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Abstract: Machine learning (ML) algorithms have shown great performance in geological
remote sensing applications. The study area of this work was the Fregeneda–Almendra region
(Spain–Portugal) where the support vector machine (SVM) was employed. Lithium (Li)-pegmatite
exploration using satellite data presents some challenges since pegmatites are, by nature, small, narrow
bodies. Consequently, the following objectives were defined: (i) train several SVM’s on Sentinel-2
images with different parameters to find the optimal model; (ii) assess the impact of imbalanced
data; (iii) develop a successful methodological approach to delineate target areas for Li-exploration.
Parameter optimization and model evaluation was accomplished by a two-staged grid-search with
cross-validation. Several new methodological advances were proposed, including a region of interest
(ROI)-based splitting strategy to create the training and test subsets, a semi-automatization of the
classification process, and the application of a more innovative and adequate metric score to choose
the best model. The proposed methodology obtained good results, identifying known Li-pegmatite
occurrences as well as other target areas for Li-exploration. Also, the results showed that the class
imbalance had a negative impact on the SVM performance since known Li-pegmatite occurrences
were not identified. The potentials and limitations of the methodology proposed are highlighted and
its applicability to other case studies is discussed.

Keywords: machine learning; remote sensing; lithological mapping; supervised classification;
Sentinel-2; mineral exploration; Lithium; pegmatite

1. Introduction

Recently, there has been an increasing demand for lithium (Li) as a mineral commodity driven
by the electric car industry, in which Li is one of the batteries’ main components. This increasing
demand will result in an intensive Li exploitation soon, and untraditional Li-exploration methods that
allow exploration companies to quickly delineate potentially economic areas are to meet the market
expectations. With that goal in mind, some authors have attempted to identify Li-bearing pegmatites
with different remote sensing data (ASTER, Landsat-5, Landsat-8, and Sentinel-2) and different image
processing techniques [1–6]. Cardoso-Fernandes, et al. [7] recently reviewed the approaches and
developments made to Li-exploration using remote sensing data and image processing techniques,
pointing out their weaknesses and strengths.

The study area of this work is the Fregeneda–Almendra (Salamanca, Spain—Vila Nova de Foz
Côa, Portugal) region, where different Li-bearing pegmatites were mapped using ASTER, Landsat-5,
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Landsat-8, and Sentinel-2 data, and several image processing algorithms, such as RGB combinations,
band ratios, and principal component analysis (PCA) were employed [1,2]. Although these techniques
allowed to vector known Li-pegmatites and other potential areas, spectral confusion with urbanized
areas or agricultural fields was noticeable. Therefore, a more powerful technique capable of vectoring
Li-pegmatites with more confidence is needed, to make the use of remote sensing data in Li-exploration
more significant for exploration companies.

During the last decades, there has also been a growing application of machine learning (ML) in
the field of geology, either in satellite-based geological mapping [8–12] or in mineral prospectivity
mapping [13–16]. Their growing popularity is due to their ability to outperform classical classification
algorithms (e.g., [8,16]). While the use of ML to map Li-pegmatites may seem promising, two main
problems can be identified beforehand: (i) pegmatites are relatively small bodies and (ii) generally
have low exposition. This means that in an image classification approach, Li-pegmatites correspond
to a scarce class with few training samples, and some ML algorithms are sensitive to training data
size and class imbalance. Furthermore, the objectives of geological exploration are different from the
objectives of Land Use/Land Cover (LULC) classification. In a LULC classification problem, all classes
bear the same importance and both false positives and false negatives need to be avoided. In a
geological exploration, and in this case, the Li-bearing pegmatite class is the target class. Consequently,
misclassifications affecting other classes are less important. Besides, false positives (i.e., over-estimating
the Li-pegmatite class) may not constitute a problem while false negatives (i.e., not identifying pixels
that correspond in fact to Li-pegmatites on the ground) are serious and should be avoided.

Taking this into account, the choice of correct ML algorithms is paramount to successfully map
and identify Li-pegmatites. That is why in a preliminary study in the Fregeneda–Almendra region,
ML algorithms like support vector machines (SVM’s) and random forest (RF) were employed to classify
Sentinel-2 images [5]. According to several authors, these algorithms, when compared with classical
and other ML techniques, are less sensitive to the training size [17,18] and more capable of dealing with
imbalanced datasets [19]. The preliminary results obtained in this study area [5] were unsatisfactory.
Both algorithms presented overfitting problems, achieving perfect to almost perfect accuracy scores
at a class level, but then failing to correctly map some classes in the whole image [5]. Moreover,
the discrimination between Li-pegmatites and the host-rocks was very low which ultimately resulted
in a large number of Li-pegmatite false positives [5].

Moreover, algorithm parameterization is still a major difficulty in the sense that most of the
time ML algorithms cannot achieve good performance without optimization [18,19]. Therefore,
we believe that the previous results can be improved through better algorithm parameterization and
improvement of training data. For this improved approach, SVM’s were chosen due to their challenging
optimization when compared with RF. Several models were optimized and tested, including kernelized
and non-kernelized SVM. The objectives of this study were then to (i) train several SVM’s on Sentinel-2
images with different parameters to find the optimal model; (ii) assess the impact of imbalanced
data through the comparison of different class-balancing strategies; and (iii) improve the previously
employed methodology and delineate target areas for Li-exploration. This work also aimed to
answer distinct research questions, namely: (i) how to overcome the overfitting challenges; (ii) which
factors most influence the SVM performance; (iii) can the SVM classification process be automatized;
(iv) what are the main challenges and benefits of using SVM in Li-pegmatite mapping; and (v) can
the methodology be extrapolated to other study areas. Ultimately, this research intends to fill the
literature gap by contributing to the state of the art regarding the use of ML in Li-pegmatite mapping,
by clarifying how SVM can be helpful in Li-pegmatite exploration.

