells such as endothelial cells and 

macrophages and is only expressed in the presence of a neovascularisation process which 

makes this receptor a target for inflammation. It is possible to target αvβ3 integrin using a 

cyclic peptide composing by an Arg-Gly-Asp (RGD) sequence as ligand [90, 95, 96]. 

Another method that can be used for active targeting it’s the guidance of the drug system 

through the application of an electric field. Timko et al. developed magnetite polymer 

nanospheres loaded with indomethacin. These particles showed good NSAID encapsulation 

and capability to respond to external magnetic fields showing that this system can be used 

for magnetic drug targeting [97]. 

1.5 Lipid Nanoparticles (LNs) 

Lipid nanoparticles are nanosized particles with a solid lipidic matrix. Its constituents are 

excipients recognised as safe, being Generally Recognized As Safe (GRAS) substances [98, 99]. 

Lipid nanoparticles can be mainly divided into two types: Solid Lipid Nanoparticles (SLN) and 

Nanostructured Lipid Carriers (NLC) [100-103]. 
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1.5.1 Solid Lipid Nanoparticles (SLN) 

SLN are biocompatible and biodegradable particles prepared using solid lipids at room and 

body temperature and stabilized by surfactants. These particles sizes go from approximately 

40 to up 1000 nm and they can be used for target-specific controlled drug delivery by several 

administration routes. SLN have a highly ordered crystalline structure and the drugs are 

loaded between the fatty acid chains, the lipid layers and crystal imperfection [98, 103]. 

SLN can be used to incorporate both lipophilic and hydrophilic drugs, due to its high water 

content, increasing the drug stability and being able to protect photosensitive, moisture 

sensitive and chemically labile molecules from degradation by environmental factors. The 

avoidance to use organic solvents and the use of GRAS elements is also of extreme 

importance and a great advantage concerning the no toxicity of these particles. The 

production methods are easy and inexpensive and can easily be scaled up to industrial 

production so as the sterilization method [98, 100, 102-105]. 

Because of their highly organized structure (Figure 3a.) these particles aren’t able to bear 

high drug amounts, besides that during storage polymorphic transitions may occur since the 

crystalline structure tends to rearrange its imperfections leading to drug expulsion changing 

the drug release profile. During the storage may also occur gelation of the dispersion and 

particle growth [98, 100, 101, 105]. 

1.5.2 Nanostructured Lipid Carriers (NLC) 

NLC have been introduced in order to surpass the low payload and drug expulsion of the 

SLN. These nanoparticles have a solid lipid matrix at room temperature and are constituted 

by solid lipids and liquid lipids (in small amounts) at the room and body temperature in order 

to create imperfections in the crystalline structure (Figure 3b.) and larger distances between 

the fatty acid chains of the glycerides of the different used lipids [98, 100-103, 105, 106]. 

 

NLC are able to increase the chemical properties of the stacked drugs and to provide a 

targeted and controlled drug release. Because of their imperfect crystalline structure, NLC 

are able to load higher amounts of drugs, besides that the water content of NLC is inferior to 

that of SLN. Drug expulsion during storage time and gelation of the dispersion are reduced. 

These nanoparticles allow the formation of final doses forms such as tablets and capsules and 

NLC production can also be adapted to large scale production [100-102, 106]. 

Figure 3: Lipid nanoparticles crystalline matrix: a. SLN, b. NLC [98, 99]. 
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1.5.3 LNs preparation 

Various methods can be used to produce LNs. Following, these methods will be shortly 

described [98, 100, 104]: 

a) High Pressure Homogenisation (HPH): This method can be performed both at high (hot 

HPH) and low (cold HPH) temperatures: 

1. Hot HPH: Both lipid and drug are melted and then combined with an aqueous 

surfactant solution at the same temperature. By high speed stirring of this 

solution a hot pre-emulsion is formed that can then be processed in a 

temperature controlled high pressure homogeniser forming a nanoemulsion. 

Cooling down the nanoemulsion to room temperature leads to its 

recrystallization forming LNs; 

2. Cold HPH: The lipid and the drug are also melted together and then are 

rapidly placed in liquid nitrogen forming solid lipid microparticles. A pre-

suspension is then formed by high speed stirring of the particles in a cold 

aqueous surfactant solution. The pre-suspension is then homogenised at room 

temperature leading to LNs formation; 

b) Microemulsion: The solid lipids are melted and then the drug is dissolved in them. A 

surfactant-cosurfactant solution at a temperature above the melting temperature of 

the solid lipids is then added with mild agitation in order to obtain a microemulsion. 

This microemulsion is then dispersed in cold water with mild agitation forming 

ultrafine nanoemulsion droplets that immediately crystallize to form LNs. The excess 

water can then be removed; 

c) Solvent emulsification-evaporation: The lipids are dissolved in a water-immiscible 

organic solvent and then, under continuous stirring, emulsified in an aqueous phase 

containing surfactants. During the emulsification the organic solvent evaporates and 

the lipid precipitates forming LNs; 

d) Solvent diffusion: This technique uses water-miscible organic solvents that are 

saturated with water in order to ensure initial thermodynamic equilibrium of both 

liquids. The transient oil-in-water emulsion is passed into water under continuous 

stirring, leading to solidification of dispersed phase and LNs formation due to 

diffusion of the organic solvent; 

e) Solvent injection: Lipids are dissolved in a water-miscible solvent or water-miscible 

solvent mixture and then, using an injection needle, the solution is quickly injected 

into an aqueous surfactant solution; 

f) Double emulsion: w/o/w (water in oil in water) double emulsion method is based on 

solvent emulsion-evaporation method. This method uses a stabilizer during 

hydrophilic drug encapsulation in the internal water phase of a w/o/w double 

emulsion, avoiding drug partitioning to the external water phase during solvent 

evaporation. 

g) High speed stirring and/or ultra-sonication: Lipid microparticles are produced by 

spray congealing, these particles are then used to produce lipid nanopellets by high 

speed stirring or sonication. 

h) Emulsification-Sonification: The lipids are melted at temperatures slightly above their 

melting point and then the drug is dissolved in the lipids. An aqueous surfactant 

solution at the same temperature is then added and the solution is homogeneously 
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dispersed by a high shear homogenization device and the obtained emulsion is then 

subjected to ultrasonication forming LNs. 

1.6 Oral Administration 

Oral administration is the most used route of administration, being more than 60% of the 

drugs in the market, administered via oral administration [107]. Oral administration 

convenience and patient compliance are two major factors that lead to an increased 

therapeutic efficacy of orally administered drugs and that help to explain its importance and 

preference [108, 109].  Moreover, oral formulations production is cheaper because they do 

not need to be manufactured under sterile conditions [110].  

Molecules and particles absorption in the gastro-intestinal (GI) tract occur mainly by four 

mechanisms that enable their passage by the cell membrane namely:  paracellular, 

trancelullar, carrier-mediated and receptor-mediated transports. Absorption through these 

pathways vary with different physical characteristics like pH stability, ionization constants, 

hydrophobicity and molecular weight and also with site characteristics as enzyme activity, 

pH, mucosa constitution, residence time and surface area [108, 111]. Paracellular transport 

comprises substance passage through the existing intercellular spaces between epithelial 

cells, primarily the tight junctions due a passive transport by diffusion [108]. Transcellular 

transport, in which the substance is taken by intestinal epithelial cells at the cell apical 

membrane by endocytosis transport through the cell and released at the basolateral cell 

membrane [112]. Carrier-mediated transport, an active transport process that requires 

energy. Substance transport across the cell requires its specific binding to the carriers on the 

membrane. [108, 113]. Receptor-mediated transport by cell invagination after a ligand-

receptor bound leading to vesicle formation and endocytosis [108]. 

Since one of the GI tract main functions is to break-down and destroy substances, it is to 

expect that oral formulations must deal with numerous hurdles [109]. 

Throughout the GI tract one can observe a high pH range that goes from the extremely 

acidic gastric environment with pH from 1 to 3, to duodenal pH from 6.0 to 6.5, and large 

intestine pH from 5.5 to 7 [114]. Throughout the GI tract different enzymes are synthesised 

and released being the GI tract filled with numerous proteolytic enzymes that are able to 

degrade all kind of substances [115]. 

Despite the mucus layer protective effect on the epithelial cells against this GI harsh 

environment, mucus layer can also have a major role on substances absorption in the GI 

tract. GI tract mucus layer entrap particles leading to its rapid clearance both due to quick 

mucus cell turnover and through an immune system attack [108, 109]. 

GI epithelium is highly impermeable having tight junctions an important role since they 

only allow the passage of small slightly charged particles with sizes inferior to 2 nm [116-

118].  

Despite all these barriers, oral administration encloses several advantages like a large 

surface augmenting substances uptake; the mucus, despites its barrier effect, also helps to 

enlarge substances retention time and its trancellular migration and the presence of 

microfold cells (M cells) that are generally less protected by mucus and that actively 

phagocytise bigger substances into systemic circulation [109, 118]. 
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Nanoparticles drug encapsulation may help to protect the drugs against the harsh GI 

environment (pH and enzymes) and also increase mucoadhesion and retention in the GI tract 

leading to an improved drug uptake [109]. 

