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Summary 

 

Over the last century the main form of human settlement switched from rural to urban. 

More than half of the world’s population is at present settled around coastal zones, 

making them particularly vulnerable to all sorts of environmental stress (e.g., 

sedimentation, agricultural runoff, deforestation, oil spills, untreated sewage, siltation, 

eutrophication, persistent organic pollutants). Coral reefs, one of the most important 

productive and diverse coastal ecosystems in the world, have already experienced 

massive destruction. This is largely caused by anthropogenic land-based pollution, which 

can adversely affect the health of these ecosystems by modifying influencing the microbial 

communities present in coral reef sediment, water and fauna. Microbial communities are 

crucial in oligotrophic ecosystems located along major urban centers since they play 

major roles in the remineralization of organic matter and nutrient recycling. Disturbances 

play a critical role in structuring community composition. Understanding the response of 

important reef taxa to disturbances facilitates the design of meaningful conservation 

strategies that aim to protect coral reefs. This thesis focuses on gaining a better 

understanding of the main natural and anthropogenic disturbances and how they affect 

corals reefs adjacent to the cities of Jakarta and Makassar (Indonesia). This was achieved 

through field surveys, satellite imagery and molecular techniques. An assessment was 

made of the amount of variation in composition of ecologically important taxa (corals, 

sponges, foraminifera, bacteria and archaea) explained by environmental and spatial 

variables. The spatial variable was the distance between transects while the 

environmental variables were determined in the field (substrate variables) and were 

derived from ocean colour satellite imagery (Remote sensing reflectance at 645 nm, 

coloured dissolved organic matter index and chlorophyll-a) and thermal infrared imagery 

(sea surface temperature). The results showed environmental variables and especially 

CDOM (coloured dissolved organic matter index) as the most important explanatory 

variables. In addition to the above, pirosequencing and in silico metagenome (PICRUSt) 

analyses were used to access the composition, diversity and function of archaeal 

communities in six different coral reef habitats (sediment, seawater and four different 

sponge species Stylissa massa, Stylissa carteri, Xestospongia testudinaria and Hyrtios 

erectus). The biotope explained more than 70% of the variation in archaeal composition 

revealing the importance of the biotope in structuring archaeal community composition. In 

general, Crenarchaeota dominated the archaeal community of sponge species and 

sediment whereas Euryarchaeota dominated the seawater community. In terms of 

function, significant differences were observed among the different biotopes. The ‘Energy 
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methabolism’ functional subcategory was significantly enriched in sponge biotopes but 

some of its individual pathways were significantly enriched in seawater namely the 

methane metabolism. A more detailed analysis of the Nitrogen metabolism revealed the 

use of different ammonia assimilation strategies by the distinct biotopes. Overall, these 

results draw attention for the importance of maintaining a diverse coral reef ecosystem in 

order to maintain a functionally diverse microbial community. Furthermore, they suggest 

that these should be achieved by taking into consideration different management 

approaches when designing effective coral reef conservation strategies. 
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Resumo 

 

No decorrer de um século a principal forma de ocupação humana passou de rural a 

urbana. Atualmente, mais de metade da população mundial vive em zonas costeiras, 

tornando-as particularmente vulneráveis a todos os tipos de impactes ambientais 

(sedimentação, escoamento agrícola, desflorestação, derrames de óleo, esgoto não 

tratado, assoreamento, eutrofização, poluentes orgânicos persistentes). Os recifes de 

coral, um dos mais importantes, produtivos e diversos ecossistemas costeiros do mundo, 

estão a sofrer uma destruição massiva. Isto deve-se essencialmente à poluição 

antropogénica de origem terrestre que inflige impactes agudos e/ou crónicos na saúde 

destes ecossistemas, influenciando nomeadamente as comunidades microbianas 

presentes no sedimento, coluna de água e fauna. As comunidades microbianas são 

cruciais em ecossistemas oligotróficos localizados junto de grandes centros urbanos, uma 

vez que estas comunidades desempenham um papel fundamental na remineralização de 

matéria orgânica e reciclagem de nutrientes. As perturbações ambientais desempenham 

um papel importante na estruturação da composição de comunidades. Perceber a 

resposta dos grupos taxonómicos funcionalmente importantes a essas mesmas 

perturbações facilita a concepção de estratégias de conservação que visam proteger os 

recifes de coral. Esta tese teve por objectivo compreender melhor quais as principais 

perturbações naturais e antropogénicas e como estas afectam, em particular, os recifes 

de coral adjacentes às cidades de Jacarta e Makassar (Indonésia). Estes objectivos 

foram atingidos através da realização de trabalho de campo, da análise de imagens 

satélite e do uso de técnicas moleculares. Foi analisada a variação na composição de 

grupos taxonómicos ecologicamente importantes (corais, esponjas, foraminifera, bactéria 

e archaea) explicada por variáveis ambientais e espaciais. A variável espacial consistiu 

na distância entre transectos enquanto as variáveis ambientais foram determinadas in 

situ (variáveis relacionadas com o substrato) e derivadas de imagens satélite no visível 

da cor do oceano (reflectância a 645 nm, matéria orgânica dissolvida colorida (CDOM) e 

clorofila) e ainda de imagens satélite de infravermelhos térmicos (temperatura à 

superfície). Os resultados mostraram as variáveis ambientais, e em especial o CDOM, 

como as variáveis explanatórias mais importantes. Para além do referido, análises de 

dados de pirosequenciação e metagenoma in silico (PICRUSt) foram usados para aceder 

à composição, diversidade e função da comunidade de Archaea em seis biótopos 

diferentes (sedimento, água e quatro espécies de esponjas (Stylissa massa, Stylissa 

carteri, Xestospongia testudinaria and Hyrtios erectus). O biótopo explicou percentagens 

de variação de composição em Archaea acima dos 70% revelando a importância do 



 

x 
 

biótopo na estruturação da composição desta comunidade. De uma forma geral, o filo 

Crenarchaeota dominou a comunidade de Archaea das várias espécies de esponja e do 

sedimento enquanto o filo Euryarchaeota dominou a comunidade planctónica. Também 

ao nível da função, diferenças significativas foram observadas entre os diferentes 

biótopos. A categoria funcional "Metabolismo energético" mostrou-se significativamente 

enriquecida nas esponjas mas alguns dos seus "pathways" individuais foram 

significativamente enriquecidos na coluna de água, nomeadamente o metabolismo do 

metano. Uma análise mais detalhada do metabolismo do Azoto revelou o uso de 

diferentes estratégias na assimilação de amónia pelos distintos biótopos. De uma forma 

geral, os resultados deste estudo salientam a importância da manutenção de um 

ecossistema de recife de coral com uma diversidade taxónomica elevada de forma a 

manter uma comunidade microbiana funcionalmente diversa. Igualmente sugerem que, 

para tal, deve ter-se em consideração diferentes abordagens de gestão no 

desenvolvimento de medidas de conservação efectivas de sistemas de recife de coral. 
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Watercourses, both maritime and fluvial have always been a focal point for human 

settlement. Many delta systems are, however, now seriously degraded due to chronic 

disturbance associated with human settlement. For the first time in human history, in 2006, 

the percentage of the world’s population in cities rose to more than 50% (Wilby and Perry 

2006). Coastal development is changing in character as more people now live in large 

urban areas than ever before and the percentage of humanity inhabiting moderate to large 

conurbations will continue to increase through the course of the present century. Currently, 

14 cities have more than ten million inhabitants and 300 cities have more than one million 

inhabitants; these numbers are predicted to increase rapidly over the next few years 

(United Nations 1993; 2001). This will have an enormous impact on surrounding 

ecosystems. Coral reefs in particular, have been shown to be susceptible to local 

anthropogenic disturbances including overfishing, sedimentation, eutrophication, heavy 

metal, pollution, logging, dredging, land-based run-off and urban effluents (Jackson et al. 

2001; Aronson et al. 2002). These ecosystems are among the most valuable ecosystems 

for human society. A large proportion of coastal populations relay on coral reef goods and 

services (e.g., food, building materials, coastal protection); and several economic activities 

are based on coral reef resources (e.g., fisheries, tourism, pharmaceutics, jewelry, 

aquarium and live fish trade) (Bryant et al. 1998). In addition to the environmental 

degradation associated to coastal development, this excessive and unmanaged pressure 

on coral reef resources is turning coral reefs into functionally-at-risk (with very limited 

capabilities to support coastal communities) or even non-functional ecosystems. For 

example, in the Great Barrier Reef the amount of sediments reaching the inner zone is 

now five to 10 times greater than before European settlement (McCulloch et al. 2003). In 

addition to the above, global disturbances like warming, intense El Niño Southern 

Oscillation (ENSO) events and rising concentrations of dissolved CO2 are also adversely 

impacting coral reefs by increasing coral bleaching and reducing coral calcification rates 

(Buddemeier et al. 2004). Some studies have focused on reductions in live coral cover 

and phase shifts in dominant species (Jackson et al. 2001) as the most perceptible 

responses of coral reefs to these stresses. The World Resources Institute in the Reefs at 

Risk Revisited report (Reytar et al. 2011), alert us to the fact that more than 60% of the 

word’s reefs are under direct threat from local sources. This value increases up to 75% if 

we also add the impact of global threats (e.g., thermal stress). Southeast Asia is the coral 

reef region with the highest percentage of threatened reefs (95%) and Indonesia is the 

country with the largest area of reefs at risk. These conditions enforce the need for more 

long-term studies on coral reef diversity in this region.  
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Kepulauan Seribu and Spermonde coral reef system are two of the most important 

Indonesian coral reef ecosystems and are located adjacent to two major conurbations 

namely Jakarta and Makassar. Jakarta is the capital city of Indonesia and home to more 

than 10 million inhabitants whereas Makassar is a city with more than 1 million 

inhabitants.  

 

 

1.1. Objectives  
 
The main objectives of this thesis are: 1) to understand which anthropogenic and natural 

disturbances have been affecting Spermonde and Kepulauan Seribu coral reef systems; 2) 

to infer how these disturbances impact these coral reef ecosystems and, more specifically, 

affect ecologically important taxa, and 3) to characterize the distribution, composition and 

function of one of the less studied but crucially important coral reef taxa – Archaea. To this 

end, this thesis investigated: how different taxa (corals, sponges, foraminifera, archaea 

and bacteria) respond to spatial and environmental variables linked to anthropogenic 

disturbances (Chapter 3); how archaeal communities inhabiting different biotopes differ in 

composition, phylogeny and function (Chapter 4); how the nitrogen functional pathway 

differs between biotopes (Chapter 5). A final conclusion and future research directions are 

provided in Chapter 6. 
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Sections of this chapter have been previously published in A.R. Polónia, M. Figueiredo, D. 

F. R. Cleary, N. J. de Voogd and A. Martins, "Sea surface temperature and ocean colour 

(MODIS/AQUA) space and time variability in Indonesian Sea coral reef systems from 

2002 to 2011", Proc. SPIE 8175, 817502 (2011); doi:10.1117/12.901820 

 
 

2.1. Socio-economic context 

 
Originating almost entirely from volcanic activity, Indonesia is the largest archipelago in 

the world with about 18000 islands, which only represent a quarter (1.43 million km2) of 

the whole Indonesian dominion (6 million km2); the remaining 3 quarters (5.57 millions) is 

water (UNEP 2005).  

 

Indonesia is the fourth most populous country in the world (Farida et al. 2014). As a 

whole, in 2000 Indonesia had a population of about 225 million (Population Reference 

Bureau 2006). There are five major islands in Indonesia namely Sumatra, Java, 

Kalimantan, Sulawesi and Papua. However, the total population is not equally distributed 

among the different islands; Java, representing approximately 7% of the whole Indonesian 

land area, houses about 60% of the total Indonesian population (Firman et al. 2007). From 

1980 to 2000 the population of Java grew rapidly (32.8 million in 1980; 55.4 millions in 

1990; 85.2 million in 2000; Population Reference Bureau 2006); in the remaining territory 

the increase was only 16 million. In 2000, 48.7% of the Java population lived in urban 

areas (Firman et al. 2007) and, according to UN (2002), 140 million inhabitants lived 

within 60 km of the coast.  

 

2.1.1. Jakarta 

Since the 12th century and until the 16th century Jakarta was essentially a Port center. In 

the beginning of the 17th century Jakarta became Batavia. At the end of the 17th century 

the population of Jakarta was about 27000 inhabitants. Some years later, in the middle of 

the 18th century, Jakarta was characterized as a very dirty city with several wastewater 

problems, leading the Europeans to leave the city and move further south (Cybriwsky and 

Ford 2001). 

In the beginning of the 20th century the population increased to 115000. In 1945 Indonesia 

became independent and in 1949 Batavia was renamed Jakarta and was designated the 
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capital city. Sukarno, president of Indonesia between 1945 and 1967, had as main 

objective to transform Jakarta into a huge city, thus starting an urbanization process 

(Cybriwsky and Ford 2001).  

 

This post independence growth resulted in an increase of migrants from the inner parts of 

Jawa and from the other Islands, who sought work and better living conditions in Jakarta 

(Cybriwsky and Ford 2001). In 1950 Jakarta reached a population of about one million 

(Firman et al. 2007), resulting in a significant deterioration of people´s living conditions. In 

1970, under Suharto (president of Indonesia between 1967 and 1998), the government 

attempted to control this growth (not allowing migrants in the city) but this policy failed and 

in 1971 the province of Jakarta (constituting several municipalities; also called DKI 

Jakarta) reached 4.5 million inhabitants (Cybriwsky and Ford 2001). Despite the attempt 

made by Suharto to control the population, he mantained the same growth ambition 

shown by his predecessor and during his governance the metropolitan area was enlarged 

with several new towns (where the manufacturing industries were also transferred). This 

transformed the DKI Jakarta into a province particularly specialized in services and 

several other economic activities (Cybriwsky and Ford 2001).  

 

The highest growth rate was reached in the 1980’s, through the increase in urban 

population (8.36%) and in total population (1.97%). During the 1990´s growth rates 

decreased slightly (4.4% in urban population and 1.35% in total population) (Firman et al. 

2007). This reduction occurred simultaneously with the increase of population in districts 

adjacent to large cities. This was reflected primarily as a movement of people from the 

center of major cities to outlying urban fringes; carried out essentially by middle and 

higher income residents (Browder et al. 1995). For example, the Bekasi, one of the 

adjacent Jakarta districts, had an annual population growth rate of 4.13% over the period 

of 1990-2000 (West Java Office of Central Board of Statistics 2001) in which about 60% of 

the new population in the district came from the core of Jakarta City.  

 

From 1980 to 1985 and 1990 to 1995 only about 35% of the urban growth resulted from 

natural population increase. The remaining 65% was related to rural-urban migration and 

reclassification from rural to urban areas (Firman 1997, 2004; Firman et al. 2007). During 

the period 1999- 2005 the number of urban localities in the Jakarta Metropolitan Area 

increased by about 305 (i.e., from 730 to 1035) (Firman et al. 2007). Currently, the Jakarta 

metropolitan area represents an area of 6418 km2 and encompasses the cities of Jakarta, 

Bogor, Tangerang and Bekasi (Cybriwsky and Ford 2001). As a whole, this area has a 
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population of about 21 million (Winarso 2011) from which half of the population lives in 

Jakarta city (> 10 millions) (UNEP 2005; Nadarajah and Yamamoto 2007). 

 
2.1.2. Makassar 

Since Indonesian independence, Makassar, one of the largest cities of Indonesia and the 

capital of Sulawesi, experienced an enormous growth. In the early 19th century Makassar, 

with an area of 21 km2, had less than 15000 inhabitants; in 1980 its population increased 

about 47 times (708465) (Anwar 2004). From 1970 to 2000 Makassar was the Indonesian 

city with the highest growth rate, whith annual rates of 5.5 % in the first decade, 2.91 % in 

the second decade and 1.46 % in the third decade. Actually, between 1990 and 2000 only 

Makassar and Palembang grew more than the average national population growth rate of 

1.35 % per year i.e., 1.46 % and 2.30 %, respectively (Firman 2004). 

In 1999, Makassar had 134 urban localities and eight rural localities; in 2005 the number 

of urban localities increased to 137 and the number of rural localities decreased to six 

(Firman et al. 2007). At present, Makassar, with an area of 175.77 km2 has a population of 

approximately 1.2 million (Sattar et al. 2012). Of the total surface area, 60% are 

residential areas, 15% are related to industrial areas and 25% involve open spaces (Nas 

and Nas 2003). 

The big proxy for this growth was the construction of the Makassar sea harbour; which 

was considered the most important Port in East Indonesia (Augustinus 2001). The 

possibility of exporting their goods through the harbour led most of the industries to settle 

in or around Makassar (Augustinus 2001). These economic opportunities in addition to the 

settlement of several economic and social facilities (which were lacking in rural areas) 

attracted people to the city (Anwar 2004). The impacts caused by the Port are numerous, 

not only in the post-construction phase (pollution from ports; oil spills; ship-based sewage 

(ballast and bilge discharge, garbage and solid waste); physical impacts from groundings 

and anchor damage) but also during the construction phase (dredging and opening up 

channels to improve navigation) (Burke et al. 2002). The industrial activities, even of those 

industries that are not settled in the coastal areas, exert their impact through the fluvial 

input of waste substances. Until 2001, there were no water treatment systems in 

Makassar to deal with contaminated sewage (Augustinus 2001). 

The river discharges, such as the Jene Berang near the city of Makassar (Ujung Pandang) 

and the Maros in the north, strongly affect the water transparency through the input of 

terrigenous sand, silt and land based pollution. The ecosystems close to the coast are 
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therefore, severely affected. Furthermore, human populations can have a remarkable 

impact on coral reef ecosystems located near the islands (Moll 1983). About 54 of the 120 

islands that make up the Spermonde archipelago are densely inhabited (Glaser et al. 

2010). The sewerage derived from the islands villages can be quite extensive affecting the 

closest reefs (Moll 1983).  

 
 

2.2. Researched Reefs 
 

2.2.1. Kepulauan Seribu coral reef system 

Jakarta, the capital city of Indonesia, is located on the north Coast of Java Island. The 105 

islands that constitute Jakarta Bay and Kepulauan Seribu ecosystem (Figure 2.2.1) are 

dispersed over a chain of 80 km extending from Java to the northwest into the Java Sea. 

With a population of more than 12 million inhabitants (Renema 2010), Jakarta exerts a 

strong impact over this ecosystem. Jakarta bay is subjected to strong discharges 

originating from numerous rivers and from Jakarta sewage system which represents a 

high input of organic and inorganic suspended matter, sediments, chemical and industrial 

pollutants (Rees et al. 1999; Cleary et al. 2006; Renema et al. 2010).  

 

 
Figure 2.2.1 - Kepulauan Seribu Coral Reef System (Cleary et al. 2014) 
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Based on distance to the shore and geomorphologic and geographic characteristics, 

Kepulauan Seribu coral reef system has been divided in three distinct shelf zones: 

inshore, midshore and offshore, representing an on-to-offshore gradient of anthropogenic 

disturbances (De Vantier et al. 1998; Cleary et al. 2006, 2008, 2013). 

 

The inshore zone is located between the coast and 21 km (Cleary et al. 2008) and 

comprises the reefs within Jakarta bay: Nyamuk Besar, Onrust, Bididari, Kelor, Ayer 

Besar, Ubi Besar, Damar kecil and Untung Jawa. Due to its proximity to Jakarta city these 

reefs have been seriously affected by land based pollution (euthrophization, rubbish 

accumulation, coral mining, high heavy metal, pesticide sewage and petroleum 

contamination; Ongkosongo 1986; Cleary et al. 2006). As a consequence, these reefs 

have extremely low coral cover and extremely high sand cover percentages.  

 

The midshore zone is located between 22 and 40 km offshore from Jakarta (Cleary et al. 

2008) and comprises the mid region reefs: Dapur, Bokor, Lancang Besar, Tikus Utara and 

Tidung Kecil. Here, the influence of land-based pollution is less intense. However, during 

the Southeast monsoon, the prevalent winds push the polluted plume from Jakarta bay to 

the north over this zone (Cleary et al. 2006).  

 

The offshore zone is located more than 40 km offshore from Jakarta (Cleary et al. 2008) 

and consists of the outer-region reefs: Air, Kotok Kecil, Kelapa, Panjang Kecil, Belanda, 

Sepa, Putri and Hantu Besar. This zone is minimally affected by land based pollution 

associated to Jakarta city, however, other disturbances such as: dredging activity, poison 

and blast fishing, outbreaks of Acanthaster planci (a coral predator) and high 

temperatures associated with ENSO phenomena (De Vantier et al. 1998; Vail and 

Thamrongnawasawat 1998; Cleary et al. 2006) have been reported. The first marine park 

of Indonesia - Pulau Seribu National Marine Park - was established within this zone 

(Farhan and Lim 2012; Cleary et al. 2013). 

 

2.2.2. Spermonde Archipelago 

The Spermonde Archipelago (Figure 2.2.2) is situated on the coast of the southwest 

peninsula of Sulawesi (Celebes), which lies in the Wallacea region.  

Located at 4° 27'00'' - 5° 29'00'' south latitude and 119° 2'00'' 119 33'00'' east longitude 

the Spermonde Archipelago comprises a group of 160 islands (de Voogd et al. 2006; Pet-

Soede and Erdmann 1998) and shallow banks. According to Umbgrove (1930), the 

Spermonde Archipelago, with a total area of 400,000 ha consists of a group of submarine 
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reefs, patch reefs and cays distributed over a submarine plateau that are, from a 

geological point of view, in different stages of development (Umbgrove 1930). 

 

Figure 2.2.2 - Spermonde Coral Reef System 

 

On the western side of the reefs, the development of reef flats is broadest and coral 

growth is generally vigorous due to powerful currents and restricted sedimentation (Moll 

1983). Conversely, the eastern side reef flats are narrower and very sandy and, despite 

the weaker currents than in the west, this reef side presents poorer coral growth due to 

high rates of sedimentation. Although waves can apparently promote reef destruction, 

wave action seems to have a stronger role in reef development. The southern reef flat is 

usually well developed but not as extensive as the western sides (Wijsman-Best et al. 

1981). The reef edges can be quite skewed in the northern and eastern sides, while in the 

southern and western sides the inclination is usually smoother (Moll 1983). 

All Spermonde reefs are cay crowned reefs lying on a carbonate shelf (Umbgrove 1929; 

1930; Guilcher 1988 in Renema and Troelstra 2001; Cleary et al. 2005; Renema and 

Troelstra 2001) which increases in depth with distance from the coast (Renema and 

Troelstra 2001; de Voogd et al. 2006; Hoeksema 2012). The westernmost islands rely on 
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a higher rim beyond which the shelf abruptly drops to depths exceeding 800 meters in the 

Makassar Strait (Moll 1983). According to several authors (de Voogd et al. 2006; 

Hoeksema 1990; Pet-Soede 2000) this shelf can be divided into four distinct shelf zones 

parallel to the coast. The distinct zones differ between them in biotic and abiotic 

parameters derived from their bathymetry, geography, geomorphology and distance to the 

shore (Renema and Troelstra 2001). 

The first zone, also called the inshore zone, has a maximum depth of 20 m and is located 

between 0 and 5 km offshore (Becking et al. 2006). It comprises the islands: Lae Lae, 

Lankadea, Polewali, Karanrang, Gusung and Barangbaringan. Due to its proximity to 

Makassar city, major river discharge reaches this zone with similar intensities during both 

seasons (wet and dry). The high concentrations of organic and inorganic nutrients 

(Troelstra et al. 1996) and clay/silt content (Erftemeijer 1993) result in the lowest diversity 

of stony corals registered in the Spermonde archipelago (Hoeksema 1990). In 1993, 

Erftemeier (1993) reported chlorophyll-a concentrations of 2.9±1.5 µg/l (dry season) and 

secchi depths of 0.5-2.5 m (wet season) and 2.5-5 m (dry season) around Lae Lae 

(Renema and Troelstra 2001). In this zone the water energy is low (Troelstra et al. 1996). 

 

The second zone, the middle-inner zone, has an average depth of 30 meters, is located 

between 5 and 12.5 km offshore from the mainland (Chozin 2008) and is composed of the 

Islands Samalona, Pajenekang, Bone Lola Barang Lompo, Bone Batang and Bone Bako. 

Here, the influence of the Jene Berang River is not too strong; however, during the wet 

season the river plum can reach this zone causing poor water transparency (Renema and 

Troelstra 2001). During the dry season, Erftemeier (1993) observed chlorophyll-a 

concentrations of 0.5±0.2 µg/l and Secchi depths of about 10-17 m. In the wet season, 

Secchi depths were reduced up to 1-5 m (Renema and Troelstra 2001). The water energy 

varies with the season, with high values on the exposed sides (north and west) during the 

wet season and moderate during the dry season (Verhey 1993; Troelstra et al. 1996). 

 
The middle-outer zone is composed of the islands Kudingareng Keke, Lumulumu, Badi 

and Bone Tambung. This zone is located between 12.5 and 30 km offshore from the coast 

and presents depths ranging from 30 to 50 meters. Here, as in the fomer zone, the water 

energy is stronger during the wet season (Chozin 2008). As the river influence is much 

smaller, the chlorophyll-a concentrations are also lower (1.0±0.1 µg/l in the dry season) 

while the Secchi depths are depper (7.5-20 m in the wet season and 10-30 m in the dry 

season) (Renema and Troelstra 2001). These conditions make this zone the most diverse 

zone in terms of stony corals (Hoeksema 1990). 
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The outer zone is located beyond the platform rim (>30 kilometer offshore from Makassar) 

and is composed of the barrier reef. This zone has depths ≥ 50 meters and consists of the 

islands Langkai, Lanyukang and Kapoposang. The hydrodynamic energy as well as the 

water transparency is higher compared to the other zones, especially during the wet 

season (Troelstra et al. 1996). Chlorophyll-a concentrations of 0.7±0.1 µg/l were 

registered during the dry season (Erftemeier 1993; Renema and Troelstra 2001). 