The Fregeneda–Almendra Pegmatite Field

The Fregeneda–Almendra (FA) pegmatite field lies within the Central Iberian Zone of the Iberian
Massif, spreading from Portugal (Almendra) to Spain (La Fregeneda). The border is materialized by the
Águeda river, and the pegmatite field is delimitated to the north by the Douro river and to the east by
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the Vilariça’s fault. The study area of this work comprises most of the FA field where different types of
pegmatite dykes were defined (Figure 1) taking into account their mineralogy, morphology, and internal
structure [20–22]. These bodies intruded on the metasedimentary rocks of the Schist-Graywacke
Complex (SGC) [23,24]. To the south the syn-Variscan Mêda-Penedono-Lumbrales granitic complex
outcrops. Within the more evolved aplite–pegmatites, there are four dyke-types containing Li-bearing
minerals: petalite-rich, spodumene-rich, lepidolite–spodumene-rich, and lepidolite-rich. All the
Li-pegmatites are discordant from the host-rock main foliation and are emplaced in the same fracture
set, striking from N-S to N30 ◦E. The petalite-rich dykes can reach a maximum thickness of 5 m to
30 m [22,25]. The spodumene-rich dykes are very similar to the petalite ones in terms of mineralogy,
attitude, and dimension, with a thickness ranging from 4 m to 15 m [22,25]. Both dyke-types present
no internal zonation. The lepidolite–spodumene-rich dykes present a common internal layering and
thickness usually less than 15 m [22,25]. The thinner dykes are the lepidolite-rich, with a thickness
lesser than 3 m and occasionally with internal banded structure (where lepidolite-rich layers alternate
with albite-rich ones) [22,25].

Remote Sens. 2020, 12, x FOR PEER REVIEW 3 of 22 

 

and internal structure [20–22]. These bodies intruded on the metasedimentary rocks of the Schist-
Graywacke Complex (SGC) [23,24]. To the south the syn-Variscan Mêda-Penedono-Lumbrales 
granitic complex outcrops. Within the more evolved aplite–pegmatites, there are four dyke-types 
containing Li-bearing minerals: petalite-rich, spodumene-rich, lepidolite–spodumene-rich, and 
lepidolite-rich. All the Li-pegmatites are discordant from the host-rock main foliation and are 
emplaced in the same fracture set, striking from N-S to N30 °E. The petalite-rich dykes can reach a 
maximum thickness of 5 m to 30 m [22,25]. The spodumene-rich dykes are very similar to the petalite 
ones in terms of mineralogy, attitude, and dimension, with a thickness ranging from 4 m to 15 m 
[22,25]. Both dyke-types present no internal zonation. The lepidolite–spodumene-rich dykes present 
a common internal layering and thickness usually less than 15 m [22,25]. The thinner dykes are the 
lepidolite-rich, with a thickness lesser than 3 m and occasionally with internal banded structure 
(where lepidolite-rich layers alternate with albite-rich ones) [22,25]. 

 
Figure 1. Location and geological map of the study area where the different aplite–pegmatite dykes 
outcrop (adapted from [22,26,27]). Open-pit mines of Bajoca, Feli and Alberto are also highlighted. 
The map projection is Universal Transverse Mercator zone 29 N from the WGS84 datum. 

In the FA area, there are three locations were these Li-dykes are being exploited in open-pit 
mines (Figure 1). This type of excavation favors the application of remote sensing data/techniques, 
because it increases pegmatite exposition at the surface. Moreover, each open-pit mine exploits a 
different pegmatite dyke-type. The Bajoca mine, located near Almendra in the Portuguese side of the 
field, exploits a petalite-rich dyke with up to 30 m of thickness [22]. The Alberto mine, near La 
Fregeneda in Spain, exploits several spodumene-rich dykes with varying thicknesses. Despite 
spodumene being the predominant Li-bearing phase, primary petalite can also be found in these 
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could favor alteration mapping techniques, thus increasing the size of the target areas and possibly 

Figure 1. Location and geological map of the study area where the different aplite–pegmatite dykes
outcrop (adapted from [22,26,27]). Open-pit mines of Bajoca, Feli and Alberto are also highlighted.
The map projection is Universal Transverse Mercator zone 29 N from the WGS84 datum.

In the FA area, there are three locations were these Li-dykes are being exploited in open-pit
mines (Figure 1). This type of excavation favors the application of remote sensing data/techniques,
because it increases pegmatite exposition at the surface. Moreover, each open-pit mine exploits a
different pegmatite dyke-type. The Bajoca mine, located near Almendra in the Portuguese side of
the field, exploits a petalite-rich dyke with up to 30 m of thickness [22]. The Alberto mine, near
La Fregeneda in Spain, exploits several spodumene-rich dykes with varying thicknesses. Despite
spodumene being the predominant Li-bearing phase, primary petalite can also be found in these
dykes [22]. Finally, in the Feli mine, located near the Douro river on the Spanish side of the pegmatite
field, a lepidolite–spodumene-rich dike is exploited.

Currently, other complementary studies are being developed in the FA area to help target
Li-mineralizations. Stream sediment analysis of more than 3000 samples is being employed on the
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Portuguese side to identify areas with Li-potential. Spectral studies are being conducted using a
laboratory spectroradiometer to build a spectral database of Li-bearing minerals. Moreover, as stated
by Cardoso-Fernandes, et al. [7], the knowledge on the alteration halos associated with Li-pegmatites
could favor alteration mapping techniques, thus increasing the size of the target areas and possibly
allowing to vector near-surface hidden dykes. For that, more than 70 host-rocks samples are being
characterized through geochemical studies. Overall, the expected results will help to improve
Li-pegmatite remote mapping capabilities. The ability to recognize Li-pegmatites remotely is of great
interest to the exploration/mining industry. Firstly, it would allow to decrease the time and costs of
field campaigns. Secondly, the social acceptance of mineral exploration is becoming a major concern in
Europe. Consequently, less intrusive exploration methods such as remote sensing are increasingly
becoming an integral part of the companies’ exploration strategies.

