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Abstract

One of the main questions concerning learning in Multi-Agent Systems is: ”(How)
can agents benefit from mutual interaction during the learning process?”. This paper
describes the study of an interactive advice-exchange mechanism as a possible way
to improve agents’ learning performance. The advice-exchange technique, discussed
here, uses supervised learning (backpropagation), where reinforcement is not directly
coming from the environment but is based on advice given by peers with better per-
formance score (higher confidence), to enhance the performance of a heterogeneous
group of Learning Agents (LAs). The LAs are facing similar problems, in an environ-
ment where only reinforcement information is available. Each LA applies a different,
well known, learning technique: Random Walk, Simulated Annealing, Evolution-
ary Algorithms and Q-Learning. The problem used for evaluation is a simplified
traffic-control simulation. In the following text the reader can find a description of
the traffic simulation and Learning Agents (focused on the advice-exchange mecha-
nism), a discussion of the first results obtained and suggested techniques to overcome
the problems that have been observed. Initial results indicate that advice-exchange
can improve learning speed, although “bad advice” and/or blind reliance can disturb
the learning performance. The use of supervised learning to incorporate advice given
from non-expert peers using different learning algorithms, in problems where no su-
pervision information is available, is, to the best of the authors’ knowledge, a new
concept in the area of Multi-Agent Systems Learning.

1 Introduction

1.1 Framework

This work aims at contributing to answer the question: “(How) can agents benefit from
mutual interaction during the learning process, in order to achieve better individual and
overall system performances?”. This question has been deemed a “challenging issue”
by several authors in recently published work (Sen, 1996; Weiss and Dillenbourg, 1999;
Kazakov and Kudenko, 2001; Mataric, 2001).

In the pursuit of an answer to this question, the objects of study are the interactions
between the Learning Agents (hereafter referred to as agents for the sake of simplicity)
and the effects these interactions have on individual and global learning processes. In-
teractions that affect the learning process can take several forms in Multi-Agent Systems
(MAS). These forms range from the indirect effects of other agents’ actions (whether
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they are cooperative or competitive), to direct communication of complex knowledge
structures, as well as cooperative negotiation of a search policy or solution.

The most promising way in which cooperative learning agents can benefit from inter-
action seems to be by exchanging (or sharing) information regarding the learning process
itself. As observed by Tan (1993) agents can exchange information regarding several as-
pects of the learning process: a) the state of the environment, b) episodes (state, action,
reward triplets), or ) internal parameters and policies.

Exchanging environment states can be seen as a form of shared exploration. Sharing
this information may require a large amount of communication, although the use of a
selective policy for the exchange of information may reduce this cost. This type of inter-
action may be seen as if each agent has extra sets of sensors spread out in the environment,
being able to have a more complete view of its external state. This larger view of the state
space may require either pre-acquired knowledge on how to interpret this information and
integrate it with its own view of the environment’s state, or simply be considered as extra
input providing a wider range of information about the state. In the limit case, where all
agents have access to information regarding the state sensed by all their peers, each agent
could be seen as a classical Machine Learning (ML) system with distributed sensors if
we consider other agents’ actions as part of the environment. One interesting difference,
though, is the fact that other agents sensors are not under the control of the learning agent
and the perspective they provide on the world may be biased by the needs of the owner of
the sensor.

Episode exchange requires that the agents are (or have been) facing similar problems,
requiring similar solutions and may also lead to large amounts of communication if there
is no criteria regulating the exchange of information. In the limit case, where all agents
share all the episodes, this process can also be seen as a single learning system, and
produce very little new knowledge. In fact, the exchange of too much data could lead all
the agents to follow the same path through the search space, wasting valuable exploration
resources.

Sharing internal parameters is another way in which agents can benefit from the
knowledge obtained by their peers. Again, in the limit, this can be seen as the use of
a single learning agent if communication is unrestricted. This type of information ex-
change requires that agents have similar internal structures, so that they can easily map
their peers’ internal parameters into their own, or that they share a complex domain on-
tology.

As can be seen in the above paragraphs the question is not only: “what type of in-
formation to exchange?” , but also “when to exchange information?” and “how much
information to exchange?”.