Despite differences in stony coral (Hoeksema 1990; Moll 1983) and sponge diversity (de 

Voogd et al. 2006) between the two outermost zones, the same is not true for 

foraminifera. Renema and Troelstra (2001) did not observe differences between the two 

outer shelf zones and combined them into a single zone (the outer zone). However, these 

authors could distinguish two near shore zones: one in the North and another in the 

South. Foraminifera were less diverse close to Makassar city, i.e., in the southern part of 

the inshore zone, where the reef base fauna was absent. 

 

 

2.3. Coral reef Anthropogenic Stressors 
 

High population growth rates require a larger food supply. These demands were 

essentially fulfilled by agricultural and fishery intensification. The increase in the cultivation 

of annual crops was achieved by expanding agricultural land-use through deforestation 

and by the application of higher amounts of chemical fertilizers. This land clearing resulted 

in increased soil erosion and in the concomitant transport of nutrient and chemical 

contaminated sediments by the local rivers into the sea (Augustinus 2001). Agricultural 

runoff threatens mangrove and coral reef ecosystems. As transitional ecosystems 

between marine and terrestrial environments, mangroves act as buffers and protector for 

both of them. Mangroves protect terrestrial ecosystem from the power of meteorological 

processes (storms, tsunamis, cyclones, wind and wave action), and they protect the 

marine environment from sediments and organic materials derived from the terrestrial 

environment through their ability to filter and trap. 

However, in addition to massive rain forest deforestation, the deforestation rate of 

mangroves has also grown considerably. In 1983, the Indonesian government prohibited 

trawling operations in the whole Indonesian oceans due to their negative impact on coral 

reef ecosystems (Sano 2000). Afterwards shrimp production shifted to tambaks (brackish 

water fish ponds). South Sulawesi became the Indonesian province with the highest area 
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of tambaks. From 1979 to 1996 the number of tambak households increased from 9873 to 

26698. However, this alternative to the damage caused by trawling activities became itself 

a threat to the ecosystem. The tambaks were mostly constructed by clearing mangrove 

forests and were the most direct cause of mangrove destruction (Nurkin 1994). According 

to Nurkin (1994), the south of Sulawesi lost 76000 ha of mangrove between 1950 and 

1980. In 1980 the South Sulawesi area of tambaks was 57858 ha and in 1996 this 

increased to 84832 ha (Sano 2000); only 22.88% of the original total area of mangrove 

(110000 ha) remained. 

This mangrove destruction leads, among other things, to the loss of coastal protection and 

the consequent increase of coastal erosion, and to the increase of coral reef 

contamination by the inland runoff of nutrients and sediments. Coral reef ecosystems are 

capable of growing under very low nutrient concentrations. This is largely due to their 

photosynthetic endosymbionts known as zooxanthellae, which provide corals with oxygen 

and organic material. High nutrient concentrations tend to adversely affect corals by giving 

algae a competitive advantage that allows them to overgrow corals. Additionally, high 

nutrient loads are associated with high chlorophyll concentrations and phytoplankton 

blooms. Edinger et al. (1998, 1999) found that chlorophyll-a concentration is negatively 

correlated with both live coral cover and coral species diversity. De'ath and Fabricius 

(2010) likewise, in a study in the Great Barrier Reef, found a reduction in hard coral and 

phototrophic octocoral richness with increasing chlorophyll-a concentrations and an 

increase in the cover of macroalgae. 

 

High sedimentation rates can severely reduce the euphotic zone thereby inhibiting 

photosynthesis in the symbiotic zooxanthellae and smothering coral polyps (Aerts et al. 

1997; Bell 1992). According to Rogers (1990), persistent high concentrations of sediments 

lead to the reduction of: coral species number, live coral cover, coral growth rates, coral 

recruitment, calcification and rates of reef accretion. 

 

In addition to these impacts, mangrove deforestation results in a loss of the marine 

hatcheries and refuges for a wide variety of off-shore marine life, many of which, are 

commercially important (fish, shrimp, crabs, clams). 

This, in addition to the aforementioned increase of food demand due the regional 

population explosion, led to the overexploitation of Indonesian fish stocks (Burke et al. 

2002). South Sulawesi is the most important Indonesian fishery province for sea-fish (Pet-

Soede 2000). From 1975 to 2007 the fish capture increased on average 5600 tons per 

year (122649 tons in 1975 (Bailey et al. 1987) and 301.549 ton in 2007 (Badan Pusat 
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Statistik Republik Indonesia 2009)). According to Pet-Soede (1999), this increase was not 

supported by an increase in total effort (number of trips or number of fishing boats) but by 

an increase in the effectiveness of a fishing trip. The use of motorized boats allowed the 

increase in fishing time and the exploitation of different fish stocks. However, these values 

could be under-estimated since some species are mostly exported and sold directly to 

exporting companies no longer being landed at the local auctions where official data are 

recorded (Pet-Soede et al. 1999). In addition to the traditional mode, fishing is often 

carried with the use of destructive fishing techniques namely blast and poison fishing 

(Burke et al. 2002).  

Blasting is one of the most devastating causes of reef destruction and affects even the 

most remote islands. This destructive fishing technique was already noted by Wijsman-

Best et al. (1981) in several reefs. A single blast is capable of destroying several square 

meters of coral reef leaving the surrounding corals vulnerable to longer-term periods (Moll 

1983). Furthermore, this technique kills innumerable target and non-target reef inhabitants 

changing or even destroying the reef community (Steer and Walton 2003).  

The collection of fish by poisoning is the predominant method for the capture of live food 

and ornamental fish in Southeast Asia (Burke et al. 2002). The main component used in 

this method is the anesthetic sodium cyanide. In contact with this chemical the fish can 

become easier to capture not only for the divers but also for their predators. When in 

contact with the cyanide, corals can bleach or even completely die (Burke et al. 2002). 

Due to the export of 1000 tons of coral per year in the early 1990s and 500 tons per year 

in 2001 the Indonesian archipelago was considered, by the Convention on International 

Trade in Endangered Species of Wild Fauna and Flora (CITES), the world’s largest 

exporter of corals. Indonesia itself was responsible for 41% of all coral exports worldwide 

since 1985 (Spalding et al. 2001). 

Coral bleaching events have been related to temperature anomalies (particularly related 

to severe ENSO events) but also with UV radiation (e.g., Jokiel and Coles 1990; Brown, 

1997; Ayoub et al. 2009). During severe temperature anomalies coral can expulse their 

endosymbionts leading to partial or full colony mortality. Lesser (1997) noted that in corals 

exposed to elevated temperatures zooxantellae produce high concentrations of 

superoxide radicals and hydrogen peroxide that diffuse through biological membranes into 

coral tissue, thereby resulting in an increased level of oxidative stress in the host. In order 

to avoid these high concentrations of oxygen radicals, corals expel their endosymbionts. 

When this happens corals lose their typical pigmentation and are left in a bleached (white) 

state. The reduction of the ozone layer and the consequent increase in UV radiation has 
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been subjecting marine environments and more particularly coral reefs (smaller zenith 

angle regions) to higher rates of stress. Coral bleaching, DNA damage, productivity 

reduction and consequent alterations in species diversity have been associated with UV 

stress (Gleason and Wellington 1993; Hader et al. 2007; Kuwahara et al. 2010) while 

photooxidative stress (related to coral diseases) have been linked with high 

photosynthetically active radiation (PAR) (Ayoub et al. 2012). 

 

 

2.4. Remote sensing  
 

Obtaining all the environmental information necessary to monitor key physical parameters 

influencing the coral reefs condition is almost impossible without the use of remote 

sensing. Remote sensing allows the detection of spatial and temporal patterns, very 

important in terms of reef management, but practically and financially prohibitive to collect 

manually (Eakin et al. 2010). Satellite-based ocean color instruments provide valuable 

derived data products (e.g., chlorophyll, remote sensing reflectance, colored dissolved 

organic matter index) that can be used as proxies for important coral reefs threats, namely 

eutrophication, sedimentation and runoff. The ocean color is essentially defined by the 

inherent optical properties (IOP) of the water constituents (i.e., absorption, scattering and 

backscattering coefficients). 

 

The result of the scattering and absorption of the light by the pure water is the emergence 

of a blue color (Martin 2004). Since the pure water forms a constant background optical 

property, its contribution to the water-living signal is not taken into account (IOCCG 2000). 

Each of the below described seawater constituents constitute a source of color.  

 

2.4.1. Living organisms 

Virus and bacteria are the smallest organisms in this group, with sizes varying between 10 

nm to 1µm. These characteristics along with the fact that they tend to co-vary with 

phytoplankton led, for reasons of simplicity, to their incorporation in the phytoplankton 

fraction (Martin 2004). However, recent studies have demonstrated that these organisms 

could have a strong role in the back-scattering observed in phytoplankton (Morel and Ahn 

1991; Stramski and Kiefer 1991; Ulloa et al. 1992 in IOCCG 2000).  
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Phytoplankton, like the Greek origin of the name suggests, are free-floating (plankton) 

plants (phytoe) living in the oceanic euphotic layer and producing carbohydrates through 

photosynthesis - a process where carbon dioxide is transformed in organic compounds 

using sunlight energy. They represent the basis of the oceanic and freshwater food web. 

In an optical point of view, with sizes greater than the visible wavelengths (2 to 200 µm) 

(Martin 2004), phytoplankton are detected through their main light harvesting pigment - 

chlorophyll-a (hereafter Chlor_a) (Richardson and LeDrew 2006). Despite the existence of 

other pigments in phytoplankton cells such as chlorophyll b, c and caratenoids, Chlor_a is 

the only one present in all phytoplankton species, and is therefore, used as an index of 

biomass (Martin 2004). Chlorophyll-a absorb specially at 440nm and at 665nm and 

present an absorption close to zero between 500 and 550 giving to the waters with high 

Chlor_a concentrations a greenish color. In addition to these patterns, the absorption peak 

of Chlor_a near 665 nm is three times shorter than the absorption peak near 440 nm and 

at 683 nm Chlor_a has a fluorescence emission peak (Martin 2004). 

 

The next trophic level in the food chain of aquatic ecosystems i.e., zooplankton (the 

second trophic level), fishes and mammals (the third and further trophic levels) despite 

having sizes ranging from 100 µm to 10 m, occur at such small concentrations that their 

impact on the absorption or scattering can be considered negligible (Martin 2004). 
 

2.4.2. Not living organisms: 

The colored dissolved organic material (hereafter CDOM) mainly consists of humic and 

fulvic substances that resulted either from decaying land plant material (or originating from 

mangroves) or by the degradation of phytoplankton by grazing (carried out by 

zooplankton) or photolysis (Martin 2004; IOCCG 2000; Richardson and LeDrew 2006). 

These substances are present in greater concentrations in coastal and inland waters. 

CDOM absorbs strongly in the blue and ultraviolet region (presenting a major absorption 

peak at 410 nm) and gives a yellow (brownish) color to the water. This explains why these 

substances are also called "yellow substances" or “gelbstoff” ('yellow material' in German) 

(Martin 2004).  

 

The suspended inorganic particulate matter (inorganic tripton) consists of clays and sand 

(1µm-10µm in size) resulting from the resuspension of bottom sediments by wave action 

or transported by river run-off (IOCCG 2000; Martin 2004; Richardson and LeDrew 2006). 
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Inorganic tripton has a low absorption and a strong scattering behavior (Richardson and 

LeDrew 2006) giving normally a brownish yellow color to the water (Martin 2004). 

 

The suspended organic particulate matter (detritus; organic tripton) is a result of cell 

fragmentation of both phyto and zooplankton and the fecal pallets of the latter (Martin 

2004). The organic tripton scattering/absorption behavior is very similar to the CDOM and 

its size is similar to the phytoplankton albeit without their chlro-a absorption proprieties 

(Richardson and LeDrew 2006).  

 

In 1977, Morel and Prieur divided oceanic - water into two different types concerning their 

color: case I and case II waters.  

 

Case I waters (also called "blue") are those waters where the ocean color is, mainly, 

determined by the phytoplankton concentration since it is the component with major 

influence on the water optical properties. Despite the existence of other substances in this 

kind of waters their proportion is very low and is directly related to the phytoplankton, co-

varying with it (i.e., elements from decomposing phytoplankton debris). Conversely, in 

case II waters the phytoplankton co-exists in similar concentrations with many other 

substances that are not directly related to it and thus vary in an independent way (mainly 

organic and inorganic particles in suspension) (IOCCG 2000).  

 

Ninety percent of the oceans waters fit into the characteristics of the case I waters and are 

mostly represented by the open ocean waters (Richardson and LeDrew 2006), while case 

II waters encompass all the other water bodies which can not be characterized as case I 

waters, or in other words, those waters close to land masses (coastal waters, lakes, 

estuaries, rivers) (IOCCG 2000).  

 

In case II waters the entire signal received by the sensor is the result of the summation 

and interaction of the optical water-leaving signal of many factors other than the 

phytoplankton concentration. What distinguishes case II from case I waters results 

primarily from three aspects: biological richness (very high concentration of both 

phytoplankton and many other bio-optically active organisms such as macroalgae, 

invertebrates etc.); proximity to  land (high concentrations of sediments derived from 

natural river runoff, and dissolved matter resulting from several anthropogenic sources of 

pollution); and, the possibility of finding areas of shallower depths (i.e., with higher signal 

magnitude impacts generated by bottom reflectance and by the resuspension of bottom 

particles) (Richardson and LeDrew 2006). 
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The contribution of all these factors to the optical water leaving signal of these waters 

requires a careful analysis in order to infer the weight of each one of them in the final 

magnitude of the signal and thus avoid the overestimation of phytoplankton (Chlor_a) 

concentrations (Richardson and LeDrew 2006). 

 

2.4.3. Ocean-atmosphere climate phenomena affecting Indonesia 

Indonesia is positioned in the middle of two different continents (Asia and Australia) and 

two different oceans (Pacific and Indian). No other place in the world, at this low latitude, 

allows the communication between two different oceans (Kinkade et al. 1997; Susanto et 

al. 2006).  

 

This geographic position places this archipelago under the influence of various temporal 

and spatial ocean-atmosphere climate phenomena namely: monsoons (Susanto and 

Marra 2005); ENSO - El Niño/ La Ninã in the tropical Pacific (Susanto and Marra 2005) 

and Indian Ocean Dipole - IOD in the Indian Ocean (Susanto and Marra 2005). All these 

ocean-atmosphere climate phenomena exert a strong impact on the Indonesian climate 

namely in the precipitation and wind patterns which in turn have a strong influence on 

important parameters for coral reefs like chlorophyll and sea surface temperature 

(Susanto et al. 2006). 

 

2.4.4. Asia - Australia Monsoon System 

The strong monsoon system felt in this archipelago is due to pressure differences 

between Asia and Australia. During the wet season (October to March) warm and moist 

air is transported to the region, as result of the westerlies developed by the formation of a 

high pressure over Asia - Northwest monsoon. During the dry season (April to September) 

the opposite happens and the development of a high pressure over Australia leads to the 

formation of warm and dry easterlies over the region - Southeast monsoon (Susanto and 

Marra 2005; Susanto et al. 2006). According to Susanto et al. (2006), March, April, May 

and September, October, November should be considered transition months whereas the 

months June, July, August and December, January, February should be considered the 

peaks of the Southeast monsoon and Northwest monsoon, respectively. 
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2.4.5. ENSO 

In normal years, the western Pacific Ocean is warmer than the eastern and the center of 

atmospheric convection is over Indonesia. This is the result of a normal Walker circulation 

i.e. east-west atmospheric circulation (Sprintall et al. 2003). 

During an El Niño episode an alteration of the normal SST pattern in the eastern Pacific 

triggers a weakening or even a reversal (depending on the intensity) of the Walker 

circulation; as a result, the atmospheric convection moves eastward and becomes 

stronger in the central Pacific. This leads to the formation of anomalous surface 

southeasterlies. If this episode occurs during the dry season these southeasterlies occur 

with the easterlies typical of the Southeast monsoon and the wind strength is further 

intensified. These strong southeasterlies reach Indonesia, and as consequence, the 

archipelago is surrounded by cool surfaces waters and is affected by drought conditions. 

This cooling further reduces the Walker circulation enhancing its effects. Conversely, 

during the wet season the Northwest monsoon wind system is reverse (eastward) to the 

southeasterlies generated during the El-Ninõ. The wind speed is thus attenuated and all 

the effects of the El-Niño are smoothed (Hendon 2003).  

 

The occurrence of the La Niña phase of the ENSO, in opposition to the El-Niño phase, 

results in the strengthening of the Walker circulation (Lau and Yang 2003) and the 

subsequent anomalous surface westerlies (Hendon 2003). If this episode occurs during 

the dry season the anomalous westerlies act to decrease the local easterlies speed. This 

results in high precipitation rates and water temperatures over Indonesia that will further 

enhance the Walker circulation (Hendon 2003; Sprintall et al. 2003). Conversely, the 

westerlies developed during the wet season (Northwest monsoon) enhance the westerlies 

generated during the La Niña and the positive SST and precipitation anomalies are 

smoothed (Hendon 2003). 

 

2.4.6. Indian Ocean Dipole 

During the Indian Ocean Dipole (IOD hereafter) opposed temperatures occur in the west 

and east part of Indian Ocean. In normal years, the atmospheric convection is placed over 

the eastern Indian Ocean and the wind blows eastward. During the positive IOD event the 

convection configuration changes to the opposite (west) and as a result anomalous wind 

easterlies are produced and subsequently a cold SST is found in the eastern and a warm 

SST in the western Indian Ocean (Sprintall et al. 2003; Webster et al. 1999). Under these 
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conditions, Indonesia is affected by cold SST and suppressed rainfall. Conversely, a 

negative IOD period is characterized by warmer than normal SST in the eastern Indian 

Ocean (near South Sumatra and Java) and cooler than normal water in the west part of 

the Indian Ocean. As result, high precipitation and SST affect Indonesia (mainly South 

Sumatra and Java). 

 

2.4.7. Repercussions on Indonesian ocean color  

According to Susanto et al. (2006), in a study that used both in situ and satellite derived 

data, highest chlorophyll concentrations are generally observed in the eastern side of 

Indonesia and during the Southeast monsoon. During the latter event, the typical 

easterlies have the strongest impact in the Java-Nusa Tenggara Islands (defined as the 

set of Java, Lombok, Sumbawa, Flores, Sumba, and Timor islands). Here, the easterlies 

induce upwelling along southern coasts (high satellite derived chlorophyll concentrations) 

and downwelling along northern coasts (low satellite derived chlorophyll concentration). 

The same occur in the eastern Banda Sea. As a consequence, low temperatures are 

observed over these areas. These effects are enhanced by a positive phase of both 

ENSO and IOD. During an EL Ninõ episode the stronger easterlies and latitudinal 

changes in the Coriolis parameter extend this plume of high satellite derived chlorophyll 

concentration northwestward along the Sumatra coast (Susanto 2001; Susanto and Marra 

2005). 

 

During the Northwest monsoon high values of chlorophyll are detected in the Malacca 

Strait, northern and eastern Kalimantan, north and south of the Makassar Strait, Flores 

Sea and north of the Java-Nusa Tenggara island chain. Conversely, the satellite derived 

chlorophyll concentrations decay in the eastern Banda Sea and south of the Java-Nusa 

Tenggara island chain.  

 

High satellite derived chlorophyll concentrations are also detected in the shallow coastal 

zone of Kalimantan. However, this is likely the result of frequent rainfall and the 

consequent strong river discharge that is normal in this zone during the wet season. The 

high concentration of nutrients, inorganic particulate material and colored dissolved 

organic matter discharged by the local rivers can lead to over-estimations in the satellite 

derived chlorophyll concentrations (Susanto et al. 2006). 
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Regarding SST, during the Southeast monsoon cooler SST is observed to the south of the 

equator, while during the Northwest monsoon cooler SST is observed to the north of the 

equator, more specifically, in the South China Sea. However, during the Northwest 

monsoon the reduction in temperature in the South China Sea is not concomitant with the 

increase in the satellite derived chlorophyll concentrations (Susanto et al. 2006). 

 

 

2.5. Microbial Ecology 
 
Coral reef environments have been the subject of several cross-shelf distribution and 

diversity studies (Cleary et al. 2006; Rachello-Dolmen and Cleary 2007). However, most 

of these studies have focused on Eukarya taxa (e.g., corals, fishes, sponges, foraminifera) 

and there have been relatively few studies of prokaryotes despite their importance on 

marine food webs and geochemical cycling (Azam and Malfatti 2007; Rodriguez-Brito et al. 

2010). 

 

Microbes are the most abundant and diverse group of organisms on Earth. In coral reefs 

they are present in non-host (seawater and sediment) and host biotopes (e.g., corals, 

sponges) (DeLong 1994; Hentschel et al. 2002; Wild et al. 2006; Rosenberg 2007). Coral 

reefs are typically oligotrophic environments which, during the lasts decades have been 

subjected to increasing anthropogenic pressure, particularly inputs of land based organic 

matter. The transformation and mineralization of this organic matter (e.g., primary 

production and nitrification) is essentially mediated by microbes (Herbert 1999). These are 

present in the different coral reef compartments and are extremely important in both 

oligotrophic and eutrophic coral reefs.  

 

Of all marine organisms, marine sponges (e.g., Figure 2.5.1) are probably the most 

common hosts for microbial communities (Turque et al. 2010). Sponges are very 

abundant benthic invertebrates in coral reef systems where they are usually attached to 

solid substrates (rock, sediment, and coral).They feed by filtering organic particles from 

the water. Although sponges may also feed on microbes (Lee et al. 2001; Hentschel et al. 

2006) they harbor a remarkable variety of microorganisms in their tissues. Very little is 

known about this relationship (Lee et al. 2001; Hentschel et al. 2002; Holmes et al. 2007); 

however, it is generally believed that this interaction has a symbiotic nature and could 

result in the development of a resistance by the microorganisms to the sponge digestion 

and/or of sponge capacity of selective absorption (Hentschel et al. 2002; Turque et al. 
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2010). Microorganisms contribute to sponge nutritional process, metabolic waste 

processing, offer a more stable skeleton and a more efficient defensive system (i.e., 

protection from ultraviolet light, chemical and predators). Sponges in turn offer a safe, 

stable and nutrient-rich habitat to the microorganisms (Hentschel et al. 2002; Holmes et al. 

2007).  

 

 
Figure 2.5.1 - Marine sponges: a) Xestospongia testudinaria (Photographer: Rossana 

Freitas); b) Stylissa massa (Photographer: Ana R. M. Polónia). 

 

2.5.1. Sponge-associated microbe-host interactions 

Sponges living in the same habitat can greatly differ in the abundance of their associated 

microorganisms. The term ‘high microbial abundance’ sponges (HMA) represents 

sponges with microbial abundances of about 1010 cells per gram wet weight of sponge 

(orders of magnitude higher than concentrations in seawater); while the ‘low microbial 

abundance’ sponges (LMA) exhibit densities of about 106 cells per gram (similar to 

densities in seawater) (Kamke et al. 2010; Hentschel et al. 2006). This difference can 

represent distinct strategies: LMA sponges base their nutrition on filtering huge amounts 

of water and absorbing particulate organic matter, while HMA sponges have slower 

pumping rates and rely on their huge number of microorganisms to acquire dissolved 

organic matter (Weisz et al. 2007). 

 

In addition to being abundant, the microbial community present in sponges has also been 

suggested to be uniform and taxon-specific. The existence of a “uniform sponge-specific 

microbial community” was proposed by Hentschel et al. (2002). This thesis is essentially 
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based on the fact that sponges from different species and/or locations share similar 16S 

rRNA gene sequences (uniform), and at the same time are distinctly different from non-

sponge sources (specific). In recent years, several studies have shown that different host 

species (even from different locations) share the same sponge-specific microbial 

community that in turn was not found in the surrounding sediment or water column 

(Hentschel et al. 2002; Taylor et al. 2007; Schmitt et al. 2008; Kamke et al. 2010; Simister 

et al. 2012).  

 

In other to understand the extent of uniformity between the microbiota of different sponges 

Schmitt et al. (2012) defined three microbial community categories: (i) the core microbial 

community, consisting of microbes found in at least 70% of the analyzed sponges; (ii) the 

variable microbial community, consisting of microbes found in more than one sponge and 

less than 70% of the analyzed sponges; and (iii) the species-specific community, 

consisting of microbes found in only one sponge. When analyzing the microbiota of five 

Mediterranean sponges, these authors found that the core, variable, and species-specific 

communities represented 2, 26, and 72% of all operational taxonomic units (OTUs) 

respectively. This means that the number of unique microbial species in a single sponge 

species surpasses by far the number of microbial species shared with other sponge 

species.  

