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Abstract Comparative molecular field analysis (CoM-

FA) and comparative molecular similarity indices analysis

(CoMSIA) based on three-dimensional quantitative struc-

ture–activity relationship (3D-QSAR) studies were con-

ducted on a series (39 molecules) of peptidyl vinyl sulfone

derivatives as potential Plasmodium Falciparum cysteine

proteases inhibitors. Two different methods of alignment

were employed: (i) a receptor-docked alignment derived

from the structure-based docking algorithm GOLD and (ii)

a ligand-based alignment using the structure of one of the

ligands derived from a crystal structure from the PDB

databank. The best predictions were obtained for the

receptor-docked alignment with a CoMFA standard model

(q2 = 0.696 and r2 = 0.980) and with CoMSIA combined

electrostatic, and hydrophobic fields (q2 = 0.711 and

r
2
= 0.992). Both models were validated by a test set of

nine compounds and gave satisfactory predictive r2pred
values of 0.76 and 0.74, respectively. CoMFA and CoM-

SIA contour maps were used to identify critical regions

where any change in the steric, electrostatic, and hydro-

phobic fields may affect the inhibitory activity, and to

highlight the key structural features required for biological

activity. Moreover, the results obtained from 3D-QSAR

analyses were superimposed on the Plasmodium Falcipa-

rum cysteine proteases active site and the main interactions

were studied. The present work provides extremely useful

guidelines for future structural modifications of this class

of compounds towards the development of superior

antimalarials.
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Introduction

The history of malaria treatment is one of acquired drug

resistance and toxic side effects. There is known, wide-

spread resistance to once highly effective but now virtually

useless antimalarials, like the well-known example of

chloroquine [1–3]. The increasing resistance of malaria

parasites is a key factor in the persistence of malaria as a

global major health concern [4]. Therefore, novel, less

toxic, and more specific inhibitors are urgently needed to

control this infectious disease. Potential biochemical tar-

gets for antimalarial development have been identified after

the unveiling of the Plasmodium falciparum (Pf) genome

in 2002 [5, 6]. Among them, there is particular emphasis on

proteases having key roles on the degradation of host’s

hemoglobin within the food vacuole of blood-stage para-

sites, as these depend on such process for their survival.

Among such enzymes, the cysteine proteases, Falcipain-2

(FP2) and Falcipain-3 (FP3), are highly promising anti-

malarial drug targets [7–10].

Cysteine proteases were given this name due to the

function of a catalytic cysteine. This amino acid catalyzes

protein hydrolysis via nucleophilic attack to the carbonyl

carbon of a susceptible bond. FP2 and FP3 are the best
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characterized cysteine proteases of the malaria parasite and

are fairly typical papain-family (clan CA) cysteine proteases

[7]. Over the past years the development of small molecule

inhibitors against Pf falcipains has received a lot of attention

by both the pharmaceutical industry and the medicinal

chemistry community. Indeed, most studies in this area have

shown that falcipain inhibitors prevent hemoglobin hydro-

lysis, block parasite development and cure murine malaria

[11–13]. Moreover, the combination of high-throughput

screening, molecular modeling methods and the availability

of X-ray structures of falcipains has contributed to the dis-

covery of potent inhibitors able to inactivate these Pf

enzymes in a reversible or irreversible manner [7, 14].

In 1996, Rosenthal and colleagues evaluated the anti-

malarial effects of a series of vinyl sulfones as cysteine

proteases inhibitors [12]. These organic compounds tend to

covalently bind to the enzymes by an irreversible addition of

the thiol group of the catalytic cysteine to the electrophilic

vinyl sulfone moiety, which behaves as a Michael acceptor.

The study revealed that some compounds of this family were

shown to be nontoxic, active against Pf falcipains and

exhibited antiparasitic activity. Several vinyl sulfones pre-

sented nanomolar activities and the compound Mu-Leu-

hPh-VSPh (also named K11017, Fig. 1) was the one that

most effectively inhibited falcipains, blocked hemoglobin

degradation and parasite development. To increase both

bioavailability and aqueous solubility, several structural

replacements on K11017 were tested [15]. Although some

compounds demonstrated better activities than the parent

molecule, they also revealed limited utility as therapeutic

agents due to their susceptibility to protease degradation and

their poor absorption through cell membrane [14]. In an

effort to well define the structure–activity relationships of

this class of compounds, Shenai et al. recently disclosed a

new series of 39 new vinyl sulfone, vinyl sulfonate ester, and

vinyl sulfonamide cysteine protease inhibitors and deter-

mined their FP2 inhibitory activity [16].

This previous experimental structure–activity study of

vinyl sulfones as FP inhibitors motivated us to engage in a

complementary computational 3D-QSAR analysis, along

with docking studies, of the same set of 39 peptidyl vinyl

sulfone derivatives. This dataset was analyzed in an effort

to: (i) derive a statistically significant and predictive model

of peptidyl vinyl sulfones affinity towards the FP2 cysteine

protease and (ii) identify the physicochemical properties

that have a substantial effect on the binding affinity of

those ligands. The knowledge of the protein structure is not

a pre-requisite to perform QSAR analysis. However,

combining docking and 3D-QSAR analysis is advanta-

geous because it allows the direct visualization and inter-

pretation of the results obtained by the derived models with

respect to the protein environment. This information pro-

vided valuable insight into structure activity interpretations

by revealing the interactions contributing positively or

negatively to the binding affinity.

Computational methods

Inhibitor data set and ligand preparation

The set of 39 peptidyl vinyl sulfones (Fig. 2) with Pf FP2

inhibitory activity was identified from the literature [16].