1.7 Specific aims and strategy  

In this context the main objective of this work, is to develop an innovative oxaprozin 

delivery system, based on lipid nanoparticles, with the main purpose of overcoming the most 

deleterious side effects of this drug – gastric disorders. Thereby, the main steps included 

during the first semester, literary research, state of the art and work plan elaboration. The 

second part, the research work, was fulfilled during the second semester at the Department 

of Chemical Sciences at the Faculty of Pharmacy, University of Porto. 

Research work consisted first on the production of oxaprozin loaded lipid that embodies 

the selection of an appropriate lipid mixture according to the solubility of the drug, the 

optimization of the production method and of the lipid phase constitution according to the 

encapsulation efficiency, loading capacity, particles diameter and zeta potential. The second 

step was surface functionalization with Folic Acid (FA), this step involved the synthesis of a 

DSPE-PEG2000-FA conjugate using DSPE-PEG2000-NH2 and folic acid. Third step was the 

characterization of the developed drug delivery systems by experiments of particle size and 

zeta potential using dynamic light scattering (DLS) and electrophoretic light scattering (ELS) 

respectively, encapsulation efficiency, loading capacity and functionalization analysis using 

UV-Vis spectroscopy and in vitro release studies at physiological conditions. The final step 

was the validation of the developed drug delivery systems by cell viability and cytotoxicity 

studies in Caco-2 cell line using Methylthiazolyldiphenyl-tetratozium Bromide (MTT) and 

Lactase Dyhydrogenase (LDH) and permeability studies in Caco-2 cell lines by UV-Vis 

spectroscopy quantification. 

This approach could improve the NSAIDs use by reducing its serious side-effects, 

promoting its controlled release and drug action in inflamed regions. 
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Chapter 2  

Materials and Methods 

2.1 - Materials 

The lipids Apifil, Cetyl Palmitate, Compritol HD5 A, Gelucire 33/01 Lipocire CM, Precirol 

Ato 5 and Superpolystrate were a kind gift from Gattefossé (Gattefossé, France) and the 

lipids Imwitor 308, Softisan 100, Witepsol E76, Witepsol E85, Witepsol H32, Witepsol S51 and 

Witepsol S58 were gently offered by Sasol (Sasol, Germany). Miglyol 812 was purchased from 

Acofarma® (Terrassa, Spain). Tween® 60, TritonTM X-100, Thiazolyl Blue Tetrazolium (MTT), 

Trypan Blue powder, dimethyl sulfoxide ≥99.9%, oxaprozin (4,5-diphenyl-2-oxazolepropanoic 

acid; Daypro), acetic acid ≥99.8%, potassium phosphate monobasic, folic acid, triethylamine, 

dicyclohexylcarbodiimide, N-hydroxysuccinimide and Dulbecco’s Phosphate Buffered Saline  

pH 7.4 (PBS) were obtained from Sigma-Aldrich®. Oleic acid was from May & Baker Ltd 

(England). Sodium phosphate monobasic monohydrated was acquired from Fluka (Germany). 

Sodium chloride was purchased from Panreac (Spain). Sodium acetate was from Fluka 

Analytical (Japan). Sodium hydroxide was obtained from VWR International (Belgium).  

Acetonitrile (Lichrosolv®) were obtained from MERK (Germany). DSPE-PEG.NH2 (1,2-

distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] 

(ammonium salt)) was purchased from (Avanti® Polar Lipids Inc.; Alabaster, Alabama, USA). 

SIF Powder was obtained from Biorelevant.com (Croydon, Surrey, UK). LDH Cytotoxicity 

Detection Kit was from Takara Bio Inc. (Shiga, Japan).  Hanks’ Balanced Salt Solution [-] 

CaCl2, [-] MgCl2 (HBSS), Dulbecco’s Modified Eagle’s Medium (DMEM) + GlutaMAXTM-I, 0.25% 

Trypsin-EDTA (1X), Penicillin-Streptomycin (Pen Strep) and Heat Inactivated Fetal Bovine 

Serum (FBS) (origin: South America) were purchased from Gibco® by Life TechnologiesTM (UK). 

All the weighting measurements performed using a Kern ACS-80-4 digital analytical 

balance (Kern & Sohn; Balingen, Germany). pH measurement were obtained using a Crison pH 

meter GLP22 with a Crison 52-02 tip (Crison; Barcelona, Spain). 

Ultrapure water was purified by an Ultra-pure water system (Milli-Q, Sartorius, Arium® 

pro, Sartorius Weighing Technology; Gettingen, Germany, Filters: Sartorius Arium® Cartige 1 

and 2, Sartorius Stedin Biotech; Gettingen, Germany) by a reverse osmosis process.  

2.2 - Methods 

2.2.1 Choice of solid lipid for improved drug loading 

Drug incorporation on a nanosystem is influenced by its capacity to dissolve on the system 

components [98, 103]. Thus, LNs drug solubility plays a major role, making the choice of 

lipids an importance step, in order to have a lipid or lipids mixture where the drug exhibit 

high solubility. 
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The analysis of oxaprozin qualitative solubility in the lipids was performed by melting an 

equal amount of different commercial lipids: Apifil, Cetyl Palmitate, Compritol HD5 A, 

Gelucire 33/01, Imwitor 308, Lipocire CM, Precirol Ato 5, Softisan 100, Superpolystrate, 

Witepsol E76, Witepsol E85, Witepsol H32, Witepsol S51 and Witepsol S58. The melting 

process was realized by slowly augmenting the temperature from 50ºC to 70ºC in order to 

assess the approximated phase transition temperature of the lipids. After the melting 

process, an amount of oxaprozin (always the same) was added to the melted lipids in order to 

qualitatively infer oxaprozin’s solubility on the different lipids. 

2.2.2 Lipid nanoparticles synthesis 

Lipid nanoparticles were prepared by a modified free organic-solvent 

emulsification/sonication method combining high shear homogenization in an ultra-turrax, 

where a “pre-emulsion” with particles in the micrometer range are produced, followed by an 

ultra-sonication that will reduce the microparticles into nanoparticles resulting in a 

nanoemulsion. Cooling of the nanoemulsion allows lipid crystallization and the formation of 

the lipid nanosuspension [119]. 

Briefly, the lipid phase containing the desired lipid or lipids combination and the 

stabilizer Tween 60 was melted at a temperature above the phase transition temperature 

with or without stirring for better oxaprozin dissolution. Heating without stirring was 

performed in a water-bath (Medingen E5 Bath-Thermostat) and heating under stirring was 

performed in a top stirring hotplate (Barnstead International Thermolyne Cimarec® 2; Iowa, 

USA). For the synthesis of oxaprozin loaded lipid nanoparticles, oxaprozin was added to the 

lipid phase before the melting process. The molten lipids are dispersed in a specific amount 

of an aqueous phase at the same temperature (ultrapure water) by high-speed stirring in an 

ultra-turrax (Ystral X10/20 E3; Ballrechten-Dottingen, Germany) followed by sonication 

(Sonics and Material Vibra-CellTM with a CV-18 probe; Newtown CT, USA). The solutions are 

cooled at room temperature and in some cases an extra amount of the aqueous phase at 

room temperature is added. The formulations are then stored at room temperature. 

During the optimization process several lipids conjugations, aqueous phase quantities, 

stirring times during heat, high speed stirring and sonication parameters (time and potency) 

and post-synthesis aqueous phase addition quantities were tested in order to establish the 

best conditions for the lipid nanoparticles production. 

The optimized formulation is synthesised by melting, under 10 minutes stirring, the lipid 

phase constituted by the solid lipid Precirol Ato 5 (170 mg), the liquid lipid Miglyol 182 (90 

mg) and the surfactant Tween 60 (60 mg). For the production of oxaprozin loaded LNs, 30 mg 

of oxaprozin are added to the lipid phase and this amount is deducted from the total amount 

of solid lipid. 4.4mL of heated ultrapure water are added to the lipid phase and the emulsion 

mixed by ultra-turrax (30 seconds at 7000 RPM) followed by ultrasonication (5 minutes at 70% 

intensity). 4.4 mL of room temperature ultrapure water is then added and the emulsion 

cooled at room temperature. 

  



19 

2.2.3  Synthesis of disteroylphosphatidylethanolamine-poly(ethylene 

glycol)-folic acid (DSPE-PEG-FA) conjugate 

DSPE-PEG2000-FA conjugate synthesis can be summarized in four main steps: activation of 

the folic acid, coupling to DSPE-PEG2000-NH2, purification and lyophilisation. 

N-Hydroxysuccinimide ester of folic acid (NHS-FA) was prepared by dissolving, under 

anhydrous conditions through overnight stirring in the dark, 1.0 g of folic acid (FA) into a 

mixture of 40 mL of anhydrous dimethyl sulfoxide (DMSO) and 0.5 mL of triethylamine (TEA). 

