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Chronic infection with the blood fluke, Schistosoma haematobium, is associated with squamous cell carci-
noma of the bladder. Previously, it has been shown that soluble extracts of mixed sex adult S. haemato-
bium worms (SWAP) are tumourigenic, both in vitro and in vivo. In addition, oestrogen-related molecules
in SWAP of S. haematobium down-regulate oestrogen receptors (ERs) alpha and beta in oestrogen respon-
sive cells. Moreover, schistosome oestrogens occur in sera of persons with schistosomiasis haematobia
and repress transcription of ERs in urothelial cells. Given that eggs of S. haematobium are the develop-
mental stage directly responsible for urogenital disease during schistosomiasis haematobia, we suspected
that soluble antigens from S. haematobium eggs exhibit similar or more potent tumorigenic capacity. Here
we investigated the tumorigenic potential of soluble egg antigens (Sh-SEA) of S. haematobium and the
endocrine system in favouring parasitism by schistosomes. The findings confirmed that 6.25 lg/ml of
Sh-SEA was enough to stimulate cell proliferation, reduce apoptosis and increase oxidative stress of
Sh-SEA-exposed urothelial cells. In addition, genotoxic effects of Sh-SEA on these cells were determined
by using alkaline single-cell gel electrophoresis (Comet). Furthermore, Liquid Chromatography Diode
Array Detection Electron Spray Ionisation Mass Spectrometry indicated the presence of catechol-oestro-
gens in S. haematobium SEA. A prospective oestrogen–DNA adduct mediated pathway in S. haematobium
egg induced bladder cancer is also discussed.

� 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Schistosomiasis is a neglected tropical disease caused by blood
flukes of the genus Schistosoma. The parasite is transmitted to hu-
mans from freshwater snails. Schistosomiasis is one of the major
neglected tropical diseases and it is considered the most important
of the helminth diseases of humanity in terms of morbidity and
mortality. More than 200 million people in 76 countries are in-
fected by schistosomes and 600 million others are at risk of infec-
tion. One hundred and twenty million people are considered
symptomatic and 20 million have severe disease. The disease
sitology Inc. Published by Elsevier
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may be responsible for an half million deaths per year. No vaccines
are available and treatment relies on a single drug, praziquantel
(King et al., 2005; Gryseels et al., 2006; Hotez et al., 2008).

Infection is frequently asymptomatic and diagnosis might not
be made until a long time after exposure. Adult worms dwell in
blood vessels and release eggs that become embedded in the blad-
der wall, where chronic inflammation, granuloma formation and
eventually squamous cell carcinoma (SCC) may be induced. There-
fore, Schistosoma haematobium, with the liver flukes, Opisthorchis
viverrini and Clonorchis sinensis, is classified as a Group 1 carcino-
gen by the World Health Organization’s (WHO’s) International
Agency for Research on Cancer (Bouvard et al., 2009), although
the cellular and/or molecular mechanisms linking fluke infections
with cancer formation have yet to be defined (Sripa et al., 2012).

Bladder cancer is one of the more dire complications of chronic
schistosomiasis haematobia (Parkin, 2006; Bouvard et al., 2009;
Rollinson, 2009; King, 2010; Kjetland et al., 2012).
Ltd. All rights reserved.
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Case report studies indicate that patients with schistosomiasis
may develop bladder cancer earlier than uninfected people. The
severity and frequency of the sequelae of urinary schistosomiasis
and of its complications (urothelial cancers) depend on the intensity
of infection (worm burden and tissue egg burden) and the duration
of infection (Hodder et al., 2000; Herrera et al., 2005). A S. haemato-
bium-associated bladder cancer incidence of 3–4 cases per 100,000
has been estimated (Shiff et al., 2006). Felix et al. (2008) showed that
the occurrence of transitional cell carcinoma (TCC) of the bladder
has supplanted SCC in Egypt following a major decline in the preva-
lence of urinary schistosomiasis. Such a decline in the pattern of this
infection suggests the importance of schistosome-associated blad-
der cancer that, elsewhere, may be more widespread than is pres-
ently thought (Shiff et al., 2010). In recent progress on the
understanding of the host–parasite relationship of schistosomiasis
haematobia, a draft genome sequence for S. haematobium was re-
ported (Young et al., 2012) and a mouse model of S. haematobium
egg induced immuno-pathogenesis and fibrosis typically found in
human urogenital schistosomiasis was described (Fu et al., 2012).
It was recently reported that this schistosome is amenable to being
cultured in vitro and transformed with nucleic acid probes. Addi-
tionally, the presence of an intact and active RNA interference path-
way in S. haematobium was demonstrated (Rinaldi et al., 2011).