2. Support Vector Machines (SVM’s)

Support vector machines (SVM’s) are a non-parametric classification technique based on statistical
learning theory [28], and therefore no assumption on the distribution of the data is made. The SVM
technique tries to find an optimal hyperplane that separates the dataset into a defined number of classes.
This optimal hyperplane is the decision boundary that maximizes the distance of the margin between
the class bounding hyperplanes (also called supporting hyperplanes). The bounding hyperplanes
are parallel to the optimal hyperplane and are defined by the training samples that are closest to the
boundary—the support vectors (Figure 2).
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Figure 2. The support vector machines (SVM) method: the optimal hyperplane separates the two
classes and is parallel to the bounding hyperplanes on which the support vectors lie. The distance
between these two bounding hyperplanes is called the margin, and the distance d between the bounding
hyperplane and the outlier (misclassified sample) indicates that there are slack variables (modified
from [8]).

SVM is by nature a binary classifier, but it can be extended for multiclass classification, using
the ‘one-against-all’ or ‘one-against-one’ strategies [8,17]. In the ‘one-against-all’ strategy, k SVM
models are built (where k is equal to the number of classes), each of them separating one class from
the remaining. In the ‘one-against-one’ approach, k(k-1)/2 SVM classifiers are built and trained for all
possible two-class combinations out of k classes [29]. In other words, a sample is classified as one of
two classes for each model and the output class label is decided by the majority votes.

Since the SVM is inherently a linear classifier, it assumes that the multispectral feature data are
linearly separable in the input space [17]. However, in practice, the data can be noisy and different
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classes may not be entirely separable due to class overlap [8,17]. This limitation can be overcome
using techniques like the soft margin method [30] and the kernel trick that map the data into a higher
dimension known as feature space and add additional variables called slack variables to accommodate
outliers. This projection is done under the assumption that a linear boundary may exist in that
higher-dimensional feature space [18]. In what concerns the soft-margin technique, the training
samples are allowed to fall on the opposite side of the decision boundary (the optimal hyperplane) and
the limit of the violation of the bounding hyperplanes is set by the slack variables. To each sample
classified on the wrong side of the boundary, there is a penalty associated, in this case, it is the cost
hyperparameter C [30]. A smaller C value will result in a larger margin that will allow for more
violations, but this may lead to an inappropriate (large) number of support vectors [8,18]. Oppositely,
a higher C value means a narrower margin that will limit violations. This can result in a more complex
decision boundary and may cause the model to lose its generalization capability and even overfit the
data [8,18]. In remote sensing, an overfitting model can explain very well the variance of the training
data, while having a low capability to generalize to the whole image. Consequently, a classical sign that
a model is overfitting the data is when the performance on the training set is notably better than in the
testing/validation dataset [31]. In the kernel trick case, some of the more popular kernel functions(K)
are, for two input vectors xi e xj:

Linear: K(xi,xj) = γxixj; (1)

Polynomial of degree d: K(xi,xj) = (γxixj+r)d, γ > 0; (2)

Radial basis function (RBF): K(xi,xj) = exp{- γ||xi-xj||
2, γ > 0; (3)

Sigmoid: K(xi,xj) = tanh(γxixj+r), γ > 0; (4)

where the γ (gamma parameter) serves as an inner product coefficient in the polynomial function
(Equation (2)) and in the hyperbolic tangent function of the sigmoid kernel (Equation (4)),
while controlling the kernel width in RBF (Equation (3)) [13,31]. In the specific case of the RBF
kernel (Equation (3)), the γ parameter defines the range of influence of each training sample. A higher
γ decreases the range of influence of sample which results in a more irregular decision boundary,
while a smaller γ increases the range of influence of each sample, leading to a smoother boundary [31].
The parameter d corresponds to the degree of the polynomial function (Equation (2)). The parameter
r is used for both the polynomial (Equation (2)) and sigmoid (Equation (4)) kernels, and controls
in Equation (2) how much the model is influenced by high-degree polynomials versus low-degree
polynomials [31].

3. Data and Methodology

3.1. Dataset

As mentioned before, pegmatite exposition can be very small when compared with the spatial
resolution of several free satellite products [7,32]. Despite the fact that lack of thermal band can limit
the applicability of Sentinel-2 images in Li-pegmatite identification [2], its medium to high spatial
resolution (10–60 m) may be crucial in a classification exercise where the target class presents the lowest
exposition. Therefore, a Sentinel-2B satellite product, acquired on 07/09/2019 (tile number T29TPF),
was used. The product’s processing level is 2A and its projection is Universal Transverse Mercator
zone 29 N, WGS84 datum.

The Sentinel-2 mission includes a constellation of two twin satellites placed in the same
sun-synchronous orbit, phased at 180◦ to each other: Sentinel-2A and Sentinel-2B [33]. On-board,
the Multispectral Instrument (MSI) acquires information in 13 spectral bands from the visible-near
infrared (VNIR) to the short-wave infrared (SWIR), but only the bands in bold in Table 1 were used in
the image classification approach. These bands are the most adequate for geological purposes since
minerals and rocks have important absorption features in the correspondent wavelengths. Additionally,
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the remaining Sentinel-2 bands have specific applications, such as detecting coastal aerosols (band 1),
vegetation (bands 5, 6 and 7), water vapor (band 9), and clouds (band 10).

Table 1. Sentinel-2B Band’s Characteristics [34].

Band Number Central Wavelength (nm) Bandwidth (nm) Spatial Resolution (m)

1 442.3 21 60
2 492.1 66 10
3 559.0 36 10
4 665.0 31 10
5 703.8 16 20
6 739.1 15 20
7 779.7 20 20
8 833.0 106 10

8A 864.0 22 20
9 943.2 21 60
10 1376.9 30 60
11 1610.4 94 20
12 2185.7 185 20

Since it is a Level 2A product, the bands were already provided in surface reflectance [35].
Basic pre-processing operations such as resampling all bands to a 10-m spatial resolution, as well as
spectral and geographic sub-setting were performed using the Sentinel Application Platform (SNAP)
software [36].