FA was then mixed with 0.5 g of dicyclohexylcarbodiimide (DCC) and 0.52 g of N-

hydroxysuccinimide (NHS) and stirred for further 18 hours in the dark. The resulting solution 

was then filtered with a 0.45 μM filter in order to remove the precipitated side product 

(dicylcohexylurea (DCU)), DMSO and TEA were evaporated under vacuum [120, 121]. 

Coupling of the FA-NHS stock solution with DSPE-PEG2000-NH2 was accomplished by 

overnight stirring in the dark under anhydrous conditions of 2 mL of the resulting solution of 

activated folate with 50 mg of DSPE-PEG2000-NH2 dissolved in 1 ml of DMSO. After the process 

DMSO of removed by evaporation under vacuum and addition of 6 mL of water [121]. 

  DSPE-PEG2000-FA conjugate was then dialyzed against 500 mL of ultrapure water using a 

dialysis membrane (Cellu.Sep®T1, 3500 NMWCO, Membrane Filtration Products, Inc.; Seguin, 

TX, USA) for 48 hours in order to remove the unconjugated FA [120]. 

The resulting solution was then lyophilized (Virtis Sentry 2.0 lyophilizator, SP Scientific) 

forming a yellow dry powder, the final DSPE-PEG2000-FA conjugate, stored at 4ºC. 

2.2.4 Synthesis of DSPE-PEG-FA functionalized LNs 

Functionalization of the synthesised LNs with DSPE-PEG-FA was obtained by adding the 

DSPE-PEG2000-FA on the lipid phase in order for it to be encapsulated in the LNs matrix. The 

encapsulated DSPE-PEG2000-FA will be randomly placed among the nanoparticle so that 

despite a part of the encapsulated DSPE-PEG2000-FA may be placed on the interior of the 

particle a part of this DSPE-PEG2000-FA will also be placed on the surface of the particle 

allowing an active macrophages targeting. 

DSPE-PEG2000-FA used to produce functionalized LNs was optimized and for the production 

of the final formulation, functionalized nanoparticles were obtained by adding 2% of the total 

lipid mass (lipids and surfactant) of DSPE-PEG2000-FA to the lipid phase.  

2.2.5 LNs characterization 

2.2.5.1 Particle size measurements 

Particles in suspension present movement (Brownian movement), Dynamic Light 

Scattering (DLS), also known as photon correlation spectroscopy, use this movement in order 

to obtain the mean particles diameter and diameters distribution allowing also the 

identification of the different size populations present in solution.  

Focusing a laser on the suspension, the movement of the particles will lead to variations 

on the light diffraction over time. These variations vary with the diffusion coefficient of the 

medium and with the particles size. Since bigger particles have slower movements than 

smaller particles they will diffract more the light. So analysing the movement of the particles 

by the light deviation and knowing the temperature and viscosity of the sample, DLS can 

calculate the hydrodynamic diameter of the particles on the solution [122]. 
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The produced nanoparticles were characterized by its mean hydrodynamic diameter and 

size distribution (polydispersity index) in a Particle Size Analyzer (Brookhaven Instruments 

Corporation; Software: Particle Sizing v.5 Brookhaven Instruments; Holtsville, NY, USA) 

operating at a scattering angle of 90º, at 37ºC, with dust cut-off set to 30 and refractive 

index of the particles set to 1.33. Measurements were performed by 6 runs of 2 minutes each 

and the mean size and polydispersity of the formulations were obtained. Before the 

measurements the formulations were diluted (1:800) and filtered with a single use syringe 

filter (Ministart, pore size 800 nm, Satorius Stedin Biotech; Goettingen, Germany). 

2.2.5.2 Zeta Potential measurements 

Zeta potential is a physical property exhibited by particles in suspension that determines 

its stability. Particles surface charge promotes interactions with the surrounding ions creating 

an unequal distribution of the solution ions in close proximity to the particle. This 

distribution leads to the formation of an inner zone were the solution ions are powerfully 

bonded to the surface and a more outer zone with a weakest connection. On this outer region 

the particle and the ions form a stable entity and the zeta potential is the potential 

associated at this theoretical limit [123]. 

Since particles with the same charge tend to repel themselves and since this potential is 

strictly connected to the particle surface charge, zeta potential is correlated with the 

suspension stability having particles with higher zeta potential, in modulus, higher tendency 

to repel themselves and consequently higher stability [124]. One can generally assume that 

particles have great stability for zeta potential values with absolute value superior to 30 mV 

[123, 124]. 

Electrophoretic Light Scattering (ELS) is a method that calculates the zeta potential by 

light scattering.  Two electrodes are inserted on the formulation creating an electric 

potential that attracts to the electrodes particles of the opposite charge. The movement 

created by this migration is analysed and the particles velocity measured by the light 

deviation, with this parameter is possible to calculate the particles zeta potential [125, 126]. 

Characterization of the particles zeta potential was performed in a Zeta Potential 

Analyser (ZetaPALS, Brookhaven Instruments Corporation, Software: PALS Zeta Potential 

Analyser v.5, Brookhaven Instruments; Holtsville, NY, USA) operating at a scattering angle of 

90º, at 37ºC. Measurements were performed by 6 runs of 10 cycles each and the zeta 

potential and standard deviation of the formulations were obtained. Before the 

measurements the formulations were diluted (1:800) and filtered with a syringe filter (800 

nm). 

2.2.5.3 Oxaprozin Encapsulation Efficiency (EE) 

Oxaprozin encapsulation efficiency was determined by calculating the difference between 

the total amount of used oxaprozin to produce the formulations and the amount of free 

oxaprozin remaining on the aqueous phase. 

Formulations where diluted in ultrapure water (1:50) and centrifuged in Amicom® Ultra 

Centrifugal Filter Devices, ultracel®-50k (50000 NMWL) (MERK Milipore, Ltd; Cork, Ireland). 

Centrifugation (Heraeus Multifuge X1R centrifuge, Thermo Fisher Scientific; Germany) was 

performed with spin at 2664g for 40 minutes at 20ºC. Free oxaprozin was present in the 

supernatant and was quantified by UV-Vis spectroscopy using a V-660 spectrophotometer 
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(Jasco Corporation, Software: Spectra Manager v.2, Jasco Corporation; Easton, MD, USA) at 

285 nm. 

Encapsulation efficiency was calculated as follows (Equation 1): 

       
                                     

                      
     

Equation 1: encapsulation Efficiency calculation. 

2.2.5.4 Loading capacity (LC) 

LNs loading capacity was calculated using the oxaprozin encapsulation efficiency as 

follows (Equation 2): 

       
                           

                                 
 

Equation 2: Loading capacity calculation. 

2.2.5.5 Transmission electron microscopy (TEM) 

In TEM thin samples are illuminated by an accelerated electrons beam and the electrons 

that are able to pass through the sample go into a system of electromagnetic lenses that 

enlarge and focus the image that is then recorded. 

Samples were prepared by diluting the formulations in ultrapure water (1:50) and then 10 

μL of this solution placed on a cooper-mesh grid and let to rest for 2 minutes at room 

temperature after which the water excess was removed. For contrasting, 10 μL of 0.75% 

uranyl acetate solution was placed on the grid surface and let to rest for 30 seconds at room 

temperature. Solution excess was removed and the samples observed in a JEM-1400 

Transmission Electron Microscope (JEOL Ltd., USA) with an accelerating voltage of 80 kV. 

2.2.6 In vitro release studies 

In vitro release studies were performed using a cellulose dialysis bag diffusion technique 

(Cellu.Sep®T1, 3500 NMWCO, Membrane Filtration Products, Inc.; Seguin, TX, USA) filled with 

2 mL of the formulation (functionalized or non-functionalized oxaprozine loaded 

nanoparticles, 1:8 in ultrapure water). 

In order to mimic the particles path in the body after oral administration, samples were 

incubated at 37ºC under gentile stirring (IKA®-Werke RT15-P Hot Stirring Plate; Germany). To 

simulate the transit from stomach to intestine samples were incubated first for 3 hours in 80 

mL of fasted state simulated gastric fluid (FaSSGF: NaCl/HCl solution, pH 1.2 with SIF® 

Powder) and then placed for 4 hours in 80 mL of fasted state simulated intestinal fluid 

(FaSSIF: buffer solution containing potassium dihydrogen phosphate, pH 6.5 with SIF® 

Powder). From this point some samples were placed in 80 ml of simulated physiologic fluid 

(buffer solution containing monopotassium phosphate, pH 7.4) until the end of the 

experience in order to simulate the particles that never reach the inflamed regions. Other 

samples were placed until the end of the experience in simulated inflammatory fluid (buffer 

solution containing acetic acid and sodium acetate, pH 5.4) to simulate the release profile of 

the LNs in inflamed regions. Finally the rest of the samples were placed for 18 hours in the 

simulated physiologic fluid and then in the simulated inflammatory fluid until the end of the 
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experience in order to mimic the release profile of LNs that circulate on the blood for a 

considerable period of time until reaching the inflamed regions. 