When considering human cooperative learning in a team, a common method to im-
prove one’s skills is to ask for advice at critical times, or request a demonstration of a
solution to a particular problem from someone who is reputed to have better skills in
the subject. This is what we have attempted to translate into the realm of Multi-Agent
Systems Learning (MASL).

1.2 Rationale and summarized description

This paper reports experiments in which agents selectively share episodes by requesting
advice for given situations to other agents whose score is, currently, better than their own
in solving a particular problem. Considering the discussion of the previous section, this
option seemed the most promising for the following reasons: a) Sharing episodes does
not put heavy restrictions on the heterogeneity of the underlying learning algorithms,
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as sharing of parameters does; b) Having different algorithms solving similar problems
may lead to different forms of exploration of the same search space, thus increasing the
probability of finding a good solution; ¢) It is more informative and less dependent on
pre-coded knowledge than the exchange of environment’s states.

Experiments were conducted with a group of agents embedded in a simplified simu-
lation of a traffic control problem to test the advantages and problems of advice-exchange
during learning. Each individual agent uses a standard version of a well-known, sub-
symbolic, learning algorithm (Random Walk, Evolutionary Algorithms, Simulated An-
nealing, and Q-Learning; see section 3.2.1 for details on these algorithms). Agents are
heterogeneous (i.e., each applies a different learning mechanism, unknown to others). The
information exchanged amongst agents is: current state (as seen by the advisee agent);
best response that can be provided to that state (by the advisor agent); present and best
scores, broadcasted at the end of each training stage (epoch). The problem chosen to test
the use of advice-exchange has, as most problems studied in MASL, the following char-
acteristics: a) Analytical computation of the optimal actions is intractable; b) The only
information available to evaluate learning is a measure of the quality of the present state
of the system; ¢) The same action executed by a given agent may have different conse-
quences at different times, even if the system is (as far as the agent is allowed to know) in
the same state; d) The agent has only a partial view of the problem’s state.

The simplified traffic control problem chosen for these experiments requires that each
agent learn to control the traffic-lights in one intersection under variable traffic conditions.
Each intersection has four incoming, and four outgoing, lanes. One agent controls the four
traffic lights necessary to discipline traffic in one intersection. In the experiments reported
here, the crossings controlled by each of the agents are not connected. The learning pa-
rameters of each agent are adapted using two different methods: a reinforcement-based
algorithm, using a quality measure that is directly supplied by the environment, and su-
pervised learning using the advice given by peers as the desired response. Notice that
the term “reinforcement-based” is used to mean “based on a scalar quality/utility feed-
back”, as opposed to supervised learning which requires a desired response as feedback.
The common usage of the term “reinforcement learning”, that refers to variations of tem-
poral difference methods (Sutton and Barto, 1987), is a subclass of reinforcement-based
algorithms, as are, for instance, most flavours of Evolutionary Algorithms.

2 Related Work

The advantages and drawbacks of sharing information and using external teachers in vari-
ants of Q-Learning (Watkins and Dayan, 1992) had some important contributions in the
early 90’s. To situate the work presented below the remainder of this section will provide
a review of the related work.

Whitehead (1991) reports on the usage of two cooperative learning mechanisms:
Learning with an External Critic (LEC) and Learning By Watching (LBW). The first,
(LEC), is based on the use of an external automated critic, while the second (LBW),
learns vicariously by watching other agent’s behaviour (which is equivalent to sharing se-
ries of: state, action, quality triplets). This work proves that the complexity of the search
mechanisms of both LEC and LBW is inferior to that of standard Q-Learning for an im-
portant class of state-spaces. Experiments reported in (Whitehead and Ballard, 1991)
support these conclusions.

Lin (1992) uses a human teacher to improve the performance of two variants of Q-
Learning. This work reports that the “advantages of teaching should become more rele-
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vant as the learning task gets more difficult”, (Lin, 1992, section 6.4, page 315). Results
presented show that teaching does improve learning performance in the harder task tested
(a variant of the maze problem), although it seems to have no effect on the performance
on the easier task (an easier variant of the same maze problem).