3.1.1. Sampling and Training Areas Definition

The training areas were defined based on (i) areas directly identified by visual inspection of the
Sentinel-2 images, namely of a natural color composite (RGB combination 4-3-2) and the calculation of
the Normalized Burn Ratio (NBR) index; (ii) extremely high-resolution images provided by Google
Earth [37], Esri World Imagery [38] and by drone flights made over a known outcropping Li-pegmatite
(0.025 m resolution); (iii) the Portuguese Geological Map at 1:50,000 [26,27]; and (iv) field reconnaissance.

The definition of training areas corresponded to an iterative process: for each set of training
samples, class separability measurements (see Section 3.1.2) and spectral analysis were made until
satisfactory results were obtained in order to select the best training areas and therefore proceed with
the classification process. To improve the classification results and class separability, the number
of user-defined classes was diminished when compared to previous attempts [5]. Urbanized and
vegetated areas as well as the water bodies were masked out from the image, using the information
provided by the Portuguese and Spanish LULC Maps (COS 2015; COS 2018; SIOSE 2014) and the Scene
Classification maps provided in the Sentinel-2 Level 2A products [35]. In addition, some lithological
units were deliberately left out from the classification due to small exposition (Ordovician Formations;
Figure 1) or to great spatial correlation with other classes (Cenozoic sediments; Figure 1). The selected
training areas contain 3053 pixels distributed by 5 classes and 33 regions of interest (ROIs) as presented
in Table 2.

Table 2. Distribution of Training Pixels by Classes and regions of interest (ROIs).

Class name Total Pixel Number Training Pixels Testing Pixels ROI Number

Agricultural fields 1230 894 336 8
Burned areas 205 80 125 2

Granite 1231 987 244 9
Li-bearing
pegmatite 43 17 26 5

Metasediments 344 166 178 9
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Since different classes occupy different areas on the ground, sample acquisition was not even
between classes. The major problem was in the identification of samples from the Li-bearing pegmatite
class because of their small exposition. Although the training areas included samples not only from the
outcropping dykes, but also from ore stockpiles, the resulting dataset was still very imbalanced as can
be seen in Table 2. The spectral responses of the classes for the training pixel samples were computed
directly from the Sentinel-2B image—Figure 3.
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3.1.2. Class Separability

As referred before, the evaluation of the spectral separability between pairs of training classes is an
important step of the training areas refinement process. Therefore, a quantitative measurement of class
separation was made using the Jeffries–Matusita (JM) distance and transformed divergence (TD) matrix.
These spectral distances were computed using PCI’s Geomatica 2018 software [39] and the values
obtained are presented in Table 3. Both distances present values between 0 and 2, where 0 means a
complete overlap between the signatures of two classes, and 2 indicates a complete separation between
classes [40]. In general, values higher than 1.9 indicate a very good class separability, values between
1.7 and 1.9 correspond to a good class separability, while values below 1.7 indicate that the classes
are difficult to separate. These measurements can give an insight into the classification accuracy:
a higher-class separability should indicate a better classification result.

Table 3. Jeffries–Matusita (JM) (Blue) and transformed divergence (TD) (Orange) Separability Measures
for Each Pair of Classes.

Li-Bearing Pegmatite Metasediments Granite Burned Areas Agricultural Fields
Li-bearing pegmatite 2.000 2.000 2.000 2.000

Metasediments 1.977 2.000 2.000 2.000
Granite 2.000 1.998 2.000 1.994

Burned areas 2.000 2.000 2.000 2.000
Agricultural fields 1.998 1.994 1.865 2.000

Table 3 shows that all classes have a good separability, with exception of the pair
Granite–Agricultural fields which is the one with minimum separability. Using the JM distance,
the average separability obtained was 1.983, the minimum separability obtained was 1.865, while the
maximum separability achieved was 2.000. Similarly, minimum and maximum separability obtained
with the TD matrix were between 1.994 and 2.000, with an average separability of 1.999.
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3.2. Parameter Tuning, Cross-Validation, and Model Evaluation

To achieve high accuracy, optimization of the parameters and kernel functions is required,
because they are site-sensitive [18,19]. Parameter tuning and model evaluation was achieved using the
open-source library scikit-learn [41] (version 0.20.1) for Python programming language.

Initially, all training samples were shuffled and randomly divided into training and test sets
(25% for testing and 75% for training) using a stratified iterator to ensure that both sets contained
samples from Li-bearing pegmatites. However, after a considerable number of trials, all the models
presented the same signs of overfitting with almost perfect training scores and very high-test scores.
In a classical overfitting example, the test score should be very low in comparison to the training
score. However, when analyzing the results, it was possible to conclude that the training and test
subsets were not independent. This means that the variance of the training and test data were very
similar. Consequently, SVM not only learned very well the patterns of the training data, but also
from the test subset. Only when applying the models to the whole image (i.e., when introducing new,
independent data), the performance score would drop drastically as typical in overfitting models. Thus,
a different strategy had to be employed to ensure that the training and testing data were independent.
Considering that all samples from the same ROI would have similar spectral behavior, instead of
randomly splitting the individual samples, a procedure to randomly split the ROIs into training and
test subsets was adopted (Figure 4). Additional information, as well as the source code employed in
this procedure, is available in Section 1 of the Supplementary Materials.

The choice of the best kernel (among linear, polynomial and RBF) and of best parameters was
accomplished by a two-staged grid-search with cross-validation (CV). Besides the kernelized SVM
models, the Linear model (that assumes the data is linearly separable without using any kernel
function [31]) was also evaluated (Figure 4). While scikit-learn’s kernelized SVM classifier uses a
‘one-against-one’ multiclass strategy, the Linear model employs “one-vs-the-rest” [42].