At regular intervals, aliquots were collected for a UV-Vis microplate (UV flat bottom 

Microliter® plates, Thermo Electron Corporation; Vantaa, Finland) and replaced by an equal 

amount of fresh fluid (correspondent to the one that was being used). Oxaprozin release was 

analysed by UV-Vis spectroscopy using a microplate reader (BioTek Instruments Inc., Synergy 

HT, Software: Gen5 v1.08.4, BioTek Instruments Inc.; Winooski, USA) at 285 nm. 

2.2.7 Caco-2 cell culture 

Caco-2 cells (P.23 to P.32) were cultured at 37ºC in an 5% CO2 atmosphere (Unitherm CO2 

Incubator 3503 Uniequip; Planegg, Germany) in Dulbecco’s Modified Eagle Medium (DMEM) 

supplemented with 10% Fetal Bovine Serum (FBS) and 1% Penicillin-Streptomycin (Pen Strep). 

For every two to three days cells were washed with HBSS and the medium changed. Cells 

were subcultured at 80 to 90% confluence by chemical detachment with trypsin-EDTA and 

cells counted in a Neubauer chamber (Improved Neubauer Bright-line, Boeco; Germany) with 

25% (v/v) Trypan Blue solution (0.4% (w/v) in PBS) to exclude non-viable cells. Cells were 

then seeded at a density of 750000 cells per 75 cm2 flasks (Tissue culture flasks 250 mL (75 

cm2), 0.2 μm vented plug seal cap, Falcon®, Becton Dickson; England) in 10 mL of DMEM. 

2.2.8 Cell viability assay 

The effect of the designed LNs on cell viability was measured using the 

methylthiazolyldiphenyl-tetratozium bromide (MTT) conversion assay. Caco-2 cells were 

seeded in 96-well tissue culture test microplates (Tissue Culture OrPlates, surface treated 

flat bottom, Orange Scientific; Belgium) at a density of 10000 cells/well in 100 μL 

supplemented DMEM medium and incubated for 22 hours at 37ºC in an 5% CO2 atmosphere. 

100 μL of different concentrations (5 μM, 10 μM, 50 μM, 100 μM, 500 μM and 1000 μM) of free 

oxaprozin, oxaprozin loaded functionalized and non-functionalized LNs and the correspondent 

amounts of placebo functionalized and non-functionalized LNs, as well as the positive control 

(culture medium) and the negative control (Triton X-100 1% (v/v) in PBS) were then added 

and let to incubate with the cells for 4 hours. Supernatant was transferred for a 96-well 

tissue culture test microplate and stored for the realization of the cell toxicity study. 200 μL 

of a MTT solution (5 mg/mL MTT in PBS stock solution diluted to a final concentration of 0.5 

mg/mL in culture medium) were then added to each cell seeded well and incubated for 3 

hours at 37ºC in an 5% CO2 atmosphere to allow the formation of formazan crystals. MTT was 

then rejected by plate inversion and 200 μL of DMSO were added and incubated for 15 

minutes at 37ºC in a 5% CO2 atmosphere protected from light in order to elute blue formazan 

from cells and solubilise the formazan crystals. Absorbance was read using a microplate 

reader at 550 nm and 690 nm for background subtraction. Cell viability was determined 

according as follows (Equation 3): 

                    
                  

                           
     

Equation 3: Cell viability calculation. 
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2.2.9 Cell toxicity assay 

The cell toxicity assay realized analyzes the presence of Lactase Dyhydrogenase (LDH) on 

the culture medium. LDH is a cytoplasmatic enzyme present in most cells and is released to 

the culture medium in cells with cytoplasmatic membrane damages. Using a LDH Cytotoxicity 

Detection Kit, which will react with the LDH forming formazan, one can quantify the 

formazan which can be directly correlated with the LDH present on the culture medium 

assessing the cell death. 

The first steps of the LDH assay are equal to those performed on the cell viability assay 

until the end of the incubation period of the samples with the cells. From here on the LDH 

assay uses the recovered supernatant that resulted from the incubation. The recovered 

microplates were centrifuged (Sigma 3k-2 microplates centrifuge) in order to deposit the 

cellular remains for 10 minutes at 250g, at room temperature. After centrifugation, 100 μL of 

the supernatant were carefully transferred for another 96-well tissue culture test microplate 

and 100 μL of the LDH Cytotoxicity Detection Kit reaction mixture added to the wells and let 

to incubate in the dark for 15 minutes at room temperature. Absorbance was then read using 

a microplate reader at 490 nm and 690 for background subtraction and cytotoxicity 

calculated having into consideration that for this assay the positive control were the cells 

treated with 1% Triton X-100 (v/v) in PBS and the negative control were the cells treated with 

culture medium. Cell cytotoxicity was determined according as follows (Equation 4): 

                      
                  

                           
     

Equation 4: Cell cytotoxicity calculation. 

2.2.10 Cell permeability studies 

Caco-2 cells were seeded on Transwell diffusion cells with a density of 100000 cells per 

cm2 (45000 cells per insert of 4.67 cm2 polycarbonate membrane with 3.0 μm porosity) in 

supplemented DMEM culture medium and maintained in culture medium for 21 days. After 21 

days of culture, Caco-2 cells form an absorptive polarized monolayer developing an apical 

brush border and enzyme segregation, so that they can be used to mimic the intestinal 

endothelium [127]. For every three to four days cells were observed on an trinocular inverted 

microscope (Motic AE2000 TRI coupled with a camera Moticam 5 MP; Spain) and the 

transepithelial electrical resistance (TEER) measured on the polycarbonate filters of the 

Transwell diffusion cells using an epithelial voltammeter (Epithelial voltohmmeter EVOM2, 

World Precision Instruments, Inc.; USA) to evaluate thigh junctions formation. Cells were also 

washed twice with PBS and the culture medium substituted. At the 21st day TEER must be 

over 200 Ω.cm2, the reference value which indicates that the monolayer presents 

characteristics similar to those of the intestinal mucosa [128]. 

For the permeability studies the culture medium was removed and the cells, the insert 

and receptor well washed twice with PBS. Fasted state simulated intestinal fluid (FaSSIF: 

buffer solution containing potassium dihydrogen phosphate, pH 6.5 with SIF® Powder) and the 

reference medium PBS were added to the correspondent inserts and receptor wells. Free 

oxaprozin and functionalized and non-functionalized oxaprozin loaded LNs at 100 μM 

concentration (determined by the cell viability and cytotoxicity assays) diluted on the 

correspondent medium were incubated on the inserts for 4 hours at 37ºC in a 5% CO2 

atmosphere. At different times, 160 μL aliquots were collected for a 96-well UV-Vis 
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microplate from the receptor well and substituted by the same amount of the correspondent 

medium, along with aliquots from the insert at the initial and final time. TEER measurements 

were also performed at the same times in order to evaluate cell viability and the opening of 

the tight junctions during the 4 hours assay. At the end of the study, 40 μL of a mixture of 

acetonitrile (92%) and acetic acid (8%) were added at the aliquots in order to dissolve the 

lipid matrix of the LNs and expose oxaprozin in the solution to be quantified. Oxaprozin 

quantification was performed by UV-Vis spectroscopy using a microplate reader, at 

wavelength of 285 nm. 

Apparent permeability coefficient (Papp) was calculated as follows (Equation 5): 

     
  

    
 

      
 

Equation 5: Apparent permeability coefficient calculation. 

Where Q is the total amount of permeated oxaprozin (μg), A is the diffusion area (cm2), 

C0 is the initial oxaprozin concentration (μg/mL) and t is the time of the experience (s). 

2.2.11 Statistical analysis 

Statistical analyses were performed using IBM® SPSS® Statistics software (v.22.0.0.0; IBM, 

Armonk, NY, USA). The measurements were repeated at least three times and data expressed 

as mean ± SD. Data were analyzed using one-way analysis of variance (ANOVA) and 

differences between groups compared by Bonferroni and Tukey post-hoc tests with a P value 

of <0.05 considered statistically significant. 
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Chapter 3  
 

Results and Discussion 

3.1 - Choice of solid lipid for improved drug loading 

Drug solubility in the lipid phase of the lipid nanoparticles plays an important role on the 

entrapment efficiency, drug loading and on the release profile of the lipid nanoparticles. 

Phase transition temperature is also an important feature since it correlated with the 

stability of the crystalline structure of the lipid nanoparticle. Table 2 presents the lipids that 

were tested, their phase transition temperature and also their relative ability to solubilise 

oxaprozin. 

Table 2: Lipids phase transition temperature and qualitative oxaprozin dissolution capacity. 