 

According to the same authors (Schmitt et al. 2012) each of the previously described OTU 

groups can be divided into ‘‘Plus-OTUs’’ and ‘‘Minus-OTUs’. A Plus-OTU represents a tag 

sequence that during taxonomic assignment, matches to a previously sponge-derived 16S 

rRNA gene sequence while a Minus-OTU represents a tag sequence that, in the database, 

matches to a non-sponge-derived 16S rRNA gene sequence. Schmitt et al. (2012) 

observed that more than 68% of all the sequences belonging to each microbial community 

group (core, variable and species-specific) were considered Plus-OTUs. The high 

proportion of Plus-OTUs means that even though each sponge might host unique 

bacterial species they should still be more similar to each other than to the microbial 

community of the surrounding non-sponge environment. This study supports the landmark 

study of Hentschel et al. (2002) entitled “Molecular evidence for a uniform microbial 

community in sponges from different oceans” and others studies (Taylor et al. 2005; 

Taylor et al. 2007). 

 

However, some studies obtained different results (Webster et al. 2010 and Erwin et al. 

2011). Webster et al. (2010), in a study of sponges from the Great Barrier Reef, found 

various sequence clusters previously reported as sponge-specific clusters in seawater 
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samples. Erwin et al. (2011), in turn, verified some bacterial community overlap between 

the surrounding seawater and the sponges Hymeniacidon heliophila (17.0%) and 

Haliclona tubifera (37.8%). Webster et al. (2010) suggested that the conventional 

metagenome studies were limitated in their ability to detect OTUs belonging to the “rare 

biosphere” as a possible explanation for this phenomenon. According to these authors, 

seawater and sponges can, in fact, share some microbes; however their extremely low 

concentration in seawater makes it impossible to be detected with conventional molecular 

methods. This led to the assumption of nonexistence of overlapping sequences between 

seawater and sponges. The rare biosphere present in the surrounding seawater may not 

only result from sponge incorporation but also from sponge release (spawning or injury) 

(Schmitt et al. 2008; Webster et al. 2010).  

 

Some studies also shown that sponges from different locations contain different microbial 

species (despite being closely related to each other). Schmitt et al. (2012), in a study of 

sponges from eight different locations around the world, reported that microbial 

communities present in subtropical sponges are more similar to each other than microbial 

communities present in tropical sponges.  

 

Doubts concerning the concept of “uniform sponge-specific microbial community” have 

been raised. How this uniformity is maintained in successive generations is probably the 

main question. Three hypotheses have been proposed: vertical transmission, horizontal 

transmission and the combination of both. Under the vertical transmission scenario, 

parents transmit their symbiont microbiota to the next host generation. Over millions of 

years of evolution, this highly selective transmission through reproductive stages of 

symbionts should lead to a concerted speciation of both sponge and microbe 

(cospeciation) resulting in spatially and temporally stable associations. Recent embryo 

and larvae based studies reported vertical transmission of multiple, phylogenetically 

diverse microorganisms in a marine sponge (Sharp et al. 2007; Schmitt et al. 2008). In the 

horizontal transmission thesis, also known as environmental transmission, the hosts 

acquire their symbionts from the surrounding environment (probably through feeding). The 

local environment can also exert a selective pressure that can evolve in parallel with the 

host and form a uniformly shared microbial community (Schmitt et al. 2008). However, this 

is a time and space constrained uniformity since the symbionts genotypes are not 

transferred through generations (Vrijrnhoek et al. 2010). The combination of vertical and 

horizontal transmission combines the advantage of both systems: the vertical element will 

allow the preservation of the symbiont genotype for some generations while the horizontal 

component will allow the host to acquire local beneficial symbionts (Vrijenhoek et al. 2010). 
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In recent years some authors have suggested this mixed system of transmission as the 

most likely (Taylor et al. 2007; Schmitt et al. 2008; Webster et al. 2010).  

 

However, most of this knowledge was obtained based on bacterial studies and very little is 

known about the sponge archaeal community. 
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3.1. Abstract 
 

The spatial variation in the community composition of corals, sponges, foraminifera, 

bacteria and archaea was assessed at two depths (3 m and 12 m) in the Spermonde 

Archipelago, Indonesia. Our goal was to assess to what extent this variation could be 

explained by space (distance between transects) versus environmental variables. The 

environmental variables consisted of locally measured substrate variables (e.g., live coral 

cover) and variables derived from ocean colour satellite imagery, such as sea surface 

temperature (SST), Remote sensing reflectance at 645 nm (Rrs_645; a proxy for total 

suspended sediment), coloured dissolved organic matter index (CDOM; a proxy for 

riverine input) and chlorophyll-a (Chlor_a; the main light harvesting pigment of 

phytoplankton). The amount of total variation in composition explained by the 

environmental variables ranged from 0 – 74%. For all taxa, with the exception of sediment 

archaea, this variation was substantially greater for transects at 12 m depth as opposed to 

3 m depth. Space explained a marginally significant amount of variation for sponges, 

corals, sediment bacteria and sediment archaea sampled at 3 m depth, and for sponges 

sampled at 12 m depth. The most important explanatory overall variable was CDOM, 

which explained significant amounts of variation in the composition of sponges and 

sediment bacteria and archaea at 3 m depth and sponges, forams and corals at 12 m 

depth. The composition of sediment bacteria and archaea was also significantly related to 

variation in substrate cover at 12 m depth. This reinforces the importance of maintaining a 

coral reef ecosystem with high substrate diversity in order to maintain microbial diversity. 

Moreover, these results highlight the importance of the environment in structuring 

community composition, but also suggest marked differences among different groups in 

how they respond to environmental processes.  

Keywords: Environmental variables; Indonesia; Remote sensing; Spatial variables 
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3.2. Introduction 
 

Coral reefs are among the most diverse and economically important marine ecosystems 

in the world (Hughes et al. 2010). They provide coastal defense, food, employment, 

building materials, bio-active compounds and areas of recreation (Burke et al. 2002). 

Additionally, they also function as marine hatcheries and refuge for a wide variety of 

marine organisms, many of which are commercially important (e.g., fish, shrimp, crabs, 

clams; Burke et al. 2002; Buddemeier et al. 2004). Coral reefs are usually also located in 

areas of increasing coastal development and subject to relatively high population growth 

rates (Bryant et al. 1998). This combination of factors threatens their existence and, as a 

result, the services they provide. Indeed, a majority of coral reefs are now considered 

vulnerable or seriously degraded (Burke et al. 2011). The latter includes the loss of reef 

structure, species, and shifts in their community composition (e.g., Bellwood et al. 2004; 

Graham et al. 2006), as the results of differences in responses of physiologically robust 

corals versus delicate but opportunistic species (Done et al. 2007), or shifting the balance 

in the interaction between competing organisms (McCook et al. 2001). For example, many 

fish species depend on the three dimensional structure provided by mature coral reefs 

(Moberg and Folke 1999; Pratchett et al. 2008). Losses of key structural components, 

such as branching Acropora species, can lead to the local extirpation of numerous 

dependent species (Patton 1994; Pratchett et al. 2008). Importantly, previous studies 

have shown that biodiversity loss can, in turn, adversely affect ecosystem functioning 

(Tilman 1999; Worm et al. 2006). Hence it is important to understand how diverse taxa 

respond to changes in reef environmental conditions.  

Pronounced on-to-offshore environmental gradients, including gradients in salinity, depth, 

nutrients, sedimentation and pollution (Fabricius et al. 2005; Fox and Bellwood 2007; 

Cleary et al. 2005, 2008) determine community structure throughout the reef ecosystem. 

In addition to the above, community structure of coral reefs is also determined by storm 

damage, thermal stress, over-harvesting of grazers and predators, to mention just a few 

(Szmant 2002). All of these stressors have a distinct spatial component (Szmant 2002; 

Goatley and Bellwood 2013). High nutrient concentrations can positively affect the growth 

of phytoplankton, microalgae and bacterioplankton in the water column, and filter feeders 

and algae in the benthic realm; when severe, high nutrient concentrations can cause a 

pronounced reduction of the euphotic zone (Aerts et al. 1997; Szmant 2002). The 

interaction between coral and algal cover is counteracted by the intensity of herbivory 

(Hughes et al. 2007; Burkepile and Hay 2008). Sediments bound within the turf algal 

cover suppress fish herbivory, and in reefs with lower herbivore biomass and altered 
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sediment fluxes, the development of longer algal turfs may become more come (Goatley 

and Bellwood 2013). This can lead to smothering and reductions in recruitment of corals 

and other sedentary reef organisms (Erftemeijer et al. 2012).  

Coral reefs are among the most productive and diverse ecosystems on earth. In addition 

to corals, coral reefs support a diverse array of other taxa including sponges, fishes, 

crustaceans, foraminifera, archaea and bacteria. Around 800 species of reef building 

corals can be found on coral reefs throughout the world (Burke et al. 2011). Corals are 

colonial organisms composed of several polyps attached to a limestone skeleton and 

living in close relationship with symbiotic algae (zooxanthellae). This association makes 

them the most important reef-builders by depositing calcium carbonate to build their 

skeletons (Sheppard et al. 1988). They help to provide the fundamental three dimensional 

structure, which largely contributes to reef complexity and diversity (Perry et al. 2012). 

Moreover, through their colonial structures, coral reefs alter the energy and circulation 

protecting near-shore environments, which act as nurseries and shelter for other taxa 

(Buddemeier et al. 2004).  

Marine sponges are abundant and conspicuous components of coral reefs. They are 

sedentary benthic organisms, which are usually attached to rocky substrates and feed by 

filtering organic particles from the water. Due to their high diversity and biomass, these 

are ecologically important in reef environments (Diaz and Rützler 2001). Their significance 

in benthic environments derives from the important functional roles they play: e.g., 

carbonate framework bioerosion (solid reef carbonate transformation into fine sediment), 

carbonate framework consolidation, stabilization and regeneration, bentho-pelagic 

coupling (sponges feed on pelagic ultraplankton and provide food for other pelagic 

organisms, e.g., fishes); habitat provision for numerous reef species; water column 

composition modification (through filtration and secondary metabolite emanation); and 

nutrient cycling including primary production and nitrification through complex microbial 

symbioses (Diaz and Rützler 2001; Bell 2008). 

Foraminifera are small benthic invertebrates (protists) living in the topmost layer (0.5 cm) 

of sediment. Larger Benthic Foraminifera (LBF) are an important component of tropical 

shallow marine ecosystems, including coral reefs (Hohenegger 2006; Renema and 

Troelstra 2001). Similarly to zooxanthellate corals, LBF house photosymbionts in 

carbonate tests. Important differences are that LBF house a wider variety of symbionts, 

including diatoms, diniflagellates, rhodophytes, and chlorophytes, whereas cyanobacteria 

are present in many host as well (see review of Lee 2006). Like corals, foraminifera 

prosper in oligotrophic warm waters and host a distinct symbiont community (Oliveira-
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Silva et al. 2012). LBF are sensitive to changes in water quality in coral reefs, but this has 

been documented largely by studying assemblage composition (Renema and Troelstra 

2001; Uthicke and Nobes 2008; Schueth and Frank 2008). Unveiling the underlying 

physiology of this response is only recently starting, using both in situ and laboratory 

experimental approaches (e.g. Ziegler and Uthicke 2011; Nobes et al. 2008; Reymond et 

al. 2011). Due to their limited life span and reproductive cycle (Frontalini and Coccioni 

2011), foraminifera respond faster than macrofauna to shifting environmental conditions 

(Hallock et al. 2003; Bouchet et al. 2012).  

Bacteria and archaea are abundant members of the vast marine microbial community and 

are important players in processes such as the geochemical cycling of carbon, nitrogen 

and sulphur, transformation and degradation of nutrients and organic matter derived from 

both surface ocean production and terrestrial runoff (Lee et al. 2001; Webster et al. 2004). 

For oligotrophic coral reefs, this cycling activity is of crucial importance in order to degrade 

organic matter and maintain high levels of primary production (Schöttner et al. 2011). 

Coral reef carbonate sands, due to their complex surface structure and highly porous 

matrix, present a high abundance of prokaryotes (Wild et al. 2006). Coral reef sponges, in 

turn, have also been shown to harbour exceptional microbial densities, which can make 

up from 35 to 40% of sponge biomass (Vacelet 1975; Hentschel et al. 2002, 2012; Taylor 

et al. 2007). 

Following the large ecological changes on Caribbean reefs and the realization that benthic 

community structure is to a great extent determined by the interplay between corals, algae, 

and herbivorous fishes, more interest was paid to these groups as well (e.g., Bellwood et 

al. 2004; Hughes et al. 2010; Roff and Mumby 2012). The conservation of coral reefs also 

tends to rely on indicators from these taxa. Yet, there has been little attention paid to other 

ecological groups inhabiting these same reefs (Plaisance et al. 2011; Hoeksema 2012b). 

It is unclear, however, to what extent variation in the composition of corals, for example, 

reflects that of other less studied taxa. The few studies that have assessed a diverse set 

of taxa have so far yielded mixed results. Karakassis et al. (2006), for example, found 

significant congruence between the community structure of macrofauna and megafauna, 

megafauna and fish and fish and microzooplankton. Beger et al. (2007) found significant 

congruence between fishes and corals and between corals and mollusks in Indo-Pacific 

coral reefs. In contrast, Sutcliffe et al. (2012), in a study of seabed assemblages, found 

that none of the taxonomic groups studied was a good surrogate for the others. In Moorea, 

a diverse set of taxa differed strongly with respect to their spatial compositional variation 

(Adjeroud 1997). Environmental variables explained large amounts of variation in sponges 

and corals, intermediate amounts in mollusks and much less variation in macroalgae and 
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echinoderms (Adjeroud 1997). Cleary et al. (2005) showed that distance to shore, depth 

and exposure to oceanic currents were important explanatory environmental variables for 

corals, sponges, foraminifera and sea urchins. Likewise, Cleary et al. (2008) showed that 

abiotic variables (e.g., temperature, heavy metal concentrations in seawater), habitat 

structure variables (e.g., algal cover and sand cover) and spatial factors explained more 

than 50% of the variation in composition of corals, echinoderms and fishes in the Jakarta 

Bay and Pulau Seribu reef system.  

In the present study, we assessed taxon composition in the Spermonde coral reef system. 

Five different ecologically important taxa in coral reefs systems, i.e., corals, sponges, 

foraminifera, bacteria and archaea, were sampled. Important environmental parameters 

such as coral reef habitat structure and remotely sensed data were used in this study to 

explain spatial variation in the composition of all taxa sampled. The remotely sensing data 

focused on four of the most important threats to coastal coral reefs: eutrophication 

(chlorophyll-a concentrations), bleaching (surface temperature), sedimentation (remote 

sensing reflectance at 645 nm) and runoff (colored dissolved organic matter index). 

Our main goal was to relate variation in taxon composition sampled at different depths (3 

and 12 m) to local substrate, the distance between sampling sites, and remotely sensed 

environmental parameters and to assess if different taxa respond similarly to these 

environmental and spatial variables. 

 

 

3.3. Material and Methods 

 

3.3.1. Study site 

The Spermonde Archipelago is situated adjacent to the city of Makassar capital of the 

Indonesian province of South Sulawesi and home to more than two million inhabitants 

(Renema 2010). This reef system consists of 160 cay crowned reefs dispersed over 40 

km of continental shelf (Renema and Troelstra 2001; Cleary et al. 2005). It lies on a 

carbonate shelf, which increases in depth with distance from the coast (Renema and 

Troelstra 2001; de Voogd et al. 2006; Hoeksema 2012a) (Figure 3.3.1). The westernmost 

islands lie on a rim beyond which shelf depth abruptly drops to depths exceeding 800 

meters in the Makassar Strait (Moll 1983). Its proximity to Makassar, leaves these coral 

reefs exposed to many anthropogenic disturbances including river discharge 
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(sedimentation, agricultural runoff, eutrophication), oil spills, destructive fisheries, tourism 

and coral mining (Hoeksema 2004; de Voogd and Cleary 2007).  

 

Figure 3.3.1 - Map of the study area showing the sampling sites. 

 

Previous studies (Cleary et al. 2005; Cleary and Renema 2007; Hoeksema 2012a) 

showed that the Spermonde is subject to strong in-to-offshore gradients in both biotic and 

abiotic factors (e.g., salinity, depth, oceanic currents, pollution). Inshore reefs are also 

subject to more anthropogenic perturbations and environmental factors (e.g., river runoff) 

related to their proximity to the coast. The influence of these disturbances over the 

Spermonde Archipelago depends on factors such as distance from the coast, shelf depth, 

and season. During the wet season (Northwest monsoon from December to May), river 

runoff is stronger due to increased rainfall and the resultant plume of turbid water can 

reach a greater distance to the coast. During the dry season (Southeast monsoon from 

June to November) the easterlies are weakened by the high mountains of Sulawesi thus 

strongly reducing their impact and reducing cross shelf mixing when compared to the 

Northwest monsoon (Wijsman-Best et al. 1981).  
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3.3.2. Data collection 

Research for the present study was carried out from the 8th to the 25th of August, 2010. A 

total of fourteen sites were surveyed using SCUBA (Figure 3.3.1). We sampled the 

northwest side of the reefs Lae Lae, Samalona, Kudingkareng Keke, Lumulumu, Bone 

Lola, Lankadea, Padjenekang, Polewali, Karanrang and Kapoposang, the west side of 

Langkai and Lanyukan reefs and the southwest side of Badi reef. These reefs were 

chosen because they are dispersed along an in-to-offshore gradient and are thus 

subjected to different environmental influences. 

 

3.3.3. Corals 

Coral genera were visually identified during intercept transect surveys (English et al. 

1997). Photos of unrecognized genera were taken for closer examination using Veron 

2000. In each site, we surveyed transects at two different depths: at the beginning of the 

reef slope (3 m) and at the maximum depth of coral cover (12 m, with exception of the 

reefs Karanrang (11 m), Lae Lae (9 m) and Polewali (10 m); for the sake of simplicity 12 

m will be used throughout the text when referring to the deeper transects). 

 

3.3.4. Habitat structure 

Substrate cover was assessed using the 'life-form line intercept' method for surveys 

(Edinger and Risk 2000). For the purposes of this study, we assessed four distinct forms 

of substrate. These included the cover of live corals, dead corals, rubble and sand. The 

line intercept transect data was analyzed in order to calculate the percent cover of each of 

the previously mentioned life forms surveyed. 

 

3.3.5. Sponges 

Sponge species and their abundance were noted in 1m2 quadrats laid at each consecutive 

1 m section along a 30 m transect line. Smaller (cryptic, boring and thinly encrusting < 4 

cm) specimens were excluded from this study). Species were visually identified in the field, 

and fragments of unrecognized species were collected for closer examination. Voucher 

specimens are preserved in 70% ethanol and housed at the sponge collections Naturalis 

Biodiversity Center. 
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3.3.6. Foraminifera 

Foraminifera were collected every three meters of depth in a transect starting at the reef 

base to the reef crest. However, for the purposes of this study only transects sampled at 

3±1 m and 12±1 m were taken in consideration. On the reef slope a sample of the reef 

substratum was collected to a depth in the sediment/rubble that no larger benthic forams 

were observed. Afterwards the samples were washed to remove the foraminifera from the 

larger and heavier parts of coral rubble, dried, and further processed in the laboratory. 

Foraminifera larger than 500 µm were subjected to further study. Only samples with more 

than approximately 200 individuals of LBF were sorted out at and identified at species 

level using a stereomicroscope. 

 

3.3.7. Microbes 

In each site, sediment and sponge samples (when present) were collected. Sediment 

samples were taken using the mini core method. Mini-cores, consisting of the top 5 cm of 

sediment, were collected using a plastic disposable syringe from which the end had been 

cut in order to facilitate sampling (Capone et al. 1992). Twenty one fragments of Stylissa 

massa were collected, stored in 96% EtOH (Cleary et al. 2013a) and kept at temperatures 

lower than 4ºC immediately after collection. Once in the laboratory, samples were stored 

at -20 ºC until DNA extraction.  

 

3.3.8. Environmental variables - Satellite data 

Spermonde coral reef waters are characterized as Case II (i.e., waters with optical 

properties that are typically controlled by three independent components: phytoplankton 

(including its main light harvesting pigment-clorophyll-a) and their associated debris; 

dissolved organic matters of terrigenous origin, known variously as yellow substance, 

Gelbstoff, Gilvin or CDOM; and mineral particles and various suspended sediments). 

Furthermore, the contribution of all these constituents for the optical water leaving signal 

of these waters demands a careful analysis in order to infer the weight of each one of 

them in the final magnitude of the signal and thus avoid the overestimation of 

phytoplankton concentrations (Richardson and LeDrew 2006). 

In the present study, environmental variables including near-surface chlorophyll-a 

concentration (Chlor_a), sea surface temperature (SST), remote sensing reflectance at 

645 nm (Rrs_645) and colored dissolved organic matter index (CDOM_index) were 

assessed for the study region using ocean color satellite imagery. Colored dissolved 
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organic matter index was used as a tracer of riverine inputs (Fichot 2013) and Rrs_645 as 

a proxy for total suspended sediments derived from land based erosion (Miller and McKee, 

2004; Chen et al. 2007). CDOM is largely composed of humic and fulvic substances 

resulting either from decaying plant material brought by land run-off in areas with high 

vegetation productivity or originating from mangroves and seagrasses (Carder et al. 1999 

in Martin 2004; Richardson and LeDrew 2006). MODIS band 1 (645 nm) with 250 m pixel 

resolution has been shown to perform well in coastal turbid waters (Franz et al. 2006; 

Chen et al. 2007) and Miller and Mckee (2004) showed a significant and robust linear 

relationship (r2=0.89) between Rrs_645 and total suspended matter concentration. These 

components often lead to turbid waters, which can be highly reflective at the NIR bands 

producing considerable errors in the assessment of the derived products (Wang and Shi 

2007). In the present study, we employed a SWIR atmospheric correction for deriving 

chlorophyll (Chlor_a) (Wang et al. 2007). The agreement between in situ chlorophyll 

values and MODIS in complex turbid waters is significantly improved when the SWIR 

algorithm is used (Franz et al. 2006). This satellite image treatment has been used in 

coastal waters with success in several studies (Chen et al. 2007; Lahet and Stramski 

2010; Zhang et al. 2010). 

Aqua Moderate Resolution Imaging Spectroradiometer (MODIS-Aqua) Level 1A LAC (1 

km resolution) data were obtained from the NASA Goddard Space Flight Center through 

the Ocean Color web site (http://oceancolor. gsfc.nasa.gov/cgi/) and processed to Level 3 

format using NASA's SeaWiFS Data Analysis System (SeaDAS version 7.0) software. 

The atmospheric correction used over the highly reflective coastal waters of the 

Spermonde Archipelago was made using the short wave infrared (SWIR) correction 

algorithm (Gordon and Wang 1994; Wang and Shi 2007).  

Due to the satellites incapacity to measure ambient temperature at depth, the temperature 

values used for the analyses at 12 m and 3 m were the same – i.e., the “skin” sea 

temperature. Our results should thus be interpreted as how the skin surface temperature 

influences variation in taxon composition at 3 m and 12 m depth. However, the main goal 

of this study was to use the remote sensed variables as proxies of environmental patterns 

of variation and not to quantitatively estimate the parameters in Case II waters. Since the 

accuracy of satellite data (compared to in situ data) tends to be higher with long-term 

averaging (Patt et al. 2003), time series of monthly mean data were generated. Mean 

values were generated for the previously mentioned satellite-derived parameters for the 

years 2008, 2009 and 2010. In order to avoid months with high cloud cover, only the 

months of June, July and August were analyzed in this study.  
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3.3.9. DNA extraction 

We isolated PCR-ready genomic DNA from sediment and sponge samples using the 

FastDNA® SPIN Kit following the manufacturer's instructions. This is an extraction method 

frequently used for this purpose (Urakawa et al. 2010; Costa et al. 2013; Cleary et al. 

2013a). Briefly, we prepared sediment samples by centrifuging each one for 30 min at 

4400 rpm at 4 ºC and the sponge samples by cutting each fragment into small pieces. 500 

mg of sediment and sponge were transferred to Lysing Matrix E tubes containing a 

mixture of ceramic and silica particles. The microbial cell lysis was performed in the 

FastPrep® Instrument (Q Biogene) for 80 seconds at the recommended speed. The 

extracted DNA was eluted into DNase/Pyrogen-Free Water to a final volume of 50 μl and 

stored at -20°C until use. 