The main reference on related work is (Tan, 1993). Tan addressed the problem of ex-
changing information amongst Q-Learning agents during the learning process. This work
reports the results of sharing several types of information amongst several (Q-Learning)
agents in the predator-prey problem. Experiments were conducted in which agents shared
policies, episodes, and sensation (state). Although the experiments use solely Q-Learning
in the predator-prey domain, the author believes that: “conclusions can be applied to co-
operation among autonomous learning agents in general™, (Tan, 1993, section 7, par 1).
Conclusions point out that ““a) additional sensation from another agent is beneficial if it
can be used efficiently, b) sharing learned policies or episodes among agents speeds up
learning at the cost of communication, and c) for joint tasks, agents engaging in partner-
ship can significantly outperform independent agents, although they may learn slowly in
the beginning™, (Tan, 1993, in abstract). The results presented in that paper also appear
to point to the conclusion that sharing episodes with peers is beneficial and can lead to a
performance similar to that obtained by sharing policies. Sharing episodes volunteered by
an expert agent leads to the best scores in the presented tests, significantly outperforming
all other agents in the experiments.

After these first works several variants of information sharing Q-Learners appeared
reporting good results in the mixture of some form of teaching and reinforcement learning.
The following paragraphs make a brief review of the recent work in this area.

Clouse (1996) uses an automatic expert trainer to give the agent actions to perform,
thus reducing the exploration time.

Mataric (1996) reports on the use of localized communication to share sensory data
and reward as a way to overcome hidden state and credit assignment problems in groups
of agents. The experiments conducted in two robot problems, (block pushing and forag-
ing) show improvements in performance on both cases. Later work by the same author,
Mataric (2001) reports several good results using human teaching and learning by imita-
tion in robot tasks.

Brafman and Tennemholtz (1996) use an expert agent to teach a student agent in a
version of the “prisoner’s dilemma”. The agents implement variations of Q-Learning.

Maclin and Shavlik (1997) use human advice, encoded in rules, which are acquired
in a programming language that was specially designed for this purpose. These rules are
inserted in a Knowledge Based Neural Network (KBANN) used in Q-Learning to estimate
the quality of a given action.

Berenji and Vengerov (2000) report analytical and experimental results concerning the
cooperation of Q-Learning agents by sharing quality values amongst them. Experiments
were conducted in two abstract problems. Results point out that limitations to coopera-
tive learning described in (Whitehead, 1991) can be surpassed successfully under certain
circumstances, leading to better results than the theoretical predictions foresaw.

Price and Boutilier (2000) use implicit imitation to accelerate reinforcement learning.
The quality of the actions of each agent contains an extra term with information about the
“mentor’s” state-transition matrix. The “student” agent is induced into trying the actions
that are more often chosen by the mentor.

Simultaneous uses of Evolutionary Algorithms (Holland, 1975; Koza, 1992) and Back-
propagation (Rumelhart et al., 1986) are relatively common in Machine Learning (ML)
literature, although in most cases Evolutionary Algorithms are used to select the topol-
ogy or learning parameters, and not to update weights. Some examples can be found in
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(Salustowicz, 1995) and (Yao, 1999). There are also reports on the successful use of Evo-
lutionary Algorithms and Backpropagation simultaneously for weight adaptation (Topchy
et al., 1996; Ku and Mak, 1997; Ehardh et al., 1998). Most of the problems in which a
mixture of Evolutionary Algorithms and Backpropagation is used are supervised learning
problems, i.e., problems for which the desired response of the system is known in advance
(not the case of the problem studied in this paper).

Castillo et al. (1998) obtained good results in several standard ML problems using
Simulated Annealing and Backpropagation, in a similar way to that which is applied in
this work. Again, this was used as an add-on to supervised learning to solve a problem
for which there is a well-known desired response.

The use of learning techniques for the control of traffic-lights can be found in (Gold-
man and Rosenschein, 1995; Thorpe, 1997; Brockfeld et al., 2001).

3 Experimental Setup

This section will describe the internal details of the traffic simulation, the learning mech-
anisms and the advice-exchange technique.

3.1 The Traffic Simulator

The traffic simulator environment is composed of lanes, lane-segments, traffic-lights (and
the corresponding controlling agents), and cars.

Cars are “well behaved”, in the sense that they: a) Can only move forward; b) Do not
cross yellow or red-lights; ¢) Move at a constant speed; d) Do not crash into other cars.