All inhibitors were synthesized in the same laboratory and

the activity data, reported as IC50, were determined using

the same assay protocol [12]. This aspect is crucial since

homogeneity of experimental conditions is required to get

reliable 3D-QSAR models. The IC50 value of each inhib-

itor was converted into pIC50 (-log IC50) in order to use

the data as a dependent variable in the CoMFA and

CoMSIA models. The structures, drawn with Marvin-

Sketch [17], and inhibitory activities (IC50 and pIC50) of

the studied compounds are displayed in Table 1.

The 3D structures of the small organic molecules were

built based on the docked structure of K11017 (ligand 14),

within the FP2 catalytic site. The molecular structures of

the inhibitors were generated employing the Tripos force

field within the Sybyl X 1.3 molecular modeling program

[18]. Charges were assigned using the Gasteiger-Marsili

method. Energy minimization was performed using 20

simplex iterations followed by 1,000 steps of Powell

Fig. 1 Structure of vinyl sulfone, Mu-Leu-hPh-VSPh (or K11017) Fig. 2 General structure of peptidyl vinyl sulfone derivatives
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minimization until achieving the gradient norm of

0.05 kcal/mol.

Molecular docking

As no experimental FP2 structure bound to a peptidyl vinyl

sulfone inhibitor is available, docking calculations were

conducted to predict the appropriate binding orientation of

the ligands, into the FP2 catalytic site. For this process, we

used the molecular docking program GOLD (Genetic

Optimization for Ligand Docking) [19, 20] from the

Cambridge Crystallographic Data Center.

The X-ray structure of FP2 with its bound inhibitor E64

(PDB code: 3BPF) [21] was used and prepared for docking

with Sybyl X 1.3 software. The original ligand, ions and

solvent molecules were removed and the protein was pro-

tonated to a pH = 5.5. The protein was then minimized

with the AMBER program [22] by 500 steps of steepest

descent followed by 2,000 steps of conjugate gradient to

remove bad contacts using a generalized-Born solvent

model. The biomolecular force field ff03 was used [23].

For docking studies the genetic operations were set to

default parameters with a population size of 100

Table 1 Structures, experimental FP2 activities (IC50 and pIC50),

predicted activities (Calcd) and residuals (Res) by CoMFA and

CoMSIA models of peptidyl vinyl sulfone derivatives. Compounds

marked with * belong to the test set

 ID R3 R5/R4

FP2 

IC50

(nM)

pIC50

CoMFA CoMSIA 

Calcd Res Calcd Res 

1 CH2 110 6.959 7.030 0.071 6.947 0.012

2* CH2 120 6.921 7.067 0.146 7.235 0.314

3 CH2 71 7.149 7.084 0.065 7.065 0.084

4 CH2 120 6.921 6.774 0.147 6.984 0.063

5 O 120 6.921 6.790 0.131 6.859 0.062

6 O 56 7.252 7.247 0.005 7.256 0.004

7 O 290 6.538 6.655 0.117 6.588 0.050

8* O 230 6.638 7.235 0.597 6.483 0.155

9 O 130 6.886 6.889 0.003 6.859 0.027

10 35 7.456 7.487 0.031 7.479 0.023

11* 27 7.569 7.996 0.427 7.865 0.296

12 8.7 8.060 7.936 0.124 7.900 0.160

13 9.2 8.036 8.232 0.196 8.096 0.060

14 3.5 8.456 8.456 0.000 8.392 0.064

15 6.9 8.161 8.337 0.176 8.311 0.150

16 9.9 8.004 7.941 0.063 8.053 0.049

17 6.7 8.174 8.028 0.146 8.169 0.005

18* 140 6.854 7.480 0.626 7.578 0.724

Table 1 continued

21 25 7.602 7.711 0.109 7.594 0.008

22 14 7.854 7.981 0.127 7.898 0.044

23* 16 7.796 7.681 0.115 7.810 0.014

24 3.6 8.444 8.460 0.016 8.375 0.069

25 2.5 8.602 8.562 0.040 8.583 0.019

26 2.2 8.658 8.733 0.075 8.643 0.015

27 16 7.796 7.796 0.000 7.746 0.050

28 OMe 0.7 9.155 9.198 0.043 9.153 0.002

29* OMe 1.9 8.721 8.862 0.141 8.798 0.077

30 OMe 0.9 9.046 9.183 0.137 8.967 0.079

31 F 0.7 9.155 9.045 0.110 9.114 0.041

32 F 21 7.678 7.797 0.119 7.828 0.150

33 F 0.9 9.046 8.809 0.237 9.055 0.009

34* H 0.7 9.155 8.918 0.237 8.943 0.212

35 H 350 6.456 --- --- --- --- 

36 H 0.7 9.155 9.109 0.046 9.131 0.024

37 H 0.8 9.097 8.896 0.201 9.197 0.100

38* F 0.9 9.046 8.279 0.767 8.122 0.924

39 OMe 0.9 9.046 9.076 0.030 8.956 0.090

19* 2.3 8.638 8.091 0.547 7.985 0.653

20 2.2 8.658 8.717 0.059 8.765 0.107
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individuals. The selection pressure was set at 1.1 and

default operator weights were used for crossover, mutation

and migration, i.e., 95, 95 and 10, respectively. The bind-

ing site was defined as 15 Å radius from the catalytic amino

acid Cys42 and the GoldScore function was used to rank

the different binding poses.