 

3.3.10. PCR amplification 

Archaeal and bacterial 16S rRNA gene fragments were amplified for DGGE using a 

nested PCR assay (two consecutive amplification reactions). For the archaeal 16S rRNA 

gene amplification, the first PCR amplification was performed using DNA with archaea 

specific primers ARC344f-mod and Arch958R-mod (Pires et al. 2012). After a 

denaturation step at 94°C during 5 min, 30 thermal cycles of 1 min at 94°C, 1 min at 56°C 

and 1 min at 72°C were carried out followed by an extension step at 72°C for 7 min (Pires 

et al. 2012). The second PCR amplification was carried out using a dilution (1:25) of the 

amplicons from the first PCR with DGGE archaea specific primers 524F-10 and 

Arch958R-mod (GC) (Pires et al. 2012). After a denaturation step at 94°C during 5 min, 35 

thermal cycles of 1 min at 94°C, 1 min at 50°C and 1 min at 72°C were carried out 

followed by an extension step at 72°C for 7 min. For the bacterial 16S rRNA gene 

amplification the first PCR amplification was performed from DNA using the F-27 and R-

1494 primers (Gomes et al. 2008). After a denaturation step at 94°C for 5 min, 25 thermal 

cycles of 45 sec at 94°C, 45 sec at 56°C and 1:30 min at 72°C were carried out followed 

by an extension step at 72°C for 10 min. The second PCR amplification was carried out 

using a dilution (1:25) of the amplicons of the first PCR with DGGE primers F984-GC and 

R-1378 (Gomes et al. 2008). After a denaturation step at 94°C during 4 min, 25 thermal 

cycles of 1 min at 95°C, 1 min at 53°C and 1.30 min at 72°C were carried out followed by 

an extension step at 72°C for 7 min. 
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3.3.11. DGGE of 16S rRNA gene fragments 

For DGGE analysis, we used the DCode Universal Mutation Detection System (Bio-Rad, 

Paris, France). A double gradient polyacrylamide gel (10–6% acrylamide) with a 50–58% 

denaturing gradient was loaded with PCR product (7μl for Stylissa massa sponge samples 

and 4μl for sediment samples) together with 5μl of DGGE loading buffer to the denaturing 

gradient gel electrophoresis (DGGE). The run of loaded gels was carried out at constant 

temperature (58ºC) and voltage (160 V) during 16 hours in a 1× Tris-acetate-EDTA buffer. 

The DGGE gels were coloured using the silver staining method (Heuer et al. 2001), 

scanned and analysed with the BioNumerics Version 6.6 program (Applied Maths). The 

gel image was corrected for background noise (disk size=10%) and densitometric curves 

were extracted using an averaging thickness of 15 pts. The densitometric profiles were 

filtered using an arithmetic averaging and a least square filtering cut-off below 1.00%. 

DNA bands were automatically selected with band search parameters set at: 1.0% 

minimum profiling and a shoulder sensitivity of 2%. Based on the densiometric curves, a 

binary numerical band matching matrix with the numerical intensities of the bands was 

created and exported.  

 

3.3.12. Cloning 

The DGGE of archaea from S. massa only revealed a single band. We, therefore, decided 

to clone the PCR product. We added 0.25 μl of 10 mM dATP, and 0.5 unit of Taq 

polymerase to a composite of 5 archaeal S. massa PCR products. The resultant reaction 

was incubated at 70ºC for 20 min. These DNA fragments were purified with Gene clean II 

kit (MPbio) and subsequently cloned into the pGEM®-T Easy vector (Promega Corp. 

Madison, WI) according to the instructions provided by the supplier. The ligated plasmids 

were transformed into competent cells (Escherichia coli JM109; Promega) and plated on 

LB medium containing 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal), 

isopropyl-β-D-thiogalactopyranoside (IPTG), and 100 μg/ml ampicillin. Plasmid DNA was 

isolated from white colonies, purified and sequenced in GATC Biotec (http://www.gatc-

biotech.com). The obtained sequence data were compared with different sequences 

available in the GenBank database using blast-n search 

(http://www.ncbi.nlm.nih.gov/BLAST/). Partial 16S rRNA gene sequences generated in 

this study can be downloaded from the NCBI SRA: Accession number not yet available. 
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3.3.13. Analyses 

All environmental data (including satellite and substrate data), spatial and species-by-

transect abundance matrices were imported into R (R Core Team 2013). We did not 

import the matrix of archaea from S. massa because there was only a single band. 

Sequence analysis using BLAST revealed that the dominant archaeal symbiont present in 

S. massa was very closely related (99% - 100%) to an uncultured archaeon previously 

isolated from Phakellia fusca hosts in the South China Sea (Han et al. 2012). Given that 

depth explained significant amounts of variation in composition for various taxa in 

previous studies (Cleary et al. 2005; Cleary and Renema 2007), we analysed 3 and 12 m 

transects separately here in order to assess how taxa responded to environmental and 

spatial variables at different depths. All taxon data matrices were log10 (x+1) transformed 

and distance matrices constructed using the Bray-Curtis index with the vegdist() function 

in the vegan package (Oksanen et al. 2009) in R. The Bray-Curtis index is one of the most 

frequently applied (dis)similarity indices used in ecology (Legendre and Gallagher 2001; 

Cleary 2003; Becking et al. 2006; de Voogd et al. 2009). The environmental data matrices 

were log10 (x+1) transformed and distance matrices constructed using the Euclidean index 

with the vegdist function in the vegan package. In order to assess to what degree the 

variation in composition of taxa could be explained by spatial and environmental variables, 

we used permutational regression (Legendre et al. 1994). First, triangular distance 

matrices were unfolded to vectors using a modified function in R of the dist2sym function 

found in Venables and Ripley (Venables and Ripley 2002). We used the forward.sel 

function of the packfor package (Jombart et al. 2009), which selects significant 

explanatory variables based on a forward selection procedure and uses a permutation test 

to infer significant associations between taxon composition and spatial and environmental 

variables. The forward selection test used was based on a novel forward selection 

procedure that corrects for the inflated Type I error and overestimation of explained 

variance associated with classical forward selection (Blanchet et al. 2008). For those taxa 

in which variation in composition was explained both by spatial and environmental 

variables, we used variance partitioning (Borcard and Legendre 2002) with the varpart 

function in vegan to partition the total variation in community composition into a purely 

environmental fraction, a spatially structured environmental fraction, and a purely spatial 

fraction. Taxon diversity was assessed with rarefied species richness (S) (Gotelli and 

Colwell 2001) and Shannon’s (H’) diversity index (Shannon and Weaver 1949) using the 

diversity and specnumber functions of the vegan package. 
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3.4. Results 
 

With the exception of sponge bacteria, which were only sampled at 3 m, all the taxa were 

most diverse at 12 m depth (Table 3.4.1).  

Table 3.4.1 - Shannon’s (H’) diversity index and rarefied species richness (S) for corals, 

sponges, forams, sediment bacteria, sediment archaea and sponge bacteria from Badi 

(Bad), Bone Lola (Bon), Kapoposang (Kap), Karanrang (Kar), Kudingkareng Keke (Kud), 

Lae Lae (Lae); Langkai (Lan), Lankadea (Lnk), Lanyukang (Lny), Lumulumu (Lum), 

Padjenekang (Paj), Polewali (Pol) and Samalona (Sam) at both depths (3 and 12 m). 

 

 

Of the taxa, foraminifera were the least diverse and sediment bacteria the most diverse. 

At 3 meters, species richness varied from 9 (Lumulumu) to 24 (Lankadea) for corals, 10 

(Lae Lae) to 26 (Kudingkareng Keke) for sponges and 6 (Kudingkareng Keke) to 15 

(Lumulumu, Polewali and Samalona) for forams. Band richnesss at 3 m varied from 46 

(Langkai) to 55 (Karanrang) for sediment bacteria 29 (Bone Lola, Karanrang and 

Kudingkareng Keke) to 41 (Lankadea) for sediment archaea and 33 (Badi and Polewali) to 

44 (Lumulumu) for sponge bacteria. At 12 meter, species richness varied from 7 (Lae Lae) 

to 30 (Kudingkareng Keke) for corals, 31 (Badi) to 60 (Bone Lola) for sponges and 6 (Badi) 

to 38 (Karanrang) for forams. Band richness at 12 m varied from 47 (Lankadea and 

Reefs Depth H S H S H S H S H S H S
Bad 3 1.518 13 --- --- --- --- 3.505 51 2.627 35 2.877 33
Bad 12 1.597 18 3.028 31 0.798 6 --- --- --- --- --- ---
Bon 3 1.804 18 2.452 20 --- --- 3.545 53 2.959 29 2.913 38
Bon 12 2.827 23 3.267 60 1.550 12 3.496 55 3.101 40 --- ---
Kap 3 1.707 13 1.385 11 --- --- 3.557 52 2.900 32 2.977 38
Kar 3 2.315 23 2.135 21 1.247 12 3.514 55 2.908 29 3.019 34
Kar 12 2.843 29 3.408 44 2.414 38 3.569 54 3.097 33 --- ---
Kud 3 1.597 9 2.753 26 0.738 6 3.528 50 2.847 29 2.936 39
Kud 12 2.794 30 3.511 57 1.538 12 3.551 55 3.037 35 --- ---
Lae 3 2.121 15 1.855 10 1.465 12 3.636 53 2.822 30 3.178 43
Lae 12 1.791 7 3.197 38 0.964 14 3.492 50 3.217 41 --- ---
Lan 3 1.773 12 --- --- --- --- 3.352 46 2.849 33 2.898 37
Lan 12 2.395 16 3.135 43 1.784 25 3.435 47 3.077 34 --- ---
Lnk 3 2.659 24 --- --- --- --- 3.391 48 3.120 41 3.035 38
Lnk 12 2.830 25 --- --- 2.171 27 3.546 52 2.777 28 --- ---
Lny 3 1.983 11 --- --- --- --- --- --- --- --- --- ---
Lny 12 2.405 18 --- --- --- --- --- --- --- --- --- ---
Lum 3 1.448 9 --- --- 1.523 15 --- --- --- --- 3.176 44
Lum 12 2.350 24 3.066 35 1.934 18 3.514 53 3.168 39 --- ---
Paj 3 2.535 20 --- --- 0.738 8 3.405 49 2.847 33 3.098 41
Paj 12 2.266 27 --- --- 1.530 16 3.702 60 3.391 41 --- ---
Pol 3 2.133 17 2.357 24 1.458 15 3.478 52 2.773 29 2.884 33
Pol 12 2.440 20 3.375 47 --- --- 3.370 47 3.080 35 --- ---

Sam 3 1.526 10 2.699 17 1.015 15 3.576 54 3.027 36 3.107 41
Sam 12 2.671 22 2.891 37 1.486 16 --- --- --- --- --- ---

Corals Sponges Forams Sediment Bacteria Sediment Archaea Sponge Bacteria
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Polewali) to 60 (Padjenekang) for sediment bacteria and 28 (Lankadea) to 41 

(Padjenekang) for sediment archaea. 

Of the remotely sensed variables (Figure 3.4.1 and Table 3.4.2), CDOM was lowest at 

Kapoposang (2.295) and highest at Polewali (4.113). Chlor_a was lowest at Kudingkareng 

Keke (0.233 mg.m-3) and highest at Lae Lae (0.634 mg.m-3). SST and Rrs_645 were 

lowest at Langkai (29.259 deg.C; 0.000213 sr-1) and highest at Lankadea (29.549 deg.C; 

0.000893 sr-1). 

 

 

Figure 3.4.1 - Seasonal (June, July and August) mean of Rrs_645, SST, CDOM and 

Chlor_a values based on monthly mean data from 2008 to 2010 derived from the MODIS-

Aqua sensor for the Spermonde Archipelago. 
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Table 3.4.2 - CDOM, Chlor_a, Rrs_645 and SST values 2010 derived from the MODIS-

Aqua sensor from Badi (Bad), Bone Lola (bon), Kapoposang (Kap), Karanrang (Kar), 

Kudingkareng Keke (Kud), Lae Lae (Lae); Langkai (Lan), Lankadea (Lank), Lanyukang 

(Lny), Lumulumu (Lum), Padjenekang (Paj), Polewali (Pol) and Samalona (Sam). 

 

Live coral cover at 3 meters varied from 28.1% (Lanykang) to 83.27 % (Badi). Dead coral 

cover varied from 3.93 % (Kudingkaren Keke) to 34.43 % (Lae Lae). Rubble cover varied 

from 0.43 (Kapoposang) to 45.6 % (Kudingkaren Keke) and sand cover varied from 0 

(Badi) to 88.4 % (Kapoposang). Live coral cover at 12 meters varied from 4.53 (Lae Lae) 

to 71.57 % (Lumulumu). Dead coral cover varied from 13.17 (Samalona) to 37.47% 

(Polewali). Rubble cover varied from 0 (Polewali) to 40.43% (Samalona) and sand cover 

varied from 0 (Badi) to 28.17% (Lae Lae).  

Spatial and environmental variables explained up to 74% of variation in composition of all 

studied taxa. There were, however, marked differences among taxa/groups (Figure 3.4.2, 

Figure 3.4.3 and Table 3.4.3). 

With the exception of forams and sponge bacteria, all taxa sampled at 3 m varied 

significantly with respect to the distance between sites (sponges: Adjusted R2 = 0.17, F = 

6.66, P = 0.02; corals: Adjusted R2 = 0.05, F = 4.88, P = 0.026; sediment bacteria: 

Adjusted R2 = 0.05, F = 4.13, P = 0.049; sediment archaea: Adjusted R2 = 0.09, F = 6.15, 

P = 0.016) (Figure 3.4.2). The only taxon where variation in composition was significantly 

related to distance at 12 m depth was sponges (Adjusted R2 = 0.067, F = 4.86, P = 0.03). 

All the six groups varied significantly with respect to one or more environmental variables 

but this varied strongly between depths (Table 3.4.3). 

Reefs CDOM Chlor_a Rrs_645 SST
Bad 3.376 0.266 0.000626 29.424
Bon 3.805 0.468 0.000555 29.453
Kap 2.295 0.272 0.000644 29.534
Kar 4.081 0.366 0.000769 29.461
Kud 3.570 0.233 0.000299 29.317
Lae 3.791 0.634 0.000791 29.414
Lan 2.808 0.234 0.000213 29.259
Lnk 4.035 0.421 0.000893 29.549
Lny 2.748 0.245 0.000248 29.337
Lum 3.077 0.275 0.000343 29.433
Paj 3.706 0.281 0.000613 29.451
Pol 4.113 0.447 0.000748 29.511
Sam 3.846 0.318 0.000283 29.350
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Figure 3.4.2 - Variation in the composition of corals (a, b, c), sponges (d, e, f), forams (g, h, 

i), sediment bacteria (j, k, l) and sediment archaea (m, n, o) at 3 m depth and as a function 

of distance between sites (a, d, g, j, m), colored dissolved organic matter index (CDOM) (b, 

e, h, k, n) and Chlor_a (c, f, i, l, o). Significant relationships are indicated by a red 

regression line. 

 

Only forams showed no significant relationship to environmental variables at 3 m depth. 

Variation in the composition of shallow sediment bacteria and archaea sampled was 

primarily explained by CDOM.  



Chapter 3 

60 
 

 

Figure 3.4.3 - Variation in the composition of corals (a, b, c), sponges (d, e, f), forams (g, h, 

i), sediment bacteria (j, k, l), sponge bacteria (m, n, o) and sediment archaea (p, q, r) at 12 

m depth as a function of distance between sites (a, d, g, j, m), colored dissolved organic 

matter index (CDOM) (b, e, h, k, n) and Chlor_a (c, f, i, l, o). Significant relationships are 

indicated by a red regression line. 

 

Variation in the composition of corals, in contrast, was primarily explained by SST and 

sand cover. Space (Adjusted R2 = 0.173, F = 6.66, P = 0.02) and CDOM (Adjusted R2 = 

0.172, F = 6.59, P = 0.018) explained very similar amounts of variation in the composition 

of shallow water sponges, a reflection of the spatial structuring of CDOM. 
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Table 3.4.3 - Results of forward selection regression analysis for corals, sponges, forams, 

sediment bacteria, sediment archaea and sponge bacteria at 3 and 12 m depths. 

 

 

CDOM also explained significant variation in the composition of deeper (12 m depth) 

forams. In contrast to shallow transects, substrate variables (live and dead coral cover) 

were the most important explanatory variables of variation in the composition of deeper 

sediment bacteria and archaea. A number of variables including live coral cover, CDOM, 

sand cover and Chlor_a explained almost 74% of the variation in deeper coral 

composition. When live coral cover was excluded, the most important explanatory variable 

of coral composition was Chlor_a, explaining more than 39% of the variation in 

composition. 

Although four of the six studied groups sampled in shallow water varied significantly with 

space, none of the variation in composition was due to the purely spatial component 

(Figure 3.4.4). The spatially structured environmental component explained from 5% 

(corals and sediment bacteria and archaea) to 20% (sponges) of variation in composition. 

Group Depth Expl. Var. Adj. R2 F P
SST 0.130 12.53 0.001

Sand cover 0.213 8.98 0.007
Coral cover 0.540 77.32 0.001

CDOM 0.646 20.17 0.001
Sand cover 0.682 8.04 0.010

Chlor_a 0.709 6.74 0.012
Dead Coral 0.723 4.29 0.045

Rrs_645 0.742 5.25 0.024
3 m Distance 0.173 6.66 0.017

CDOM 0.135 9.45 0.005
Distance 0.238 8.15 0.003

3 m - - - -
12 m CDOM 0.112 6.55 0.012

CDOM 0.301 24.239 0.001
Sand cover 0.359 5.846 0.014
Coral cover 0.262 13.447 0.002

SST 0.442 11.980 0.001
Dead Coral 0.506 5.267 0.028

Rubble 0.558 4.720 0.033
CDOM 0.274 21.366 0.001

Dead Coral 0.353 7.463 0.012
Dead Coral 0.213 10.496 0.005
Coral cover 0.322 6.419 0.013

3 m SST 0.046 4.146 0.040
12 m - - - -

8.680
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bacteria

Sediment 
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The purely environmental component explained from 17% (corals) to 30% (sediment 

bacteria and archaea) of variation in composition.  

 

 

Figure 3.4.4 - Venn diagrams showing the amount of variation explained by purely spatial, 

purely environmental and spatially structured environmental (overlap) components for a) 

corals, b) sponges c) sediment bacteria and d) sediment archaea at 3 meters. 

 

Of the deep water assemblages, only sponges showed a significant relationship between 

composition and depth (Figure 3.4.5). Here the purely spatial component explained 10% 

of variation in composition and the purely environmental component 17%. 
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Figure 3.4.5 - Venn diagrams showing the amount of variation explained by purely spatial, 

purely environmental and spatially structured environmental (overlap) components for 

sponges at 12 meters. 

 

 

3.5. Discussion 
 

CDOM, Chlor_a and Rrs_645 showed an in-to-offshore gradient whereas SST varied 

along a North to South gradient. Gordon et al. (2012) reported a warmer Indonesian 

throughflow during the Southeast monsoon (boreal summer) in the years preceding our 

sampling. These years were used for the satellite data analysis (2008-2009). The 

Indonesian throughflow consists in a water mass fed essentially by waters from the North 

Pacific Thermocline, which flow through the Makassar Strait thereby enabling 

communication between two different oceans. This warmer water mass reaches the 

northern reefs of the Spermonde archipelago leading to higher SST values in these reefs. 

River discharge from the Jene Berang (that passes through the city of Makassar) and the 
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Maros river (in the north) strongly influence water transparency of the closest reefs 

through the input of terrigenous sand, silt and land based sources of pollution (Cleary et al. 

2005). While the discharge of the Maros river is mainly derived from a carbonate rich 

drainage area, the discharge of the Jene Berang river, besides being larger and 

containing volcanically derived erosion products (Renema and Troelstra 2001), also 

includes land-based agricultural and urban run-off as well as effluents from the Makassar 

sewer system (Renema and Troelstra 2001; Becking et al. 2006). Additionally, the rivers 

located further north (e.g., Salo Lampe and Salo Puke) cross essentially rural areas. The 

increasing agriculture land use and deforestation led to high rates of soil erosion and 

sedimentation which, through river transportation, reach the marine environment and the 

coastal coral reefs.  

The diversity indices varied considerable between depths. Interestingly, at 3 m, reefs 

close to Makassar city such as Samalona, Lae Lae, Kudingkareng Keke and Bone Lola 

had high diversities of sponges, sediment bacteria, sediment archaea and sponge 

bacteria. In contrast, the northeastern reefs including Lumulumu, Padjenekang, Karanrang 

and Polewali had high diversities of corals and forams. At 12 meters the diversity of 

sponge and sediment bacteria and archaea was high in Kudingkareng Keke and in 

northern reefs such as Padjanekang and Karanrang. For corals and forams Karanrang 

and Lankadea had the higher diversity followed by Bone Lola and Kudingkareng Keke for 

corals and Lumulumu and Langkai for forams. This reinforces the notion that a number of 

these taxa are unable to deal with high levels of pollution and eutrophication associated 

with coastal areas located next to mega cities like Makassar. These conditions adversely 

affect photosymbiont hosting organisms such as corals and forams and benefit taxa that 

rely on dissolved organic matter assimilation to fulfill an important part of their energetic 

needs, such as sponges, bacteria and archaea (de Goeij et al. 2008; Shank et al. 2010). 

The persistent exposure to land based perturbations also have led to the high values of 

sand, ruble and dead coral in inshore reefs (Lae Lae, Samalona and Polewali).  

Our results showed that satellite derived environmental variables, in particular colored 

dissolved organic matter index (CDOM) and Chlor_a, explained significant amounts of 

variation in the composition of the studied taxa. As an important absorber of short 

wavelength in the visible light region, dissolved organic matter has been reported to 

protect marine organisms from ultraviolet (UV) radiation and shorter wavelengths of PAR 

(Shank et al. 2010; Kuwahara et al. 2010; Ayoub et al. 2012). High CDOM concentrations 

normally occur in reefs adjacent to intact shoreline, i.e., close to high densities of 

mangroves, seagrasses and/or inputs from terrestrial vegetation through runoff. Some 

studies have shown higher attenuation of UV radiation in inshore reefs resulting in a 
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lowered susceptibility of inshore reef organisms to photic stress when compared to their 

offshore counterparts (Ayoub et al. 2009, 2012). Our results support studies that have 

shown dissolved organic matter to be important in structuring coastal communities (Arrigo 

al. 1996; Stedmon et al. 2000; Ayoub et al. 2009; McCarren et al. 2010; Grubisic et al. 

2012; Baña et al. 2014). The present study also showed that the composition of 

prokaryote communities from shallow sediments was primarily related to CDOM. During 

the photo breakdown of CDOM, a series of photochemical reactions occur resulting in low 

molecular weight byproducts. These are liable to be assimilated by microbial communities 

enhancing their activity (Daniel et al. 2006; Shank et al. 2010). Also sponges, as filter 

feeders, rely on dissolved organic matter assimilation to fulfill their carbon needs (Yahel et 

al. 2003; de Goeij et al. 2008) and thus can also be affected by variation in CDOM 

composition and concentrations. Some authors considered dissolved organic matter as 

the primary source of carbon for sponges (Yahel et al. 2003; Hunting et al. 2010). 

Curiously, in contrast to sediment-dwelling bacteria and archaea in shallow waters, no 

variation in sponge bacterial composition was explained by CDOM. Enclosed in a very 

nutrient rich environment (Hentschel et al. 2012), sponge bacteria appear to be less 

sensitive to environmental fluctuations in nutrient concentrations. Nutrient availability 

inside sponges is also necessarily different when compared to nutrient availability in 

sediment; these differences can lead to the adoption of distinct nutritional strategies by the 

microbial community. The nutritional importance of CDOM for microbial communities can 

be higher in sediment where the competition for nutrients is greater and availability lower. 

Our results showed CDOM to be the main explanatory variable for sediment microbial 

communities at 3 m depths.  

Chlorophyll-a concentrations are directly related to nutrient availability in surface waters. 

High nutrient levels differentially benefit algae and filter feeding benthos such as sponges 

as opposed to photosymbiont hosting organisms such as corals and forams (Mutti and 

Hallock 2003). Our results showed corals to respond significantly to chlorophyll-a 

concentrations as indicated by the significant relationship obtained between coral 

composition and Chlor_a. Spatial competitors (macroalgae) and the biomass of 

bioeroders (sponges, bivalves, etc.) are also known to be higher in areas of nutrient 

enrichment (Holmes 2000; Baird et al. 2013).  

Variation in remote sensing reflectance at 645 nm (Rrs_645) only explained a significant 

amount of variation in the composition variation of corals at 12 m depth. Suspended 

sediments are key determinants of turbidity and consequentially of the amount of light 

available for photosynthetic organisms. As algal symbiont-bearing organisms, corals are 

sensitive to variation in the depth of the photic zone. High sedimentation rates can result 
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in a reduction of coral growth, recruitment, calcification and accretion rates (Rogers 1990). 

Coral species appear to respond differently to this type of environmental perturbation 

depending largely on their polyp size and sediment-shedding mechanisms (Bongaerts et 

al. 2012; Erftemeijer et al. 2012). Acropora corals, for example, have been shown to be 

highly sensitive to increased sedimentation. Massive corals, such as various Porites and 

Platygyra species, in contrast, tend to be much more tolerant (McClanahan and Obura 

1997; Torres and Morelockl 2002).  

Our results showed strong differences in the relationship between composition and 

environmental variables at different depths. Cleary et al. (2005) reported depth as the 

most important explanatory variable for sponges, corals and foraminifera followed by 

distance offshore. With respect to sponges, of the 144 species sampled during this study, 

78 were observed in 3 m transects whereas 126 were observed in 12 m transects. 

Abundance of sponge individuals was also greater at 12 m (n=961) versus 3 m (n= 356). 

Sponge assemblages at 3 m depth were thus sparser and less diverse.  

Environmental variables also vary with depth. As depth increases, light penetration, 

temperature and hydrodynamic energy are reduced (Cleary et al. 2005; Lesser et al. 

2006), and the influence of environmental variables such as dissolved organic matter, 

suspended sediment and nutrient availability are altered. Reefs in turbid waters can 

experience a reduction in light penetration of about 70% in the first 2 m depth (Browne et 

al. 2010). Conversely, in reefs with low levels of turbidity similar reductions in light 

availability are only attained at 10 m (Browne et al. 2010). In the Spermonde archipelago, 

turbidity is similar at shallow and deeper depths at the inshore reefs, but higher at deeper 

depths in the midshore reefs. This suggests that complex interactions among 

environmental parameters can affect variation in composition of several taxa.  