Previously our group reported that soluble extracts of adult S.
haematobium worms induce tumourigenesis (Botelho et al.,
2009b,c). Chinese Hamster Ovary cells (CHO) exposed to whole S.
haematobium antigens (Sh) induced high cellular proliferation
and sarcomas after skin inoculation into nude mice (Botelho
et al., 2009c). In addition, Sh-treated CHO cells showed an in-
creased S phase, decreased apoptosis, down-regulation of the tu-
mour suppressor, p27, and upregulation of the anti-apoptotic
protein, Bcl-2 (Botelho et al., 2009b). Recent findings also indicate
that S. haematobium induces the malignisation of the urothelium in
CD1 mice (Botelho et al., 2011). However, the cellular and molecu-
lar mechanisms implicated have not been fully described. Also, po-
tential parasite carcinogenic components have been investigated
by our group (Botelho et al., 2009a, 2010). Four estrogenic mole-
cules have been described in the parasite and in the sera from in-
fected patients. Our results are consistent with the existence of an
estrogenic molecule that antagonises the activity of estradiol. We
found evidence for this molecule as we identified and character-
ised, by Liquid Chromatography–Mass Spectrometry (LC–ESI-MS),
new estrogenic molecules previously unknown, which were pres-
ent in the extract of S. haematobium worms and sera from schisto-
some-infected patients.

Here we observed similar molecules in soluble egg antigens
(Sh-SEAs) from eggs of S. haematobium. These oestrogen-like hor-
mones are known as catechol-oestrogens (Cavalieri and Rogan,
2011). Metabolites of catechol-oestrogens lead to the formation
of oestrogen–DNA adducts and genotoxity. Thereafter, loss of
DNA adducts can lead to mutations that initiate cancer. Based on
the findings presented here, we propose that oestrogen–DNA ad-
ducts pathways may underlie the association between S. haemato-
bium infection and bladder cancer.
2. Material and methods

2.1. Animals

Eight-week-old female golden hamsters (LVG/SYR) and CD-1
mice were provided by Charles River (Barcelona, Spain). Animals
were allowed to acclimate for 1 week under routine laboratory
conditions before starting the experiments. They did not receive
any treatment prior to the study. Hamsters were kept in separated
cages and mice were kept in six-littermate cages. They were fed
standard balanced food and water ad libitum. All of the animals
were maintained at the National Institute of Health (Porto, Portu-
gal) in rooms with controlled temperature (22 ± 2 �C) and humidity
(55 ± 10%) and continuous air renovation. Animals were housed
under a 12-h light/12-h dark cycle (from 08:00 h to 20:00 h). All
animal experiments were performed in accordance with the
National (DL 129/92; DL 197/96; P 1131/97) and European
Convention for the Protection of Animals used for Experimental
and Other Scientific Purposes and related European Legislation
(OJ L 222, 24.8.1999).

2.2. Experimental infections

Urine samples were collected from S. haematobium-infected indi-
viduals. The individuals were living in Angola, an endemic area for
schistosomiasis. Following instruction in midstream urine collec-
tion, urine samples were then collected from each individual. In-
formed consent from patients was obtained. Schistosoma
haematobium infection was detected by microscopic observation
of the eggs in the sediment of centrifuged urine. The eggs were
hatched and with the resulting miracidia, snails from a susceptible
species, Bulinus truncatus strain from Egypt (maintained in our lab-
oratory), were infected. Cercariae were obtained from these snails
(Gaubert et al., 1999). Golden hamsters and BALB/c mice were
experimentally infected with 100 cercariae; control animals con-
sisted of littermates.