Cars are inserted at the beginning of each lane, whenever that space is empty, with a
probability that varies in time. The time-unit used throughout this description is one turn.
One turn corresponds to a period where each object in the system is allowed to perform
one action and all the necessary calculations for it. Each lane has three lane-segments:
incoming (before the crossing, where cars are inserted), crossing and outgoing. Each
local scenario consists of four lanes, each with a different movement direction and one
crossing (the lanes in a local scenario will be referred as North, South, East and West, for
the remainder of this description). In the experiments reported here the local scenarios are
not connected, i.e., each lane has only one crossing and one traffic light. Cars are inserted
in its incoming lane-segment and removed when they reach the extremity of its outgoing
lane-segment, after having passed the crossing.

At the beginning of each green-yellow-red cycle, the agents observe the state of en-
vironment for their local scenario and decide on the percentage of green-time (gt) to at-
tribute to the North and South lanes (the percentage of time attributed to the East and West
lanes is automatically set to the remaining time. Yellow-time is fixed in each experiment
and lies in the interval [10, 15] turns).

Two types of description of the environment’s state are used, the first is realistic in the
sense that it is technically achievable to collect that type of data in a real situation and it
is actually used by traffic controllers today. The second, although it may be unfeasible
in today’s traffic monitoring systems, was considered to have relevant information for
the learning process. In the first type of state representation, the state, at a given time, is
composed by four scalar values, where each component represents the ratio of the number
of incoming vehicles in a given lane relative to the total number of incoming vehicles in
all lanes. This state representation will be referred as count state representation.
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The second type of environment state has the same information as the one described
above plus four scalar values, each of which represents the lifetime (number of turns since
creation) of the incoming vehicle that is closest to the traffic-light. To keep inputs within
the interval [0,1], this value was cut-off at a maximum lifetime (lifemax), and divided by
the same value. The value of lifemax was chosen to be 3 to 10 times the number of turns
a car takes to reach the crossing at average speed, depending on the difficulty of each
particular scenario, which is mainly dependent on the parameters used for car generation.
This state representation will be referred as count-time state representation.

The state representations described above are similar to the ones that were reported to
have produced some of the best results in the experiments conducted by Thorpe (1997)
for the same type of problem (learning to control traffic-lights at an intersection).

The normalization of the inputs to fit the [0, 1] interval was necessary, even at the cost
of loss of information, because using percentages for the first four elements of the state
space allows a substantial reduction of the number of possible states, as described below
when the implementation of Q-Learning is discussed.

The quality of service of each traffic-light controller (@), was initially calculated as a
linear decreasing function of the average time cars used to cross the scenario (tc;). This
measure did not provide enough differentiation of “good” and “bad” environment states,
thus a second function was introduced to emphasize the difference in quality between
these two types of environment states. A comparative view of both functions can be seen
in figure 1, the former in continuous line the latter in squares. The second function was
created specifically to suit this particular scenario and different parameterizations were
used in several trials. The shape of the function however was maintained in all trials, with
a steep decrease at a given point to differentiate clearly between “good” and “bad” states.

The car generation parameters in traffic simulator proved difficult to tune. Slight
changes led to simulations that were either too difficult (no heuristic nor any learned
strategy were able to prevent major traffic jams), or to problems in which both simple
heuristics and learned strategies were able to keep a normal traffic flow with very few
learning steps.

The traffic simulator was coded in C++, with a Java graphical interface. Agents are
not independent processes, at this stage, they are merely C++ objects that are given a
turn to execute their actions in round-robin. On the one hand, this choice eliminates
the “noise” of asynchronous communication and synchronization of parallel threads, on
the other hand, lighter agents that perform simple but coarse learning techniques (like
Random Walk) are being slowed down by the more computationally intensive learning
algorithms (like Q-Learning).

Although this was not an issue, the simulation runs faster than real-time, even when all
agents are performing learning steps. Simulations ran (usually) for 1600 epochs, where
each epoch consists of 50 green-yellow-red cycles, each consisting of 100 turns in which,
on average, approximately 150 cars were moved and checked for collisions. Each sim-
ulation, with five disconnected crossings (i.e., four parallel learning algorithms and one
heuristic agent), took 4 to 5 hours to run in a Pentium IV at 1.5 GHz. To generate a set of
comparable data, each scenario must be run twice: with and without advice-exchange.

