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ABSTRACT
The Tourism sector is of strategic importance to the North Region of Portugal
and is growing. Forecasting monthly overnight stays in this region is, therefore, a
relevant problem. In this paper, we analyse data more recent than those considered
in previous studies and use them to develop and compare several forecasting models
and methods. We conclude that the best results are achieved by models based on a
non-parametric approach not considered so far for these data, the singular spectrum
analysis.
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1. Introduction

Over the last years, the Tourism sector has been growing in the North Region of
Portugal, creating jobs and attracting wealth [see 15, and references therein]. Forecast
the monthly overnight stays in the region is an important issue, because it gives an
early view of tourism demand and makes easier to manage tourist accommodations. It
is clear that accurate forecast of tourism demand is crucial for administrators, policy
makers and investors.

There are some studies in the literature where this forecasting problem was already
considered. In [1], two autoregressive integrated moving average models and a neural
network delivered one month ahead forecasts based on the overnight stays in the
previous twelve months. This study considered data until 2006 and concluded that the
best results were produced by the neural network. In turn, in [12], a linear regression
model and a neural network used the monthly sunshine hours time series to predict
the monthly overnight stays time series. The data considered reached 2010 and the
best performance was achieved again by the neural network. Finally, in [15–17], several
neural network models, differing in their architectures and input data, were developed
and compared. The data considered went until 2009 in [16], 2010 in [17] and 2015
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in [15]. Hence, previous works focused on developing neural networks for monthly
overnight stays forecasting in the North Region of Portugal and such non-linear models
delivered the best forecasts. Neural networks present the advantage of making no
assumptions about the data distribution and the time series stationarity [6]. This
is also the case with singular spectrum analysis [4]. However, as far as we know,
neural networks were not compared with this technique. Singular spectrum analysis
was already successfully applied to tourism demand forecasting, but in other places,
like in the United States of America [5] and South Africa [13].

The aim of this work is twofold. Firstly, we develop and compare several approaches
to the problem of forecasting monthly overnight stays in the North Region of Portu-
gal, namely: neural networks, singular spectrum analysis, the seasonal näıve method,
seasonal autoregressive integrated moving average models and exponential smoothing
models. Thus, we carry on a comparative study more complete than those shown in
previous studies, with newer forecasting techniques.

Secondly, the behaviour of the monthly overnight stays time series may have changed
as a consequence of the increasing tourism demand and the fact that the North Region
of Portugal has won several prestigious tourism awards in the last years. Therefore,
we want to verify if the good performance of the forecasts in previous works is main-
tained. Note that we consider more recent data, until 2017, while previous works have
considered data until 2015, at most.

The remainder of this paper is organized as follows. The next section presents the
data used in this work. The forecasting methods and models are described in Section
3 and the results are shown in Section 4. Finally, Section 5 presents the conclusions
and future work.

2. Data

We used data concerning the monthly overnight stays time series in the North Region of
Portugal (this region includes the districts of Viana do Castelo, Braga, Porto, Vila Real
and Bragança, and partially the districts of Aveiro, Viseu and Guarda). The data refer
to the period between January 2009 and June 2017, totalling 102 observations. Figure 1
depicts the time series. It is clear that there is an annual seasonality: monthly overnight
stays start with a minimum value in January, then increase, attaining the maximum
in August, and finally decrease until December. Moreover, there is an upward trend
since 2013 and a larger amplitude from 2013 to 2015. This is confirmed by the sample
measures of the data presented in Table 1. As we can see, the annual mean of the
monthly overnight stays tends to increase from year to year and the variability around
the mean, measured by the coefficient of variation, remains close to 30% until 2012
and around 35% up to 2015, decreasing again in 2016.

Table 1. Sample measures for the monthly overnight stays in the North Region of Portugal.

Year 2009 2010 2011 2012 2013 2014 2015 2016 2017a

Mean overnight stays (thousands) 356 370 379 378 440 505 509 574 548

Coefficient of variation (%) 32 29 33 32 36 36 34 30 29

aOnly first semester.
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Figure 1. Monthly overnight stays in the North Region of Portugal.