Previously, the docking protocol was tested to verify if

GOLD was able to reproduce the experimental data. For this

validation, we selected the available complex of FP3 with

K11017 inhibitor from the PDB databank (PDB code:

3BWK) [24]. The selection of FP3 structure (PDB code:

3BWK) to establish a docking protocol was based on the

following reasons: (i) FP2 and FP3 are both cysteine pro-

teases of Plasmodium Falciparum and contribute more or

less equally to the digestion of hemoglobin in the food

vacuole [21]; (ii) the superimposition of FP2 (3BPF, chainB)

and FP3 (3BWK, chainA) using DaliLite server [25], mat-

ches 240 a-carbons with an RMSDof 1.1 Å, a Z score of 38.9

and a sequence of identity of 66% and (iii) FP3 X-ray

structure (3BWK) give us access to the bioactive confor-

mation of one of the peptidyl vinyl sulfones derivatives of

this study (ligand 14). The X-ray FP3 structure presented a

missing residue, the C-terminal GLU243, which was added

with the module Biopolymer in Sybyl X 1.3 molecular

modeling program. We followed exactly the same docking

protocol as used above for FP2 whereas the binding site was

defined as 15Å radius from the catalytic residue Cys52.

Ligand alignment method

The quality of the spatial alignment of the ligands is the

most sensitive parameter in 3D-QSAR analyses since the

quality and predictive ability of the model are dependent

on the alignment method. In order to identify the most

efficient alignment approach for this data set, two different

procedures were employed: (i) a receptor-docked align-

ment derived from the structure-based docking algorithm

GOLD and (ii) a ligand-based alignment using the structure

of K11017 derived from the crystal structure 3BWK from

the PDB databank. In the latter, the co-crystallized struc-

ture of K11017 was used as the basic skeleton to build the

remaining compounds by modifying the required substi-

tutions. Partial atomic charges were assigned with the

Gasteiger-Marsili method and energy minimization of each

molecule was then performed employing the Tripos stan-

dard force field while keeping the conformation of the

common structure of peptidyl vinyl sulfones.

CoMFA analysis

The CoMFA fields (steric and electrostatic) were generated

using C sp3 atom with a ?1 charge as probe and calculated

using the standard Tripos force field with a distance-

dependent dielectric constant. The cutoff was set to

30 kcal/mol. To form the basis for a statistical significant

model, the method of partial least-squares (PLS) regression

was used to analyze the inhibitors by correlating variations

in their biological activities with variations in their inter-

action fields. The cross-validation analysis was performed

using the leave-one-out (LOO) method wherein one of the

compounds is removed from the data set and its activity

predicted with the model derived from the remaining

compounds. The optimum number of components, N, used

in the model derivation was chosen from the analysis with

the highest cross-validated coefficient, q2, and lowest

standard error of prediction, SEP. The column filtering was

set at 2.0 kcal/mol to speed up the analysis and to reduce

noise. Finally, the non-cross-validation analysis was per-

formed to calculate conventional non cross-validated

coefficient, r2, using the optimum number of components

obtained from the analysis above. In these analyses, a q2 of

0 represents prediction based on random guessing, a q2 of 1

represents perfectly accurate prediction and a negative q2

represents prediction worse than random guessing. Gener-

ally, a minimum q2 of 0.3 is recommended and a QSAR

model with a value of q2[ 0.5 is normally considered to

possess significant predictive ability [26]. However, during

the past few years, evidences have been indicative that q2

appears to be necessary but not a sufficient condition for

the model to have a high predictive power [27, 28]. This

way, it has been proposed the validation on a sufficiently

large test set (*25–33% of total data set) to establish a

reliable 3D-QSAR model [29]. Therefore, the panel com-

prising 39 compounds was split into a training set (30

compounds) and a test set (9 compounds, displayed with an

asterisk in Table 1). The selection of these 9 compounds

was made on the basis that the test set must represent

structural diversity and a range of biological activities

similar to that of the training set. A predictive r square

(rpred
2 ) value was then obtained with the following equation:

r2pred ¼ ðSDÿ PRESSÞ=SD

In the previous expression, SD is the sum of squared

deviation between the biological activities and the mean

activity of the test set molecules and PRESS represents the

sum of squared deviations between the experimental and

predicted activities of the test set compounds.

CoMSIA analysis

CoMSIA similarity indices [30], between the compounds

of interest and the probe atom, were calculated at each

lattice intersection of a regularly spaced grid of 2.0 Å,

taking the same aligned molecules and the same lattice box

that were used for CoMFA. A probe atom with radius 1.0 Å

and ?1.0 charge with hydrophobicity of ?1.0 and
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hydrogen bond donor and hydrogen bond acceptor prop-

erties of ?1.0 was used to calculate steric, electrostatic,

hydrophobic, donor and acceptor fields. Gaussian type

distance dependence and the default value of the attenua-

tion factor (a = 0.3) were used.

Results and discussion

The experimental results cover a wide range of pIC50 from

6.456 to 9.155 (calculated from IC50 values in M units)

giving us useful information to understand the different

activity profiles of the molecules in our dataset.

Docking results

Docking accuracy was validated using the known X-ray

structure of FP3 in complex with ligand 14. The ligand was

docked into the binding site of FP3 and the docked confor-

mation corresponding to the highest GoldScore value was

selected as themost likely binding conformation. TheRMSD

between predicted and experimental poses of ligand 14 was

found to be 1.36 Å, which was quite satisfactory considering

the number of rotatable bonds of the molecule (Fig. 3).