3.2 Learning Agents

This section describes the learning algorithms used by each of the agents involved in the
experiments, as well as the heuristic used for the fixed strategy agent.
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Figure 1: Two functions for the evaluation of traffic quality (Q) based on the average time
of life of the incoming cars (tc;).

3.21 Stand-aloneagents

The stand-alone versions of the learning agents are used to provide results with which
the performance of advice-exchanging agents could be compared. The stand-alone agents
implement four classical learning algorithms: Random Walk (RW), Simulated Anneal-
ing (SA), Evolutionary Algorithms (EA) and Q-Learning (QL). A fifth agent was imple-
mented (HEU) using a fixed heuristic policy.

As the objective of these experiments was not to solve this problem in the most effi-
cient way, but to evaluate advice-exchange for problems that have characteristics similar
to the ones stated above for the traffic-simulation problem, the algorithms were not cho-
sen or fine-tuned to produce the best possible results for traffic control. The choice of
algorithms and their parameters was guided by the goal of comparing the performance of
a heterogeneous group of learning agents, using classical learning strategies, in a non-
deterministic, non-supervised, partially-observable problem, with and without advice-
exchange.

All agents, except QL and HEU, adapt the weights of a small, one hidden layer, neural
network. Experiments were conducted with several topologies, but the results discussed
below refer to fully connected networks of 4x4x1, when using count state representation,
and 8x4x1, when using count-time state representation. The weights of these networks
were initialised randomly with values in the range [—0.5,0.5]. The hidden layer is com-
posed of sigmoids whose output varies in |—1, 1[, while the outer layer sigmoids’ output
is in the range ]0, 1[. The output will be the percentage of green-time (gt) for the North-
South lane in the next green-yellow-red cycle.

The Random Walk (RW) algorithm simply disturbs the current values of the weights
of the neural network by adding a random value in the range [—d, d], where d is the maxi-
mum disturbance, which will be updated after a given number of epochs, (ne), according
to di11 = Ad;, with 0 < A < 1, until it reaches a minimum value, (d,:,). An epoch
consists of n green-red-yellow cycles. At the end of an epoch, the new set of parame-
ters is kept if the average quality of service in the controlled crossing during that epoch
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is better than the best average quality achieved so far. The values used for the parame-
ters of this algorithm in the experiments discussed here were in the following intervals:
d € [0.5,0.7],dpmin = 0.01,X = 0.99,n = 50,ne € [3,7]. These values apply also
for the decay of disturbance limits in the following descriptions of SA and EA. When
referring to the intervals in which values were chosen, it is meant that in different experi-
ments several combinations of parameter values were tested but the initial value for these
parameters was always in the mentioned range.

Simulated Annealing (SA), (Kirkpatrick et al., 1983), works in a similar way to Ran-
dom Walk, but it may accept the new parameters even if the quality has diminished. New
parameters are accepted if a uniformly generated random number p € [0, 1], is smaller
than

pa(t)=e~ 1, )
where T is a temperature parameter that is decreased during training in the same way as d
in RW and Ag is the difference between the best average quality achieved so far and the
average quality of the last epoch.

Evolutionary Algorithms (EA), (Holland, 1975; Koza, 1992), were implemented in a
similar way to the one described in (Glickman and Sycara, 1999), which is reported to
have been successful in learning to navigate in a difficult variation of the maze problem
by updating the weights of a small Recurrent Artificial Neural Network. This implemen-
tation relies almost totally in the mutation of the weights, in a way similar to the one
used for the disturbance of weights described for RW and SA. Each set of parameters
(specimen), which comprises all the weights of a neural network of the appropriate size
for the state representation being used, is evaluated during one epoch. After the whole
population is evaluated, the best n specimens are chosen for mutation and recombination.
An elitist strategy is used by keeping the best b specimens untouched for the next gen-
eration. The remainder of the population is built as follows: the first m are mutated, the
remaining specimens (r) are created from pairs of the selected specimens, by choosing
randomly from each of them entire layers of neural network weights. The values used for
the parameters of this algorithm in the experiments discussed here were in the following
intervals: n € [7,10],b € [3,7],m € [15,25],r € [2,5]. The size of the population was
in [20, 30].