3. Methods and Models

In this section, we briefly explain the several methods and models used to forecast the
time series of the monthly overnight stays in the North Region of Portugal, namely
neural networks, singular spectrum analysis, the seasonal näıve method, seasonal au-
toregressive integrated moving average models and exponential smoothing models.

3.1. Neural Networks

In this paper, we consider multilayer feedforward neural networks [6]. Let x1, . . . , xn
be the n inputs and ynet the only output of a multilayer feedforward neural network
with one hidden layer of m neurons, as shown in Figure 2. The neurons in the input
layer do not process data and serve only to forward it to the neurons in the next
layer. The neurons in the hidden layer have a sigmoid activation function, namely the
hyperbolic tangent. The output of the i-th hidden neuron is given by

zi = g (x1, . . . , xn |wi1, . . . , win, wi0 ) = tanh

 n∑
j=1

wijxj + wi0

 , i = 1, . . . ,m,

where wij is the weight of the connection from the j-th input neuron, with j = 1, . . . , n,
to the i-th hidden neuron and wi0 is a weight called the bias of the i-th hidden neuron.
The neuron in the output layer has a linear activation function, namely the identity.
Its output is given by

ynet = h (z1, . . . , zm |w1, . . . , wm, w0 ) =

m∑
i=1

wizi + w0,

where wi is the weight of the connection from the i-th hidden neuron, with i = 1, . . . ,m,
to the output neuron and w0 is a weight called the bias of the output neuron. Hence,
the neural network implements a function
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ynet = f (x1, . . . , xn | m,w) =

m∑
i=1

wi tanh

 n∑
j=1

wijxj + wi0

+ w0,

parameterized in m, the number of hidden neurons, and w, the vector of the
m(n+ 2) + 1 network weights. The values of these parameters can be determined
as explained next.

Figure 2. Multilayer feedforward neural network.

Suppose that the data available to determine the values of the neural network
parameters, m and w, are split into two sets: a training set

T =
{(
x

(T, `)
1 , . . . , x(T, `)

n ; y(T, `)
)}nT

`=1
,

with nT cases, where y(T, `) is the desired output of the network for the input

(x
(T, `)
1 , . . . , x

(T, `)
n ), and a validation set

V =
{(
x

(V, `)
1 , . . . , x(V, `)

n ; y(V, `)
)}nV

`=1
,

with nV cases, where y(V, `) is the desired output of the network for the input

(x
(V, `)
1 , . . . , x

(V, `)
n ). Define the training error as

ET (m,w) =

nT∑
`=1

(
y(T, `) − f

(
x

(T, `)
1 , . . . , x(T, `)

n | m,w
))2

and the validation error as

EV (m,w) =

nV∑
`=1

(
y(V, `) − f

(
x

(V, `)
1 , . . . , x(V, `)

n | m,w
))2

.

Fixing m = k, for a certain k ∈ Z+, let w = w(k) represent a solution to the non-linear
least squares problem

min
w

ET (m = k,w) ,

found by applying a suitable optimization algorithm, like
Levenberg-Marquardt’s [10]. The sequence of the training errors
ET

(
m = 1,w = w(1)

)
, ET

(
m = 2,w = w(2)

)
, . . . tends to decrease with m,

which is a measure of the network complexity (the higher the value of m, the
greater the network complexity). In turn, the sequence of the validation errors
EV

(
m = 1,w = w(1)

)
, EV

(
m = 2,w = w(2)

)
, . . . tends to decrease until a certain

value of m, say m = k?, and then starts to increase. In this context, we take m = k?
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and w = w(k?) for the neural network parameters.
In this paper, we apply multilayer feedforward neural networks to monthly overnight

stays forecasting, using Matlab. The output ynet of each network corresponds to an
overnight stays forecast for a given month. In what concerns the inputs x1, . . . , xn,
we consider two possibilities, motivated by previous successful works [1, 12, 15–17].
In the first case, we take two inputs, corresponding to the year and the month for
which a forecast is desired. This approach assumes that the trend of the time series is
given by the year and the seasonality by the month. In the second case, we take twelve
inputs, corresponding to the overnight stays in the twelve months previous to the one
for which a forecast is desired. This is justified by the fact that the time series shows
an annual seasonality. In both cases, the training data refer to the years 2009-2014
and the validation data to the year 2015.