Subsequent docking of ligand 14 in FP2 active site

reproduced the group arrangements into S1–S3 substrate

binding sites (Fig. 4a). Moreover, H-bonds of ligand 14

with Gly92, Asn182, His183, and Trp215 of FP3 binding

site were reproduced in the FP2 active site: Gly83, Asn173,

His174 and Trp206, respectively (Fig. 4b). Although the

ligand adopt similar conformations in each complex, i.e.,

same groups fit into the same substrate binding sites, in the

FP2 ligand 14 complex the conserved phenyl sulfone group

at the S10 position is flipped about *90° out of the active

site in relation to the FP3 complex.

This situation is analogous to that observed for the X-ray

structure of rhodesain with the same ligand when compared

with that of FP3 [24]. The authors attributed this event to

the substitution of Ala166 in FP3 for the slightly bulky

Met145 in rhodesain, which prevent the phenyl sulfone

substituent from lying flat. Superimposition of the FP3 and

FP2 complexes indicates that a similar substitution could

be at the origin of this phenyl sulfone flip. In fact, the

amino acid equivalent to Ala161 in FP3 is the slightly

bulkier Val152 in FP2, which hinders the phenyl sulfone of

the inhibitor to rest on the floor of the S10 pocket (Fig. 5).

However, we believe that this flipping may be transient,

like for the complex of rhodesain and a vinyl sulfone where

the P10 moiety was modeled at half occupancy in both the

‘‘in’’ and ‘‘out’’ conformations [24].

The docking protocol was then applied to all the pep-

tidyl vinyl sulfone derivatives in order to determine their

likely binding conformations into the active site of FP2. All

of the inhibitors bonded to the active site of FP2 in a

similar conformation to ligand 14 and the common chain of

the structures superimposed rather well. Based on the set of

binding conformations and their alignment, CoMFA and

CoMSIA were performed.

CoMFA model and its predictive power

To explore the effect of different alignment methods on the

predictive ability of the CoMFA model, separate CoMFA

models were built for each alignment scheme.

Model 1 was derived from the docking-based alignment

using the structure-based docking algorithm GOLD. To

obtain a good superimposition of the molecules, the

alignment was improved by manually selecting docking

poses for ligands that showed deviations from it. The set of

top-ranked conformations contained 7 compounds (5, 6,

13, 17, 22, 37 and 38) whose structural features did not

superimpose well with the rest of the inhibitors. For these 7

ligands, conformations with lower scores that aligned with

the majority of the other molecules were selected. An

average decrease of 0.9 in the GOLD fitness score was

observed between the top-ranked conformations and those

presenting better alignment profile. These differences in the

GoldScore can be considered as of minor importance.

Figure 6a illustrates the resulting conformational align-

ment of the 30 compounds taken from the docked con-

formations. Model 2 was built from the ligand-based

alignment, which is represented in Fig. 6b. The partial least

square (PLS) statistics of CoMFA models 1 and 2 are

summarized in Table 2.

Fig. 3 Superimposition of co-crystallized pose (CPK reperesenta-

tion) of ligand 14 and top-ranked docked binding mode (silver) into

FP3 catalytic site. Substrate binding sites S1, S10, S2 and S3 of FP3

are shown
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Model evaluation using the Leave-One-Out (LOO)

cross-validation and external validation methods generated

only moderate satisfactory results. By further checking the

observed activities versus the predicted activities (data not

shown) of the models, it was noted that one of the mole-

cules (ligand 35) had predicted errors close to one unit for

Model 1 and higher for Model 2. This indicates that the

target value for this compound was badly estimated.

Molecules can be outliers for various reasons such as (but

not only) structural uniqueness compared to the other

molecules, experimental data outside the range of the other

molecules, or poor experimental data. In our case, we think

it may be due to the large difference in inhibitory activity

compared with other compounds that show only minor

structural differences (ligands 28–39).

When ligand 35 was treated as outlier and excluded

from the models construction, the new models (Model 3

and 4 derived from receptor-based and ligand-based

alignment, respectively) were clearly improved. The partial

least square (PLS) statistics of the two new CoMFA models

are summarized in Table 3.

For Model 3, we obtained a cross-validated LOO q2 of

0.696 (SEP = 0.478) with three principal components and

a non cross-validated r2 of 0.98 (SEE = 0.121). Model 4,

derived from the ligand-based alignment, gave a slightly

better value of LOO cross-validated q2 of 0.784

(SEP = 0.418) with three principal components and a non

cross-validated r2 of 0.936 (SEE = 0.223). In order to use

these models toward lead optimization, they must have

reasonable extrapolative validity in addition to interpola-

tive accuracy. Subsequently, an external validation was

performed on the test set of 9 compounds outside the

training set to evaluate their predictive ability. All the

compounds were predicted well by the two models. Indeed,

models 3 and 4 gave comparable good predictive

rpred
2 values of 0.755 and 0.768, respectively.

LOO cross-validated value, q2, was introduced to gen-

erate an initial measure of the accuracy of model interpo-

lation. The study suggested that all the derived models had

a good cross-validated correlation (q2[ 0.5). Although the

q2 value of the receptor-based CoMFA model was lower

than the ligand-based model, conventional r2 and F value

were higher, while the SEE was lower.

The different alignments also affected the field contri-

butions of the two models: Model 3 showed a higher

contribution of electrostatic field while we verified the

opposite for Model 4. We consider that this may be due to

the fact that the receptor-docked alignment may provide, in

this case, a better representation for predictive intents,

since the observed variability in the position of the

Fig. 4 a Surface representation

of the substrate binding sites of

FP2 with the top-ranked docked

conformation of ligand 14 and

b Ball and stick representation

showing important FP2 residues

that establish hydrogen bonds

with docked ligand 14 (thicker

conformation)

Fig. 5 Phenyl sulfone flipping in the FP2 ligand 14 complex: ribbon

representation of FP3 (green) and FP2 (orange) are shown. Docked

ligand 14, Val152 and Ala161 are colored as their respective enzyme

partners
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different ligands symbolizes the receptor’s ability to dif-

ferently accommodate (up to a point) compounds with

substituents of varying size and electrostatic features. As a

result, receptor-based alignment seems to provide addi-

tional information compared with the ligand-based method.