Q-Learning (QL), (Watkins and Dayan, 1992), uses a lookup table with an entry for
each state-action pair in which the expected utility @ (s, a) is saved. @ (s, a) represents
the expected utility of doing action a when the environmentiis in state s. Utility is updated
in the usual way, i.e.,

Q(s,0) = Q(s,a) + a(r + fQmaz (5) , )

where s’ is the state after performing action a, « is the learning rate, 8 the discount factor
and Qs (') is given by

Qmaz (s) = max (Q (s, a)), ©)

for all possible actions a when the system is in state s.

The values of « (learning rate), in the different experiments, were in the interval
[0.5,0.7]. The learning rate is updated after a given number of epochs, (ne), accord-
ingto a1 = Aa; , with0 < A < 1, until it reaches a minimum value (which in this case
was 0.012). In the experiments discussed here ne = 5. Parameter 3 (discount) was fixed
in each experiment. Different values for 8 were tested within the interval [0.6, 0.8]. The
choice of action a, given that the system is in state s, was done with probability p (als)
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that is given by a Boltzman distribution,

plals) = ————my (4)

where T is a temperature parameter, whose initial value was in the interval [0.3,0.7] and
was decayed in a similar way to the one described for o and A is the set of all actions
available from state s. Since the state of the environment is a real-valued vector, a partition
of the space in a square lattice is required to map environment states (continuous) to
internal (discrete) states. The decision of which is the state of the environment at a given
time is made by calculating the euclidean distance between the continuous valued world
state and each of the discrete state representations and selecting the state with minimum
distance. For the count state representation this partition consists in states composed
of quadruples of the form: (x1,x2,3,x4), for which z; + 22 + 23 + 4 = 1.0, and
z; € {0,0.1,0.2,...,0.9,1.0}. This reduction of the state space, compared to the use
of all possible quadruples with elements in {0.0,0.1,0.2, ...}, is possible given that the
representation of the environment is composed of the percentages of vehicles in each lane
relative to the number of vehicles in all lanes, thus being restricted to quadruples for which
the sum of all elements is 1.0. For the count-time state representation the internal state is
of the form: (z1, z2, z3, 24, 5, 6, T7, T3 ), Where the first four parameters are generated
in the same fashion as in the previous case but with a coarser granularity and, the last four
elements, are selected combinations of values in {0.0,0.25,0.5,0.75,1.0}. The number
of states for the first and second case is, respectively, 286 and 1225.

Actions, i.e., green-time for the North and South lanes, are also considered as discrete
values starting from zero, up to the maximum green time allowed, and differing by 0.05
steps.

The heuristic agent (HEU) gives a response that is calculated in different ways, de-
pending on the state representation. The percentage of green-time is proportional to the
number of cars in the North-South lanes, relative to the total number of cars for the count
state representation, and in a similar way accounting for the lifetime values for the first
car in each track for the count-time state representation.

3.2.2 Advice-exchange mechanism

The main expectation, when advice-exchange was chosen, was that using advice from
the more knowledgeable agents in the system would improve the learning performances
of all agents. Since supervision is a more efficient training method than reinforcement,
(at the expense of needing more information) then, when no supervision information is
available it seems reasonable to use advice as supervision. Better yet, if agents have
different learning skills, which produce different types of progress through the search-
space, they may be able to avoid that others get stuck in local minima by exchanging
advice. It is unlikely that all agents are stuck in the same local minima and the exchange
of information regarding the appropriate answers to some environment states could force
others to seek better solutions.

The process of advice-exchange is conducted in a different way in the agents that use
a neural network as activation function and in the Q-Learning agent. The heuristic agent
does not participate in the experiments concerning advice-exchange. Advice-exchange is
prohibited in the first 2 to 10 epochs of training, depending on the experiments, to avoid
random advice being exchanged and to allow some time for the agents to announce a
credible best average quality value.
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1. Agent i: receive the best average quality (bg;) from all
other agents (j # 7). Quality for Agent s is cg;.
i get state s for evaluation.
arg-maz; (bg;), for all agents (j # 4).
4. Agenti: if cq; < dmax (bg;):
a. Agent i: send agent k the current state s and request advice.
b. Agent k: switch to best parameters and run state s
to produce its best guess at the adequate response (gt).
c. Agent k: return gt to Agent s.
d. Agent i: process advice (gt).
5. Agent i: run state s and produce response gt'.