Lipid 

Liquid at 
Oxaprozin 

dissolution capacity 
50°

C 

60°

C 

70°

C 

Apifil    - 

Cetyl Palmitate    - 

Compritol HD5 A    + 

Gelucire 33/01    - 

Imwitor 308    +++ 

Lipocire CM    ++ 

Precirol Ato 5    + 

Softisan 100    - 

Superpolystrate    +++ 

Witepsol E76    - 

Witepsol E85    + 

Witepsol H32    - 

Witepsol S51    - 

Witepsol S58    ++ 

 

Imwitor 308 and Superpolystrate with phase transition temperature inferior to 50ºC were 

the only lipids with a very good apparent oxaprozin dissolution capacity followed by Lipocire 

CM and Witepsol S58 with phase transition temperature around 50ºC with good oxaprozin 

solubilisation and Compritol HD5 A, Precirol Ato 5 with phase transition temperature around 

70ºC and Witepsol E85 with phase transition temperature close to 50ºC shown low oxaprozin 

solubility. The other lipids were not able to solubilise oxaprozin. 
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3.2 - Lipid nanoparticles synthesis and optimization 

Synthesis process was optimized in order to obtain a workable liquid nanoparticle 

suspension with particles with a diameter larger than 200 nm to be taken by the macrophages 

and a zeta potential over |30 mV| so that the particles could be stable, i.e., so that they do 

not tend to form aggregates [123, 124]. Encapsulation efficiency and loading capacity were 

also analysed since they represent the amount of drug entrapped on the lipid nanoparticles. 

In the end of the process, the functionalization of the particles with folic acid was also 

optimized. 

Table 3 summarizes the optimization process in which several combinations of lipids, 

ultra-turrax velocities and time, sonication amplitudes and time and also water contents 

were tested and analysed. 

Briefly, the solid lipids that demonstrated an apparent capacity to dissolve oxaprozin 

were used to synthesize SLNs and NLCs (LN1 to LN7), however they were not able to dissolve 

the amount of oxaprozin used in the synthesis.  

The lipids Imwitor 308 and Superpolystrate shown a good capacity to dissolve oxaprozin, 

however, since their phase transition temperature is beneath 50ºC they were used 

simultaneously with Cetyl Palmitate, which as a phase transition temperature around 70ºC in 

order to promote a higher stability of the particles at temperatures above the room 

temperature. Several combinations and synthesis conditions (LN9 to LN23) were tested 

without success to obtain a workable liquid suspension, i.e. with low viscosity, and 

nanoparticles with the desired diameter and zeta-potential. However, we verified that under 

stirring, Cetyl Palmitate was able to dissolve oxaprozin, so the synthesis of SLNs and NLCs 

with this lipid was optimized (LN24 to LN 29) resulting in the SLN synthesis process (LN41) 

that shown to be able to produce nanoparticles with the desired characteristics. 

The synthesis of SLNs combining Imwitor 308 and Superpolystrate with Precirol Ato 5, 

shown good capacity to dissolve oxaprozin (LN30 and LN31), nevertheless it was not possible 

to obtain a workable liquid suspension and thereby the two formulations were discarded. 

However, since Precirol Ato 5 was able to dissolve oxaprozin, the synthesis of SLNs and NLCs 

were optimized (LN33 to LN40) resulting in the NLC synthesis process described in LN43 that 

shown to be able to produce nanoparticles with the desired characteristics. 

Two type of workable liquid nanoparticles suspensions with particles with diameter 

superior to 200 nm and zeta-potential over |30mV| (LN41 e LN43) were produced. Both types 

of particles possessed encapsulation efficiency superior to 95% and loading capacity around 

6%. We then tried, with success, to augment the amount of oxaprozin in the particles (LN45 

and LN46) maintaining the good encapsulation efficiency and increasing the loading capacity 

to around 9%. 

The next step was the production of functionalized nanoparticles from the formulations 

LN41 and LN43, with different amounts of DSPE-PEG2000-FA (LN47 to LN50). Cetyl Palmitate 

functionalized particles tend to form a deposit of DSPE-PEG2000-FA even with small amounts of 

the compound. Besides NLCs generally have better propertied than SLNs as described above 

so, as a consequence the optimization process was continued with the NLCs formulations 

containing Precirol Ato 5 (LN51 to LN55), resulting on the production method summarized in 

LN55 that allowed the synthesis of functionalized NLCs with the desired characteristics and 

high encapsulation efficiency and loading capacity. 
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Table 3: List of the synthesised LNs during the optimization process. 

 

LN 
code 

LN 
type 

Constitution 
Mass 
(mg) 

Strirring 
(min.) 

Water 
(mL) 

Ultra-Turrax Sonication 

Post-synthesis 
water addition 

(mL) 

Diameter 
(nm) 

Polydispersity 
Zeta-Potential 

(mV) 
Encapsulation 
efficiency (%) 

Loading 
capacity (%) Velocity 

(RPM) 
Time 
(s) 

Amplitude 
(%) 

Time 
(min.) 

LN1 SLN 

Witepsol S58 500 

-- -- -- -- -- -- -- -- -- -- -- -- Tween 60 100 

Oxaprozin 20 

LN2 NLC 

Witepsol S58 350 

-- -- -- -- -- -- -- -- -- -- -- -- 
Miglyol 182 150 

Tween 60 100 

Oxaprozin 20 

LN3 SLN 

Witepsol E85 500 

-- -- -- -- -- -- -- -- -- -- -- -- Tween 60 100 

Oxaprozin 20 

LN4 NLC 

Witepsol E85 350 

-- -- -- -- -- -- -- -- -- -- -- -- 
Miglyol 182 150 

Tween 60 100 

Oxaprozin 20 

LN5 SLN 

Lipocire CM 500 

-- -- -- -- -- -- -- -- -- -- -- -- Tween 60 100 

Oxaprozin 20 

LN6 NLC 

Lipocire CM 350 

-- -- -- -- -- -- -- -- -- -- -- -- 
Miglyol 182 150 

Tween 60 100 

Oxaprozin 20 
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LN7 SLN 

Witepsol H32 500 

-- -- -- -- -- -- -- -- -- -- -- -- Tween 60 100 

Oxaprozin 20 

LN8 SLN 

Cetyl Palmitate 500 

-- -- -- -- -- -- -- -- -- -- -- -- Tween 60 100 

Oxaprozin 20 

LN9 SLN 

Cetyl Palmitate 250 

-- 

4.4 12000 30 80 5 -- 1354 ± 31 0.28 ± 0.01 -24 ± 1 93.7 3.1 
Imwitor 308 250 

Tween 60 100 

Oxaprozin 20 

LN10 SLN 

Cetyl Palmitate 250 

-- 4.4 12000 30 80 5 -- 337 ± 4 0.269 ± 0.005 -38.7 ± 0.8 -- -- 
Superpolystrate 250 

Tween 60 100 

Oxaprozin 20 

LN11 SLN 

Cetyl Palmitate 250 

-- 4.4 12000 120 70 15 -- 1932 ± 280 0.07 ± 0.03 -25 ± 1 91.6 3.1 
Imwitor 308 250 

Tween 60 100 

Oxaprozin 20 

LN12 SLN 

Cetyl Palmitate 250 

-- 4.4 12000 120 70 15 -- 1000 ± 45 0.363 ± 0.006 -46 ± 1 -- -- 
Superpolystrate 250 

Tween 60 100 

Oxaprozin 20 

LN13 SLN 

Cetyl Palmitate 250 

-- 8.8 12000 120 70 15 -- 366 ± 8 0.32 ± 0.01 -36.4 ± 0.8 94.3 3.1 
Superpolystrate 250 

Tween 60 100 

Oxaprozin 20 
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LN14 SLN 

Cetyl Palmitate 400 

-- 4.4 12000 30 80 5 -- 124 ± 5 0.32 ± 0.02 -10 ± 3 99.4 3.3 
Superpolystrate 100 

Tween 60 100 

Oxaprozin 20 

LN15 SLN 

Cetyl Palmitate 400 

-- 4.4 12000 30 80 3 -- 679 ± 122 0.17 ± 0.08 -16 ± 3 99.5 3.3 
Superpolystrate 100 

Tween 60 100 

Oxaprozin 20 

LN16 SLN 

Cetyl Palmitate 400 

-- 6 12000 30 80 5 -- 220 ±  7 0.29 ± 0.03 -23 ± 1 99.0 3.3 
Superpolystrate 100 

Tween 60 100 

Oxaprozin 20 

LN17 SLN 

Cetyl Palmitate 400 

-- 6 12000 30 80 3 -- 234 ± 6 0.28 ± 0.03 -24.0 ± 0.5 99.0 3.3 
Superpolystrate 100 

Tween 60 100 

Oxaprozin 20 

LN18 SLN 

Cetyl Palmitate 230 

20 8 12000 30 80 5 -- -- -- -- -- -- 
Superpolystrate 250 

Tween 60 100 

Oxaprozin 20 

LN19 SLN 

Cetyl Palmitate 230 

20 8 12000 120 70 10 -- -- -- -- -- -- 
Superpolystrate 250 

Tween 60 100 

Oxaprozin 20 
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LN20 SLN 

Cetyl Palmitate 230 

20 8 12000 120 70 15 -- -- -- -- -- -- 
Superpolystrate 250 

Tween 60 100 

Oxaprozin 20 

LN21 SLN 

Cetyl Palmitate 230 

20 8.8 12000 120 70 10 -- -- -- -- -- -- 
Superpolystrate 200 

Tween 60 100 

Oxaprozin 20 

LN22 SLN 

Cetyl Palmitate 230 

20 8.8 12000 120 70 15 -- -- -- -- -- -- 
Superpolystrate 200 

Tween 60 100 

Oxaprozin 20 

LN23 SLN 

Cetyl Palmitate 180 

20 8.8 7000 30 70 5 -- 848 ± 22 0.375 ± 0.006 -42 ± 2 98.5 6.0 
Superpolystrate 90 