In addition, the cross-validated PLS analysis indicated that

the CoMFA model derived from the receptor-based align-

ment is robust in predicting both the training and test set and

was then selected for further structural analysis. For the

selected model, the relative contributions of steric and

electrostatic fields for CoMFA correspond to 40 and 60%,

respectively. Electrostatic interactions of molecules from

our dataset with active site of FP2 were found to be a slightly

more influent factor for inhibitory activity. The predicted

inhibitory activity (pIC50) and the residual values for the

training set and the test set, using the developed CoMFA

Model 3, are described in Table 1, while the graphical plot

between the experimental vs predicted FP2 inhibitory

activity for both training and test set is shown in Fig. 7.

CoMSIA model and its predictive power

Taking the same alignment method, training and test set

that were used to derive the best CoMFA model, various

CoMSIA models were generated considering all possible

combinations of CoMSIA field descriptors, i.e., steric (S),

electrostatic (E), hydrophobic (H), hydrogen bond donor

(D) and acceptor (A) fields. The partial least square (PLS)

statistics of all the CoMSIA models are summarized in

Table 4.

Based on the cross-validated and conventional correla-

tion coefficients, q2 and r2, the PLS analyses yielded con-

sistent results of high statistical significance for 11 models

(highlighted in bold, Table 4). The q2 and r2 values of

these models range from 0.651 to 0.754 and 0.956 to 0.998,

respectively. However, on further validation of these ele-

ven best CoMSIA models with respect to their ability to

explain the activity variation among the test set of 9

compounds covering almost the same range of FP2 inhib-

itory activity, only models EH and SEH represented the

best results with a predictive rpred
2 of 0.74 and 0.77,

respectively. The combination of electrostatic and hydro-

phobic fields in CoMSIA gave the best results (Model EH),

giving cross-validation correlation coefficient q2 of 0.711,

conventional correlation coefficient r2 of 0.992 and

Fig. 6 Receptor-based (a) and

ligand-based (b) alignments

used to derive CoMFA models

Table 2 Summary of CoMFA statistical results for the different

alignment methods

QSAR

parametera
Model 1 (receptor-

based alignment)

Model 2 (ligand-

based alignment)

q2 0.604 0.563

N 2 3

SEP 0.559 0.625

r2 0.906 0.845

SEE 0.272 0.358

F test value 130.18 47.187

rpred
2 0.68 0.63

a q2 cross-validated coefficient, N number of components, SEP

standard error of prediction, r2 conventional non cross-validated

coefficient, SEE standard error of estimation, rpred
2 predictive corre-

lation coefficient

Table 3 Summary of CoMFA statistical results for models 3 and 4

(without outlier) derived from receptor and ligand-based alignment,

respectively

QSAR

parametera
Model 3 (receptor-

based alignment)

Model 4 (ligand-

based alignment)

q2 0.696 0.784

N 3 3

SEP 0.478 0.418

r2 0.980 0.936

SEE 0.121 0.223

F test value 427.861 121.26

rpred
2 0.76 0.77

Field contribution (%)

Steric 40 61

Electrostatic 60 39

a Labels as in Table 2
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predictive correlation coefficient rpred
2 of 0.74. The other

combination of steric, electrostatic and hydrophobic fields

(Model SEH) in CoMSIA also gave statistically significant

models, but exhibited relatively lower q2 and r2 values

compared to Model EH. In terms of descriptors, the only

difference between the two models is the contribution of

the steric field in Model SEH.

Mittal et al. previously concluded that the CoMFA steric

field calculated using the steeper Lennard-Jones potential

tends to perform better than CoMSIA steric field calculated

with Gaussian version, which has a slower and smoother

decrease [31]. Indeed, this is true when comparing pre-

dictive ability of CoMSIA Model SE with the related

selected CoMFA model (Model 3). Although the values of

q2 and r2 are similar for those CoMSIA and CoMFA

models, CoMFA Model 3 clearly demonstrates higher

predictive correlation coefficient, rpred
2 of 0.76 compared

Fig. 7 CoMFA predicted versus experimental pIC50 values. Solid

and open circles represent predictions for the training and test sets,

respectively

Table 4 Summary of partial least-squares statistics for CoMSIA models

QSAR parametera

CoMSIA modelb q2 N SEP r2 SEE F test value Field contribution (%) rpred
2

EA 0.754 8 0.480 0.991 0.092 275.391 68 (E), 32 (A) 0.48

SH 0.564 1 0.550 0.737 0.427 75.848 31 (S), 69 (H)

EH 0.711 7 0.508 0.992 0.084 378.244 61 (E), 39 (H) 0.74

SA 0.672 10 0.585 0.993 0.085 257.12 44 (S), 56 (A) 0.42

SD 0.464 2 0.623 0.789 0.390 48.583 33 (S), 67 (D)

SE 0.697 5 0.499 0.979 0.132 210.748 29 (S), 71 (E) 0.68

HA 0.686 2 0.475 0.895 0.275 110.754 57 (H), 43 (A)

ED 0.660 8 0.565 0.983 0.125 146.627 72 (E), 28 (D) 0.58

DA 0.629 2 0.517 0.824 0.356 60.883 56 (D), 44(A)

HD 0.555 2 0.566 0.803 0.377 52.832 50 (H), 50 (D)