The first stage grid-search represents a coarser grid-search: the Linear model (non-kernelized
SVM) and all the different kernels were tested separately, using several ranges for the parameters,
which either increased in a logarithmic or exponential fashion (see for example [19,43]). Each parameter
range was cross-validated using a stratified 5-fold CV. This means that the original training set was split
into five groups (maintaining the original proportion of samples per class), and in each fold, one group
was retained in turn to use as a validation set, while the model was trained in the remaining 4/5 of
the data. After the 5 folds were completed, the score obtained in each fold was averaged, obtaining
the mean test score for every parameter input or combination. The best parameter(s) were the ones
that obtained a higher mean CV test score. In this step, to optimize the discrimination between the
target class (Li-bearing pegmatite) and the host rocks (Metasediments) the employed metric score
was the F1-score of these two classes. The F1-score is the harmonic mean of precision and recall,
where precision measures the accuracy of positive predictions and recall measures how many positive
samples are correctly detected by the classifier [31].

The first stage grid-search is mainly based on the knowledge of the operator since different ranges
will return very distinct optimal parameter(s). The sensitivity of SVM to the setting of the parameter
range was already described by other authors [44]. Therefore, the results of each range should be
interpreted carefully and an increase or decrease of the search space may be necessary to improve the
grid-search outputs. When choosing the best range, several criteria must be considered besides the CV
test score, namely the values of the returned parameter(s). This means that when the obtained scores
are similar, the operator should opt for the one with a smaller C and/or gamma, for example, to avoid
choosing a rigid model that may overfit the data [31].

To try to balance the dataset, three different approaches were applied: (i) use a built-in class-weight
parameter; (ii) downsampling; and (iii) upsampling. In the first case, a weight is attributed to each
class during the training phase to account for class imbalance: this weight can be user-defined, or it
can be set automatically to the inversely proportional to class frequency (the so-called “balanced”
mode). In this work, we decided to use the “balanced” option. In what concerns the downsampling
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process, the classes with more observations are randomly sampled without replacement, to obtain
several samples equal to the size of the smallest class. On the other hand, upsampling is the process
that for each observation of the largest class, randomly selects from the other classes with replacement.
For more information on the first stage grid-search, see Section 2 of the Supplementary Materials.
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In the second stage grid-search, a stratified 5-fold CV was again implemented, but this time with
linear increments around the best parameter values returned in the first step. Whenever possible,
the incremental steps employed were the same used by Oommen, et al. [43]. In this second stage,
the polynomial kernel was not included, since the best degree obtained in the first stage was always
equal to one, and the first-degree polynomial corresponds to the linear kernel when the parameter
r equals to zero (Equations (1) and (2)). The downsampling and upsampling strategies were also
excluded from the second stage, because the introduction of a random sampling process (that did not
consider the ROIs) leads to overtraining problems. Consequently, in the second stage grid-search,
only three models were trained for both the imbalanced and balanced data using the class-weight
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parameter. The choice of the best model was automatized (see Section 3 of the Supplementary Materials)
and in the end, two models, one built on the imbalanced data and one using the class-weight option,
were applied to the whole image (Figure 4). This means that on the contrary of what happened in
the first stage (where each model was trained separately), in the second stage the three models were
confronted in the same grid-search and the best model was automatically return. Only the best model
returned were subjected to the “Model evaluation” step of Figure 4.

In what concerns the model evaluation, the metric score employed to choose the best model in the
second stage was the accuracy. Besides the mean train accuracy and mean test accuracy obtained in
the CV, the overall accuracy and the Kappa statistics were also computed. To evaluate the classification
at the class level, the producer’s and user’s accuracy were calculated. Knowing the true and predicted
classes of the test data, the confusion matrix gives insight for each class on how many samples were
correctly classified, how many were misclassified, and on which class the samples were incorrectly
classified. The matrix diagonal represents the samples that were correctly classified in the respective
class and the OA is calculated by dividing the sum of the correctly classified instances by the total
number of pixels [45]. The producer’s accuracy (PA) is obtained by dividing the number of correct
pixels in a given class by the total number of pixels of that class in the test set, and indicates the
probability of a training sample being correctly classified [46]. On the other hand, the user’s accuracy
(UA) can be computed by dividing the number of correct pixels in a determined class by the total
number of pixels that were classified in that class. It indicates the reliability of the map and gives the
probability that a pixel classified as of belonging to a certain class actually belongs to that class on
the ground [45,46]. The Kappa statistic corresponds to a measure of agreement between the classifier
output and reference data [47]. To access the influence of the correct choice of model in the Li-pegmatite
class, receiver operating characteristic (ROC) curves were computed for all the models tested during
the second stage grid-search. The ROC curve plots the true positive rate (or for recall) against the false
positive rate (fraction of negative samples misclassified as positive) [31]. The area under the curve
(AUC) score was calculated to compare the different classifiers.

The ability of each model to generalize to unknown data was evaluated by applying a nested
CV. This procedure allows multiple splits of CV instead of just one (the training-validation split),
thus reducing the risk of biasing model evaluations by using different portions of the data for parameter
selection and model evaluation. In practice, the procedure corresponds to a CV of the first CV: the inner
loop is for parameter tuning and model selection, the outer loop is dedicated to evaluating the model’s
performance. In this work, the outer loop consisted of a 3-fold CV. The source code employed in this
procedure is available in Section 3 of the Supplementary Materials.

4. Results

The automatized process allowed to choose the best model for both the imbalanced and balanced
datasets. Data balancing had an impact on SVM performance since the best model found was the Linear
model (non-kernelized SVM) for the imbalanced data and the RBF kernel for the dataset balanced
using the class weight option.

The results from the second stage grid-search with CV and from the model evaluation step are
presented in Table 4. In general, both models reached a similar performance, although the Linear-SVM
obtained a higher train score. The RBF-SVM was the model that achieved a higher test score during
the CV process, but the Linear-SVM attained a better OA and Kappa hat statistics. The models’
generalization capability (nested CV score) was also very similar.