Substrate complexity can influence coral reef community composition (Lara and Gonzalez 

1998; Nakamura and Sano 2005; Cleary et al. 2008). Here, substrate variables only 

explained variation in the composition of corals and sediment bacteria and archaea. The 

relationship between coral composition and coral and sand cover reflects the dominant 

coral groups in habitats with high coral versus high sand cover. In high coral cover 

environment, branching corals, particularly Acropora spp., tend to dominate. In habitat 

with high sand cover, massive and encrusting corals belonging, e.g., to the genera Porites 

tend to be the dominant corals (Cleary et al. 2008; Cleary et al. 2013b). Habitats with a 

high sand cover are sometimes the result of previous environmental perturbations, such 

as, coral mining or land-based pollution (Cleary et al. 2006; Rachello-Dolmen and Cleary 

2007). Acropora species, for example, have been shown to be particularly sensitive to 
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pollution (Bellwood and Hughes 2001; Torres and Morelockl 2002) and disappear from 

affected areas. In the Pulau Seribu reef system, inshore reefs that have been adversely 

impacted by their proximity to the city of Jakarta have very high sand cover (63%) 

compared to (22%) for reefs further offshore (Rachello-Dolmen and Cleary 2007; Cleary 

et al. 2008). Acropora species have also largely disappeared from these inshore reefs 

(Van der Meij et al. 2010). Once prevalent, sand can continue to exert a strong influence 

on coral composition. Algae, sediment and sand are noted poor habitats for settlement 

and survival, as opposed to coralline algae and dead coral substrate that are suitable for 

settlement (Harrington et al. 2004; Norström et al. 2007). According to Norström et al. 

(2007), the morphology of dead coral has a strong influence on the morphology of the 

settled coral larvae; branching dead coral appears to be a preferable settlement substrate 

for branching coral larvae, while the same holds for massive dead coral and massive coral 

larvae. Mergne and Scheer (1974; reviewed in Huston 1985) also reported a reduction in 

the number of coral species as sand and coral debris cover increased from 15 to 90%. 

Interestingly, shallow and deeper bacteria and archaea appeared to respond differently to 

environmental conditions. In shallow transects variation in composition was primarily 

related to CDOM whereas in deeper transects variation in composition was primarily 

related to the local substrate. Differences in coral reef substrate were previously reported 

to alter the microbial community (Wild et al. 2005, 2006). The abundance of prokaryotes in 

carbonate reef sands, for example, was reported to be one order of magnitude higher than 

in silicate sands of a similar grain size spectrum. The complex surface structure and 

highly porous matrix of the carbonate reef sands enhances the surface area available for 

prokaryotes to penetrate (Wild et al. 2006; Schöttner et al. 2011). According to Wild et al. 

(2004), corals can exude around 5 liters of mucus per square meter of reef area per day. 

Most of the mucus is released in the seawater and sinks to the surrounding sand. In the 

sand, this mucus is consumed by the prokaryotic communities which act as nutrient 

recyclers. This is consistent with our results showing live and dead coral cover as the 

most important explanatory variables of variation in the composition of deeper sediment 

bacteria and archaea. The nutrient composition of sediment close to live corals and to 

dead coral is, thus, necessarily different and appears to be an important determinant of 

prokaryotic composition. The higher availability of land based organic matter in shallow 

waters may diminish the substrate importance in structuring prokaryotic composition. Due 

to their proximity to river runoff, the inshore shallow reefs are likely to be dominated by 

land-derived silicate sands (Schöttner et al. 2011).  

The lack of purely spatial structuring in the present study contradicts previous studies of 

the area (Cleary and Renema 2007; Becking et al. 2006). Importantly, in the present study 
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we sampled both on-to-offshore and along shore at similar spatial scales. This sampling 

strategy thus appears to have negated any purely spatial structuring. Although our results 

indicate the prevalence of environment as opposed to purely spatial phenomena in 

structuring marine assemblages, it is important to note that spatial phenomena may still 

play a role in structuring these assemblages at smaller or larger scales than assessed in 

this study. 

 

 

3.6. Conclusions 
 

The large amount of total variation explained by satellite derived environmental factors 

supports remote sensing as an important tool for studying coral reef taxa. Our results also 

reveal marked differences in the relationship between composition and environment within 

taxa from different depths and importantly between taxa. This implies that different 

approaches in terms of multi-taxon reef habitat management should be taken into 

consideration when designing effective conservation strategies. 
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4.1. Abstract 
 

Coral reefs are among the most diverse and productive ecosystems in the world. Most 

research has, however, focused on eukaryotes such as corals and fishes. Recently, there 

has been increasing interest in the composition of prokaryotes, particularly those 

inhabiting corals and sponges, but these have mainly focused on Bacteria. There have 

been very few studies of coral reef Archaea, despite the fact that Archaea have been 

shown to play crucial roles in nutrient dynamics, including nitrification and 

methanogenesis, of oligotrophic environments such as coral reefs. Here, we present the 

first study to assess Archaea in four different coral reef biotopes (seawater, sediment and 

two sponge species, Stylissa massa and Xestospongia testudinaria). The archaeal 

community of both sponge species and sediment was dominated by Crenarchaeota, while 

the seawater community was dominated by Euryarchaeota. The biotope explained more 

than 72% of the variation in archaeal composition. The number of OTUs was highest in 

sediment and seawater biotopes and substantially lower in both sponge hosts. No 

'sponge-specific' archaeal OTUs were found, i.e., OTUs found in both sponge species but 

absent from non-host biotopes. Despite both sponge species hosting phylogenetically 

distinct microbial assemblages, there were only minor differences in KEGG (Kyoto 

Encyclopedia of Genes and Genomes) functional pathways. In contrast, most functional 

pathways differed significantly between microbiomes from sponges and non-host biotopes 

including all energy metabolic pathways. With the exception of the methane and nitrogen 

metabolic pathway, all energy metabolic pathways were enriched in sponges when 

compared to non-host biotopes. 

 

Keywords: Thaumarchaeota; Crenarchaeota; Euryarchaeota; KEGG; PICRUSt; LEFse 
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4.2. Introduction 
 

Of the two known prokaryotic domains of life, Archaea is the least studied and understood. 

The archaeal domain was first described by Woese and Fox (1978). Since then it has 

undergone several taxonomic amendments. Several phyla have been proposed but a lack 

of consensus on some of the proposed phyla persists. At present, the domain Archaea 

consists of the following phyla: Crenarchaeota, Thaumarchaeota, Euryarchaeota, 

Korarchaeota and Nanoarchaeota. The Korarchaeota phylum was based on 16S rRNA 

gene sequence amplification of data from environmental sequence studies (Barnes et al. 

1996; Elkins et al. 2008). Recently, Brochier-Armanet et al. (2008, 2011) and Spang et al. 

(2010) suggested that mesophilic Crenarchaeota differed from hyperthermophilic 

Crenarchaeota and proposed Thaumarchaeota (mesophilic Crenarchaeota) as a new 

phylum. Huber et al. (2002) proposed the establishment of Nanoarchaeota as a new 

phylum based on the low similarity of Nanoarchaeum equitans sequences with known 

organisms; however, some other studies have suggested that Nanoarchaeota is a fast-

evolving lineage of the Euryarchaeota phylum related to Thermococcales (Brochier-

Armanet et al. 2005). Other recently proposed taxa include the Aigarchaeota (Nunoura et 

al. 2011) and Geoarchaeota (Kozubal et al. 2012). With the proposal of Thaumarchaeota 

as a new phylum Crenarchaeota became restricted to a single class: Thermoprotei. This 

class is normally associated with extreme environments (e.g., hot and acidic environments) 

(Offre et al. 2013). Thaumarchaeota, however, is still considered a Crenarchaeota class in 

some rRNA gene databases. 

At the time of their discovery, Archaea were thought to exclusively inhabit extreme 

environments (high temperature, salinity and/or pressure). Recently, culture independent 

methods have shown the domain to be much more widespread; it has been found in a 

variety of habitats (tropical and polar, terrestrial and aquatic, deep and shallow water; 

Webster et al. 2004; Wuchter et al. 2006; Siboni et al. 2008). Members of Archaea have 

also been found inhabiting the tissues of various sponge species (Preston et al. 1996; 

Webster et al. 2004), the mucous of scleractinian corals (Siboni et al. 2008), sediment 

(Dang et al. 2008; Cao et al. 2011) and the water column (Delong 1992; Wuchter et al. 

2006).  

Among the best known hosts of microbial communities (Turque et al. 2010; Webster and 

Taylor 2012), marine sponges, are also abundant and conspicuous components of coral 

reef systems and play important functional roles both in the benthos and water column. 

Sponges have been shown to affect water column composition (filtration, secondary 
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metabolite emanation and nutrient cycling including nitrification) (Wulff 2001; Bell 2008). 

Although sponges also feed on microbes (Hentschel et al. 2006; Lee et al. 2001), they 

harbour a remarkable variety of microbial endosymbionts within their tissues. Microbes 

provide their sponge host with nutrients, aid in metabolic waste processing and provide 

protection against ultraviolet light (Hentschel et al. 2002; Holmes and Blanch 2007; 

Webster and Taylor 2012). Sponges, in turn, offer a stable and nutrient-rich environment 

for microbes (Lee at al. 2001; Hentschel et al. 2012). 

Sponges have also been shown to host distinct microbial communities when compared to 

other non-sponge hosts or non-host biotopes such as sediment or water (Jackson et al. 

2012). Recent studies (Webster et al. 2010; Taylor et al. 2013), however, have shown that 

organisms previously thought to be found exclusively in sponges have also been found in 

non-sponge hosts or non-host environment. The extremely low concentrations of these 

organisms though in non-sponge samples had made them virtually impossible to detect 

using previous conventional molecular techniques, such as DGGE and clone libraries. It 

should be noted, however, that the presence of these organisms in non-sponge samples 

may also be the result of sponges releasing symbionts into the water column or sediment 

during spawning/injury events (Taylor et al. 2013).  

The majority of studies have showed Bacteria to be more abundant than Archaea in 

marine sponges (Taylor et al. 2007; Sharp et al. 2007; Lee et al. 2011). Twenty six 

bacterial and two archaeal phyla were found in sponges from distinct locations around the 

world to date (Taylor et al. 2011). However, there are exceptions; the archaeon 

Cenarchaeum symbiosum dominates the Axinella mexicana microbial community 

representing more than 65% of all prokaryotic cells (Preston et al. 1996). This 

predominance suggests that Archaea play a major role in sponge metabolism. However, 

the exact roles of Archaea in sponges and in sediment and seawater remain largely 

unknown. 

Despite this uncertainty, it is generally accepted that Archaea play an indispensable role 

in the transformation, degradation and recycling of nutrients and organic matter (Lee et al. 

2001; Webster et al. 2004). Several studies (Wuchter et al. 2006; Cao et al. 2011) have 

suggested that Archaea and more specifically mesophilic Crenarchaeota, which use 

dissolved inorganic carbon as a carbon source (Prosser and Nicol 2008) may be similar to 

or even surpass Bacteria (β and γ-proteobacteria) as mediators of oceanic nitrification 

(Wuchter et al. 2006; Cao et al. 2011). Francis et al. (2005) reported a more widespread 

presence of ammonia-oxidizing Archaea (AOA) than ammonia-oxidizing Bacteria in both 

the water column (Black Sea and Monterey Bay) and sediment (San Francisco Bay, Bahía 
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del Tóbari). In sponges, a recent study (Radax et al. 2012) revealed the same pattern in 

four cold water sponges. Anaerobic Archaea belonging to the Euryarchaeota phylum also 

seem to be the only organisms capable of performing methanogenesis (Valentine 2007), 

which is the last step of carbon degradation and prevents the accumulation of organic 

compounds in the environment (Kendall et al. 2007)  

Archaeal community composition and symbiont-sponge relationships appear to be host 

dependent; for example, coral hosts do not seem to establish specific associations with 

Archaea since most of the archaeal sequences found in corals are also present in the 

water column (Rosenberg et al. 2007). Sponges, in contrast, have been shown to host 

distinct microbial communities when compared to other non-sponge hosts or non-host 

biotopes (Jackson et al. 2007). Identifying the role and composition of Archaea and other 

microbes in different biotopes is thus essential in order to gain a better understanding of 

the coral reef ecosystem and the role of Archaea therein. 

In the present study, we assessed the composition of Archaea in four biotopes, two non-

host (sediment and seawater) and two host (the sponge species Stylissa massa and 

Xestospongia testudinaria) in four reef sites in the Kepulauan Seribu reef system, 

Indonesia. Our goals were to: 1. Assess to what extent sponges contain unique archaeal 

communities when compared to communities of Archaea in the surrounding environment 

(seawater and sediment); 2. Identify closely related organisms to abundant operational 

taxonomic units (OTUs) using BLAST search; 3. Construct a phylogeny of abundant 

OTUs in order to assess to what extent biotopes host phylogenetically distinct lineages; 4. 

Assess to what extent metabolic pathways differ between Archaea in different biotopes. 

 

 

4.3. Material and methods 

 

4.3.1. Study site 

The Jakarta Bay and Kepulauan Seribu coral reef system, also known as Thousand 

Islands (hereafter referred to as JBTI), is located to the northwest of Jakarta in the Java 

Sea (Figure 4.3.1).  
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Figure 4.3.1 - Map of the study area (Jakarta Bay and Kepulauan Seribu coral reef system) 

showing the location of study sites sampled. 

 

This reef system consists of 105 islands or cay-crowned reefs (Cleary et al. 2006) forming 

a coral island chain of about 80 km (Rachello-Dolmen and Cleary 2007). Thirteen rivers 

discharge into Jakarta Bay and represent important sources of organic and inorganic 

suspended matter (domestic sewage) as well as chemical pollutants and other 

substances (Rachello-Dolmen and Cleary 2007). Organic matter concentrations, however, 

decline strongly from in-to-offshore as do pollutant loads (Cleary et al. 2008). 

 

4.3.2. Sampling 

Four sites (Belanda, Pulau Kelapa, Tidung Kecil and Bokor) were surveyed using SCUBA 

between July 26th and the 10th of August 2011. At each site, samples were taken of 

sediment, seawater, and the sponges Stylissa massa and Xestospongia testudinaria. The 

sediment samples were taken using the mini core method. Mini-cores, consisting of the 



Chapter 4 

89 
 

top 5 cm of sediment, were collected using a plastic disposable syringe from which the 

end had been cut in order to facilitate sampling (Capone et al. 1992). The two sponges 

studied are common reef sponges in the Indonesian archipelago although they inhabit 

different habitats. Stylissa massa (Carter 1887) is a medium-sized orange colored sponge 

that mainly occurs in very shallow water (0.5-3 m) whereas the giant barrel sponge 

Xestospongia testudinaria (Lamarck 1815) grows mostly in deeper waters (3-50 m). 

Specimens were identified to species by NJ de Voogd. Cores of both sponge species 

were sampled including segments of surface and interior in order to sample, as much as 

possible, the whole bacterial community. The seawater samples were collected by filtering 

one liter (Sogin et al. 2006; Bowen et al. 2012) of seawater through a Millipore® White 

Isopore Membrane Filter (GTTP04700, 47 mm diameter, 0.22 µm pore size). All samples 

were stored in 96% EtOH (Previsic et al. 2009; Cleary et al. 2013) and kept at 

temperatures lower than 4ºC immediately after collection. Once in the laboratory, samples 

were stored at -20 ºC until DNA extraction.  

 

4.3.3. DNA extraction and pyrosequencing 

We isolated PCR-ready genomic DNA from seawater, sediment and sponge samples 

using the FastDNA® SPIN Kit following the manufacturer's instructions. This is an 

extraction method frequently used for this purpose (Urakawa et al. 2010; Costa et al. 2013; 

Cleary et al. 2013). Briefly, we prepared sediment samples by centrifuging each one for 

30 min at 4400 rpm and 4 ºC; the membrane filter (seawater sample) and sponge samples 

were each cut into small pieces. The whole membrane filter and 500 mg of sediment and 

sponge were transferred to Lysing Matrix E tubes containing a mixture of ceramic and 

silica particles. The microbial cell lysis was performed in the FastPrep® Instrument (Q 

Biogene) for 80 seconds at the recommended speed. The extracted DNA was eluted into 

DNase/Pyrogen-Free Water to a final volume of 50 μl and stored at -20°C until use. 

Pyrosequencing and sequence analysis were performed using previously described 

methods (Pires et al. 2012; Cleary et al. 2013) with the exception of the pick OTUs step 

where we used the recently developed UPARSE clustering method and chimera check 

(Edgar 2013) and the most recent Greengenes database (http:// 

greengenes.secondgenome.com/downloads/database/13_5) for OTU picking and 

taxonomic assignment (see Appendix for a detailed description). In the most recent 

Greengenes release, the recently adopted phylum Thaumarchaeota is still considered a 

class of the Crenarchaeota phylum; in the present study we follow the Greengenes 

taxonomy. The sequences generated in this study can be downloaded from the NCBI 

SRA: Accession number SRP023167.    
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4.3.4. Identification of closely related organisms and phylogeny of abundant OTUs 

Closely related organisms of numerically abundant OTUs ( ≥ 100 sequences) were 

identified using the NCBI Basic Local Alignment Search Tool (BLAST) command line 

'blastn' tool with the -db argument set to nt (Zhang et al. 2000). BLAST was also used to 

obtain sequences for cultured Archaea, which were included in a bootstrap consensus 

phylogenetic tree based on 1000 replicate trees along with representative sequences 

belonging to all abundant OTUs; the tree was made using the Mega5 Program 

(http://www.megasoftware.net/; last checked 2012-11-20; (Tamura et al. 2011) with the 

Nearest-Neighbor-Interchange and Generalised Time-Reversible model (Tavaré 1986) 

with Gamma distributed and invariant sites. 

 

4.3.5. Statistical analysis  

A square matrix containing the presence and abundances of all OTUs per sample was 

imported into R (R Core Team 2013) using the read.table() function. Sequences not 

classified as Archaea (e.g., Bacteria or unclassified at the level of domain, 7865 

sequences) and OTUs with < 5 sequences were removed prior to statistical analysis. The 

OTU abundance matrix was log10 (x + 1) transformed and a distance matrix constructed 

using the Bray-Curtis index with the vegdist() function in the vegan package (Oksanen et 

al. 2009) in R. The Bray-Curtis index is one of the most frequently applied (dis)similarity 

indices used in ecology (Legendre and Gallagher 2001; de Voogd et al. 2009). Variation in 

OTU composition among biotopes (S. massa and X. testudinaria, sediment and seawater) 

was assessed with Principal Coordinates Analysis (PCO) using the cmdscale() function in 

R with the Bray-Curtis distance matrix as input. We tested for significant variation in 

composition among biotopes using the adonis() function in vegan. In the adonis analysis, 

the Bray-Curtis distance matrix of species composition was the response variable with 

biotope as independent variable. The number of permutations was set at 999; all other 

arguments used the default values set in the function. Weighted averages scores were 

computed for OTUs on the first two PCO axes using the wascores() function in the vegan 

package.  

 

4.3.6. Metagenome analysis  

In the present study, we use PICRUSt (Langille et al. 2013) to predict the metagenome of 

each sample. PICRUSt is a bioinformatics tool that uses marker genes, in this case 16S 
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rRNA, to predict metagenome gene functional content. These predictions are 

precalculated for genes in databases including KEGG (Kyoto Encyclopedia of Genes and 

Genomes; Kanehisa and Goto 2000) and COG (Clusters of Orthologous Groups of 

proteins). In the present study we used the KEGG database. Output of PICRUST consists 

of a table of functional counts, i.e., KEGG Pathway counts by sample. Note that, because 

of functional overlap, some orthologs can be represented in multiple pathways. Since KOs 

can belong to several pathways, we used the categorize_by_function.py script in PICRUSt 

to collapse the PICRUSt predictions at the level of the individual pathways. This table was 

in turn used as input for LEfSe (Segata et al. 2011). Using LefSe, we tested data for 

statistical significance, biological consistency, and effect size relevance among biotopes.  

 

 

4.4. Results 
 

The sequencing effort yielded 50241 sequences, which were assigned to 4669 OTUs after 

quality control, OTU picking and removal of chimera. 2305 OTUs remained unidentified at 

the level of domain and 1428 OTUs were assigned to the Bacteria domain; these were, 

however, not included in the statistical analysis. The final dataset included 42313 

sequences and 936 OTUs of which 146 OTUs remained unclassified at the phylum level. 

All archaeal OTUs were assigned to 2 phyla, Crenarchaeota and Euryarchaeota. In 

addition to this, OTUs were assigned to 14 classes, 18 orders, 15 families, 12 genera and 

3 species. Of these, the classes Thermoplasmata and Thaumarchaeota, the orders E2 

and Cenarchaeales, the families Marine group II and Cenarchaeaceae, the genera 

Cenarchaeum and Nitrosopumilus and the species Cenarchaeum symbiosum were the 

most abundant. Thirty three OTUs from 12356 sequence reads were identified from X. 

testudinaria hosts while 27 OTUs from 10580 sequence reads were identified from S. 

massa hosts. With respect to the non-host biotopes, 322 OTUs from 8570 sequence 

reads were identified from seawater samples while 724 OTUs from 10807 sequence 

reads were identified from sediment samples. 

BLAST was used to find closely related organisms to all 37 abundant ( ≥ 100 sequences) 

OTUs (Table 4.4.1). The most abundant OTU overall was OTU-1, assigned to the species 

Cenarchaeum symbiosum and found predominantly in S. massa hosts and represented 

by 10473 sequences. This OTU was also the only dominant symbiont found in S. massa; 

the remaining 26 OTUs found in this sponge had less than 40 sequences each. OTU-1 
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was closely related to an organism previously isolated from Phakellia fusca hosts in the 

South China Sea. 

Only X. testudinaria and sediment hosted biotope-specific abundant OTUs. Of the 9 

abundant OTUs in X. testudinaria, 7 were host-specific (3, 17, 18, 16, 317, 594, 331); with 

the exception of OTU 18 (unclassified) all the remaining 8 were assigned to the 

Cenarchaeaceae family. Of these, 5 were assigned to the genus Nitrosopumilus. The 

most abundant OTU was OTU-2; assigned to the genus Nitrosopumilus and closely 

related to an organism isolated from Xestospongia muta hosts in Florida. 

In the sediment biotope, the recorded number of OTUs (724) was almost twice as much 

as the sum of all OTUs from the remaining three biotopes (382). Of the 724 OTUs only 18 

were considered abundant and only one of these was host-specific (OTU-28); this was 

assigned to the Marine Benthic Group B (MBGB) class. The most abundant OTU was 

OTU-7 assigned to the genus Nitrosopumilus and closely related to an organism isolated 

from sediment samples collected in Oujiang River, China. 

In seawater samples, the most abundant OTU was OTU-4 assigned to Marine group II 

and closely related to an organism isolated from water samples collected in Arabian Sea. 

With the exception of OTU-11 (unclassified), all abundant OTUs in seawater were 

identified as belonging to the Marine group II family. 

 

There were marked differences in the abundance of higher archaeal taxa among biotopes 

(Figure 4.4.1). The Euryarchaeota were more abundant in non-host biotopes than in 

sponge hosts. The abundance of Euryarchaeota in sponge hosts is largely due to the 

contribution of S. massa with four times more sequences than X. testudinaria; only 0.2 % 

of the X. testudinaria sequences were assigned to the Euryarchaeota phylum. In contrast, 

the Crenarchaeota were much more abundant in sponge hosts. The taxa MCG 

(Miscellaneous Crenarchaeotal Group; Crenarchaeota) and YLA114 (Euryarchaeota) 

were virtually all restricted to non-host biotopes. 

 

4.4.1. Higher taxon abundance 

Of the 15 families found in this study just two were detected ( > 0.1%) in sponge hosts: 

Cenarchaeaceae (98% S. massa and 99.8% X. testudinaria) and Marine group II (1.95% 

S. massa and 0.2% X. testudinaria). The relative abundance of the most abundant OTU in 

each biotope was highest in S. massa, where more than 97% of sequences on average 
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belonged to a single OTU. For X. testudinaria, just over 69% of sequences on average 

belonged to a single OTU. Dominance was lowest for the sediment biotope where just 

over 14% of sequences belonged to a single OTU on average.  

 

Table 4.4.1 - List of most abundant OTUs ( ≥ 100 sequences) including OTU-numbers; 

number of sequences (reads); biotope where the OTUs were found (Group); their 

taxonomic affiliation; GenBank GenInfo sequence identifiers (GI) of closely related 

organisms identified using BLAST and sequence identity (Sq ident) of these organisms 

with our representative OTU sequences. 
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Figure 4.4.1 - Mean relative abundance of the most abundant archaeal phyla, classes, 

orders and the dominant OTUs for samples from seawater (Wt), sediment (Sd), S. massa 

(Sm) and X. testudinaria (Xt). Error bars represent a single standard deviation. The 

dominant OTU represents the mean abundance for the single most dominant OTU in each 

sample, thus not necessarily the same OTU. 