SEA 0.709 8 0.522 0.994 0.075 418.005 16 (S), 58 (E), 26 (A) 0.52

SEH 0.670 4 0.507 0.963 0.171 154.676 18 (S), 52 (E), 30 (H) 0.77

EHA 0.729 10 0.531 0.998 0.046 877.078 46 (E), 33 (H), 21 (A) 0.53

SHA 0.668 2 0.492 0.901 0.267 118.591 23 (S), 42 (H), 35 (A)

SED 0.645 7 0.563 0.986 0.111 213.176 21 (S), 54 (E), 25 (D)

EDA 0.712 9 0.533 0.991 0.096 226.141 53 (E), 21 (D), 26 (A) 0.42

EHD 0.651 7 0.558 0.989 0.098 275.324 49 (E), 31 (H), 20 (D) 0.67

SHD 0.536 1 0.567 0.718 0.443 68.729 14 (S), 45 (H), 41 (D)

SDA 0.630 2 0.516 0.868 0.308 85.784 23 (S), 42 (D), 35 (A)

HDA 0.651 2 0.502 0.865 0.312 83.571 40 (H), 35 (D), 25 (A)

SEHA 0.702 3 0.473 0.956 0.181 181.435 10 (S), 42 (E), 27 (H), 21 (A) 0.53

SEHD 0.628 7 0.576 0.988 0.105 237.846 11 (S), 45 (E), 26 (H), 18 (D)

SEDA 0.667 2 0.49 0.903 0.264 121.512 13 (S), 40 (E), 27 (D), 20 (A)

EHDA 0.678 2 0.482 0.899 0.269 116.065 33 (E), 26 (H), 23 (D), 18 (A)

SHDA 0.629 2 0.517 0.873 0.303 89.394 13 (S), 34 (H), 30 (D), 23 (A)

SEHDA 0.659 2 0.496 0.898 0.271 114.759 10 (S), 30 (E), 23 (H), 21 (D), 16 (A)

a Labels as in Table 2
b E electrostatic, S steric, H hydrophobic, D donor, A acceptor

Models with high statistical significance are highlighted in bold
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with 0.68 for CoMSIA SE model. Hence, we assumed that

the lower values of q
2 and r

2 for CoMSIA Model SEH

might be similar due to the use of steric molecular field

data as one of the descriptors.

In terms of the statistical results, the CoMSIA EH model

was found to be the best, except for predictive correlation

coefficient rpred
2 that, still, remains statistically significant.

In addition, the CoMSIA contour map for steric field,

issued from Model SEH, also presented similar sized

polyhedra than CoMFA steric contour maps at the same

regions (data not shown). Hence, the Model EH of CoM-

SIA was chosen as a complementary source of information

of the previously selected CoMFA model and was used for

final analysis. The observed and calculated activity values

for the training and test set molecules are given in Table 1,

and the plots of the predicted versus the actual activity

values for the training set and test set are shown in Fig. 8.

Graphical interpretation of the CoMFA

and CoMSIA results

The greatest advantage of CoMFA and CoMSIA is that the

field effect on the compounds property can be viewed as

3D contour plots. In our case, these contour plots are useful

to: (i) identify critical regions where any change in the

steric, electrostatic, and hydrophobic fields may affect the

inhibitory activity, and (ii) highlight the key structural

features required for FP2 inhibitory activity. The CoMSIA

electrostatic contour maps were found to be approximately

identical to the corresponding CoMFA contour maps.

Therefore, the graphical interpretation of the CoMSIA

results will only focus on the CoMSIA hydrophobic con-

tour maps since electrostatic contour maps will be dis-

cussed from the CoMFA analysis.

CoMFA steric contour maps

Figure 9 illustrates the contours of the steric fields, show-

ing in green and in yellow the favored and unfavored bulky

groups, respectively. In order to better understand the steric

field contribution, their corresponding contour maps were

projected on the FP2 active site surface.

Two large sterically favorable contours are reported. The

first is located near the R3 position while the second is sit-

uated aside the R1
0 substituents. These two contours suggest

that there is a requisite for bulky groups in this region for

potent FP2 inhibitory activity. Indeed, those two zones are

highly exposed to solvent (Fig. 9) with enough space to

accommodate bulky substituents that would enhance the

interactions between the ligand and protein surface.

One sterically unfavorable contour is localized at the R2

group, which is docked into the S2 pocket of FP2 catalytic

site. This unfavorable contour represents the limitation of

S2 cavity (Fig. 9) and suggests that the occupation of this

area by a bulky group would have a negative effect on the

FP2 inhibitory activity. It is also associated to this FP2

cavity, a small green contour region, which indicates that

certain bulkiness is favored. Thus, these two contour maps

at the S2 pocket reveal that the substituent could be slightly

bulky in depth but not in length.

Indeed, a comparison between molecules that change

from Leu to hPhe shows that bulky groups (in length) are

not preferred at R2 as can be seen by the activities of

compounds 1, 2, 3 and 4 which are lower than those of

compounds 22, 21, 24 and 23. We also detect two smaller

yellow regions near the S3 pocket, corresponding to

Fig. 8 CoMSIA predicted versus experimental pIC50 values. Solid

and open circles represent predictions for the training and test sets,

respectively

Fig. 9 CoMFA steric maps projected on the Connolly molecular

surface of FP2 substrate binding sites (orange). Sterically favorable

and unfavorable areas are shown in green and yellow, respectively.

Molecule 1 is displayed in purple while molecule 22 is colored by

atom type
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possible steric compression of bulky groups in this area by

FP2 residues Tyr78 and Leu84 (Fig. 9).