Based on the metrics, especially on the attained OA and Kappa hat, the Linear-SVM appears to be
the best model. Plotting the ROC curves for each model tested in the second stage grid-search and
computing the respective AUC score allowed to assess the models’ performance exclusively on the
Li-pegmatite class (Figure 5). The results show that the use of class balancing strategies improved
the performance on the Li-pegmatite class for the Linear model and for the Linear kernel. In the
balanced dataset, the best model found through the automatized process, the RBF kernel, was the
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one that achieved a higher AUC. However, in the case of imbalanced data, the RBF kernel was still
the one with the highest AUC, despite the Linear model being chosen as the best model with the
automatized process. This happened because the automatized process selects the best model based on
the performance in all classes while the AUC score only accounts for the Li-pegmatite class.

Table 4. Classification Performance Summary for the Two Models Built.

Model
Imbalanced Balanced

Linear Model RBF Kernel

Parameter(s) C = 32 C = 0.2 γ = 4.4
Mean train score (CV) 0.980643 0.941802
Mean test score (CV) 0.917444 0.93750

Overall accuracy (OA) 0.852585 0.832783
Kappa hat 0.801678 0.777337

Nested CV score 0.906241 0.906229
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To analyze and compare in detail the accuracy performance on each class the confusion matrices
were computed for the Linear-SVM (Figure A1) and the RBF-SVM (Figure 6). The UA and PA were
computed considering the respective confusion matrix and are presented in Table 5.
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Table 5. User’s and producer’s accuracy (UA and PA) for Both the Linear-SVM and Radial Basis
Function (RBF)-SVM Models. Values in percentage (%).

Class
Imbalanced Balanced

PA UA PA UA

Agricultural fields 64.58 93.53 61.01 99.51
Burned areas 100.00 100.00 100.00 100.00

Granite 98.77 66.94 100.00 65.07
Li-bearing pegmatite 88.46 100.00 96.15 59.52

Metasediments 94.94 100.00 90.45 100.00

As can be observed, in both models, the greater misclassification errors happened between the
Agricultural fields and Granite classes. Regarding the Li-bearing pegmatite class, the Linear-SVM
model was the one that maximized the discrimination between the mineralized dykes and the host
rocks, but this was done at a cost—a higher number of false negatives. Conversely, the RBF-SVM model
minimized the misclassification of true samples from the Li-bearing pegmatite class at the cost of a
higher confusion with the metasedimentary host-rocks. These results are in line with the interpretations
with the final classification maps obtained for Linear-SVM (Figure 7) and for RBF-SVM (Figure 8).

The comparison between the two classification maps indicated that the overall performance of
each class changed from one model to the other. For example, the RBF-SVM model was able to correctly
classify all the areas affected by wildfires while the Linear-SVM model misclassified some of these
areas as Metasediments. On the other hand, the Linear-SVM model was the one that better identified
the Agricultural Fields, whereas the RBF-model only showed good performance in the classification
of the Agricultural Fields located over a granitic basement. Both models showed problems in the
classification of the Metasediments that were often classified as Granites.

In what concerns the target class, Li-bearing pegmatite, the Linear-SVM was able to minimize the
occurrence of false positives. Therefore, the pixels classified as belonging to the Li-class were limited,
almost exclusively, to small areas inside the known open-pit mines. On the other hand, the RBF-SVM
was able to identify other possible target areas beyond the known occurrences. As this is the final
goal of mineral exploration, the results obtained with RBF-SVM are preferred even though some areas
where Metasediments outcrop were classified as Li-bearing pegmatite (top left corner and top center
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of the classified image—Figure 8). These results are contradictory to the quantitative model analysis
achieved with the OA and Kappa statistics. That is why it is fundamental to evaluate the models
using distinct statistical methods. Moreover, the results obtained with each model were qualitatively
analyzed and evaluated.Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 22 
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Metasediments and the Granite. Zoom images of the open-pit mines can be found in Figure 9.
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The performance of the models was evaluated in their capacity to correctly identify known target
areas. As mentioned before, in the Fregenda–Almendra area there are three open-pit mines currently
exploiting Li-bearing pegmatites: the Bajoca mine on the Portuguese side, and the Feli and Alberto
mines in Spain. From the 43 Li-pegmatite samples defined for training and evaluation, 42 of those
samples belonged to the Bajoca mine (outcropping pegmatite and ore stockpile). The remaining sample
was collected from one outcropping pegmatite in the Alberto mine. The classification results obtained
for these three target areas using both algorithms are presented in Figure 9.

The results obtained for the Feli mine were similar using the two algorithms, identifying the
presence of Li-bearing pegmatite in the open-pit and next to the two waste piles (to the left of the
open-pit). However, in the case of the Bajoca and Alberto mines, the Linear-SVM classified a much
smaller area as being Li-bearing pegmatite when compared to the RBF model. Oppositely, the RBF-SVM
identifies some false positives like in the dirt road that leads to the Bajoca mine (Figure 9). Regarding the
other classes, both models overestimated the occurrence of Granite where in fact metasedimentary rocks
occur. Moreover, the Linear-SVM misclassified some pixels inside the open-pits as being Agricultural
Fields. This misclassification was less frequent with the RBF model.
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On the contrary to what happens in the Bajoca mine, the ore stockpiles, where the extracted
Li-pegmatite from the Feli and Alberto mines are stored, are not located near the open-pits. Therefore,
these two known stockpiles were also used to verify the models’ performance in the classification of the
Li-bearing pegmatite class (Figure 10). Field campaigns allowed to verify that Li-minerals are present
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in these stockpiles (Figure 10b). In the case of the Feli stockpile, both models were able to identify the
occurrence of Li-bearing pegmatite. Inversely, on the Alberto stockpile, only the RBF-SVM correctly
identified most of the areas where Li-pegmatite is present. In what concerns the remaining classes,
besides the areas misclassified as Granite, the Linear-SVM was the model that correctly identified most
of the Agricultural Fields.
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5. Discussion