Tween 60 60 

Oxaprozin 20 

LN24 SLN 

Cetyl Palmitate 270 

20 8.8 7000 30 70 5 -- 283 ± 5 0.15 ± 0.02 -33.8 ± 0.8 98.3 6.0 Tween 60 60 

Oxaprozin 20 

LN25 NLC 

Cetyl Palmitate 180 

20 8.8 7000 30 70 5 -- 25 ± 2 0.16 ± 0.02 -40.2 ± 0.4 98.6 29.8 
Miglyol 182 90 

Tween 60 60 

Oxaprozin 20 

LN26 NLC 

Cetyl Palmitate 180 

20 8.8 7000 30 70 5 -- 145 ± 1 0.11 ± 0.01 -35.2 ± 0.4 98.3 6.0 
Oleic Acid 90 

Tween 60 60 

Oxaprozin 20 
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LN27 SLN 

Cetyl Palmitate 270 

10 8.8 7000 30 70 8 -- 278 ± 4 0.15 ± 0.02 -43 ± 1 -- -- Tween 60 60 

Oxaprozin 20 

LN28 SLN 

Cetyl Palmitate 270 

10 8.8 7000 30 70 7 -- 284 ± 3 0.190 ± 0.005 -42.7 ± 0.8 -- -- Tween 60 60 

Oxaprozin 20 

LN29 SLN 

Cetyl Palmitate 270 

10 8.8 7000 30 70 6 -- 283 ± 6 0.16 ± 0.01 -41.7 ± 0.5 -- -- Tween 60 60 

Oxaprozin 20 

LN30 SLN 

Precirol Ato 5 400 

30 4.4 12000 30 80 5 -- -- -- -- -- -- Imwitor 308 100 

Tween 60 100 

LN31 SLN 

Precirol Ato 5 400 

30 4.4 12000 30 80 5 -- -- -- -- -- -- Superpolystrate 100 

Tween 60 100 

LN32 SLN 
Precirol Ato 5 500 

30 4.4 12000 30 80 5 -- -- -- -- -- -- 
Tween 60 100 

LN33 SLN 

Precirol Ato 5 500 

30 4.4 12000 30 80 5 -- 1420 ± 164 0.24 ± 0.07 -21 ± 1 -- -- Tween 60 100 

Oxaprozin 20 

LN34 SLN 

Precirol Ato 5 270 

10 8.8 7000 30 70 5 -- -- -- -- -- -- Tween 60 60 

Oxaprozin 20 

LN35 NLC 

Precirol Ato 5 350 

30 4.4 12000 120 70 15 -- -- -- -- -- -- Oleic Acid 150 

Tween 60 100 
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LN36 NLC 

Precirol Ato 5 350 

30 4.4 12000 120 70 15 -- 802 ± 54 0.40 ± 0.01 -32.2 ± 0.5 -- -- Miglyol 182 150 

Tween 60 100 

LN37 NLC 

Precirol Ato 5 330 

20 4.4 12000 120 70 15 4.4 531 ± 21 0.320 ± 0.007 -29.4 ± 0.8 96.1 3.3 
Miglyol 182 150 

Tween 60 100 

Oxaprozin 20 

LN38 NLC 

Precirol Ato 5 180 

10 8.8 7000 30 70 5 -- 340 ± 8 0.219 ± 0.004 -33.5 ± 0.9 -- -- 
Miglyol 182 90 

Tween 60 60 

Oxaprozin 20 

LN39 NLC 

Precirol Ato 5 180 

10 8.8 7000 30 70 5 -- 425 ± 10 0.318 ± 0.006 -32.3 ± 0.5 -- -- 
Oleic Acid 90 

Tween 60 60 

Oxaprozin 20 

LN40 NLC 

Precirol Ato 5 200 

10 4.4 7000 30 70 5 4.4 375 ± 5 0.19 ± 0.01 -- -- -- Miglyol 182 90 

Tween 60 60 

LN41 SLN 

Cetyl Palmitate 270 

10 8.8 7000 30 70 5 -- 241 ± 7 0.121 ± 0.005 -61 ± 3 97.8 5.9 Tween 60 60 

Oxaprozin 20 

LN42 SLN 
Cetyl Palmitate 290 

10 8.8 7000 30 70 5 -- 264 ± 1 0.16 ± 0.02 -52.6 ± 0.6 -- -- 
Tween 60 60 

LN43 NLC 

Precirol Ato 5 180 

10 4.4 7000 30 70 5 4.4 217 ± 5 0.120 ± 0.004 -44.7 ± 0.9 95.8 5.8 
Miglyol 182 90 

Tween 60 60 

Oxaprozin 20 



33 

LN44 NLC 

Precirol Ato 5 200 

10 4.4 7000 30 70 5 4.4 211.9 ± 4 0.11 ± 0.01 -55.6 ± 0.6 -- -- Miglyol 182 90 

Tween 60 60 

LN45 SLN 

Cetyl Palmitate 260 

10 8.8 7000 30 70 5 -- 244 ± 4 0.07 ± 0.01 -32.1 ± 0.9 98.9 9.3 Tween 60 60 

Oxaprozin 30 

LN46 NLC 

Precirol Ato 5 170 

10 4.4 7000 30 70 5 4.4 245 ± 4 0.14 ± 0.01 -28.1 ± 0.9 97.5 9.1 
Miglyol 182 90 

Tween 60 60 

Oxaprozin 30 

LN47 SLN 

Cetyl Palmitate 266.7 

10 8.8 7000 30 70 5 -- 250 ± 3 0.06 ± 0.02 -31.8 ± 0.4 95.2 5.8 
Tween 60 60 

Oxaprozin 20 

DSPE-PEG2000-FA 3.3 

LN48 NLC 

Precirol Ato 5 176.7 

10 4.4 7000 30 70 5 4.4 211 ± 3 0.174 ± 0.007 -33 ± 1 83.6 5.1 

Miglyol 182 90 

Tween 60 60 

Oxaprozin 20 

DSPE-PEG2000-FA 3.3 

LN49 SLN 

Cetyl Palmitate 263.4 

10 8.8 7000 30 70 5 -- 248 ± 5 0.06 ± 0.02 -27 ± 1 94.9 5.7 
Tween 60 60 

Oxaprozin 20 

DSPE-PEG2000-FA 6.6 
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LN50 NLC 

Precirol Ato 5 193.4 

10 4.4 7000 30 70 5 4.4 204 ± 3 0.17 ± 0.02 -32.5 ± 0.7 92.4 5.3 

Miglyol 182 90 

Tween 60 60 

Oxaprozin 20 

DSPE-PEG2000-FA 6.6 

LN51 NLC 

Precirol Ato 5 168 

10 4.4 7000 30 70 5 4.4 237 ± 4 0.185 ± 0.007 -29.3 ± 0.7 88.3 6.8 

Miglyol 182 90 

Tween 60 60 

Oxaprozin 25 

DSPE-PEG2000-FA 7 

LN52 NLC 

Precirol Ato 5 163 

10 4.4 7000 30 70 5 4.4 221 ± 4 0.169 ± 0.005 -35 ± 1 93.1 8.7 

Miglyol 182 90 

Tween 60 60 

Oxaprozin 30 

DSPE-PEG2000-FA 7 

LN53 NLC 

Precirol Ato 5 170 

10 4.4 7000 30 70 5 4.4 251 ± 11 0.19 ± 0.01 -22.6 ± 0.9 84.1 7.6 

Miglyol 182 90 

Tween 60 60 

Oxaprozin 30 

DSPE-PEG2000-FA 14 

LN54 NLC 

Precirol Ato 5 170 

10 4.4 7000 30 70 5 4.4 280 ± 14 0.16 ± 0.01 -23.1 ± 0.5 86.1 7.8 

Miglyol 182 90 

Tween 60 60 

Oxaprozin 30 

DSPE-PEG2000-FA 10.5 
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LN55 NLC 

Precirol Ato 5 170 

10 4.4 7000 30 70 5 4.4 253 ± 6 0.255 ± 0.007 -31.3 ± 0.6 91.2 8.4 

Miglyol 182 90 

Tween 60 60 

Oxaprozin 30 

DSPE-PEG2000-FA 7 
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3.3 - Nanoparticles characterization 

In order to ensure that the developed formulations possessed the desired and necessary 

characteristics to allow a controlled and targeted oxaprozin release the lipid nanoparticle 

that resulted from the optimization process was then characterized along with its 

correspondent’s placebo and non-functionalized particles. 

The first indicator of a successful functionalization process and of the synthesis of a 

workable liquid suspension was visual confirmation. From Figure 4 we can verify the 

formation of a milky suspension characteristic of the ultra-sonication lipid nanoparticle 

synthesis method. These suspensions were of low viscosity which is essential to its use, having 

the formulations with oxaprozin a slightly higher viscosity. It is also possible to notice colour 

change in the functionalized nanoparticles when compared with the non-functionalized 

correspondents. This colour alteration is the first indicative of a successful functionalization 

of the formulations. Oxaprozin deposits were not visible however small DSPE-PEG2000-FA 

deposits were visible tending to disappear over time and with agitation which may indicate 

suspension stabilization over time. 