2.3. Eggs of S. haematobium and preparation of Sh-SEAs

Schistosoma haematobium eggs and adults from an Egyptian
strain maintained in the laboratory (Lewis et al., 2008) were ob-
tained from the intestines and livers of infected hamsters, as de-
scribed (Rinaldi et al., 2011) and stored at �80 �C. Subsequently,
eggs were thawed to 4 �C in PBS and lysed by sonication. A soluble
extract was obtained by ultracentrifugation of the sonicated eggs.
An extract of adult worms was prepared as described (Botelho
et al., 2010). The protein concentration of the supernatant was
determined using a micro BCA protein assay reagent kit (Viana
da Costa et al., 1998), and the supernatant employed as Sh-SEA
of S haematobium.

2.4. Cell lines

HCV29 (normal urothelial) cells were cultured and maintained
at 37 �C in a 5% CO2 humidified atmosphere in RPMI medium
(Sigma–Aldrich, Saint Louis, MO, USA) with 10% FBS and 1% penicil-
lin/streptomycin (Sigma–Aldrich). Cells were passaged every
5 days. Cells were serum-starved overnight before treatments
(Botelho et al., 2012).

2.5. Proliferation assay

The CellTiter 96 AQ non-radioactive cell-proliferation assay
(Promega, Madison, WI, USA) was used to assess cell viability.
The assay employs MTS (3-[4,5,dimethylthiazol-2-yl]-5-[3-carb-
oxymethoxy-phenyl]-2-[4- sulfophenyl]-2H-tetrazolium, inner
salt), a tetrazolium compound and the electron coupling reagent,
phenazine methosulfate. Viable cells reduce MTS to formazan,
which is detected at 490 nm using a spectrophotometer; formazan
production is time-dependent and directly proportional to the
number of viable cells. HCV29 cells were cultured in 0.1 ml of RPMI
media in 96-well flat-bottomed plates. Cultures were seeded at
1 � 104 cells/well and allowed to attach overnight. After the indi-
cated time of incubation with the appropriate medium, 20 ll of as-
say reagent were added per well, and cells were incubated for 1 h
before measuring absorbance at 490 nm. Background absorbance
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from the control wells was subtracted. Studies were performed in
triplicate for each experimental condition (Botelho et al., 2009b).
2.6. Apoptosis

A terminal deoxynucleotidyl transferase-mediated deoxyuridine
triphosphate nick end-labelling (TUNEL) assay was performed using
the in situ cell death detection kit (Diagnostics, Basel, Switzerland)
according to the manufacturer’s instructions. Nuclei were counter-
stained with DAPI (Roche Diagnostics). The percentage of TUNEL-
stained nuclei was evaluated in relation to every DAPI-stained
nucleus observed. Immunofluorescence was visualised under a
fluorescence microscope (Olympus, BH-2, UK). The percentage of
stained cells was evaluated by counting the cells stained with TUNEL
divided by the total number of nuclei stained with DAPI at a magni-
fication 200� field. One thousand nuclei were evaluated. Three
independent experiments were performed (Botelho et al., 2009b).
2.7. Oxidative stress assay

Oxidative stress was analysed by evaluation of total (GSHt), re-
duced (GSH) and oxidised (GSSG) glutathione levels. The intracel-
lular levels of GSH and GSSG in Sh-SEA-treated HCV29 cells were
evaluated by the DTNB-GSSG reductase recycling assay, as previ-
ously described (Costa et al., 2007). After exposure to Sh-SEA, cells
were lysed and proteins were precipitated with 5% HClO4. Follow-
ing centrifugation (16,000g, 10 min, 48 �C), the supernatant ob-
tained was used for the determination of GSHt, GSH and GSSG by
spectrophotometry at 412 nm.
2.8. Comet assay

After treatment, cells were washed twice with chilled PBS (Mg2+

and Ca2+-free), centrifuged at 78g for 5 min and resuspended in PBS.
Cell viability was >85% for the tested dose in this study as assessed
by using Trypan blue dye-exclusion. The alkaline version of the Co-
met assay was performed as described by Singh et al. (1988) with
minor modifications. Briefly, cells collected by centrifugation
(78g, 3 min) and suspended in 60 lL of 0.6% low-melting-point aga-
rose (LMA) in PBS (pH 7.4) were dropped onto a frosted slide pre-
coated with a thin layer of 1% normal melting point agarose. Slides
were placed on ice for 4 min to solidify the agarose. Coverslips were
removed and slides were immersed in lysis buffer (2.5 M NaCl,
100 mM Na2EDTA, 10 mM TrisBase, 0.25 M NaOH, pH 10) for 1 h
at 4 �C in the dark. After lysis, slides were placed on a horizontal
electrophoresis tank in an ice bath. The tank was filled with 1 mM
Na2EDTA, 300 mM NaOH, pH 13 (electrophoresis buffer) to cover
the slides. The slides were incubated for 20 min in the dark to facil-
itate DNA unwinding and alkali-labile site expression.