Table 1: Steps of the advice-exchange sequence for an advisee agent (z) and an advisor
agent (k).

All agents broadcast their best result (i.e., best average quality measured during one
epoch) at the beginning of each epoch. At the beginning of each green-yellow-red cycle,
agent ¢ (the advisee) evaluates its current average quality (cg;) since the beginning of the
present epoch. This quality is compared with the best average quality (bg;), for all agents
j. Let mbg,, = max (bq;), for all agents j # i. If cq; < d mbg,, where d is a discount
factor (usually 0.8), then agent 4 will request advice from agent & (the advisor) who as
advertised the best average quality. The request for advice is sent having as parameter the
current state of the environment as seen by agent . The advisor switches his working pa-
rameters (neural network weights in most cases) to the set of parameters that was used in
the epoch where the best average quality was achieved and runs the state communicated
by the advisee producing its best guess at what would be the appropriate response to this
state. This response (the advised percentage of green time for the north and south lanes)
is communicated back to the advisee. In the case where advisees are RW, SA and EA
agents, the communicated result is used as desired response for on-line backpropagation
(Rumelhart et al., 1986) applied to the weights of the neural-network. In some exper-
iments an adaptive learning rate backpropagation algorithm (Silva and Almeida, 1990)
was used but results were not significantly different. The values for the main backpropa-
gation parameters used in the experiments discussed here were in the following intervals:
learning rate € [0.001, 0.05], momentum € [0.3, 0.7].

When the Q-Learning agent is the advisor, switching to best parameters corresponds
simply to selecting the action with best quality. In the case where the Q-Learning agent
is the advisee, the action that is closest to the given advice (recall that actions are discrete
values in this case) is rewarded in a similar way to that described in (2). Since in this case
the state of the system after action a is unknown, the value of @, (s') is replaced by a
weighted average of the utilities of all the possible following states when executing action
a at state s:

Qmaz (aa S) = Z b (Slla7 S) Qmaz (Sl) (5)

8'€Ssa

where p (s'|a, s) is the probability of a transition to state s” given that action a is executed
at state s and it is calculated based on previous experience, as the ratio between the number
of transitions (ntg ) to state s’ when performing action a at the current state, s, relative
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to the total number of transitions from current state by action a, i.e.,

nts’as

/ _ .
p(S |a75) - Zz ntia.s,,l € Ssa7 (6)

where S, is the set of states reachable from state s by action a. This type of adaptation
of the state utility was proposed in (Sutton, 1992). After updating the internal parameters
with the advised information, the advisee agent gives the appropriate response to the
system following the normal procedure for each particular algorithm.

4 Experimental Results

Before the discussion of the experimental results, let us put forward a few brief remarks
concerning the simulation and experiments. The type of problem delt with is a difficult
topic for simulation. Several works have been done in this area, and the simplifications
made in this scenario were, in great measure, inspired by previous works mentioned in
section 2.

Quite frequently the car-generation parameters created problems that tended to be
either too easy or too hard, and, in the first experiments, only marginal differences could
be observed in the quality measure during training. The most interesting experiments
conducted were the cases where lanes had quite different behaviours from one another,
however, there seems to be a fine line between hard solvable problems and, apparently,
insoluble tasks in which no learning strategy, nor heuristic, could reach reasonable values
of quality.

The interpretation of results has also raised some problems. The fact that agents
are running online, and most of them are based on random disturbance, added to the
stochastic nature of the environment, produces very “noisy” quality evaluations. The
results presented here focus mainly on the analysis of the evolution of the best quality
achieved up the present moment of training. Other measures also give us an insight on
the process, but, at the present moment, and given the space limitations, this seemed to be
the one that could better illustrate the main observations made during experiments.

The above-mentioned stochastic nature of the problem, and the large simulation times,
also forced a compromise in the choice of parameters for car generation. Although a
greater variety of behaviours could be achieved with other type of functions, whose peri-
ods span over a larger time-frame, this would require that each training epoch would be
much longer, so that a comparison between values of different epochs would be fair.