A previous attempt to use ML algorithms in Li-bearing pegmatite identification showed that the
model parameterization and optimization were not enough to avoid overfitting, which ultimately led to
a large number of Li-pegmatite false positives [5]. In this study, several methodological improvements
were made. Besides reducing the area to be classified and the number of classes through masking of
undesired classes, a new strategy to split the training data into training and test subsets was proposed.
This new strategy resulted in a higher independency between the two subsets, since sample location
was taken into consideration in the split. Inevitably, the random sampling process introduced when
using the downsampling and upsampling strategies made the developed ROI-based splitting strategy
infeasible. This led to overfitting problems and, therefore, these strategies were excluded from the
classification. The proper definition of the range of the tested parameters was crucial to optimize the
models during the first stage grid-search, and several literature-based ranges were tested. While several
authors have also employed grid-search techniques to determine the best parameter(s) [8,18,19,43,48],
this step is not always employed, with some authors achieving parameterization through the trial
and error method [14]. Other authors have opted to not optimize the models and used the default
parameters or other specific sets of parameters [9,10,12,49]. The observation of the first stage results
allowed to select the right parameters, but also to exclude the polynomial kernel, reinforcing the
importance of the intervention of the operator at the beginning of the classification process.

The second stage grid-search automatically returned two different models respectively for the
imbalanced and balanced datasets, which is the first indication that class imbalance may affect the
obtained results. The Linear-SVM trained on the imbalance data and the RBF-SVM trained using the
class-weight option showed, at turn, better performance depending on the class. Both models achieved
a better ability to discriminate the target class (Li-pegmatite) from the host rocks, thus reducing
the number of false positives when compared to the SVM model trained in the previous work of
Cardoso-Fernandes, et al. [5]. This corroborates that the methodological adjustments made in the
current study helped to improve the SVM performance.

Nonetheless, the results obtained with each model for the Li-bearing pegmatite class were very
distinct. The Linear-SVM presented the best discrimination between Li-pegmatite and Metasediments,
while missing to correctly classify pixels with known Li-pegmatite exposition. Oppositely, the RBF-SVM
avoided the occurrence of Li-pegmatite false negatives while classifying Metasediments and dirt roads
as areas with Li-potential. Increasing the discrimination between Metasediments and Li-pegmatites
may only be achieved with a better spatial resolution data. In the Fregeneda–Almendra pegmatite
field, dyke thickness can range between 4 m and 15 m in the case of the spodumene-bearing dykes,
and between 5 m and 30 m in the petalite-bearing ones [25]. Even in the largest dyke that outcrops in the
Bajoca mine, metasedimentary enclaves can be found in the middle of the pegmatite, which contributes
to pixel mixing, since the Sentinel-2 bands used in this work have between 10 m to 20 m of spatial
resolution. In addition, the slightly different mineral paragenesis of the Feli mine (with lepidolite),
when compared with Alberto or Bajoca, may have influenced the performance of Linear-SVM.

The interpretations of the final classification maps (Figures 7 and 8) are supported by the
computed statistical metrics and respective confusion matrices (Figures 6 and A1). When looking
at the performance metrics at a class level, Linear-SVM reached a better performance on the test set
(Figure A1), which may indicate more overtraining and fewer ability to generalize to unknown data,
when compared with RBF-SVM. When dealing with imbalanced datasets, special attention should be
given when interpreting the results obtained with global metrics such as OA and Kappa hat, since the
influence that minor classes such as Li-pegmatite have on the final output can be masked by the majority
class(es) [44,50]. That is why it is important to qualitatively assess the performance of the models.
Zoom images concerning known Li-pegmatite expositions (Figures 9 and 10) support the previous
interpretations that the RBF-SVM performs better in Li-pegmatite identification, when compared with
the Linear-SVM. Moreover, the results obtained highlight that the developed methodology can identify
Li-pegmatite occurrences beyond those that were used as training instances.
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In what concerns the remaining lithological classes, both models overestimated the occurrence of
Granite in areas where Metasediments occur. This can be mainly explained by the spectral confusion
with the Agricultural fields class, especially in the case of the RBF-model. The phenomenon is not only
corroborated by the computed confusion matrices, but also by the signature separability measures
(see Section 3.1.2.). The overestimation of the Granite class can also be linked to the difficulty to
correctly classify the metasedimentary rocks since (i) they outcrop in less extent when compared
with the granites, (ii) are often covered by vegetation or (iii) serve for olive/almond tree plantations.
This happens because granites are not so easily weathered as the metasediments, and regolith tends
to form over the latter. Taking this into account, a regolith–geology mapping approach like the one
employed by De Boissieu, et al. [9] could help improve the results.

On the other hand, considering that in geological exploration false negatives should be avoided,
the RBF-SVM built using a class balancing strategy is therefore the preferred model to define areas
with Li-potential. In satellite image classification, the RBF is often the preferred kernel, commonly
showing good performance [12,19,43,49]. Melgani and Bruzzone [51] concluded that the RBF-kernel
achieved higher OA than the Linear-model in hyperspectral image classification. Geranian, et al. [16]
have compared the performance attained with different kernels in mineral prospectivity mapping
and concluded the RBF achieved the best results. However, in a similar study, Zuo and Carranza [13]
found the sigmoid kernel to be the optimal function.