Electrophoresis was carried out for 20 min at 30 V, 300 mA
(1.2 V/cm). The slides were then washed for 10 min with 1 ml of
0.4 M TrisBase, pH 7.5 (neutralising solution). Subsequently, gels
were stained with 100 ll of ethidium bromide (20 lg/ml) and cov-
ered with coverslips for 20 min. After staining, slides were washed
twice with ice-cold, twice distilled water for 20 min.

Slides were coded and examined by a ‘blind’ scorer using a mag-
nification of 400�. One hundred randomly selected cells (50 per
replicate) were examined for each dose. Image capture and analy-
sis were performed with Comet Assay IV software (Perceptive
Instruments, Bury St Edmunds, UK); percentage of tail DNA (%T)
was the DNA damage parameter evaluated (Kumaravel et al.,
2009). The percentage of DNA in the tail is the fraction of DNA in
the tail divided by the amount of DNA in the cell multiplied by 100.
2.9. Liquid Chromatography Diode Array Detection Electron Spray
Ionisation Mass Spectrometry (LC/UV-DAD/ESI-MSn) analyses

The LC/DAD/ESI-MSn analysis was performed on a Finnigan Sur-
veyor Plus HPLC instrument equipped with a diode-array detector
and a mass detector. The HPLC system consisted of a quaternary
pump, an autosampler, a degasser, a photodiode-array detector,
an automatic thermostatic column compartment and a computer
with Xcalibur� software. The mass detector was a Finnigan Sur-
veyor LCQ XP MAX quadrupole ion trap mass spectrometer
equipped with an electrospray ionisation (ESI) interface. Control
and data acquisition were carried out with the Xcalibur� data sys-
tem (ThermoFinnigan, San Jose, CA, USA). Nitrogen > 99% purity
was used with gas pressure of 520 kPa (75 psi). The instrument
was operated in negative-ion mode with ESI needle voltage,
5.00 kV; ESI capillary temperature, 325 �C. The full scan covered
the mass range from m/z 50 to 2,000. MSn data were simulta-
neously acquired for the selected precursor ion. CID-MS/MS and
MSn analyses were performed using helium as the collision gas
with a collision energy of 25–35 eV.

The HPLC used a LiChroCART� C18 column (125 mm � 4 mm;
5 lm particle diameter, end-capped) with the temperature main-
tained at 25 �C; the mobile phase was composed of (A) 1% (v/v)
acetic acid in water and (B) acetonitrile, which had been degassed
and filtered. The gradient used was 0–5 min, 100% A; 5–10 min,
linear gradient from 100% to 80% A; 10–15 min, 80% A; 15–
50 min, linear gradient from 80% to 40% A; 50–65 min, 40% A;
65–75 min, linear gradient from A to 100% B. The flow rate was
0.3 ml min�1 and split out 200 lL min�1 to MS. Spectral data for
all peaks were accumulated in the range 200–600 nm. The instru-
ment was calibrated with caffeine (Aldrich, USA), MRFA (tetrapep-
tide, Thermo Finnigan, USA), and Ultramark 1621 (Lancaster
Synthesis, USA) in the mass range of 195–1,821.

2.10. Statistical analysis

Data were expressed as mean ± S.D. A Student’s t test was used
to assess the statistical significance of differences; P 6 0.05 was
considered statistically significant.

3. Results

3.1. Schistosoma haematobium Sh-SEA increased the proliferation of
urothelial cells in vitro

To begin investigating the effect of Sh-SEA on cell viability and
proliferation, HCV29 cells were seeded on 96 well plates, starved
overnight, treated with increasing concentrations of Sh-SEA for
24 h, cultivated for 24, 48 and 72 h, and proliferation assessed
using a MTS assay (Fig. 1). The growth curve showed that cells
incubated in 6.25 lg/ml of Sh-SEA for 24 h proliferated signifi-
cantly faster and more than control (untreated) cells. We obtained
the same results at 48 and 72 h (data not shown). Unexpectedly,
higher concentrations of Sh-SEA did not increase cell proliferation
and indeed, concentrations of Sh-SEA P 25 lg/ml caused a reduc-
tion in proliferation (Fig. 1).