3.2. Singular Spectrum Analysis

The Singular Spectrum Analysis (SSA) is a technique for time series analysis and
forecasting that decomposes a time series into a small number of independent and
interpretable components that can be considered as trend, oscillatory components and
noise. No stationarity assumptions or parametric models for the time series are needed.
SSA has been widely applied on several fields, see [3, 4] for references.

Basic SSA technique consists of two stages, namely decomposition and reconstruc-
tion, and then the reconstructed series is used for forecasting. Consider a real-valued
time series YT = [ y1 y1 · · · yT ] and a window length L (1 < L < T ). The decom-
position stage starts with the embedding step, where the so called trajectory matrix
(a L × K Hankel matrix) is built with L-lagged vectors Xi = (yi, . . . , yi+L−1)′, for
i = 1, 2, . . . ,K, where K = N − L+ 1 and v′ indicates transpose of v, that is,

X =
[
X1 X2 X3 · · · XK

]
=


y1 y2 y3 · · · yK
y2 y3 y4 · · · yK+1
...

...
...

. . .
...

yL yL+1 yL+2 · · · yT

 .
The second step of the decomposition is the Singular Value Decomposition (SVD)

of X such that

X = X1 + X2 + · · ·+ Xd,

where

Xi =
√
λi Vi Ui

′,

λ1 ≥ λ2 ≥ · · · ≥ λL are the eigenvalues and U1, U2, . . . , UL are the corresponding
eigenvectors of XX′, Vi = XUi/

√
λi and

d = rank(X) = max{i : λi > 0} ≤ L.

The collection (λi, Ui, Vi) is called the i-th eigentriple of the SVD.
The first step of the reconstruction stage is grouping, where the set index 1, . . . , d is

partitioned into M disjoint subsets I1, . . . , IM , where Ik = {ik1
, . . . , ikp

}. Then the so
called resultant matrix XIk corresponding to the group Ik is defined as XIk = Xik1

+
· · ·+Xikp

, and it is usually associated with a pattern of interest (trend or seasonality,
for instance). Then the result of this step is the grouped matrix decomposition

X = XI1 + · · ·+ XIM .
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In the last step of the reconstruction, called diagonal averaging, each matrix XIk =[
xij

(k)
]L,K
i,j=1

, k = 1, . . . ,M, is transformed into a new time series of length T, X̃Ik =

{ỹ(k)
1 , . . . , ỹ

(k)
T }, where ỹ

(k)
t is obtained by averaging xij

(k) over all i, j : i + j = t +
1, t = 1, . . . T. Therefore, the initial series YT = [ y1 y1 · · · yT ] is decomposed
into a sum of M reconstructed series

yt =

M∑
k=1

ỹ
(k)
t , t = 1, . . . , T.

In practice, to apply SSA it is necessary to choose the window length L, and the way
to select the M in the grouping step. Usually, L ≈ T/2 or depends of the periodicity
of data (L proportional to the period). The inspection of the singular values (λi) and
vectors (Ui, Vi) may help in the selection of M. A slowly decreasing sequence of singular
values indicates a pure noise series, while an explicit plateaux is likely to be yielded
by a pair of eigenvectors which correspond to a harmonic components. Additionally,
the pattern of an eigenvector replicates the form of the time series component that
produces this eigenvector. The analysis of the pairwise scatterplots of the singular
vectors allows the identification of the eigentriples that correspond to the harmonic
components of the series. For instance, pure harmonics create the scatterplot with
the points lying on a circle. If the period of the harmonic is an integer, then in the
scatterplot the points are the vertices of the regular polygon. For a detailed explanation
see Section 2.4 of [4].