 

4.4.2. Importance of biotope in structuring composition 

There was a highly significant difference in archaeal composition among biotopes (F3,12 = 

10.39, P < 0.001, R2 = 0.722). Variation among biotopes thus explained 72% of the 

variation in archaeal composition. A PCO ordination (Figure 4.4.2) of the first two axes 

shows four distinct clusters representing samples from the four biotopes.  
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Figure 4.4.2 - Ordination showing the first two axes of the PCO analysis. a) Symbols 

represent samples from seawater (Wt), sediment and S. massa (Sm) and X. testudinaria 

(Xt). Very small circles represent OTUs < 100 sequence reads. b) Numbers represent 

abundant ( ≥100 sequence reads) OTUs referred to in Table 4.4.1. 

 

Although forming distinct clusters, samples from sediment and seawater were closer to 

one another in the ordination than either to the sponge samples. Axis 1 of the PCO 

ordination separates samples from non-host biotopes and both sponge hosts. Axis 2 

separates samples from S. massa and X. testudinaria hosts. 

Less than 1% of OTUs were found in all four biotopes (6 of 936). Only 17.6% of the 

sponge OTUs were shared between S. massa and X. testudinaria hosts (9 of 51); 

however, these OTUs were also shared with seawater and sediment. No OTUs were 

found in both sponge hosts that were not present in either sediment or seawater. Only 

14.9% of the OTUs (136 of 910) restricted to the non-host biotopes were shared between 

seawater and sediment and the majority (123 of 136) were not present in sponge hosts.  

 

4.4.3. Phylogeny 

In the phylogenetic tree (Figure 4.4.3) there were two main clusters, 1) a cluster consisting 

of OTUs belonging to the Crenarchaeota phylum and 2) a cluster consisting of OTUs 

belonging to the Euryarchaeota phylum.  
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Figure 4.4.3 - Phylogenetic tree of the archaeal 16S rRNA gene sequences recovered 

from the studied biotopes (seawater, sediment, S. massa and X. testudinaria); built using 

the Mega5 program with the Nearest-Neighbor-Interchange and Generalised Time-

Reversible model; bootstrap values lower than 50% were omitted. The number of each 

OTU is indicated as are GenBank GenInfo sequence identifiers of cultured archeal 

sequences. OTUs are assigned to the following clusters: Wt: mainly found in seawater 

biotope; Sd: found in sediment biotope; Sm: found in S. massa biotope; Xt: found in X. 

testudinaria. 
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Inside the main cluster of Euryarchaeota, the most abundant seawater OTUs belonging to 

Marine Group II formed a small distinct cluster. Inside the Crenarchaeota main cluster, X. 

testudinaria, S. massa and some sediment OTUs clustered together to form a cluster 

consisting of Cenarchaeaceae members. Some of the sediment and X. testudinaria OTUs 

present in the Cenarchaeaceae cluster grouped together to form a small cluster of 

members of the thaumarchaeon Nitrosopumilus, supported by high bootstrap value (82). 

OTUs found exclusively or predominantly in X. testudinaria formed a distinct and very well 

supported cluster (100). 

 

4.4.4. Metagenome analysis 

Using LEfSe, we identified significant differences between the different biotopes. 

Differences in the top level functional categories between biotopes included enrichment of 

the Cellular Processes in X. testudinaria; Environmental Information Processing in 

sediment; Genetic Information Processing and Human Diseases in S. massa and 

Organismal Systems in seawater. Differences in functional subcategories between 

biotopes included enrichment of the Amino acid metabolism and Metabolism of cofactors 

and vitamins in S. massa; Biosynthesis of other secondary metabolites, Energy 

metabolism and Metabolism of terpenoids and polyketides in X. testudinaria; 

Carbohydrate metabolism, Enzyme Families, Lipid metabolism and Xenobiotic 

biodegradation and metabolism in seawater and Glycan biosynthesis and metabolism in 

sediment. The relative abundance analysis of the functional individual pathways (Figure 

4.4.4) gives some insight into the differences observed among biotopes showing which 

individual pathways generated the significant differences in the top level functional 

categories and subcategories. 

 

Differences at this level included enrichment of the Citrate cycle (TCA cycle), 

Glycolysis/Gluconeogenesis, ABC Transporters, Pentose and glucuronate 

interconversions (Carbohydrate metabolism); Isoquinoline alkaloid biosynthesis, Methane 

metabolism (Energy metabolism), beta − Alanine metabolism (Metabolism of other amino 

acids), Aminobenzoate degradation, Caprolactam degradation, Chloroalkane and 

chloroalkene degradation, Nitrotoluene degradation (Xenobiotic biodegradation and 

metabolism) and Limonene and pinene degradation (Metabolism of terpenoids and 

polyketides) in non-host biotopes and enrichment of the Aminoacyl − tRNA biosynthesis 

(Genetic Information Processing/Translation), Phenylalanine, tyrosine and tryptophan 

biosynthesis, Valine, leucine and isoleucine biosynthesis, (Amino acid metabolism) Basal 
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transcription factors (Genetic Information Processing/ Transcription), Oxidative 

phosphorylation, Sulfur metabolism (Energy metabolism), Tetracycline biosynthesis 

(Metabolism of terpenoids and polyketides), Pantothenate and CoA biosynthesis, 

Porphyrin and chlorophyll metabolism, Ubiquinone and other terpenoid-quinone 

biosynthesis (Metabolism of cofactors and vitamins) and Atrazine degradation and 

Toluene degradation (xenobiotic biodegradation and metabolism) in sponge biotopes. 

 

 

Figure 4.4.4 - Mean relative abundance of gene counts for selected functional individual 

pathways for samples from seawater (Wt), sediment (Sd), S. massa (Sm) and X. 

testudinaria (Xt). Error bars represent a single standard deviation. The individual 

pathways shown include the following KEGG categories a) ABC transporters, b) 

Transporters, c) Two-component system, d) Aminoacyl − tRNA biosynthesis, e) DNA 
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repair and recombination proteins, f) DNA replication proteins, g) Basal transcription 

factors, h) Phenylalanine, tyrosine and tryptophan biosynthesis, i) Valine, leucine and 

isoleucine biosynthesis, j) Citrate cycle (TCA cycle), k) Glycolysis/Gluconeogenesis, l) 

Isoquinoline alkaloid biosynthesis, m) Pentose and glucuronate interconversions, n) 

Methane metabolism, o) Oxidative phosphorylation, p) Sulfur metabolism, q) beta − 

Alanine metabolism, r) Limonene and pinene degradation, s) Tetracycline biosynthesis, t) 

Pantothenate and CoA biosynthesis, u) Porphyrin and chlorophyll metabolism, v) 

Ubiquinone and other terpenoid-quinone biosynthesis, w) Aminobenzoate degradation, x) 

Atrazine degradation, y) Caprolactam degradation, z) Chloroalkane and chloroalkene 

degradation, aa) Nitrotoluene degradation, ab) Toluene degradation. 

 

 

4.5. Discussion  
 

4.5.1. Higher taxon abundance 

In line with previous studies (Lee et al. 2011; Pires et al. 2012) only two archaeal phyla 

(Euryarchaeota, Crenarchaeota) were detected in our samples. Crenarchaeota were the 

most abundant phylum in all biotopes except seawater. Several studies have found 

sponges to be exclusively associated with Crenarchaeota (Webster et al. 2004; Schmitt et 

al. 2008; Turque et al. 2010). Some other studies, however, observed Euryarchaeota in 

some sponges species albeit in low abundances (Holmes and Blanch 2007; Lee et al. 

2011). In sponge samples most sequences belonged to the Thaumarchaeota class. 

Mesophilic Crenarchaeota (Thaumarchaeota) have been shown to be important players in 

geochemical cycles (Wuchter et al. 2006; Brochier-Armanet et al. 2008). Previous studies 

linked a high abundance of Thaumarchaeota to peaks in nitrification in the water column 

of the Dutch coastal North Sea and subsequent reduction of ammonia and accretion of 

nitrite concentrations (Wuchter et al. 2006; Pitcher et al. 2011); Thaumarchaeota may play 

a similar role in JBTI. The fact that the reefs of JBTI are subject to elevated levels of 

pollution (Rachello-Dolmen and Cleary 2007) means that organisms capable of nitrifying 

toxic ammonia (NH3) to nitrate (NO3
-) may play a crucial role in maintaining a healthy coral 

reef environment (Rusch et al. 2009; Bartlett 2013). 

As expected, given the highly selective nature of sponges (Hentschel et al. 2006), the 

number of OTUs found in non-host biotopes was substantially higher than in sponge hosts. 

In contrast, Lee et al. (2011) found a less diverse archaeal community in Red Sea 
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seawater samples than in X. testudinaria. This difference in archaeal composition 

between seawater and X. testudinaria in both regions may reflect geographic differences. 

However, methodological differences (mainly in sample preservation before extraction and 

in the hypervariable region and universal primers selected) may also be at least partially 

responsible for the differences in archaeal composition between both studies. 

Stylissa massa shared a higher percentage of OTUs with non-host biotopes than X. 

testudinaria (77.8% and 39.4% respectively). Among other things, this may indicate a 

higher permeability of S. massa to incorporate environmental archaeal OTUs or more 

pronounced antimicrobial activity by X. testudinaria. Xestospongia species have 

previously been shown to produce compounds with antimicrobial activity (Li et al. 2012) as 

has S. massa (Rohde et al. 2012). However, antimicrobial activity has been only 

demonstrated for bacteria and fungi (Zhou et al. 2010; Rohde et al. 2012); no antiarchaeal 

activity has been reported in sponges. 

The majority of OTUs found in seawater samples were assigned to the phylum 

Euryarchaeota (68.7%). However, in contrast to Lee et al. (2011), where nearly all 

archaeal reads from seawater samples were classified as Euryarchaeota, in the present 

study, almost 30% of the seawater sequences were assigned to Crenarchaeota and of 

those, 94.6% belong to the class Thaumarchaeota. In line with our study, Qian et al. (2010) 

reported a dominance of Euryarchaeota in the upper layers (2 and 50 m) of Red Sea 

waters. Other studies (DeLong et al. 1994; Massana et al. 2000), however, found 

Crenarchaeota to be the dominant phylotype in seawater samples. Almost all 

Euryarchaeota classes have methanogenic taxa (Offre at al. 2013). In this study, besides 

the numerous Thermoplasmata class (196 OTUs 7846 sequences), two other archaeal 

taxonomic classes known as methanogens were found: Methanobacteria (17 OTUs, 62 

sequences) and Methanomicrobia (5 OTUs, 12 sequences). The predominance of the 

Thermoplasmata class in seawater indicates that methanogenesis and methane oxidation 

are important processes in this biotope. The results of our PICRUSt and LEfSe analysis 

support this hypothesis and showed significant enrichment of the Methane metabolism 

pathway in seawater. The detection of methanogenic Archaea in oxic environments is not 

new. Despite being generally believed to be produced exclusively by strictly anaerobic 

Archaea, methane has been found to be supersaturated in oxygenated surface waters 

(Reeburgh 2007; Grossart et al. 2011). This phenomenon has been called the “ocean 

methane paradox” (Kiene 1991) and several explanations have emerged in the literature 

(Kiene 1991; Marty et al 1997; Grossart et al. 2011; Metcalf et al. 2012).  
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Marine group II (Thermoplasmata/E2) was the most abundant family (62.9% of all 

sequences) in seawater. Only 1.95, 0.21 and 0.44% of S. massa, X. testudinaria and 

sediment sequences on average were assigned to this family. Wemheuer et al. (2012) 

previously reported Thermoplasmata as the third most abundant archaeal class in 

seawater samples collected in the North Sea. DeLong and Pace (2001) noted that E2 was 

predominantly found in marine plankton and Holmes and Blanch (2007) reported the 

presence of Marine Group II in three sponges from the Timor Sea, Australia (Axechina 

raspailioides, Reniochalina stalagmitis and Ptilocaulis sp.). According to Baker et al. (2012) 

Marine Group II may also be active players in the recycling of organic carbon and nitrogen. 

One hundred and forty six OTUs remained unclassified at the phylum level. All of these 

potential novel taxa were found in sediment and/or seawater indicating that these are rich 

biotopes that require more intense research.  

 

4.5.2. Importance of biotope in structuring composition 

The PCO ordination and phylogenetic tree revealed marked compositional differences 

among the four biotopes. The four biotopes studied here thus host compositionally and 

phylogenetically distinct communities of Archaea. In contrast to our study, Lee et al. (2011) 

failed to distinguish differences in archaeal composition among sponge species, although 

they did find compositional differences between sponges and seawater. 

 

4.5.3. Metagenome 

The contribution of sponge symbionts to the health, performance and survival of their host 

are well known (Taylor et al. 2007; Freeman and Thacker 2011). According to Freeman 

and Thacker (2011) around 50% of sponge energy requirements are fulfilled by microbial 

processes. This is supported by our metagenomic results, which showed a significant 

enrichment of almost all functional individual pathways associated to the energy 

metabolism in X. testudinaria; namely Oxidative phosphorylation; Carbon fixation and 

Sulfur metabolism. Although sponges acquire part of their nutritional requirements through 

filter feeding, some species rely mainly on their microbial community to fulfill their energy 

and carbon needs. For example, Aplysina cauliformis and Neopetrosia subtriangularis, 

obtain about 77% of their carbon needs from their microbial cells as opposed to only 27% 

for Niphates erecta (Freeman and Thacker 2011). The higher abundance of enzymes 

encoding for carbon fixation in X. testudinaria indicates that this sponge species primarily 

relies on high microbe densities to acquire carbon. S. massa, in contrast, may not rely so 
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heavily on microbial symbiosis, and obtains a higher part of its carbon from the filtered 

particulate organic matter; although this remains to be demonstrated. In addition to 

providing supplemental nutrition, X. testudinaria archaeal symbionts may also play an 

important role in detoxifying sponge tissues and metabolizing toxic by-products such as 

hydrogen sulfide through sulfur oxidation, as has been shown by Hoffmann et al. (2009) 

and Radax et al. (2012) for sulphur-oxidising bacteria. 

Nitrogen and methane metabolism were significantly enriched in seawater. 'Methane 

metabolism' encompasses methanogenesis and methane oxidation; normally in the 

archaeal domain both processes occur under strict anaerobic conditions (Offre et al. 

2013). Based on this, one would expect that these processes to be much more prevalent 

in sediment than in oxic seawater. In the present study the significant enrichment of the 

Methane metabolism pathway together with the predominance of OTUs assigned to 

methanogenic classes in seawater biotopes can be the result of physical transport from 

anoxic sediment (Reeburgh 2007; Grossart et al. 2011) or attachment of methanogens to 

microanoxic environments present in the water column such as fecal pellets, 

photoautotrophs, or marine snow particles (Marty et al. 1997; Grossart et al. 2011). As 

happens in aerated soils (Angel et al. 2012), the methanogens present in JBTI seawater 

may also be able to survive under oxic conditions and become active only under favorable 

conditions. Moreover, Thaumarchaeota were recently associated with an aerobic process 

of methane production. Nitrosopumilus maritimus seems to be involved in 

methylphosphonic acid (MPn) biosynthesis which, in turn, is used by aerobic Bacteria as a 

source of phosphorus to produce methane (Metcalf et al. 2012). Although there were no 

Nitrosopumilus among the most abundant water OTUs, the number of Nitrosopumilus 

sequences in this biotope was not negligible (826 sequences). 

The predominance of the archaeal ammonia monooxygenase subunit genes (AmoA) 

when compared to their bacterial counterparts in marine water and sediment biotopes is 

well known (Francis et al. 2005; Wuchter et al. 2006) and suggests an important role of 

Archaea in global nitrogen cycling. In the present study, the nitrogen metabolism pathway 

was significantly enriched in seawater, which is surprising due to the low abundance of 

Thaumarchaeota in water when compared to sponge biotopes. Some studies have found 

nitrogen metabolism related functions enriched in different sponge species when 

compared to seawater samples (Fan et al. 2012); however, these findings concern the 

entire prokaryotic community.  

The sponge symbiotic relationship with photosynthetic microorganisms is well known 

(Wilkinson 1983; Taylor et al. 2007; Bell 2008; Erwin and Thacker 2008). This consortium 
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occurs more frequently in oligotrophic waters; sponges benefit from photosymbiotic 

derived nutrients while photosynthetic microbes benefit from metabolic end-products 

synthesized by sponges. Indeed, some sponge species obtain almost 50% of their 

nutritional requirements from their photosynthetic symbionts (Wilkinson 1983; Freeman 

and Thacker 2011). Cyanobacteria have been the photosymbiont more commonly 

reported in sponge hosts (Erwin and Thacker 2008; Erwin et al. 2011). Here, sponge 

archaeal communities were enriched in the function of Porphyrin and chlorophyll 

metabolism associated with photosynthesis. Some Archaea are able to convert light into 

chemical energy via ATP synthesis (Hohmann-Marriot and Blankenship 2011). These 

Archaea can be especially important to S. massa which, living in shallow water, may 

suffer from exposure to air during low tide and concomitant elevated UV exposure. The 

association with these symbionts may enable S. massa to deal with these stresses.  

The higher expression of Citrate cycle (TCA cycle) and Glycolysis/Gluconeogenesis 

pathways in archaeons living in non-host biotopes appears to indicate that aerobic 

respiration is the primary carbon assimilation and energy generation process for these 

organisms. TCA Cycle components were previously identified in C. Symbiosum (Hallam et 

al. 2006), an archaeon also present in JBTI sediment samples  

Nutrient availability inside sponges is necessarily different when compared to nutrient 

availability in seawater or sediment; these differences can lead to the adoption of distinct 

nutritional strategies by the archaeal community, as shown by the higher relative 

abundance of transporters in non-host biotopes. These transporters are involved in 

nutrient acquisition being responsible for the transport of sugars, lipid, proteins, nitrogen 

and others substrates across microbial membranes. The high expression of these 

transporters can be more important in water or sediment biotopes where the competition 

for nutrients is greater and its availability lower. These transporters can confer an 

important competitive advantage maximizing the archaeon nutrient uptake ability. Fan et 

al. (2012) recently showed ABC transporters to be more abundant in sponge symbionts 

when compared to planktonic microbes, however their study included both archaeal and 

bacterial microbiomes. In the present study, ABC transporters were most abundant in the 

sediment biotope as was the top level functional category 'Environmental Information 

Processing'. ABC transporters were also more abundant in S. massa than seawater or X. 

testudinaria. The higher expression of ABC transporters in S. massa suggests that this 

sponge is a relatively nutrient poor environment when compared to X. testudinaria. 

 

Xenobiotic biodegradation and metabolism was one of the functional subcategories 

significantly enriched in seawater biotopes. Some of the functional individual pathways 
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with a high relative abundance in this biotope were: aminobenzoate, caprolactam, 

chloroalkane and chloroalkene and nitrotoluene degradation. However, some functional 

individual pathways of this functional subcategory were found in high relative abundance 

in sponge biotopes and particularly in S.massa, namely Atrazine and Toluene degradation. 

These organic compounds are used in a vast number of industries (metal, paint, textile, 

wood and chemical) and also in agriculture (herbicides) and are considered important 

environmental contaminants. These enter the aquatic environment largely through 

agricultural and industrial runoff (Murdock et al. 2013). These findings suggest that 

communities of Archaea may be relevant Xenobiotic degraders and act as bioremediators 

in polluted environments. The high relative abundance of enzymes involved in xenobiotic 

degradation in S. massa when compared to X. testudinaria may be the result of both 

species occupying distinct habitats; the shallow distribution of S. massa may make it more 

subject to anthropogenic pollutants than X. testudinaria. With the degradation of these 

xenobiotic compounds, archaeal symbionts obtain carbon, nitrogen and energy while 

promote the removal of toxic compounds from the sponge host tissue. Proteins thought to 

be involved in the degradation of aromatic compounds were previously found in the 

sponge species Cymbastela coralliophila, Rhopaloeides odorabile, and Cymbastela 

concentrica (Fan et al. 2012). Despite not being a xenobiotic, limonene may also be 

considered an environmental contaminant. Limonene degradation was enriched in non-

host biotopes. Limonene is a monoterpene produced both biogenically and 

anthropogenically; it is used industrially in metal, electronic, printing and paint industries 

as a substitute for other solvents (chlorinated or hydrocarbons). In aquatic environments, 

this compound presents high acute toxicity to some aquatic organisms (fish and daphnia) 

and may bioaccumulate (Filipsson et al. 1998). 

 

Sponge symbionts have been shown to produce antibiotic compounds with a protective 

function against potential sponge pathogens and competitors (Taylor et al. 2007; Flemer 

et al. 2012). Here, sponge archaeal communities were enriched in the function of 

Tetracycline biosynthesis; an antibiotic with antibacterial activity toward pathogenic 

microorganisms. Additionally, S. massa symbionts showed high expression of Human 

Diseases and more specifically infectious diseases subcategories (bacterial, viral, and 

parasitic) and significant enrichment in Amoebiasis and Tuberculosis individual pathways. 

Several studies have linked sponge-isolated compounds with the treatment of human 

diseases (Sipkema et al. 2005). It has been assumed that these compounds are 

synthesized not by the sponge itself but by their symbionts (Taylor et al. 2007; Flemer et 

al. 2012). Several studies have reported marine sponge secondary metabolites with 
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antibacterial activity against Mycobacterium tuberculosis (Quideau et al. 2002; Copp and 

Pearce 2007) and anti-amoebic properties against amoebic parasites (Lakshmi et al. 

2009). These results suggest that S. massa is a potential source of secondary metabolites 

with activities against vectors of human diseases. 

Stylissa massa symbionts were also significantly enriched with pathways associated with 

amino acid metabolism (biosynthesis of valine, isoleucine, leucine, phenylalanine, tyrosine 

and tryptophan) and metabolism of cofactors and vitamins. Besides being building blocks 

for proteins, amino acids are also considered precursors for the production of secondary 

metabolites (Demain 1998; Bromke 2013). For example, leucine seems to induce 

bacitracin synthetase while tryptophan induces the dimethylallyltryptophan production in 

ergot alkaloid biosynthesis (Haavik and Froyshov; Krupinski et al. reviewed in Demain 

1998). This can be a justification for the higher expression of genes encoding the 

biosynthesis of amino acids in sponge biotopes where secondary metabolite production is 

higher. Pathways associated with the biosynthesis of other secondary metabolites were 

significantly enriched in X. testudinaria. S. massa seems also to rely more on their 

archaeal symbionts for the acquisition of very important compounds as vitamins and 

cofactors than on their filter-feeding activity. For example, vitamin B12, that needs to be 

acquired by sponges, is also an important cofactor in the Wood–Ljungdahl pathway, which 

is a mechanism used by sulfate reducers and methanogens to convert carbon compounds 

to organic carbon (Seravalli et al. 2002; Siegl et al. 2011). 

Our study is the first to assess archaeal composition in different sponge hosts, seawater 

and sediment in a coral reef environment. As such, we provide novel insights into the 

distribution of Archaea. OTU composition differed significantly among biotopes and there 

were marked differences in the number of OTUs found in each biotope. The sediment 

biotope in particular harboured the greatest number of OTUs and a phylogenetically 

diverse archaeal community. Our phylogenetic tree, furthermore, provides evidence that 

sponges host phylogenetically distinct archaeal assemblages. The abundant OTUs from X. 

testudinaria formed a distinct and well supported cluster in our phylogenetic tree. Several 

significant differences were observed in functional pathways between archaeal 

communities of both sponge species and between non-host archaeal communities. The 

major differences in functional pathways were, however, between sponge and non-host 

biotopes. The results of our PICRUSt and LEfSe analysis suggested that phylogenetically 

distinct archaeal communities tend to perform specific roles in biotopes occupying the 

same physical environment. Our results also suggested different nutritional strategies in 

non-host and sponge Archaea and a clear interdependence between sponge hosts and 

archaeal symbionts in terms of nutrient acquisition. With the exception of the methane and 
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nitrogen metabolic pathways, all energy metabolic pathways were enriched in sponges 

when compared to non-host biotopes. This indicates the importance of non-host and 

sponge biotopes in structuring archaeal community composition. It also suggests that 

Archaea from non-host and sponge biotopes may play complementary roles in important 

ecosystem functions such as nutrient cycling. Further studies are needed to assess the 

importance of sponge and other archaeal communities in nutrient dynamics and other 

ecosystem functions in coral reef environments.  
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5.1. Abstract 
 

Archaea play crucial roles in a number of key ecological processes including nitrification 

and methanogenesis. However, their roles in coral reef environments are poorly 

understood. Here, archaeal communities isolated from six distinct biotopes, namely, 

sediment, seawater and four different sponge species Stylissa massa, Stylissa carteri, 

Xestospongia testudinaria and Hyrtios erectus from the Spermonde Archipelago, SW 

Sulawesi, Indonesia, were investigated. Archaeal communities from sediment and 

sponges were dominated by Crenarchaeota while the seawater community was 

dominated by Euryarchaeota. The biotope explained 73% of the variation in archaeal 

composition, with clear separation between microbial assemblages from X. testudinaria 

and H. erectus. In contrast, communities from seawater and both Stylissa species shared 

most abundant OTUs with the exception of a single dominant OTU specifically enriched in 

both Stylissa species. This OTU was closely related to Cenarchaeum symbiosum, a 

thaumarchaeon previously isolated from a number of sponge species in the order 

Halichondrida. The in silico prediction of functional gene content in archaeal assemblages 

also revealed significant differences between biotopes. Different ammonia assimilation 

strategies were exhibited by the archaeal communities: X. testudinaria, H. erectus and 

sediment archaeal communities were enriched for glutamate dehydrogenase with mixed 

specificity (NAD(P)+) pathways while archaeal planktonic and Stylissa communities were 

enriched for specific glutamate dehydrogenase (NAD+ or NADP+) and glutamate synthase 

pathways. Importantly, our results indicate that archaeal communities in different biotopes 

have distinct ecophysiological roles. 