This outcome suggested that increases in both proliferation and
overall survival in HCV29 cells were consequences of exposure to
Sh-SEA, at least at the lowest tested concentration of Sh-SEA.
Accordingly, this concentration (6.25 lg/ml) was used in the follow-
ing investigations.

3.2. Sh-SEA decreased apoptosis of urothelial cells

To analyse apoptosis, HCV29 cells were seeded on 96 well
plates, starved overnight and exposed for 24 h to 6.25 lg/ml of



Fig. 1. Stimulation of human urothelial cells (HCV29) with soluble egg antigen (SEA) from Schistosoma haematobium. Cell proliferation in control (C) or SEA-exposed HCV29
cells at the indicated concentrations for 24 h, harvested 24 h later and analysed by Methosulfate Tetrazolium Salt (MTS) assay. Bars indicate the average of three
experiments ± S.D. The asterisk indicates a significant difference (P 6 0.05) compared with the control cells.

A

B

Fig. 2. Soluble egg antigen (SEA) from Schistosoma haematobium inhibited apoptosis in cultured human urothelial (HCV29) cells. (A) Apoptotic cells observed in control or
SEA-exposed HCV29 cells at 6.25 lg/ml for 24 h, cultivated for 24 h and analysed by TUNEL. Bars represent the average of three experiments ± S.D. The asterisk indicates a
significant difference (P 6 0.01) compared with control cells. (B) Control and SEA-exposed HCV29 cells at 6.25 lg/ml as indicated. Scale bar = 50 lm.
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Sh-SEA. Thereafter the cells were cultured for 24 h, harvested and
processed for a TUNEL assay (Fig. 2). An increasing number of
apoptotic cells per field in controls compared with cells exposed
to 6.25 lg/ml of Sh-SEA for 24 h was observed (Fig. 2B). Cell count-
ing resulted in a significant reduction in apoptosis in Sh-SEA-ex-
posed cells compared with controls (Fig. 2A).
3.3. Sh-SEA increased oxidative stress of urothelial cells in vitro

Oxidative stress was determined by measuring oxidised gluta-
thione (GSSG). A significant increase in GSSG levels was measured
in Sh-SEA-exposed HCV29 cells compared with control cells. Fig. 3
shows the levels of GSSG detected in HCV29 cells after incubation



Fig. 3. Oxidative stress determined by measuring oxidised glutathione (GSSG).
Oxidative stress levels measured in control or Schistosoma haematobium soluble egg
antigen (SEA)-exposed HCV29 cells at 6.25 lg/ml of SEA. Bars represent the average
of three experiments ± S.D. The asterisk indicates a significant difference (P 6 0.01)
compared with the control cells.
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with 6.25 lg/ml of Sh-SEA and in control cells. These results
showed that Sh-SEA treatment was able to elicit the alterations
in glutathione status.
3.4. Induced genotoxicity of urothelial cells in vitro by Sh-SEA

Genotoxicity was detected by a Comet assay as described in
Section 2.8. Fig. 4 shows an increase in tail intensity in Sh-
SEA-treated cells compared with the control. Less damaged nuclei
were observed in the control group of cells compared with cells
exposed to 6.25 lg/ml of Sh-SEA (Fig. 4B). A 3.64-fold significant
A

B

Fig. 4. Genotoxicity evaluated by a Comet assay. (A) Tail intensity detected in control and
the average of three experiments ± S.D. The asterisks indicates a significant difference (P
control cells compared with SEA-exposed cells. Sacle bar = 10 lm.
(P < 0.05) increase in the percentage of tail DNA was detected in
Sh-SEA-exposed cells (47.34 ± 9%) compared with controls
(25.19 ± 5%) (Fig. 4A).