In SSA (recurrent) forecasting, it is assumed that the time series to be forecast can
be described through the linear recurrence relations (LRR)

yT−i =

L−1∑
k=1

akyT−i−k, 0 ≤ i ≤ T − L,

where the coefficients aj are uniquely defined. The space spans by the trajectory matrix
determines a LRR of dimension L − 1 that governs the series. Then, the forecasting
points are obtained by the application of this LRR to the last L − 1 observations of

the series. Suppose that YT = Y
(1)
T + Y

(2)
T , and we want to forecast Y

(1)
T (Y

(2)
T can be

regarded as noise). The main assumption allowing SSA forecasting is that for a certain

window length L, Y
(1)
T and Y

(2)
T are approximately strongly separable (for details see

[3, 4]). In this work, the forecast of ŷT+1, . . . , ŷT+h is obtained by the SSA recurrent
forecasting algorithm as

ŷi =


ỹi, i = 1, . . . , T,
L−1∑
j=1

aj ŷi−j , i = T + 1, . . . , T + h,

where (ỹ1, . . . , ỹT ) is the reconstructed series,

A = (a1, . . . , aL−1) =
1

1− v2

r∑
i=1

πiU
∇
i

is the vector of coefficients of the LRR, for v2 = π2
1 + · · ·+π2

r < 1, where πi is the last
component of the eigenvector Ui, and U∇i ∈ RL−1 are the first L + 1 components of
Ui. Additionally, as referred by [4], bootstrap confidence intervals can be obtained by
calculating the empirical distribution of the residuals which is used to perform boot-
strap series simulation. Then, these bootstrapped series are forecast. The bootstrap
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confidence interval is given by the interval between (1− γ)/2-lower and upper sample
quantiles. The sample mean is called average bootstrap forecast. In this work, the Rssa
package in R [11] is used to compute the SSA forecasting (for details see [2]).

3.3. Seasonal Näıve Method

As defined by [8], when the data clearly present seasonality, the forecast can be set
as the last observed value from the same season of the year, for instance, the same
month of the previous year for monthly data or the same quarter of the previous year
for quarterly data. Formally, taking into account the observations (y1, . . . , yT ), the
forecast for time T + h can be defined as

ŷT+h|T = yT+h−mk,

where m is the seasonal period, and k = b(h− 1)/mc + 1 (where bac represents the
largest integer less than or equal to a). In this work it is used the snaive() function
from the forecast package [9] in R [11].

3.4. Seasonal Autoregressive Integrated Moving Average Models

The pioneer work of Box and Jenkins allows to model and to forecast dependent data
by the past values of an independent variable plus its own past values through the
so called Autoregressive Moving Average Model (ARMA). Several modifications were
made to the classical ARMA model to consider seasonal and nonstationary behaviour.
As defined in [14], the multiplicative Seasonal Autoregressive Integrated Moving Aver-
age model (SARIMA), with seasonal period S, denoted by ARIMA(p, d, q)×(P,D,Q)S ,
is defined by:

φ(B)Φ(BS)(1−BS)D(1−B)dyt = θ(B)Θ(BS)et,

where et is a white noise with variance σ2
e , Byt = yt−1 is the backshift operator,

φ(z) = 1 − a1z − . . . − apzp is the AR polynomial, θ(z) = 1 + b1z + . . . + bqz
q is the

MA polynomial, Φ(zS) = 1− α1z
S − . . .− αP z

PS is the seasonal AR polynomial and
Θ(zS) = 1 + β1z

S + . . . + βQz
QS is the seasonal MA polynomial. It is assumed that

the roots of the four polynomials lie outside the unit circle.
As proposed by [8], in this work is used a variation of the Hyndman-Khandakar

algorithm [9] which incorporates unit root tests to select the order of the differences
, d and D, minimisation of the AICc (corrected Akaike Information Criterion) to se-
lect the orders p, q, P and Q, and maximum likelihood estimation (MLE) to obtain
the parameters of the chosen SARIMA model. Instead of considering every possible
combination of the orders, the algorithm uses a stepwise search. The choices of the
algorithm are driven by forecast accuracy. The steps of the algorithm are implemented
in the auto.arima() function from the forecast package [9] in R [11].