Contrary to the expected and opposed to previous studies [5], the results also show that the class
imbalance had a higher impact on the SVM performance (Figures 5 and 7–10). This is of particular
interest and importance, since Maxwell, et al. [18] stated that, for SVM, balancing the data had a
negligible effect on UA and PA of the rare classes of the Indian pine dataset, Indiana (USA). Noi and
Kappas [19] also concluded that SVM was less impacted by sample size and class imbalance than
other ML algorithms. However, despite its robustness to data imbalance, the SVM algorithm works by
minimizing the overall error (that is inherently biased toward the majority class) which can lead to the
underprediction of the less-abundant class [18,50]. In this work, the Li-class was underpredicted using
the imbalanced dataset when compared to the balanced one. Ultimately, class imbalance affected the
ability to predict the Li-pegmatite class not only in possibly target areas, but also where Li-pegmatite
occurrences are known.

Overall, the methodological developments made in this study represent a major contribution not
only to the state of the art of Li-pegmatite satellite-based exploration, but also to the application of ML
algorithms to remote sensing lithological mapping. The step-by-step optimization made in this study
is proof that ML algorithms, particularly SVM, are not easy and ready to apply (at least to some specific
applications such as mineral exploration). The major difficulty in Li-pegmatite exploration using remote
sensing data is their relatively small size and exposition. This means that, in an image classification
problem, the target class is by nature a small, underrepresented class. Therefore, the adaptations
proposed to achieve the optimal parameters proved to be fundamental to successfully deal with class
imbalance. Detailed insights on algorithm parameterization were given, so that the methodology can
be replicated in other case studies. Algorithm optimization was reached at several levels, namely:
(i) data splitting for training and testing; (ii) strategy do deal with data imbalance; (iii) type of SVM
model and kernel function; (iv) associated hyperparameter(es); and (v) metric score employed in the
CV process. When using a grid-search with CV to find the best parameters, commonly used metrics are
the OA and Kappa statistics [8,18,19]. As part of the algorithm optimization, a more innovative strategy
was employed in the first stage grid-search where the parameters were chosen based on the F1-score of
just two classes: the Li-pegmatite and the Metasediments. Moreover, the semi-automatization of the
SVM classification process allowed to simplify the choice of the best model among several options.
In this case, the results obtained with the RBF-SVM allowed to delineate target areas for Li-exploration.

However, the developed methodology still has some shortcomings. The main limitation is that
some smaller pegmatite occurrences and other potential areas for Li-exploration were missed while
trying to increase the discrimination between the Li-pegmatite class and the Metasediments. This can
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be related or accentuated by the low ratio between pegmatite size and the satellite image spatial
resolution. This issue was vastly explained in previous studies [7,32]. Another major concern in ML
and deep learning (DL) remote sensing applications is the ability to transfer learning between case
studies [52]. Unfortunately, there is no current solution for this problem, but in this study, we wanted
to ensure that the improved methodology and SVM optimization could be applied to other datasets
and study areas. To achieve this goal, the first stage grid-search was optimized to discriminate the
target area from the host-rocks. Thus, when applying to another area, the operator should adapt the
source code available in Section 2 of Supplementary Materials, to create a personalized metric score
concerning the Li-bearing pegmatite and the existing host-rocks. In this metric score, a beta coefficient
can be added to the F1-score, thus creating an F-beta score that allows the operator to adjust the relative
importance of precision and recall, according to characteristics of the study area.

6. Conclusions

In this study, untraditional approaches were developed and employed to improve SVM
performance in Li-pegmatite mapping. Several kernelized and non-kernelized SVM’s models with
different parameter ranges were trained to find the optimal model. Overall, the objectives of this work
were accomplished, and the research questions proposed were addressed with the new methodological
advances proposed:

1. To overcome and avoid overfitting, a new splitting strategy based on the regions of interest (ROIs)
was developed and applied with success to create the training and test subsets.

2. The choice of an adequate metric score proved to be essential not only in the parameter
optimization but also in the model evaluation step. To maximize the discrimination between the
target (Li-pegmatites) and the host rocks, a customized metric score was created for the first stage
grid-search with CV.

3. A semi-automatized process allowed to choose the best model among several options. However,
a blind automatization of the SVM classification is not yet possible, since the intervention of the
operator is fundamental at the beginning of the model training and parameterization.

4. The methodological adjustments proposed in this study improved the previously obtained
results with SVM for the same study area, by reducing model overfitting and improving the
discrimination between Li-pegmatites and their host-rock. The best model found with the
semi-automatized process was the one built with the RBF kernel and using the class-weight
option to account for imbalanced data.

5. Contrary to the results obtained by other authors, this study shows that the class imbalance
had a negative impact on the SVM performance, and the adaptations made to account for the
imbalanced nature of the data were crucial for successfully delineating Li-pegmatite occurrences.

6. On the other hand, the qualitative assessment of the SVM models’ performance highlighted the
success and potential of the methodology in the identification of known Li-pegmatite occurrences
beyond those used for training. Other target areas for Li-exploration were also delineated using
the RBF-SVM model.

7. The main limitation found was that some smaller pegmatite occurrences and other potential areas
for Li-exploration were missed while trying to optimize class separability and reduce overfitting.
Therefore, the right balance between increasing the separability of Li-pegmatite/host-rocks and
minimizing false negatives needs to be found. This can be achieved with higher resolution
satellite images. Different ML algorithms can also be compared.

8. Furthermore, the methodological optimization made in this study already provides tools to
personalize and help generalize its application to other locations. This approach could also be
modified to map remotely other types of pegmatites containing important mineral commodities
like rare elements and gemstones.
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Despite the encountered limitations, these results still represent a major contribution to the state of
art regarding the use of ML in Li-pegmatite mapping. Moreover, the newly developed methodological
approach can be very helpful for the exploration/mining industry, since the ability to remotely map
mineralized pegmatites can reduce the costs of exploration campaigns while increasing the social
acceptance of mineral exploration through the use of more conscientious environmental practices.

Supplementary Materials: The source code developed in this study is available online at http://www.mdpi.
com/2072-4292/12/14/2319/s1, Section 1: Splitting the data into training and test subsets; Section 2: First stage
grid-search; Section 3: Second stage grid-search, model evaluation and image prediction.
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