3.5. Catechol-oestrogens are present in eggs of S. haematobium

HPLC with mass spectrometry was used to identify molecules in
samples extracted from Sh-SEA. Fig. 5 depicts UV-chromatograms
obtained for biological samples of S. haematobium mixed adults
(Fig. 5A) and eggs (Fig. 5B). (Given we have previously employed
LC–ESI-MS to analyse S. haematobium adult extracts (Botelho
et al., 2010), extracts of adult worms were included here as a con-
trol (Fig. 5A).) In Fig. 6 we can observe the mass spectra (m/z) for
the principal family of catechol-oestrogens.

4. Discussion

Previously we demonstrated that normal cells treated in vitro
with S. haematobium total antigen display cancer-like phenotypes.
Specifically, the cells present rapid uncontrolled division, high
resistance to programmed cell death and an atypical capability to
migrate (Botelho et al., 2009b) and, when injected into mice with
no immune system, lead to the formation of tumours (Botelho
et al., 2009c). We also demonstrated that S. haematobium total
antigen in CD-1 mice normal bladders after intravesical adminis-
tration of the parasite antigens induced inflammation and the
development of urothelial dysplasia (Botelho et al., 2011). By con-
trast, here we characterised the effect of Sh-SEA in human urothe-
lial cells (HCV29) using biological cell approaches typically
soluble egg antigen (SEA)-exposed HCV29 cells at 6.25 lg/ml of SEA. Bars represent
6 0.05) compared with the control cells. (B) Less damaged nuclei were observed in
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Fig. 5. HPLC with MS identifies molecules extracted from Schistosoma haematobium adult mixed sex worms (A) and S. haematobium eggs (B) as catechol oestrogens.
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employed in studies of carcinogenesis. Hanahan and Weinberg
(2000) presented the following in their findings, ‘‘The Hallmarks
of Cancer’’: ‘These are biological capabilities acquired during the
multistep development of human tumors. The hallmarks constitute
an organising principle for rationalising the complexities of neo-
plastic disease. They include sustaining increasing cell prolifera-
tion, apoptosis, inducing oxidative stress and genotoxicity’.

Cell cultures of HCV29 were exposed to Sh-SEA and showed that
in a concentration range of 6.25–25 lg/ml, the extract increases
proliferation. This observation is in agreement with findings with
CHO cells treated with S. haematobium (Botelho et al., 2009a,b). It
has been shown that prolonged stimulation of excessive
proliferation of urinary bladder epithelial cells in rats leads to
formation of carcinomas (Otori et al., 1997). However, higher
concentrations of Sh-SEA did not stimulate cells to proliferate
and indeed concentrations of Sh-SEA P 25 lg/ml inhibited prolif-
eration. Eggs of Schistosoma mansoni secrete a hepatotoxin. Cells
infiltrate to surround the newly embolised egg, forming a peri-oval
granuloma. In the T cell-deficient mouse, this granulomatous
response is lacking, and toxic products released by eggs cause liver
damage and death (Abdulla et al., 2011). Thus granulomata protect
the host from toxic products of schistosome eggs. Despite the
importance of this phenomenon in schistosomiasis mansoni, until
recently (Fu et al., 2012), an informative model to analyse the issue
in the context of S. haematobium SEA was not available. We aim to
carry out studies in the future to address this issue.

Apoptotic cell loss in carcinogenesis has been examined by the
TUNEL method (Takaba et al., 2000). We also used this method to
analyse apoptosis in CHO cells after treatment with S. haematobi-
um, where S. haematobium dramatically decreased apoptosis in
CHO cells (Botelho et al., 2009b). Here, similar phenomena were
seen in bladder epithelial cells exposed to SEA of S. haematobium.

Oxidative stress has been widely implicated as a mechanism
underlying carcinogenesis. Numerous in vitro studies have identi-
fied increased reactive oxygen species (ROS) generation as an initi-
ating factor in cancer. The generation of ROS and the resulting
oxidative stress may cause a breakdown of membrane lipids, an
imbalance of intracellular calcium homeostasis and DNA breakage
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(Petruska et al., 1991; Clutton, 1997; Shukla et al., 2011). Here we
report increased oxidative stress in Sh-SEA-treated cells. Earlier
studies showed that S. haematobium infection is likely to cause
bladder cancer by the same mechanism; Salim et al. (2008) sug-
gested a strong correlation between S. haematobium infection and
increased levels of oxidative stress accompanied by continuous
DNA damage and repair in urothelial carcinomas. Biliary cell dam-
age by O. viverrini likely stems from the actions of oxygen radicals
such as nitric oxide (NO). NO not only induces DNA damage but has
been reported to mediate DNA repair inhibition. Moreover, NO has
also been demonstrated to inhibit apoptosis (Salim et al., 2008).