3.5. Exponential Smoothing Forecast

In the exponential smoothing (ES) method the forecast is obtained as weighted aver-
ages of past observations, with the weights decaying exponentially as the observations
come from further in the past, which means that the smallest weights are associated
with the oldest observations [7]. Although the method was proposed around 1950, the
ES only incorporates prediction intervals, maximum likelihood estimation and pro-
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cedures for model selection with the approach based on the innovations state space
model (for details see [7]). Using this approach, it was shown that all ES methods
are optimal forecasts from innovation state space models. However, it is important
to note that the ES method is an algorithm for producing point forecasts only when
the underlying stochastic state space model gives the same point forecasts, but also
provides a framework for computing prediction intervals and other properties.

A time series can be viewed as a collection of several components such as the trend
(T), seasonal (S) and irregular or error (E) components, among other. These three
components can be mixed in a number of different ways, providing additive, multi-
plicative or mixed class of models. As referred in [7], to produce a point forecast by
the ES method, the trend component must be chosen in first place as a combination
of a level term and a growth term. Having chosen a trend component, the seasonal
component can be introduced, either additively or multiplicatively. Finally, an error
is included, either additively or multiplicatively. Thus, it is possible to consider 30
potential models.

As proposed in [7], the models with additive (A), additive damped (Ad), multi-
plicative (M) and multiplicative damped (Md) errors can be distinguished by using
the triplet (E,T,S) which refers to Error, Trend and Seasonality components. For in-
stance, the model ETS(A,A,N) has additive errors, additive trend and no seasonality.
Note that some of these models are better known under other names, for instance,
Holt’s linear, Holt-Winters’ additive and Holt-Winters’ multiplicative method. Fur-
thermore, ETS can also be considered an abbreviation of “ExponenT ial Smoothing”.

In this work, it is used the automatic forecasting procedure provided by [7], where
each of 30 ES methods that are appropriated are applied to the data; then the pa-
rameters of the models are optimized by using MLE method and the best model is
selected according to the minimum AIC or a different information criterion like AICc
or BIC (Bayesian IC), among other. Point forecasts can be obtained through the best
model (with optimized parameters) for as many steps ahead as required. Finally, the
underlying state space model can be used to produce prediction intervals. This algo-
rithm is implemented through the forecast() function from the forecast package
[9] in R [11].

4. Forecasting Results

In this section, the performance of the forecasting obtained by the methods and models
previously described is compared.

As referred by [8], to measure the accuracy of forecasts we can verify the behaviour
of a model applied to new data that were not used when fitting the model. Thus, the
available set of observations can be split into two parts, training and test data, where
the parameters of a forecasting method are obtained from the training data and the
test data is used to assess its accuracy. Since the test data is not used to obtain the
forecasts, it should indicate how well the model carried on the forecast on new data.
A usual scale-dependent measure is the Root Mean Squared Error, defined by

RMSE =

√√√√ 1

n

n∑
t=1

(yt − ŷt)2,

while a frequently used unit-free measure is the Mean Absolute Percentage Error,
MAPE, defined as
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MAPE =
100

n

n∑
t=1

∣∣∣∣yt − ŷtyt

∣∣∣∣,
where ŷt is the forecast of the observation yt (of the test data).

In this work, the forecasting are built with the 2009-2015 data (training and valida-
tion data) and compared with data from the year 2016 and the first semester of 2017
(test data, n = 18).