CoMFA electrostatic contour maps

In the CoMFA electrostatic contours (Fig. 10), the intro-

duction of electronegative substituents in red regions may

increase the inhibitory activity while in blue regions

decrease the affinity. In order to facilitate electrostatic

fields’ analysis, corresponding contour maps were pro-

jected with some FP2 binding pocket residues.

Two relatively large blue-coloured regions are observed

over R2 backbone and R1 side-chain. This region shows an

area where electropositive charged groups within this

glycine rich region of the binding site enhance FP2

inhibitory activity. Docking calculations permitted to ver-

ify that, indeed, the –NH groups of the peptidic bonds form

hydrogen bonds with the carbonyl groups of FP2 residues:

Gly83, Gly82, and Asn81. However, compounds present-

ing O-(phenyl)Ser at R1 position present modest activity

against FP2 due to the disadvantage of repulsive interac-

tions between the oxygen atom and the carbonyl backbone

of Gly40 (e.g. compounds 2 e 7). Indeed, when we explore

the maps around compound 2 and compare them to those

around compound 7, it is clear that the oxygen atom of R1

substituent falls in a blue region where an increase in

positive charge would enhance the activity of the com-

pounds (Fig. 10).

A third smaller blue contour is noticed at the bottom of

the S2 cavity. This can be explained by the fact that almost

all S2 residues are hydrophobic with the exception of two

polar amino acids, Ser159 andAsp234, that are located at the

end of the cavity. The R2 substituent of our dataset com-

pounds toggles between Leu and hPhe. Although both res-

idues are hydrophobic, Leu shows an electron density lower

than that of hPhe aromatic ring, hence reducing the repulsion

with the electron-rich groups of the two S2 polar residues.

Near the SO2–R1
0 group, a red-coloured region is noticed

and represents a zone where electronegative charged groups

improve the activity. Docking calculations of the dataset

showed that electronegative fragments at this position form

electrostatic interactions with Gln36 and Trp206 side-

chains. This is apparent when comparing molecules that

were identical except for R1
0 substituent, which exhibit a

general rank order of FP2 inhibitory activity: sulfonate

esters[ sulfonamides[ sulfones (e.g. ligands 11, 24 and

37). Furthermore, an electron-donating group at this posi-

tion would increase electron density of R1
0 aryl ring and,

consequently, enhance p–p interactions with Trp206.

Furthermore, a second small red-coloured region is

obtained over the aryl ring of R1
0 substituent. This suggests

that the more electron density is delocalized to this ring, the

more p–p interactions established between side-chain of

Trp206 and the ligand are enhanced. Thus, we hypothesize

that electron donor groups in para-position of vinyl sul-

fonate ester aryl ring are preferred to delocalize electron

density to phenyl and, hence, would increase compound’s

activity. Although FP2 activities for vinyl sulfonate esters

are quite similar, this can be observed with compounds 29

and 32. Indeed, the compounds differ only in the p-sub-

stitution of the aryl ring and the one bearing the strongest

electron-donating group, compound 29 with p-OCH3, has

higher inhibitory activity compared to molecule 32 that has

a p-fluoro substituent.

Close to Tyr78 in the S3 cavity, a third red zone is noted

indicating that electron rich groups at this position would

be preferred for FP2 inhibition. We believe that, this way,

p–p interactions with S3 Tyr78 would be favored. Fig-

ure 11 shows electrostatic contours around compounds 8

and 9 that differ only in the R3 group. We can see that the

aromatic moiety of compound 9 establishing stacking

contact with Tyr78 and, consequently, presents a better

FP2 inhibitory activity than compound 8, which does not

form any sort of p-interactions with the same residue.

CoMSIA hydrophobic contour maps

Regarding CoMSIA hydrophobic contour maps, yellow

regions indicate that hydrophobic groups would be favored

Fig. 10 CoMFA electrostatic field contours shown in red (electro-

negative substituents favored) and blue (electropositive substituents

favored) colors. Some FP2 binding pocket residues are represented in

tinny lines while ligands 2 and 7 are colored by atom type and purple,

respectively
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at these positions while grey regions suggest that hydro-

philic groups would be preferred. We observed two large

yellow regions at S10 and S3 pockets, and one small grey

region also close to the S3 cavity. The mapping of the

hydrophobic contours into the active site of FP2 (Fig. 12)

further explained the CoMSIA hydrophobic maps. The

small grey region is observed at the solvent accessible area

of S3 cavity and indicates that hydrophilic groups would be

favorable at this position. This region also corresponds to a

blue electrostatic contour where electropositive groups are

preferred to establish hydrogen bonds with the backbone

residues of this glycine rich region.

The yellow site existing near S10 pocket coincides with

FP2 residue Trp206, suggesting that p–p stacking interac-

tions between this residue and compound’s aryl moiety are

an important factor to increase FP2 inhibitory activity.

Regarding p–p interactions that our dataset compounds

establishwith this highly conserved residue in the S10 subsite

of clan CA cysteine proteases, it is noteworthy that we

observed a preferential placement of the aryl moiety relative

to Trp206 depending on the R1
0 substituent. Figure 13 rep-

resents the docking conformations of the compounds that

have sulfonate ester (A), sulfonamide (B) and sulfone (C) as

R1
0 substituent. It is clear that sulfonate esters present a high

reproducibility in aryl moiety positioning relative to Trp206,

establishing p–p stacking interactions with this aromatic

amino acid. Regarding sulfonamides, we also verified that

many of these compounds place the arylmoiety in such away

that p–p interactions with Trp206 are best favored. Still,

sulfonamides have greater flexibility in positioning R1
0

substituent compared with sulfonate esters. In relation to

sulfones, we observed for all the compounds the same phenyl

sulfone ‘‘flip out’’ discussed in section ‘‘Docking results’’. In

this ‘‘flip out’’ positioning, the aromatic moiety of sulfones

does not establish stacking interactions with Trp206. Based

on these results, we infer that sulfonamides flexibility at R1
0

position may be due to a similar flipping phenomenon.