 

Keywords: Archaea; Coral reef; Sponge Metabolomics; Nitrogen; Glutamate 
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5.2. Introduction 
 

Archaea domain, composed of five phyla (Crenarchaeota, Thaumarchaeota, 

Euryarchaeota, Korarchaeota and Nanoarchaeota) can colonize a wide range of 

environmental conditions (pH, salinity, temperature) and can be present in almost all 

ecosystems (Hoppert 2013). In tropical marine environments, mesophilic Crenarchaeota 

(Thaumarchaeota) and Euryarchaeota are the most frequently phyla (Polónia et al. 2013; 

Pires et al. 2012; Yin et al. 2013). Thaumarchaeota are the most ubiquitous archaeal 

phylum (Offre et al. 2013) and can be abundant in aerobic terrestrial and marine 

environments (soil, sediment, seawater, hot springs, hydrothermal vents, marine sponges; 

Dang et al. 2013; Tourna et al. 2011; Reigstad et al. 2008; Wang et al. 2009; Polónia et al. 

2013) whereas Euryarchaeota are found predominantly in seawater and sediment (Yan et 

al. 2006; Wemheuer et al. 2012). In addition to being abundant members of the vast 

marine microbial community, Archaea are also important players in processes such as the 

geochemical cycling of carbon, nitrogen and sulphur (Lee et al. 2001; Webster et al. 2004). 

For oligotrophic coral reefs, this cycling activity, and particularly the nitrogen cycle, is of 

crucial importance in order to degrade organic matter and maintain high levels of primary 

production (Schöttner et al. 2011). The importance of nitrogen for organisms and 

ecosystems is critical; nitrogen is an essential component of proteins, nucleic acids and 

cell wall constituents and limits marine ecosystem primary productivity (Francis et al. 

2007; Francis et al. 2005). Despite the increasing number of archaeal studies, the 

geochemical cycling of nitrogen is still less understood in Archaea than in Bacteria. 

Archaea have been shown to be involved in nitrification, denitrification and nitrogen 

fixation (Offre et al. 2013). Denitrification has only been detected in halophilic (e.g., 

Haloferax denitrificans) or extreme thermophilic (e.g., Pyrobaculum aerophilum) Archaea 

and very few of which are cultivable (Cabello et al. 2004; Shapleigh 2006; Offre et al. 

2013). The first observation of nitrification in Archaea was reported by Könneke et al. 

(2005). These authors reported the isolation of a chemolithoautotrophic archaeote which 

aerobically oxidized ammonia to nitrite (Nitrosopumilus maritimus). This finding was totally 

unexpected given that until then lithotrophic bacteria were thought to be virtually the only 

microbes involved in nitrification (Offre et al. 2013). Currently, Archaea are thought to play 

a critical role as ammonia oxidizers. Due to their low tolerance to high NH3 concentrations, 

ammonia-oxidizing Archaea (AOA) have been suggested to outcompete their bacterial 

counterparts in ocean waters (Francis et al. 2005; Radax et al. 2012; Offre et al. 2013).  

 

Few studies have analyzed archaeal composition or putative functions in coral reef 

biotopes. In the present study we assessed the composition of Archaea in six biotopes 
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including four host (Stylissa massa, Stylissa carteri, Xestospongia testudinaria and Hyrtios 

erectus) and two non-host (seawater and sediment) biotopes. Marine sponges are 

abundant and ecologically important components of coral reefs (Diaz & Rützler 2001) and 

have been shown to harbour exceptionally high microbial densities, which can make up 

from 35 to 40% of sponge biomass (Hentschel et al. 2002, 2012; Taylor et al. 2007). 

Sponge prokaryotic diversity is, in most cases, dominated by bacterial species (Sharp et 

al. 2007; Taylor et al. 2007; Lee et al. 2011; Fan et al. 2012). In some sponge species, 

however, Archaea are the dominant group. The microbial communities of Axinella 

mexicana and Inflatella pellicula, for example, are dominated by Archaea (Preston 1996; 

Jackson et al. 2013). In this study, our main goals were to: assess to what extent: 1. 

Archaeal communities in sponges differ from those in the surrounding non-host 

environment (seawater and sediment); 2. Biotopes host phylogenetically and functionally 

distinct lineages and 3. Communities from different biotopes are differentially enriched for 

genes involved in the nitrogen metabolism.  

 

 

5.3. Material and methods 
 

5.3.1. Study site 

All sampling took place in the Spermonde Archipelago, South Sulawesi, Indonesia. This 

Archipelago consists of 160 fringing, barrier and patch reefs (Voogd et al. 2006; Figure 

5.3.1) situated adjacent to the city of Makassar. Its proximity to a city of more than 2 

million inhabitants (Renema 2010) leaves these coral reefs exposed to anthropogenic 

disturbances including river discharge (sedimentation, agricultural runoff), oil spills, 

destructive fisheries, tourism and coral mining (de Voogd & Cleary 2007).  

 

5.3.1. Sampling 

Four sponge species, sediment and seawater were collected in different reef sites 

surveyed using SCUBA in August 2012. The reefs Lae Lae, Samalona, Kudingkareng 

Keke, Bone Baku and Langkai were sampled. At each site, one sample of each biotope 

was taken, namely of sediment, seawater, and the sponges Stylissa carteri and Stylissa 

massa (order Halichondrida: family Dictyonellidae), Xestospongia testudinaria (order 

Haplosclerida: family Petrosiidae) and Hyrtios erectus (order Dictyoceratida: family 

Thorectidae). 
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Figure 5.3.1 - Map of the study area (Spermonde Coral Reef System) showing the 

location of study sites sampled 

 

The sediment samples were taken using the mini core method. Mini-cores, consisting of 

the top 5 cm of sediment, were collected using a plastic disposable syringe from which the 

end had been cut in order to facilitate sampling (Capone et al. 1992). Cores of all sponge 

species were sampled including segments of surface and interior in order to sample, as 

much as possible, the whole archaeal community (Pires et al. 2012; Polónia et al. 2013). 

The seawater samples were collected by filtering one liter (Sogin et al. 2006; Bowen et al. 

2012) of seawater through a Millipore® White Isopore Membrane Filter (0.22 µm pore 

size). All samples were stored in 96% EtOH (Previsic et al. 2009; Cleary et al. 2013) and 

kept at temperatures lower than 4 ºC immediately after collection. Once in the laboratory, 

samples were stored at -20 ºC until DNA extraction.  

 

5.3.2. DNA extraction and pyrosequencing 

We isolated PCR-ready genomic DNA from seawater, sediment and sponge samples 

using the FastDNA® SPIN Kit (MPbiomedicals) following the manufacturer's instructions. 

This is an extraction method frequently used for this purpose (Urakawa et al. 2010; Costa 

et al. 2013; Cleary et al. 2013; Polónia et al. 2013). Briefly, the whole membrane filter and 
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500 mg of sediment and sponge were transferred to Lysing Matrix E tubes containing a 

mixture of ceramic and silica particles. The microbial cell lysis was performed in the 

FastPrep® Instrument (Q Biogene) for 80 seconds at speed 6.0. The extracted DNA was 

eluted into DNase/Pyrogen-Free Water to a final volume of 50 μl and stored at -20°C until 

use. Pyrosequencing and sequence analysis were performed using previously described 

methods (Pires et al. 2011; Cleary et al. 2013; Polónia et al. 2013 - see Appendix for a 

detailed description). In the most recent Greengenes release, the recently adopted 

phylum Thaumarchaeota is still considered a class of the Crenarchaeota phylum; in the 

present study we follow the Greengenes taxonomy. The sequences generated in this 

study can be downloaded from the NCBI SRA: Accession number not yet available. 

 

5.3.3. BLAST, Phylogenetic and In silico Metagenome analysis 

Briefly, sequence identifiers of closely related taxa of numerically dominant OTUs ( ≥ 100 

sequences) were downloaded using the NCBI Basic Local Alignment Search Tool (BLAST) 

command line 'blastn' tool with the -db argument set to nt (Zhang et al. 2000). A 

phylogenetic tree including all dominant OTUs ( ≥ 100 sequences) was constructed using 

the Mega5 program (http://www.megasoftware.net/; last checked 2012/11/20; Tamura et 

al. 2011). To predict the metagenome of each sample we used PICRUSt (Langille et al. 

2013). PICRUSt is a bioinformatics tool that uses marker genes, in this case 16S rRNA, to 

predict metagenome gene functional content. A detailed description of these methods has 

been published previously (Langille et al. 2013; Cleary et al. 2013; Polónia et al. 2013) 

and can be found in the supplementary materials and methods (see Appendix for a 

detailed description). In the present study we used the KEGG database and focused on 

KOs in the nitrogen energy metabolism pathway. We used R to generate bargraphs 

showing the percentage of total genes for each sample. In addition to this, we use the 

metagenome_contributions.py script to assess the relative contribution of selected orders. 

The metagenome_contributions.py script partitions functional contributions to function, 

OTU and sample. Results of this analysis are presented using barplots for each biotope. 

 

5.3.4. Statistical analysis  

A square matrix containing the presence and abundance of all OTUs per sample was 

imported into R (R Core Team 2013) using the read.table() function. Sequences not 

classified as Archaea (e.g., Bacteria) were removed prior to statistical analysis. The OTU 

abundance matrix was log10 (x+1) transformed (in order to normalise the distribution of the 
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data) and a distance matrix constructed using the Bray-Curtis index with the vegdist() 

function in the vegan package (Oksanen et al. 2009) in R. The Bray-Curtis index is one of 

the most frequently applied (dis)similarity indices used in ecology (Legendre & Gallagher 

2001; Cleary 2003). Variation in archaeal composition among biotopes (sediment, 

seawater, S. massa, S. carteri, X. testudinaria and H. erectus) was assessed with 

Principal Coordinates Analysis (PCO) using the cmdscale() function in R with the Bray-

Curtis distance matrix as input. Variation among biotopes was tested for significance 

using the adonis() function in vegan. In the adonis analysis, the Bray-Curtis distance 

matrix of species composition was the response variable with biotope as independent 

variable. The number of permutations was set at 999; all other arguments used the default 

values set in the function. Weighted averages scores were computed for OTUs on the first 

two PCO axes using the wascores() function in the vegan package.  

 

 

5.4. Results 
 

The sequencing effort yielded 95007 sequences, which were assigned to 617 OTUs after 

quality control, OTU picking, removal of chimera and removal of OTUs not assigned to the 

domain Archaea. All archaeal OTUs were assigned to 3 phyla, Crenarchaeota (63510 

sequences), Euryarchaeota (31369 sequences) and [Parvarchaeota] (19 sequences). In 

addition to this, OTUs were assigned to 13 classes and 17 orders. Of these, the classes 

Thaumarchaeota (61984 sequences) and Thermoplasmata (30930 sequences), the 

orders Cenarchaeales (61615 sequences) and E2 (30927 sequences) were the most 

abundant.  

 

5.4.1. Higher taxon abundance 

There were marked differences in the abundance of higher archaeal taxa among biotopes 

(Figure 5.4.1). The Euryarchaeota achieved their greatest abundance in seawater where 

they comprised more than 98% on average of all sequences; Euryarchaeota were also 

abundant in both Stylissa hosts. In all other biotopes, more than 60% of sequences 

belonged to the Crenarchaeota. There was also a marked difference in dominance 

between host and non-host biotopes. In non-host biotopes, the single most dominant OTU 

made up less than 28% of all sequences. 
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Figure 5.4.1 - Mean relative abundance of the most abundant archaeal phyla, classes, 

orders and families and the abundant OTUs for samples from seawater (Wt), sediment 

(Sd), S. massa (Sm), S. carteri (Sc), X. testudinaria (Xt) and H. erectus (He). Error bars 

represent a single standard deviation. The abundant OTU represents the mean 

abundance for the single most abundant OTU in each sample, thus not necessarily the 

same OTU. 

 

In host biotopes, in contrast, the single most dominant OTU made up more than 60%, on 

average, of all sequences. The third most abundant class (Miscellaneous Crenarchaeotal 

Group; MCG) was virtually restricted to the sediment biotope and the third most abundant 

order (Nitrososphaerales) was found in sediment, X. testudinaria and H. erectus. 
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5.4.2. OTU composition analysis 

BLAST was used to find closely related organisms to the most abundant ( ≥ 100 

sequences) OTUs (Table 5.4.1).  

 

Table 5.4.1 - List of most abundant OTUs ( ≥ 100 sequences) including OTU-numbers; 

number of sequences (reads); biotope where the OTUs were found (Group); their 

taxonomic affiliation, GenBank GenInfo sequence identifiers (GI) of closely related 

organisms identified using BLAST; sequence identity (Sq ident) of these organisms with 

our representative OTU sequences; isolation source (Source) of closely related organisms 

identified using BLAST and location where the isolation source was sampled (Location). 

 
 

OTU Reads Group Phylum Class Order Family Genus Species GI Seq.ident
1 21591 St Crenarchaeota Thaumarchaeota Cenarchaeales Cenarchaeaceae Cenarchaeum symbiosum 15778681 100
2 10746 He Crenarchaeota Thaumarchaeota Cenarchaeales Cenarchaeaceae Unclassified Unclassified 155733561 99.07
3 10438 Xt Crenarchaeota Thaumarchaeota Cenarchaeales Cenarchaeaceae Unclassified Unclassified 162312072 99.07
4 7962 SW Euryarchaeota Thermoplasmata E2 Marine group II Unclassified Unclassified 445069696 100
5 3134 SW Euryarchaeota Thermoplasmata E2 Marine group II Unclassified Unclassified 383933392 100
6 6022 SW Euryarchaeota Thermoplasmata E2 Marine group II Unclassified Unclassified 383933301 100
7 4918 SW Euryarchaeota Thermoplasmata E2 Marine group II Unclassified Unclassified 83416104 100
8 650 SW Euryarchaeota Thermoplasmata E2 Marine group II Unclassified Unclassified 383470793 100
9 501 SW Euryarchaeota Thermoplasmata E2 Marine group II Unclassified Unclassified 39546629 100

10 520 SW Euryarchaeota Thermoplasmata E2 Marine group II Unclassified Unclassified 321159153 100
11 613 Sd Crenarchaeota Thaumarchaeota Cenarchaeales Cenarchaeaceae Unclassified Unclassified 321159111 99.77
12 553 SW Euryarchaeota Thermoplasmata E2 Marine group II Unclassified Unclassified 253756926 100
13 2007 Sd Crenarchaeota Thaumarchaeota Cenarchaeales Cenarchaeaceae Nitrosopumilus Unclassified 529279729 100
14 338 Sd Crenarchaeota Thaumarchaeota Cenarchaeales Cenarchaeaceae Unclassified Unclassified 145651460 100
15 296 Sd Crenarchaeota Thaumarchaeota Nitrososphaerales Nitrososphaeraceae Candidatus Nitrososphaera Unclassified 145654125 99.77
16 289 SW Euryarchaeota Thermoplasmata E2 Marine group III Unclassified Unclassified 394999409 100
17 273 SW Euryarchaeota Thermoplasmata E2 Marine group II Unclassified Unclassified 321158907 100
18 158 Sd Crenarchaeota MCG Unclassified Unclassified Unclassified Unclassified 374432603 99.77
19 194 Sd Crenarchaeota Thaumarchaeota Cenarchaeales Cenarchaeaceae Unclassified Unclassified 310871774 98.37
20 182 Sd Euryarchaeota Thermoplasmata E2 DHVEG-1 Unclassified Unclassified 364527263 99.77
21 134 Sd Crenarchaeota MCG Unclassified Unclassified Unclassified Unclassified 42601811 100
22 116 SW Euryarchaeota Thermoplasmata E2 Marine group II Unclassified Unclassified 83416103 100
23 249 Sd Crenarchaeota Thaumarchaeota Cenarchaeales Cenarchaeaceae Unclassified Unclassified 125381541 99.77
24 226 Sd Crenarchaeota Thaumarchaeota Cenarchaeales Cenarchaeaceae Unclassified Unclassified 193891139 100
26 125 Sd Crenarchaeota MCG pGrfC26 Unclassified Unclassified Unclassified 374432521 100
27 318 SW Crenarchaeota Thaumarchaeota Cenarchaeales Cenarchaeaceae Unclassified Unclassified 220684723 100
30 181 Sd Crenarchaeota Thaumarchaeota Cenarchaeales Cenarchaeaceae Unclassified Unclassified 125381580 99.3
33 106 Sd Crenarchaeota MBGB Unclassified Unclassified Unclassified Unclassified 507105568 100
34 101 Sd Crenarchaeota MCG Unclassified Unclassified Unclassified Unclassified 364527383 100
38 6471 SH Crenarchaeota Thaumarchaeota Cenarchaeales Cenarchaeaceae Unclassified Unclassified 529279754 98.6
41 483 Sd Crenarchaeota Thaumarchaeota Cenarchaeales Cenarchaeaceae Cenarchaeum symbiosum 125381472 99.77
43 368 Sd Crenarchaeota Thaumarchaeota Cenarchaeales Cenarchaeaceae Unclassified Unclassified 310871821 100
47 126 Sd Crenarchaeota Thaumarchaeota Cenarchaeales Cenarchaeaceae Unclassified Unclassified 265262728 100
77 2006 Xt Crenarchaeota Thaumarchaeota Cenarchaeales Cenarchaeaceae Unclassified Unclassified 305691434 99.01
84 1590 He Crenarchaeota Thaumarchaeota Cenarchaeales Cenarchaeaceae Unclassified Unclassified 155733561 99.53
91 2099 SW Euryarchaeota Thermoplasmata E2 Marine group II Unclassified Unclassified 383933309 100

102 155 SW Euryarchaeota Thermoplasmata E2 Marine group II Unclassified Unclassified 321159158 100
118 1379 SW Euryarchaeota Thermoplasmata E2 Marine group II Unclassified Unclassified 220685426 100
127 167 Sd Euryarchaeota Thermoplasmata E2 DHVEG-1 Unclassified Unclassified 364529015 99.77
150 737 Sd Crenarchaeota Thaumarchaeota Cenarchaeales Cenarchaeaceae Nitrosopumilus Unclassified 125381590 100
155 126 SW Euryarchaeota Thermoplasmata E2 Marine group II Unclassified Unclassified 394999422 100
220 244 Sd Crenarchaeota Thaumarchaeota Cenarchaeales Cenarchaeaceae Nitrosopumilus Unclassified 548783387 100
246 195 Sd Crenarchaeota Thaumarchaeota Cenarchaeales Cenarchaeaceae Unclassified Unclassified 310871877 100
349 425 Sd Crenarchaeota Thaumarchaeota Cenarchaeales Cenarchaeaceae Unclassified Unclassified 108947531 100
424 598 Sd Crenarchaeota Thaumarchaeota Cenarchaeales Cenarchaeaceae Unclassified Unclassified 529279806 99.77
432 155 Sd Crenarchaeota Thaumarchaeota Cenarchaeales Cenarchaeaceae Unclassified Unclassified 265262760 99.77
542 382 Sd Crenarchaeota Thaumarchaeota Cenarchaeales Cenarchaeaceae Cenarchaeum symbiosum 265262744 99.07
St: represent an OTU only present in Stylissa  biotopes; 
SW: represent an OTU predominantly present in Stylissa  and seawater biotopes;
Sd: represent an OTU predominantly present in sediment biotope; 
He: represent an OTU predominantly present in H. erectus  biotope;
SH: represent an OTU predominantly present in sediment and H. erectus  biotopes.
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The most abundant OTU overall was OTU-1, assigned to the genus Cenarchaeum and 

found exclusively in S. massa and S. carteri hosts and represented by 21591 sequences. 

OTU-1 was closely related to an organism previously isolated from Axinella damicornis 

hosts in the Spanish Mediterranean coast; Axinella sp in California and Phakellia fusca in 

South China Sea.  

 

5.4.1. Importance of biotope in structuring composition 

There was a highly significant difference in archaeal composition among biotopes (F5,18 = 

9.75, P < 0.001, R2 = 0.730). Variation among biotopes thus explained 73% of the 

variation in archaeal composition. A PCO ordination (Figure 5.4.2) of the first two axes 

shows four distinct clusters representing samples from the six biotopes. One cluster 

consists of samples from seawater and both Stylissa hosts with other clusters consisting 

of samples from sediment, X. testudinaria and H. erectus. The main axis of variation 

separates OTUs found predominantly in seawater and both Stylissa hosts from OTUs 

found predominantly in sediment. 

 
Figure 5.4.2 - Ordination showing the first two axes of the PCO analysis. a) Symbols 

represent biotopes for seawater (Wt), sediment (Sd), S. massa (Sm), S. carteri (Sc), X. 

testudinaria (Xt) and H. erectus (He). Very small circles represent OTUs < 100 sequence 

reads. b) Numbers represent abundant (≥100 sequence reads) OTUs. 

 

5.4.2. Phylogeny 

In the phylogenetic tree (Figure 5.4.3) there were two main clusters, 1) a cluster consisting 

of OTUs belonging to the Crenarchaeota phylum and 2) a cluster consisting of OTUs 

belonging to the Euryarchaeota phylum. Inside the main cluster of Euryarchaeota, the 

a) b) 
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most abundant OTUs found in seawater and Stylissa hosts, all belonging to Marine Group 

II, formed a distinct cluster.  

 
Figure 5.4.3 - Phylogenetic tree of the archaeal 16S rRNA gene sequences recovered 

from the studied biotopes (seawater, sediment and S. massa, S. carteri, X. testudinaria 

and H. erectus); built using the Mega5 program with the Nearest-Neighbor-Interchange 

and Generalised Time-Reversible model; bootstrap values lower than 50% were omitted. 

The number of each OTU is indicated as are GenBank GenInfo sequence identifiers of 

cultured archeal sequences. Classes of Archaea are indicated. OTUs are assigned to the 

following clusters: Sd: mainly found in sediment biotope; SW: mainly found in Sponges 

belonging to the genus Stylissa and seawater biotopes; Xt: found in X. testudinaria; He: 

mainly found in H. erectus and Stylissa: found in S. massa and S. carteri.  

SW 
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Inside the Crenarchaeota main cluster, OTUs found in X. testudinaria and H. erectus 

formed two distinct and well supported clusters that clustered together with OTUs found in 

sediment and assigned to the genus Nitrosopumilus. Abundant OTUs found mainly in 

sediment represented a phylogenetically diverse community with representatives in both 

of the main phyla identified in this study.  

 

5.4.3. In silico Metagenome analysis 

Only 20 of the 54 KEGG orthologs (KOs) involved in the nitrogen metabolism pathways 

were detected. The most abundant of these are presented in Figure 5.4.4. Almost all of 

these KOs are, however, shared with other pathways. For example, the majority of the 

detected KOs also participate in the amino acid metabolism. 

 

Particularly intriguing was the absence of genes for ammonia oxidation (amoA) in a 

dataset with a high number of sequences assigned to known ammonia oxidising Archaea 

(e.g., 3041 Nitrosopumilus sequences). Since PICRUSt predicts the functional potential of 

microbial communities from their phylogeny, the presence of Nitrosopumilus sequences in 

the analysed dataset should result in at least some counts in the KOs for ammonia 

monooxygenase A (K10944). The reason for this absence was due to a discrepancy with 

respect to the presence/absence of this KO in the genome database. In particular, the 

KEGG entry for Nitrosopumilus showed K10944 (methane/ammonia monoxogenase 

subunit A), but in the cached IMG table, the same KO with the same genome accession 

(Nitrosopumilus maritimus SCM, NC_010085) was absent (personal communication, 

Jesse Zaneveld). This is something that will be addressed in the future, but given the 

relative abundance of known ammonia-oxidizing taxa (e.g., Nitrosopumilus), the gene 

count for K10944 would have been highest in sediment, intermediate in sponges and 

virtually absent in seawater. 

 

The relative abundance of those KOs that were present revealed several differences 

among biotopes. Stylissa carteri, for example, was enriched with respect to glutamate 

dehydrogenase (K00260) and ferredoxin−nitrite reductase (K00366). Both of these were 

either absent or much less prevalent in other biotopes including S. massa. X. testudinaria 

and H. erectus, had very low relative abundances of almost all KOs with the exception of 

glutamate dehydrogenase (NAD(P)+; K00261) and glutamine synthetase (K01915); the 

latter of which was present in all biotopes. Seawater was enriched with respect to 
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glutamate dehydrogenase (NADP+; K00262), carbamate kinase (K00926) and glutamate 

synthase (NADPH/NADH; K00266), while nitrate reductase beta subunit (K00371) was 

enriched in sediment. 

 

 
Figure 5.4.4 - Mean relative abundance of KEGG genes involved in the Nitrogen 

metabolism pathways for samples from seawater (Wt), sediment (Sd), S. massa (Sm), S. 

carteri (Sc), X. testudinaria (Xt) and H. erectus (He). Error bars represent a single 

standard deviation. The KEGG genes shown include the following: a) K00260 glutamate 

dehydrogenase; b) K00261 glutamate dehydrogenase (NAD(P)+); c) K00262 glutamate 

dehydrogenase (NADP+); d) K00266 glutamate synthase (NADPH/NADH); e) K00366 

ferredoxin−nitrite reductase; f) K00371 nitrate reductase beta subunit; g ) K00926 

carbamate kinase; h) K01915 glutamine synthetase. 