In what concerns neural networks (ANNs), as referred before, we have implemented
two architectures. The first one (denoted by ANN Year-Month) uses two inputs, corre-
sponding to the year and the month for which a forecast is desired. In turn, the second
approach (ANN 12 Months) uses twelve inputs, corresponding to the overnight stays
in the twelve months previous to the one for which a forecast is desired. The proce-
dure we followed to select the number of hidden neurons in both cases was described
in Subsection 3.1 and is illustrated next. Figure 3 shows MAPE as a function of the
number of hidden neurons in the ANN Year-Month. It can be seen that, in the training
set, MAPE tends to zero as the number of neurons increases. Hence, one hidden layer
with a sufficiently large number of neurons is enough for this architecture to fit the
training data. However, as is well known, the greater the number of hidden neurons,
the greater the possibility of overfitting. In the validation set, MAPE decreases until
5 neurons and then tends to increase, that is, the generalization ability of the archi-
tecture tends to degrade beyond that point. Therefore, in the ANN Year-Month, we
chose the optimal number of hidden neurons equal to 5. Figure 4 shows MAPE as a
function of the number of hidden neurons in the ANN 12 Months. In this architecture,
following a similar reasoning, we chose the optimal number of hidden neurons equal
to 2.
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ANN Year-Month
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Figure 3. ANN Year-Month: MAPE as a function of the number of hidden neurons.

Since the data are monthly counts, the chosen SSA window length is L = 36 (a
multiple of 12). The eigenvalues (λi, for i = 1, . . . , 15) are shown in Figure 5 and
we can see several plateaux, which may correspond to sinusoidal waves. This is con-
firmed by Figure 6, where we can see 6 almost regular polygons or stars (right panel)
corresponding to the paired eigentriples (2-3, 4-5, 6-7, 9-10, 10-11, 13-14). Therefore
in the grouping step, the inspection of Figures 5 and 6 lead us to conclude that the
eigentriples 1, 8, 12 and 15 correspond to the trend and the eigentriples 2-7, 9, 11, 13
and 14 represent the seasonal component. Each component is forecast independently
by using the bootstrap with recurrent algorithm and then aggregated (further details
can be requested to the authors).
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Figure 4. ANN 12 Months: MAPE as a function of the number of hidden neurons.
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Figure 5. The first 20 eigenvalues of the monthly overnight stays in the North Region of Portugal (L = 36).

For the SARIMA specification, the auto.arima() function fits a
SARIMA(2, 1, 2)(0, 1, 1)12 model to the training set given by

(1− a1B − a2B
2)(1−B12)(1−B)yt = (1 + b1B + b2B

2)(1 + β1B
12)et,

where σ̂2
e = 645.8, and the parameters estimates are (â1, â2, b̂1, b̂2, β̂1) =

(0.2333,−0.6479,−0.7110, 0.9591,−0.3093) with s.e. (0.1120, 0.1211, 0.0895, 0.0885,
0.1218), respectively.

The exponential smoothing method, through the forecast function, supplies a
ETS(M,Ad,M) which represents a damped trend with multiplicative seasonal com-
ponent and multiplicative errors (also called a damped multiplicative Holt-Winters’
method), defined by [7] as:

ŷt+h|t = (lt + φhbt)st−m+h+
m
, (Forecasting equation)

lt = α(yt/st−m) + (1− α)(lt−1 + φbt−1), (Level equation)
bt = β∗(lt − lt−1) + (1− β∗)φbt−1, (Trend equation)
st = γyt/(lt−1 + φbt−1) + (1− γ)st−m, (Seasonal equation)

,

where m = 12 denotes the frequency, h+
m = [(h−1) mod m]+1, φh = φ+φ2+· · ·+φh,

and the parameter estimates are α̂ = 0.519, β̂∗ = 0.0086, γ̂ = 1e− 04, φ̂ = 0.9773 and
σ̂ = 0.0504. The forecast function also returns the estimates for the initial states
l0, b0, s−i, for i = 0, . . . , 11.
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Eigenvectors

1 (90.54%) 2 (4%) 3 (3.93%) 4 (0.29%) 5 (0.28%)

6 (0.19%) 7 (0.18%) 8 (0.14%) 9 (0.09%) 10 (0.07%)

11 (0.07%) 12 (0.06%) 13 (0.03%) 14 (0.03%) 15 (0.01%)

Pairs of eigenvectors

1 vs 2 2 vs 3 3 vs 4 4 vs 5 5 vs 6

6 vs 7 7 vs 8 8 vs 9 9 vs 10 10 vs 11

11 vs 12 12 vs 13 13 vs 14 14 vs 15 15 vs 16

Figure 6. The first 15 eigenvectors (left panel) and scatterplots for eigenvector pairs (right panel) of the

monthly overnight stays in the North Region of Portugal (L = 36).