However, we reinforce that this flippingmay be transient like

the one observed for the complex of rhodesain with a vinyl

sulfone where the R1
0 moietywasmodeled at half occupancy

in both the ‘‘flip in’’ and ‘‘flip out’’ conformations [24]. Since

the sulfonamides have more degrees of freedom and hence

higher flexibility, it is likely that these compounds have

higher occupancy in the ‘‘flip in’’ conformation than sulf-

ones. Regarding sulfonate esters, R1
0 group flexibility clearly

favors the accommodation of the aryl ring into S10 subsite

and thus the formation of p–p interactions with Trp206. We

believe that R1
0 flexibility is also related to the general rank

order of FP2 inhibitory activity observed when comparing

compounds that only differ on R1
0 substituent, i.e., sulfonate

esters[ sulfonamide[ sulfones.

The second hydrophobic zone, at the S3 cavity, is

detected between Tyr78 and Leu84. Compounds that orient

hydrophobic substituents into this region (e.g. compound

26) would have enhanced FP2 inhibitory activity compar-

atively to molecules that do not accommodate any

Fig. 11 CoMFA electrostatic field contours shown in red (electro-

negative substituents favored) and blue (electropositive substituents

favored) colors. Some FP2 binding pocket residues are represented in

tinny lines while ligands 8 and 9 are colored by atom type and purple,

respectively

Fig. 12 CoMSIA hydrophobic field contours shown in yellow

(hydrophobic substituents favored) and grey (hydrophilic substituents

favored) colors. Some FP2 binding pocket residues and ligand 37 are

represented in tinny lines and capped sticks, respectively
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hydrophobic part of R3 group in this zone (e.g. compound

22), as shown in Fig. 14.

Conclusions

A set of 39 peptidyl vinyl sulfone derivatives was inves-

tigated to relate their FP2 inhibitory activity (IC50 values)

with molecular structure. Using CoMFA and CoMSIA

techniques, stable and predictive 3D-QSAR models with

acceptable q2 values were developed. The best predictions

were obtained for the receptor-docked alignment method

and the predictive ability of these models was verified by

leave-one-out and external validation methods. These

results indicate that the structural alignment of high affinity

binding poses obtained from molecular docking simula-

tions comprises biologically active conformations of the

peptidyl vinyl sulfone derivatives, confirming the validity

and usefulness of the alignment. Besides the effective use

of docking as an alignment method, the docking analysis

also provided a qualitative representation of ligand and

enzyme interactions, which are complementary with

CoMFA and CoMSIA maps, and was then helpful in

characterizing fundamental structural features required for

biological activity. Some of the main features observed are:

• Bulky groups near R3 and R1
0 positions, which are

zones highly exposed to the solvent, would enhance the

interactions between the ligand and protein surface and,

thus, the FP2 inhibitory activity.

• One sterically unfavorable contour is localized at the R2

group, matching the limitation of the binding pocket,

and suggests that bulky groups at this position tend to

decrease biological activity. In addition, two additional

smaller unfavorable regions near S3 pocket are detected,

Fig. 13 Docked conformations

of dataset compounds with

sulfonate esters (a), sulfonamide

(b) and sulfone (c) as R1
0

substituent

Fig. 14 Representation of the CoMSIA hydrophobic contour maps

(code color: yellow, hydrophobic substituents favored; grey, hydro-

philic substituents favored) projected on the docked conformations of

compounds 22 and 26 colored by atom type and beige, respectively
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indicating possible steric constraints for bulky groups in

this area, due to FP2 residues Tyr78 and Leu84.

• Electropositive groups at R2 backbone and R1 side-

chain are preferred to improve FP2 inhibitory activity.

Docking analysis permitted to verify that the –NH

groups of ligands peptidic bonds form hydrogen bonds

with the backbone of FP2 residues: Gly83, Gly82,

Asn81 and Gly40.

• Electronegative groups near the SO2–R1
0 group tend to

increase biological activity by forming electrostatic

interactions with Gln36 and Trp206 side-chains.

• A second small region, where electronegatively

charged groups enhance FP2 inhibitory activity, is

obtained over the aryl ring of R1
0 substituent. Analysis

of the docked conformations suggested that the more

electron density is delocalized to this ring, the more p–

p interactions established between the side-chain of

Trp206 and the ligand are improved.

• Compounds that orient any hydrophobic part of R3

group towards Tyr78 and Leu84 would exhibit

enhanced FP2 inhibitory activity.

• Based on docking analysis, R1
0 flexibility was related to

biological activity depending on whether or not it favors

the positioning of the aryl ring in such away it can establish

hydrophobic interactions with Trp206. The general rank

order of FP2 inhibitory activity observed when comparing

compounds that only differ on R1
0 substituent was:

sulfonate esters[ sulfonamide[ sulfones.

In summary, the present work is the first study based on

3D-QSAR and docking simulations for peptidyl vinyl

sulfone derivatives as Pf falcipain inhibitors. The physi-

cochemical meaning of the descriptors of the proposed

models and the characterization of some ligand–protein

interactions provide us valuable guidelines for future

structural modifications of this class of compounds towards

the design of potent antimalarials.
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