 

    

  

a) b) c) d)

Figure 4: Lipid nanoparticles synthesised by emulsification-sonication: a) Non-functionalized NLCs placebo, b) 
Non-functionalized NLCs + Oxa, c) Functionalized NLCS Placebo,  d) Functionalized NLCs +  Oxa. 
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Nanoparticles diameter, polydispersity, zeta potential, encaplsulation efficiency and 

loading capacity were also evaluated and it is summarized on the Table 4. 

Table 4: Physicochemical properties of the developed LNs. Mean effective diameter, polydispersity, zeta 
potential, encapsulation efficiency and loading capacity of placebo and oxaprozin non-functionalized and folate 
functionalized LNs. Values represent mean ± SD (n=3); a) P<0.05 relatively to the correspondent NLCs placebo 
formulation; b) P<0.05 relatively to the non-functionalized NLCs formulation. 

 

 

Non-funcionalized 
NLCs Placebo 

Non-funcionalized 
NLCs + Oxa 

Funcionalized 
NLCs Placebo 

Funcionalized 
NLCs + Oxa 

Diameter (nm) 216 ± 23 289 ± 27a 234 ± 24 281± 25a 

Polydispersity 0.28 ± 0.04 0.17 ± 0.03 0.23 ± 0.05b 0.14 ± 0.03 

Zeta Potential 
(mV) 

-41 ± 2 -44 ± 2 -41 ± 2 -42 ± 2 

Encapsulation 
Efficiency (%) 

- 97.6 ± 0.3 - 95.1 ± 0.5b 

Loading Capacity 
(%) 

- 9.1 ± 0.3 - 8.7 ± 0.5b 

Considering the size and polydispersity of our nanoparticles, it is necessary to have into 

consideration that they were obtained using filtered nanoparticles. The filtration process was 

necessary in order to reduce the deviating effect that bigger particles cause in the diameter 

reading process, this also allowed to ensure that even the smallest particles had the desired 

diameter. From the obtained data Table 4 one can conclude that the NLCs diameters were all 

greater than 200 nm, meaning that our nanoparticles can be recognized be the macrophages 

as desired [77, 79]. Despite the fact that the functionalization process did not interfered with 

the diameter of the nanoparticles, the oxaprozin encapsulation leads to the formation of 

nanoparticles of large diameter than the corresponding placebo which can be a prove that 

the oxaprozin is in fact being encapsulated and may help to stabilize the lipids aggregates 

during the synthesis. 

The polydispersity of the formulations were around 0.2, meaning that formulations are 

constituted by a well-defined and almost monodisperse population of nanoparticles with low 

variability typical of LNs produced using the high shear homogenization and ultrasound 

method [129]. These values also suggest a uniform functionalization process that leads to a 

small decrease on the polydispersity. 

Zeta potential of the particles that constitute the formulations is greater in modulus to 40 

mV ensuring the stability of our formulations and revealing that they do not tend to form 

aggregates since they are superior to the reference value of |30| mV [123, 124]. Oxaprozin 

encapsulation and the functionalization process did not interfered with the zeta potential 

values and consequently with the stability of the formulations. 

The encapsulation efficiency and consequently the loading capacity are influenced by the 

functionalization process, leading to slightly lower values of these parameters. However the 

obtained values are good and very satisfactory revealing the high encapsulation efficiency 

and loading capacity of these nanoparticles. 

Transmission electron microscopy (TEM) was also used to analyse the formulations. 

Transmission electron micrographs (Figure 5) revealed the spherical shape of the 

nanoparticles and that the encapsulation and functionalization process did not to 

considerably affect the particles shape. The micrographs shown also particles with sizes 

slightly different from those obtained by DLS. Though, most of the particles, primarily from 

the functionalized oxaprozin loaded NLC (the formulation of interest) demonstrated sizes 
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superior to 200 nm which is the minimum size pretended for our particles. Diameter 

differences between TEM and DLS analysis can be justified by the fact that DLS analyses the 

hydrodynamic radius. Moreover DLS provides a mean size of the populations present in the 

formulation while TEM provides a direct size of the particles. 

 

UV-Vis spectophotometric analysis of the functionalized LNs after being destroyed 

revealed a peak on the Placebo LN similar to those found on free functionalization agent, 

DSPE-PEG2000-FA, (Figure 6) on the other hand in oxaprozin loaded LNs due to the presence of 

the oxaprozin with a broad peak near the functionalization agent peak one cannot clearly 

identify the functionalization agent peak (Figure 7). However the qualitative analysis can 

prove the presence of the functionalization agent on the LNs. 

a) b)

c) d)

Figure 5: TEM micographs: a) Non-functionalized NLCs placebo, Magnification 40000X. b) Non-functionalized NLCs + Oxa, Magnification 
40000X. c) Functionalized NLCs Placebo, Magnification 40000X. d) Functionalized NLCs + Oxa, Magnification 12000X. 
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Figure 6: UV-Vis analysis of the functionalization process in Functionalized NLCs placebo. 

 
Figure 7: UV-Vis analysis of the functionalization process on Functionalized NLCs + oxaprozin. 

3.4 - In vitro release studies 

The in vitro oxaprozin release study was designed in order to simulate the lipid 

nanoparticles path through the body after oral administration. Particles were placed at body 

temperature (37ºC) in gastric medium for 3 hours and then 4 hours in intestinal medium in 

order to simulate the gastrointestinal transit. Then the particles were placed some in 

physiologic medium in order to simulate particles that never reach the inflamed region and 

stood in circulation, some in inflammatory medium to simulate particles that immediately 

accumulate in inflamed regions and some 18h hours in physiologic medium and then in 
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inflammatory medium to reproduce the path of particles trough the blood and its later 

placement in inflamed regions. 

 

  

Figure 9: Oxaprozin release in gastric, intestinal and inflammatory media (vertical lines represent media 
alterations).   
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Figure 8: Oxaprozin release in gastric, intestinal and physiologic media (vertical lines represent media 
alterations). 
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Analysing the data (Figure 8, 9 and 10) is possible to observe that for every condition the 

release seems to be identical for both functionalized and non-functionalized particles 

revealing that the functionalization process does not interfere with the in vitro release 

profile. Non-functionalized oxaprozin loaded NLCs in physiological medium escape this 

tendency, however is also evident that the profile is unstable and the values reveal amounts 

of released oxaprozin superiors to those used, whereupon it is necessary to repeat the 

experiment to take further conclusions. As desired only a small amount of oxaprozin is 

released in gastric medium, less than 20%, which may help reduce oxaprozin side effects on 

the gastric mucosa. Most of the encapsulated oxaprozin is released on the intestinal medium 

leaving only about 20% of the encapsulated oxaprozin to be released on physiologic and 

inflammatory media. The oxaprozin released on the intestine will be absorbed by the mucosa 

and distributed throughout the body similarly to the free oxaprozin traditional 

administration. These results also indicate that the functionalization may be unnecessary or 

at least will play a secondary role since most of the encapsulate oxaprozin is released on the 

intestinal medium leaving only about 20% of the encapsulated oxaprozin to be delivery 

through macrophage targeting on inflamed regions. One can also verify that approximately 

10% of the encapsulated oxaprozin remains entrapped on the crystalline matrix of the lipid 

nanoparticles.  

3.5 - Effect of LNs on cell viability and cytotoxicity 

In order to evaluate the cytotoxicity of the designed nanoparticles in the intestinal 

mucosa MTT and LDH assays were performed using Caco-2 cell line (Figure 11). On both tests 

the assayed values of cells incubated with the nanoparticles with different oxaprozin 

Figure 10: Oxaprozin release in gastric, intestinal, physiological and inflammatory media (vertical lines 
represent media alterations). 
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concentrations were compared with the mean of positive controls: culture medium and TX-

100 for the MTT and LDH assays, respectively.  

 

From the MTT assay Figure 12 one can observe that free oxaprozin at these 

concentrations does not reveal a cytotoxic effect being the cell viability around 100% 

contrarily to the negative control TX-100 with close to 0% cell viability, revealing high 

cytotoxicity, as expected. The comparison between the different nanoparticles and the 

different oxaprozin concentrations reveals that only the highest concentrations tested (500 

μM and 1000 μM oxaprozin concentration) present, up to some extent, cytotoxicity to the 

tested cell line in all the LNs formulations. Nevertheless, since free oxaprozin does not 

present cytotoxicity at these concentrations and that the correspondent amount of placebo 

formulations for these concentrations reveals also cytotoxicity, one can conclude that the 

cytotoxic effect at these concentrations could not result from the oxaprozin but from the LNs 

themselves, due to their physico-chemical characteristics, the presence of high lipid contents 

or improved oxaprozin uptake promoted by the LNs. 