The DNA damage response is triggered by the detection of DNA
lesions. This response consists of an orderly sequence of signal
transduction events that can induce the accumulation of genetic
errors which play a critical role in responding to various stresses
that cause DNA damage, especially ROS (Matés and Sánche-
Jiménez, 2000). We confirmed the genotoxic effects of Sh-SEA on
bladder epithelial cells using alkaline single-cell gel electrophore-
sis (Comet). In the case of O. viverrini infection, DNA damage is
caused in biliary epithelial cells while apoptotic mechanisms are
deregulated, resulting in genetic alterations which may become
fixed, leading to malignant transformation (Sripa et al., 2007). All
of these manifestations facilitate carcinogenesis.

Studying the genotoxic molecular mechanism of Sh-SEA has
helped elucidate pathways related to its tumourigenesis. The cen-
tral hypothesis based on our studies is that genotoxic events and
sustained signalling pathway stimulation drive deregulated cell
proliferation and anchorage-independent growth; the processes
are both required for mutations and progression towards neoplas-
tic lesions, and play a role in Sh-SEA-induced mutagenesis and car-
cinogenicity. The well-known biological mechanisms, such as the
alteration of cell-signalling pathways and induction of DNA dam-
age, play a vital role in neoplasia induction (Huang et al., 2009).
The initiation stage of carcinogenesis is mainly characterised by
genotoxic processes, which may lead to irreversible changes in
the structure of cellular genetic materials. Although DNA repair
pathways exist for DNA restoration, however, erroneous repair
and extensive DNA damage may cause mutations and ultimately
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lead to cell transformation (Huang et al., 2009). Furthermore, since
there is a link between DNA damage, mutations and cancer,
Sh-SEAs that are potent in causing DNA damage can be regarded
as more likely to have an effect on cancer development.

Given the context of the unarguable link between S. haematobi-
um infection and bladder cancer, the presence of putative carcino-
genic molecules in S. haematobium eggs identified here hopefully
may have practical consequences for new approaches to control.
We have previously identified, by MS in S. haematobium extracts
and in the serum of infected individuals, four new estrogenic mol-
ecules that were formed by reactions of oestrogen-quinones with
DNA (Botelho et al., 2010). In the present work we found evidence,
as we identified and characterised by MS, similar molecules
present in Sh-SEA. The majority of these compounds are cate-
chol-oestrogens. Catechol-oestrogens are formed by hydroxylation
on the steroid aromatic ring A. Hydroxylation of both C-2 and C-3
on a steroid ring was apparent and, further, oxidation into an
estradiol-2,3-quinone. The genotoxic effects of oestrogen metabo-
lites might be attributed to oxidation of catechol-oestrogens to
quinones followed by redox cycling and formation of ROS that in
turn react with DNA (Cavalieri et al., 1997; Lu et al., 2007).

To conclude, we anticipate that the findings will contribute to
understanding how schistosomiasis haematobia leads to SCC of
the bladder. Metabolism of oestrogens and the production of dep-
urinating oestrogen–DNA adducts can be implicated in a pathway
underlying S. haematobium-promoted host cell DNA damage. The
carcinogenic effect of this oestrogen–DNA adduct mediated path-
way could explain the link between S. haematobium infection and
SCC of the bladder. Furthermore, LC/UV-DAD/ESI-MSn emerges as
an important tool to address eventual correlations between
oestrogens and S. haematobium-associated bladder cancer. We
recommend that future studies assess activities of specific cate-
chol-oestrogens identified in schistosome eggs. We plan to follow
this route using catechol-oestrogens purified from eggs of
S. haematobium and/or synthetic versions of these putative carcin-
ogens. In addition, studies utilising RNA interference to silence
components of oestrogen catabolism pathways such as schisto-
some estradiol 17beta dehydrogenase and other catalysts should
be informative (Rinaldi et al., 2011; Young et al., 2012)
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