 

OTUs belonging to the Cenarchaeales order were the only ones contributing to the 

abundance of the glutamate dehydrogenase (K00260), glutamate dehydrogenase 
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(NAD(P)+; K00261), ferredoxin−nitrite reductase (K00366), and nitr ate reductase beta 

subunit (K00371) enzymes (Figure 5.4.5). In contrast, OTUs belonging to the E2 order 

were the only ones contributing to the abundance of glutamate dehydrogenase (NADP+, 

K00262) and glutamate synthase (NADPH/NADH, K00266). OTUs belonging to the E2 

order were also major contributors to the abundance of carbamate kinase (K00926). For 

glutamine synthetase (K01915), both OTUs orders, Cenarchaeales and E2, had similar 

contributions; with OTUs belonging to the Cenarchaeales order being the major 

contributors to the presence of this enzyme in sponge and sediment biotopes and OTUs 

belonging to the E2 order the major contributors to the abundance of this enzyme in the 

seawater biotope.  

 

 
Figure 5.4.5 - The predicted contribution of Cenarchaeales and E2 OTUs to the KEGG 

genes involved in the Nitrogen metabolism from each biotope: seawater (Wt), sediment 
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(Sd), S. massa (Sm), S. carteri (Sc), X. testudinaria (Xt) and H. erectus (He). Error bars 

represent a single standard deviation. The KEGG genes shown include the following: a) 

K00260 glutamate dehydrogenase; c) K00261 glutamate dehydrogenase (NAD(P)+); e) 

K00262 glutamate dehydrogenase (NADP+); g) K00266 glutamate synthase 

(NADPH/NADH); i) K00366 ferredoxin−nitrite reductase; k) K00371 nitrate reductase beta 

subunit; m ) K00926 carbamate kinase; o) K01915 glutamine synthetase. 

 

 

5.5. Discussion 
 

With the exception of the seawater community, which was dominated by Euryarchaeota, 

the archaeal community of sediment and sponges was dominated by Crenarchaeota. In 

addition to these two commonly found phyla (Lee et al. 2011; Pires et al. 2012; Polónia et 

al. 2013) another phylum, Parvarchaeota, was detected in this study; however this was 

only found in sediment. Parvarchaeota consists of a newly proposed phylum comprising 

the genera Parvarchaeum and Micrarchaeum (Rinke et al. 2013; Nikolaki and Tsiamis 

2013). Sediment was the most diverse biotope (3 phyla; 12 classes, 16 orders and 15 

families) in the coral reef environment. Moreover, all the unclassified OTUs at the phylum 

level (36) were found in sediment.  

 

Crenarchaeota have been found to be the dominant phylum in sponge biotopes (Webster 

et al. 2001; Holmes & Blanch 2007), as was the case in our study. However, the 

percentage of Crenarchaeota communities detected here was lower than in previous 

studies. Polónia et al. (2013) found that 98 and 99.8% of the S. massa and X. testudinaria 

archaeal communities respectively in Jakarta (Indonesia) were assigned to the 

Crenarchaeota phylum. In the present study, only 63% of the archaeal community 

inhabiting S. massa and 92% of the archaeal community inhabiting X. testudinaria were 

assigned to Crenarchaeota. Polónia et al. (2013) also found that 29% of the seawater 

community in Jakarta was assigned to Crenarchaeota. Here, less than 2% of the seawater 

community was assigned to this phylum. This would seem to suggest, that in seawater 

environments dominated by Euryarchaeota, the proportion of this phylum in sponge 

tissues tends to increase; indicating a clear influence of the environment on the sponge 

microbial communities. 

 

In the tropical surface seawaters of the Georgetown coast (Penang, Malaysia) and 

Kepulauan Seribu reef system (Java, Indonesia), 65-70% of the archaeal community was 
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assigned to the Euryarchaeota phylum (Chan et al. 2013; Polónia et al. 2013). However, 

in a South Pacific Gyre, considered one of the cleanest oceanic regions of the world, due 

to its isolation from sources of pollution, the seawater community was almost entirely 

composed of Euryarchaeota (Yin el al. 2013). These authors suggested that the low 

ammonium concentration in the seawater of the South Pacific Gyre is the reason for the 

very low Crenarchaeota abundance. Crenarchaeota have been shown to be important 

players in many geochemical cycles. All the cultivated members of the class 

Thaumarchaeota (Mesophilic Crenarchaeota), for example, obtain their energy through 

ammonia oxidation (Offre et al. 2013) and thus play an important role in the nitrogen cycle. 

A reduced concentration of ammonia may thus limit Crenarchaeota abundance. The low 

abundance of seawater Crenarchaeota sequences in the present study is an indication of 

lower pollution levels when compared, for example, to the Kepulauan Seribu reef system 

or Georgetown coast. Although rare in the seawater samples, Crenarchaeota remained 

the dominant phylum in all sponge species and sediment. Sponges offer their symbionts a 

stable and nutrient rich environment, namely a constant supply of ammonia, a metabolic 

waste product excreted by sponges. This makes sponges suitable habitats for ammonia-

oxidizing Archaea (AOA). 

 

Xestospongia testudinaria and H. erectus shared a higher number of OTUs with sediment 

than with seawater. In contrast, S. carteri and S. massa shared a higher number of OTUs 

with seawater when compared to sediment. This was reflected both in the phylogenetic 

tree and in the PCO where samples from both Stylissa sponges clustered together with 

seawater samples. This result may be related to the different morphologies and life 

strategies of each of the sponge species. The skeleton of the slow growing and long lived 

X. testudinaria consists of a very dense network of silicious spicules (Desqueyroux-

Faúndez & Valentine 2002). Sponges belonging to the genus Stylissa, in turn, are fast 

growers and have a loose skeleton of very large spicules (Van Soest et al. 2002), which 

results in higher amounts of water in their tissues. Indeed, when squeezed, a copious 

amount of water is expelled from the sponge oscules. Hyrtios erectus lives cryptically 

embedded in the sediment covered in coral sand and the buildup of their skeleton is 

composed by the incorporation of exogenous materials such as sediment grains. 

Additionally, sponges belonging to the genus Xestospongia have been considered high 

microbial abundance (HMA) sponges in contrast to sponges belonging to the genus 

Stylissa (Moitinho-Silva et al. 2013). Previous studies have noted that low microbial 

abundance sponges (LMA) tend to filter much larger volumes of water than HMA sponges, 

hosting communities with lower specificity and diversity and similar to that of seawater 

(Weisz et al. 2008; Thacker & Freeman 2012; Moitinho-Silva et al. 2013). This is 
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consistent with the high amount of water found in the tissues of sponges belonging to the 

genus Stylissa and may account for the greater percentage of shared symbionts in both 

Stylissa species. Our results, however, did not allow us to determine whether the sponge 

OTUs shared with seawater and sediment belonged to the sponge microbiome (as result 

of environmental selection) or whether they were merely contaminants. 

 

An ongoing debate in sponge microbial studies is the degree to which sponge microbes 

are transferred horizontally as opposed to vertically (Hentshel et al. 2002; Sharp et al. 

2007; Taylor et al. 2007; Schmitt et al. 2008). In the present study, the most abundant 

OTU (21591 sequences) was found exclusively in both Stylissa species (OTU-1) and 

represented a phylogenetically distinct lineage. OTU-1, assigned to the genus 

Cenarchaeum, was closely related (with a similarity of 100%) to organisms isolated from 

Axinella damicornis (Margot et al. 2002), Axinella mexicana (Preston et al. 1996) and 

Phakellia fusca (Han et al. 2012). Margot et al. (2002) and Holmes and Blanch (2007) 

previously suggested the existence of a symbiotic association between sponges 

belonging to the genus Axinella and an archaeon closely related to C. symbiosum. Here, 

due to the close taxonomic relationship of these Axinella and Phakellia sponges with the 

studied Stylissa (all belong to the order Halichondrida), we suggest the existence of a 

possibly order-specific symbiosis between Halichondrida and C. symbiosum. This also 

suggests that C. symbiosum is transmitted vertically, i.e., from parent to offspring. In 

contrast to our results, Schmitt et al. (2012) showed that the bacterial communities of 

sponges from the same order were not more similar to one another than the microbial 

communities of sponges from different orders. However, our results also showed that the 

majority of abundant OTUs found in both Stylissa species were shared with seawater. It is 

probable that these symbionts are acquired from the surrounding seawater. 
 
The nitrogen metabolism of Archaea assessed in the present study was dominated by 

KOs related to ammonia.  

Ammonium and ammonia incorporation can occur via two distinct pathways: glutamine 

synthetase/glutamate synthase and glutamate dehydrogenase (Harper et al. 2008). The 

Glutamate dehydrogenase pathway is responsible for the catalysis of the glutamate 

catabolism; i.e., for the breakdown of glutamate into ammonium and α-ketoglutarate and 

thus is also responsible for feeding the tricarboxylic acid pathway (TCA) (Peterson and 

Smith 1999). The glutamate metabolism is, in this way, an important link between the 

carbon and nitrogen metabolisms (Belitsky and Sonenshein 1998). 



Chapter 5 

136 
 

All the biotopes had similar relative abundances of glutamine synthetase (K01915). Due to 

high ammonium affinity, the glutamate synthase pathway is used under restricted nitrogen 

availability while the glutamate dehydrogenase pathway, due to its low ammonium affinity, 

requires higher nitrogen availability (Harper et al. 2008). Here, despite presenting a high 

relative abundance of NADP+, seawater was the most enriched biotope for glutamate 

synthase (NADPH/NADH; K00266). Sponges and sediment, in contrast, were enriched for 

glutamate dehydrogenase (NAD+, NAD(P)+) in comparison to seawater. These results 

indicate that seawater is a relatively nitrogen poor environment when compared to 

sponges and sediment (Hentschel et al. 2012).  

The reversible oxidative deamination of glutamate to α -ketoglutarate and ammonia is 

catalysed by glutamate dehydrogenases. These enzymes can act with only one 

coenzyme (NAD+ or NADP+) or with two coenzymes (NAD(P)+). The first case occurs 

normally in lower eukaryotes or in prokaryotes while the second case occurs mainly in 

higher eukaryotes (Miñambres et al. 2000).  

Here, S. carteri was enriched for glutamate dehydrogenase, had a relatively low 

abundance of glutamate dehydrogenase (NADP+) and a very low relative abundance of 

glutamate dehydrogenase (NAD(P)+). The opposite was the case for X. testudinaria and H. 

erectus, which had a high relative abundances of glutamate dehydrogenase (NAD(P)+) 

and very low relative abundances of glutamate dehydrogenase (NADP+) and glutamate 

dehydrogenase. Stylissa massa had a higher relative abundance of glutamate 

dehydrogenase (NAD(P)+) than S. carteri but lower than X. testudinaria and H. erectus. 

Stylissa massa also had higher relative abundances of glutamate dehydrogenase (NADP+) 

and glutamate dehydrogenase than X. testudinaria and H. erectus. This suggests the 

existence of different degrees of specialisation in the oxidative deamination of glutamate 

to α-ketoglutarate and ammonia in different biotopes varying from sponges such as S. 

carteri, which rely mainly on glutamate dehydrogenase  to X. testudinaria and H. erectus, 

which rely mainly on glutamate dehydrogenase (NAD(P)+). 

Seawater had the highest relative abundance of the coenzyme glutamate dehydrogenase 

(NADP+), which participates in the glutamate anabolism, i.e., the transformation of 

ammonium and α-ketoglutarate into glutamate. This enrichment of a coenzyme promoting 

ammonium assimilation is consistent with the above suggestion of seawater as a nitrogen 

poor environment. Seawater also had a high relative abundance of carbamate kinase 

(K00926), an enzyme that catalyses the transformation of carbamoyl phosphate to 

carbamate with the concomitant production of ATP. This may be an import source of 

energy to planktonic Archaea (Uriarte et al. 1999).  



Chapter 5 

137 
 

Sediment, in turn, had the highest relative abundance of nitrate reductase beta subunit 

(K00371), a possible indication that sediment archaeal communities use nitrate as a 

nitrogen source or electron acceptor (Tang et al. 2013); suggesting relatively high rates of 

reduction of nitrate to nitrite (the first step of denitrification) in this biotope (Shapleigh 2006; 

Liu et al. 2012).  

The pathway ferredoxin−nitrite reductase (K00366) was previously identified in C . 

symbiosum (Hallam et al. 2006), an archaeon restricted to both Stylissa species. Here, 

this enzyme was particularly enriched in S. carteri, a possible indication that their archaeal 

communities catalyze the reduction of nitrite, which may have a toxic effect on sponge 

tissues, to ammonium for further incorporation.  

C. symbiosum (OTU-1) comprised more than 62% on average of the Stylissa archaeal 

community, while unclassified members of the Cenarchaeaceae family comprised 90.2% 

(OTU-3 and OTU-77) and 96.0% (OTU-2, OTU-38 and OTU-84) on average of X. 

testudinaria and H. erectus archaeal community, respectively. Similarly, these dominant 

OTUs were responsible for almost all of the sponge KO counts and thus clearly play a 

dominant role in the Archaea-mediated nitrogen metabolism. 

 

 

5.6. Conclusion 
 

Our study provides novel insights into the function and distribution of Archaea in coral 

reefs. We observed that a higher proportion of Euryarchaeota in seawater appears to 

influence the proportion of this phylum in sponge hosts. This results in greater 

compositional similarity between the archaeal communities inhabiting Stylissa host 

species and seawater. This effect is much less pronounced in X. testudinaria and H. 

erectus. Based on this and other studies, we also suggest the existence of a possibly 

order-specific association between Halichondrida and C. symbiosum. Our results also 

showed significant differences among biotopes with respect to functional gene content in 

archaeal assemblages. These differences were accentuated between host and non host 

biotopes and resulted in clear differences in dominant OTU functions. In sponges 

belonging to the genus Stylissa and seawater, ammonium assimilation is performed 

preferentially through the expression of NAD+ or NADP+ specific glutamate 

dehydrogenase (typical for prokaryotes) and glutamate synthase (NADPH/NADH; K00266) 

whereas in X. testudinaria, H. erectus and sediment ammonium assimilation is performed 

preferentially through the expression of glutamate dehydrogenase with mixed specificity 
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(NAD(P)+). Our results indicate that archaeal communities in host and non-host biotopes 

have distinct ecophysiological roles and may thus provide complementary nitrogen cycling 

functions to coral reef ecosystems. 
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The percentage of the world’s reefs reported to be threatened has increased dramativally 

in recent decades. The increase of urban settlements in coastal zones has been affecting 

these environments through various forms of disturbance namely river runoff, land based 

pollution, untreated sewage, deforestation, sedimentation, tourism and overfishing. In 

order to design effective conservation strategies, a deep understanding of how the 

different coral reef taxa deal with these disturbances is required. This thesis has 

contributed to increase the understanding of the coral reef responses to human-imposed 

stresses. 

The analysis of the response of the different studied taxa to environmental and spacial 

variables demonstrated that environmental variables are the most important in explaining 

variation in composition in the Spemonde, but that distinct taxa react differently to the 

same environmental variable and this response varies strongly with depth. Of the studied 

environmental variables CDOM was the most important explanatory variable and thus 

should be taken in consideration in any future conservation management programs. A 

study assessing the temporal and spatial variation of Chlro_a and SST in our two focal 

study regions over the last 17 years is already underway, and a study assessing coral 

cover variation in Spermonde Archipelago over the last 18 years is also projected. 

Despite the growing number of studies accessing archaeal communities, few have 

accessed coral reef environments and most of them have focused on a single taxon. This 

thesis reported, for the first time, archaeal composition and function in different sponge 

hosts, seawater and sediment in coral reef environments. The results of the two different 

studies on archaeal communities showed Crenarchaeota as the dominant phylum in 

sponge species and sediment and Euryarchaeota as the dominant phylum in seawater 

samples. The proportion of these two phyla in the surrounding seawater can influence the 

sponge archaeal community in such a way that phylogenetic similarities between the 

archaeal community of sponges belonging to the genus Stylissa and seawater were 

observed. Indications of vertical transmission in sponges belonging to the genus Stylissa 

were also shown, with the suggestion of an order-specific association between 

Halichondrida and Cenarchaeum symbiosum. To further investigate the role of Archaea in 

coral reefs additional studies on the functional patterns observed could be undertaken by 

analyzing in detail the functional genes responsible for the top level functional categories. 

Furthermore, cross-shelf studies should allow us to understand how ecological gradients 

and anthropogenic disturbances affect archaeal composition, diversity and function in the 

different reef environments and biotopes. 
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7.1. Supplementary Materials and Methods  
 

7.1.1. 16S rRNA gene barcoded-pyrosequencing 

Using DNA as template, the V3V4 region was amplified, using barcoded fusion primers 

(524F-10- ext (5’– TGYCAGCCGCCGCGGTAA -3’) and Arch958R-mod (5’-

CCGGCGTTGAVTCCAATT -3’) (Pires et al. 2012) with the Roche-454 A and B Titanium 

sequencing adapters, an eight-base barcode sequence in adaptor B and specific 

sequences for the ribosomal region. These regions were amplified using two consecutive 

amplification reactions. Two replicate PCR reactions were performed using 0.2 mM of 

each archaeal specific primers, 1x Advantage 2 Polymerase Mix (Clontech, Mountain 

View, CA, USA), 1x Advantage 2 PCR Buffer, 0.2 mM dNTPs (Bioron, Ludwigshafen am 

Rhein, Germany), 5% (vol/vol) dimethyl sulfoxide (DMSO) (Roche Diagnostics GmbH, 

Mannheim, Germany) and genomic DNA template. After a denaturation step at 94°C 

during 4 min, 30 thermal cycles of 30sec at 94°C, 45sec at 50°C and 1 min at 68°C were 

carried out followed by an extension step at 68°C for 10 min. The PCR products were 

quantified fluorimetrically with PicoGreen (Invitrogen, CA, USA), pooled at equimolar 

concentrations and sequenced in the A direction with GS 454 FLX Titanium chemistry, 

according to manufacturer’s instructions (Roche, 454 Life Sciences, Brandford, CT, USA).  

 

7.1.2. Sequence analyses of 16S rRNA gene fragments 

The barcoded pyrosequencing libraries were analysed using the QIIME (Quantitative 

Insights Into Microbial Ecology; (Caporaso et al. 2010) software package 

(http://www.qiime.org/; last checked 2014-01-20) on a computer running the BioLinux 7 

operating system (http://nebc.nerc.ac.uk/; checked 2014-01-20). In QIIME, fasta and qual 

files were used as input for the split_libraries.py script. Default arguments were used 

except for the minimum sequence length, which was set at 218 bps after removal of 

forward primers and barcodes; backward primers were removed using the 'truncate only' 

argument and a sliding window test of quality scores was enabled with a value of 50 as 

suggested in the QIIME description for the script. In addition to user-defined cut-offs, the 

split_libraries.py script performs several quality filtering steps 

(http://qiime.org/scripts/split_libraries.html). OTUs were selected using UPARSE with 

usearch7 (Edgar 2013). The UPARSE sequence analysis tool (Edgar 2013) provides 

clustering, chimera checking and quality filtering on de-multiplexed sequences. Chimera 

checking was performed using the UCHIME algorithm, which is the fastest and most 

sensitive chimera checking algorithm currently available (Edgar et al. 2011). The quality 
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filtering as implemented in usearch7 filters noisy reads and preliminary results suggest it 

gives results comparable to other denoisers such as AmpliconNoise, but is much less 

computationally expensive (http://drive5.com/usearch/features.html; last checked 2014-

01-20). First reads were filtered with the -fastq_filter command and the following 

arguments -fastq_trunclen 250 -fastq_maxee 0.5 -fastq_truncqual 15. Sequences were 

then dereplicated and sorted using the -derep_fulllength and -sortbysize commands. OTU 

clustering was performed using the -cluster_otus command. An additional chimera check 

was subsequently applied using the -uchime_ref command with the gold.fa database 

(http://drive5.com/uchime/gold.fa). AWK scripts were then used to convert the otus to 

QIIME format. In QIIME, representative sequences were selected using the 

pick_rep_set.py script in QIIME using the 'most_abundant' method. Reference sequences 

of OTUs were assigned taxonomies using default arguments in the assign_taxonomy.py 

script in QIIME with the rdp method (Wang et al. 2007). In the assign_taxonomy.py 

function, we used a fasta file containing reference sequences from the Greengenes 13_5 

release for and the rdp classifier method. We used a modified version of the taxonomy file 

supplied with the Greengenes 13_5 release to map sequences to the assigned taxonomy. 

Finally, we used the make_otu_table.py script in QIIME to generate a square matrix of 

OTUs x samples. This was subsequently used as input for further analyses using the R 

package (R Core Team 2013). 

 

7.1.3. Blast analysis 

Sequence Identifiers of closely related taxa of numerically dominant OTUs ( ≥ 100 

sequences) were downloaded using the NCBI Basic Local Alignment Search Tool (BLAST) 

command line 'blastn' tool with the -db argument set to nt (Zhang et al. 2000). BLAST 

identifies locally similar regions between sequences, compares sequences to extant 

databases and assesses the significance of matches; functional and evolutionary 

relationships can subsequently be inferred. Each run produces a list of hits based on 

significant similarity between pairs of sequences, i.e., the target sequence and taxa 

present in the database (or no hits if no significantly similar sequences are found). A 

discussion of how significance is determined can be found at 

http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html. We used the blastn command 

line tool in a Linux environment to query representative sequences of selected taxa 

including all the most abundant OTUs ( ≥ 100 sequences) against the online NCBI 

nucleotide database. We then generated a vector containing sequence identifiers (GI's) of 

the ten top hits of all representative sequences and used the Entrez.efetch function in 
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BioPython with the rettype argument set to 'gb' to download genbank information of 

aforementioned top hits including the isolation source of the organism and the host. 

 

7.1.4. Phylogenetic analysis 

The phylogenetic tree was built using the Mega5 program (http://www.megasoftware.net/; 

last checked 2012/11/20; Tamura et al. 2011) with the Nearest-Neighbor-Interchange and 

Generalised Time-Reversible model (Tavaré 1986) with Gamma distributed and invariant 

sites. In the results, we present a bootstrap consensus tree based on 100 replicates 

(Felsenstein 1985). Branches reproduced in less than 50% of the bootstrap replicates are 

collapsed. The bootstrap value is shown next to each branch when this exceeds 50%. 

This value represents the percentage of replicate trees in which the associated taxa 

clustered together. 

 

7.1.5. Metagenome analysis 

PICRUSt is a bioinformatics tool that uses marker genes, in this case 16S rRNA, to 

predict metagenome gene functional content. These predictions are precalculated for 

genes in databases including KEGG (Kyoto Encyclopedia of Genes and Genomes) and 

COG (Clusters of Orthologous Groups of proteins). In the present study we used the 

KEGG database. In PICRUSt we used the pick_closed_reference_otus.py script to 

produce a table of OTUs and the normalize_by_copy_number.py script to normalise this 

table by marker gene copy number. The normalised data was used as input for the 

predict_metagenomes.py script, which produces a table of metagenome functional 

predictions for a given OTU table. Output of the predict_metagenomes.py script consists 

of a table of gene (or functional) counts assigned to KEGG orthologs (KOs). KOs are sets 

of orthologous (high sequence similarity and consistent phylogenetic position; Smit and 

Mushegian 2000) biosynthesis genes that have been shown to catalyze the same reaction 

within the same pathway and are thus functionally correlated (Aoki-Kinoshita and 

Kanehisa 2009). These ortholog groups are graphically represented as nodes in KEGG 

individual pathways (Kanehisa and Goto 2000). Finally, we used the 

metagenome_contributions.py script to partition the metagenome functional contributions 

according to function, OTU, and sample. Given data on the taxonomic assignment of 

OTUs, this enabled us to assess the metagenome functional contributions of taxa at 

varying degrees of taxonomic resolution (e.g., at phylum, class or order level). 
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7.1.6. KEGG pathway database  

The KEGG pathway database (Ogata et al. 1999) is a collection of functional pathways 

complemented with a series of ortholog group tables. These functional pathways are 

graphical representations of molecular interactions and relations of gene products 

(proteins, enzymes) responsible for various cellular functions (Kanehisa et al. 2004).The 

KEGG pathway functional hierarchy consists of 7 top level categories. These include 1. 

Metabolism; 2. Genetic Information Processing; 3. Environmental Information Processing; 

4. Cellular Processes; 5. Organismal Systems; 6. Human Diseases and 7. Drug 

Development. These in turn consist of from 3 to 12 subcategories; each of the 

subcategories in turn contains a number of individual pathways. For example, the 

Metabolism category consists of 12 subcategories including carbohydrate metabolism, 

lipid metabolism and energy metabolism. The energy metabolism subcategory in turn 

consists of 8 individual pathways. These are 1. Oxidative phosphorylation; 2. 

Photosynthesis; 3. Photosynthesis - antenna proteins; 4. Carbon fixation in photosynthetic 

organisms; 5. Carbon fixation pathways in prokaryotes; 6. Methane metabolism; 7. 

Nitrogen metabolism and 8. Sulfur metabolism. The individual pathways in turn consist of 

KEGG Orthologs (KOs) (Kanehisa et al. 2004). Note that because of functional overlap, 

some orthologs can be represented in multiple pathways. Since KOs can belong to 

several pathways, we used the categorize_by_function.py script in PICRUSt to collapse 

the PICRUSt predictions at the level of the individual pathways.  
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