Figure 11: General morphology of confluent Caco-2 cells by inverted microscope observation: a) Magnification 
40X, b) Magnification 100X. 

a)

b)
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LDH assay (Figure 13) reveals that TX-100 cell cytotoxicity effect results primarily from 

membrane disruption as expected and that for cells treated only with culture medium, cell 

death due to membrane disruption corresponds to roughly 40%. Analysing the data one can 

observe that this last value is equal to those obtained in the cells incubated with LNs for all 

the oxaprozin concentrations and correspondent placebos. Therefore, the cytotoxicity of LNs 

revealed at higher oxaprozin concentrations from the MTT assay does not result from 

Figure 13: Caco-2 cell viability assessed by MTT assay as a function of the different formulations and 
concentrations tested (5, 10, 50, 100, 500, 1000 μM). Values represent mean ± SD (n=7, *P<0.05 relatively to the 
mean positive control). 

Figure 12: Caco-2 cell cytotoxicity assessed by LDH assay as a function of the different formulations and 
concentrations tested (5, 10, 50, 100, 500, 1000 μM). Values represent mean ± SD (n=7, *P<0.05 relatively to the 
mean positive control). 
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membrane disruption which can corroborate the previous hypothesis in which cytotoxicity 

results from high oxaprozin uptake due to its encapsulation in LNs. 

From MTT and LDH assays one can conclude that the highest concentration of loaded 

oxaprozin that one can use without interfere with cellular viability is 100 μM for both 

functionalized and non-functionalized LNs and their correspondent placebos. This value goes 

along with a previous study in which this oxaprozin concentration was also used for oxaprozin 

combined with cyclodextrin, chitosan and bile components in Caco-2 cell permeability assay 

without cellular cytotoxicity being revealed [130]. 

3.6 - Cell permeability studies 
In order to perform permeability studies, cells were seeded in the transwell inserts on the 

polycarbonate membranes. The monolayer development was followed by inverted microscopy 

and by transepithelial electrical resistance until the 21st day. TEER values obtained at this 

time were superior than 200 Ω.cm2 meaning that the monolayer was mimicking the intestinal 

endothelium. 

From Figure 14 one can clearly see the membrane pores at day 0 (Figure 14.a)) and a 

decrease on its visibility at day 21 (Figure 14.b)) when compared to the initial time. On 

Figure 14.c) one can see the cells that form the monolayer that covers the inserts membrane. 

Oxaprozin intestinal mucosa permeability was evaluated using the biorelevant medium 

that simulated fasted (FaSSIF) state and also PBS the reference medium. 

Figure 15 illustrates oxaprozin permeability profile in FaSSIF medium and it is possible to 

observe that for all LNs tested there is at least 20% of permeation after 4 hours of assay. The 

Table (Figure 15) summarizes the apparent permeability coefficient (Papp) and for all the 

formulations Papp is around 10-5 cm.s-1 after 4 hours. LNs permeability profile is similar to the 

free oxaprozin profile revealing that oxaprozin encapsulation do not interfere so much with 

its permeability through the intestinal mucosa and also that the functionalization process do 

not affect the permeability of the LNs.  
  

Figure 14: Monolayer formation on the Transwell inserts along time. a) Monolayer at day 0, Magnification 400X, b) Monolayer at day 21, 
Magnification 400X, c) Monolayer at day 21, Magnification 200X. 

a) b) c)
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In the reference medium (PBS) the permeability values are greater than in the FaSSIF 

medium reaching almost 40% of oxaprozin permeation for all samples tested (Figure16). One 

can notice that the functionalized formulation has a slow initial permeation profile through 

the monolayer compared to free oxaprozin and non-functionalized formulation. However in 

the end of the assay there are no significant differences between the formulations and free 

oxaprozin, reaching the apparent permeability coefficients values around 1.5x10-5 cm.s-1 

(Table from Figure 16). Oxaprozin Papp value is of the same order of the ones presented in 

the literature for oxaprozin in HBSS (2.3x10-5 cm.s-1). The difference between these values 

may be justified by the small difference between media and the adjust of pH to 5.5 which 

promote an increase of permeation in relation to our value [130]. 

  
Figure 15: Oxaprozin permeability along the time and final apparent permeability (Table) for free oxaprozin 

and functionalized and non-functionalized oxaprozin NLCs in PBS. Values represent mean ± SD; N≥2, *P<0.05 
comparatively to free oxaprozin. 
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comparatively to free oxaprozin. 
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TEER values along the 4 hour assay were also followed and the mean medium size at each 

time compared to the optimal reference value of 200 Ω.cm2. For the different media used 

one could notice a decrease in this parameter 34% for FaSSIF and 28% for PBS, which is 

reasonable and is natural that occurs due to monolayer hydration by the presence of lipids 

and due to the LNs passage that slightly reduces the monolayer electrical resistance. 
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Chapter 4  

Conclusions 

NSAIDs are effective anti-inflammatory, anti-pyretic and analgesic drugs and are of great 

importance for the treatment of chronic inflammatory conditions. 

As a NSAID, oxaprozin is a non-selective COX inhibitor drug and possess strong anti-

inflammatory, antipyretic and analgesic effects, thus it may be used in the treatment of 

chronic inflammatory conditions. However, for that, its physicochemical properties should be 

improved in order to minimize its side effects, which can be achieved by the development of 

drug delivery systems. Nevertheless, the NSAIDs delivery systems developed to the date have 

still many drawbacks and thereby none of them is yet in the market.  

Lipid Nanoparticles are widely used and allow an effective drug packaging and targeted 

delivery, improving drug characteristics and avoiding some of their side effects. 

Oral administration is one of the most used and effective administration routes despite all 

the physical and chemical barriers that can degrade drugs and particles and diminish their 

uptake reducing drug effectiveness. However particles can be designed in order to overtake 

these barriers promoting the drug uptake and protection. 

Therefore the creation of a folate functionalized oxaprozin loaded lipid nanoparticle may 

be an effective system able to deliver by oral route oxaprozin in specific locations avoiding 

these NSAID side effects and improving its chemical and physical characteristics. 

In this work one attempted to create this nanosystem for oxaprozin delivery resulting on 

the creation of a DSPE-PEG2000-FA functionalized or non-functionalized Precirol Ato5, Miglyol 

182, Tween 60 nanostuctured lipid carrier loaded with oxaprozin as final formulations. 

Formulation of these particles leads to the creation of size homogeneous suspensions with 

polydispersity around 0.150 and mean diameters around 285 nm. Formulations zeta potential 

was superior to -40 mV, suggesting a stable formulation. Oxaprozin encapsulation efficiency 

was high (bigger than 95%) leading to a high loading capacity of the system (close to 9%). 

Particles seemed to be spherical under TEM analysis with sizes slightly superiors to those 

obtained by DLS analysis. 

The in vitro release study revealed that the designed nanosystem hold low oxaprozin 

release in simulated gastric fluid being the great majority released in simulated intestinal 

fluid leaving only a small amount of oxaprozin to be released on physiological and 

inflammatory medium (20%). One can also verify that only a small amount of oxaprozin (less 

than 10%) remains entrapped on the LN matrix at the end of the study. 

MTT and LDH assays on Caco-2 cells revealed LN cytotoxicity only for high oxaprozin 

concentrations being 100 μM the highest oxaprozin concentration that can be used in order to 

the LN do not have a cytotoxic effect. 

Permeability studies in Caco-2 cell lines revealed that the final formulation does not 

reduced oxaprozin permeability through a monolayer of Caco-2 cells simulating the intestinal 

endothelium. In fact, functionalized particles revealed permeability along time similar to the 
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free oxaprozin and a similar apparent permeability both in PBS and simulated fasted 

intestinal fluid. 

The designed particles and the obtained results suggest that this formulation enclose a 

huge potential for oxaprozin oral administration with potentially less significant gastric side 

effects, since the great majority of the entrapped oxaprozin is only released on the intestine, 

avoiding this way its contact with the gastric mucosa and its negative effects on it. The 

functionalization process seems to not interfere with the particles characteristics however 

since oxaprozin is mainly released in the intestine its role is secondary because only a small 

amount of oxaprozin remains on the particles to be released on the inflamed areas.  

Despite the obtained results further tests and optimization of these particles are still 

needed and conducted until these nanosystems become a therapeutic reality. 
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Chapter 5  

Future work 

 For future work, lipid nanoparticles functionalization yield needs to be assessed in order 

to evaluate the efficiency of the functionalization process which can be achieved by nuclear 

Magnetic Resonance (NMR) spectroscopy. 

Stability studies along the time need also to be conducted in order to define the LNs 

shelf-time. It is also important to define a lyophilisation protocol that does not compromise 

the LNs characteristics. 

Cytotoxic studies must also be done in different cell lines (gastric, cardiac and 

macrophages) in order to verify that the LNs effectively reduce oxaprozin cytotoxicity and 

consequently its side effects.  

Macrophages LNs uptake must also the analysed in order to verify if the functionalization 

process is effectively augmenting the LNs uptake by macrophages leading to an effective 

active targeting of the macrophages. 

Ultimately, the efficacy of the designed nanosytem must be tested in vivo in healthy and 

disease animal model. 
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