The forecasting obtained by the several models/methods are shown in Figure 7. As
can be seen in the figure, the forecast points obtained by SARIMA model, exponential
smoothing method, seasonal näıve method and ANN Year-Month are less than the
observations, while for SSA and ANN 12 Month some forecast points are greater than
the observation and other are less than the observation. Their accuracy is evaluated
by calculating MAPE and RMSE, shown in Table 2. As can be seen, the SSA forecast
is the best in terms of these two accuracy measures. Next, we have the ANN 12
Months and exponential smoothing forecasts. The worst results were obtained with
the seasonal näıve approach, followed by the ANN Year-Month and SARIMA models.
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Figure 7. Forecasting comparison.

Note that the previous work which considered more recent data (until 2015) is [15].
In that study, the author presented the forecasting results of a multilayer feedforward
neural network with the year and month as inputs, i.e., a network similar to our first
architecture. The optimal number of hidden neurons was equal to 8 and it was chosen
following the same procedure as we followed. The author got a MAPE of 5.26% on test
data corresponding to the year 2015. Here, we got 11.62% (more than double) on test

11



Table 2. Forecasting accuracy comparison.

Method/Model MAPE RMSE

ANN Year-Month 11.62 74.30
ANN 12 Months 9.26 59.53
SSA bootstrap 5.70 36.98
Seasonal näıve 15.11 88.45
SARIMA model 11.24 70.20
Exponential smoothing 9.42 60.22

data corresponding to the year 2016 and first semester of 2017. Therefore, the same
neural network architecture seems to be inadequate to forecast more recent data. On
the contrary, the SSA approach presented here was able to provide a good forecast,
with a MAPE of 5.70%, close to 5.26%.

5. Conclusions and Future Work

In this work, different methodologies were developed and used to predict the time series
of the monthly overnight stays in the North Region of Portugal. The forecasts given
by neural networks, singular spectrum analysis, the seasonal näıve method, seasonal
autoregressive integrated moving average models and exponential smoothing mod-
els were compared. Two forecasting accuracy measures were considered and singular
spectrum analysis showed the best results in both of them.

In the last years, the time series of the monthly overnight stays in the North Region
of Portugal registered an uncommon increase in its values and, as a consequence,
several results presented in previous works are no longer valid. In particular, neural
network architectures exhibiting a good performance in those works showed here a
poor performance, with a forecasting error which doubled in more recent data.

There are several contributions of this paper to the literature on monthly overnight
stays forecasting. Firstly, we show that the singular spectrum analysis is a reliable and
robust technique for forecasting this type of data, broadening the class of techniques
and methods available for monthly overnight stays forecasting. Furthermore, for the
data considered in this work, singular spectrum analysis clearly outperforms SARIMA
and exponential smoothing models as well as some ANN architectures, which are
methods traditionally used for forecasting of the tourism demand. Finally, SSA is a
technique which is able to cope well with the seasonality and trend presented in the
analysed data, allowing the analysis and forecasting of each component separately.

In the future, we plan to develop forecasting models of monthly overnight stays
for the different types of accommodations that exist in the North Region of Portugal,
namely hotels, guest-houses or hostels, and tourist apartments. Furthermore, we intend
to include economic and marketing factors as explicative variables, when possible, in
the different methodologies used in this work in order to improve their forecasting
performance, specially for neural networks, since we believe that systematic political
and promotional policy changes can explain the behaviour of the analysed dataset in
the last few years.
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