One last remark concerning the discussion of results that will follow. The amount
data necessary for a sound statistical comparison and evaluation of this technique is still
being gathered. The preliminary results discussed here, produced in a series of 30 full
trials, give us an insight on the problems and possible advantages of advice-exchange
during learning, but data is still not sufficient for a detailed evaluation of the advantages
and drawbacks of this technique. The above mentioned trials were run under different
conditions, either in the parameters of car-generation, lane-size and car speeds, or in the
parameters of the algorithms themselves.

Before starting experiments, some results were expected, namely:
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Figure 2: Detail of the initial phase of a trial where advice given by Simulated Annealing
(ASA) led Random Walk (ARW) and Q-Learning (AQL) agents on a sudden climb of
more than 10%. Evolutionary Algorithms also benefited from this jump, but the climb
was less steep and from a lower point.

a) Initial disturbance of the learning process due to advice by non-expert
peers, as reported by Tan (1993) for cooperation amongst Q-Learning
agents.

b) In the initial phase of training, fast, step-like, increases in quality of
response, as soon as one of the agents, found a better area of the state
space and drove other agents that had poorer performances to that area.

c) Final convergence on better quality values than in tests where no advice
is exchanged.

d) Problems of convergence when using excess of advice, or high learning
rates when processing advice.

e) Improved resistance to bad initial parameters.

The actual observed results differed in some respects from expectations. The initial
disturbance, or slower convergence, reported by Tan (1993) for Q-Learning agents, was
not observed as a rule, although it occasionally happened. The exact opposite was ob-
served more frequently, which seems indicate that this is an advantage that is particular
to heterogeneous groups of learning agents. In some experiments we can find agents that
use advice climbing much faster to a reasonable quality plateau. Occasionally learning
was much slower afterwards (probably a local maximum was reached) and this high ini-
tial quality value was gradually surpassed by the stand-alone algorithms during the rest of
the training. The second expectation, the appearance of high steps in the quality measure,
due to advice from an agent that discovered a much better area of the search-space, was
observed, but seems to be less common than expected. Figure 2 shows a detail of the
initial phase of a trial where we can see a typical situation of the described behaviour.
The Simulated Annealing agent jumps to a high quality area, and “pulls” Random Walk
and Q-Learning into that area in a few epochs. In this experiment the advice-exchanging
algorithms did not stop at this quality plateau, being able to obtain better scores than their
counterparts.

Results where the final quality values for the best agent, on trials with advice-exchange,
is significantly better than in the normal case were observed, but do not seem to be as com-
mon as expected. Figures 3 and 4 show comparisons of the methods with and without
advice-exchange for one of the trials where advice-exchange proved advantageous. No-
tice that all results are better than the one obtained by the heuristic agent (HEU), which
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Figure 3: Left: Comparison of Simulated Annealing performance, with (ASA) and with-
out (SA) advice-exchange, and the corresponding heuristic (HEU) quality for the same
trial. Right: Comparison of Evolutionary Algorithms performance, with (AEA) and with-
out (EA) advice-exchange, and the corresponding heuristic (HEU) quality for the same
trial.
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Figure 4: Left: Comparison of Q-Learning performance, with (AQL) and without (QL)
advice-exchange, and the corresponding heuristic (HEU) quality for the same trial. Right:
Comparison of Random Walk performance, with (ARW) and without (RW) advice-
exchange, and the corresponding heuristic (HEU) quality for the same trial

was not frequent. The most usual result is that agents climb to the vicinity of the best
agent’s quality in few epochs, learning to achieve a reasonably good result much faster
than when not exchanging advice.

The expectations referred in d) and €) were observed, as was foreseen. In fact, several
cases were observed in trials without advice-exchange, where early freezing of the tem-
perature parameter or the decay of the exploration rate, led to a sudden stop at a low local
quality maximum, from which the algorithm did not escape for the rest of trial. These
events are rare in trials using advice-exchange.

One of the most interesting problems observed was that of ill advice. It was observed
that some agents, due to a “lucky” initialisation and exploration sequence, never experi-
ence very heavy traffic conditions, thus, their best parameters are not suited to deal with
this problem. When asked for advice regarding a heavy traffic situation, their advice is
not only useless, but harmful, because it is stamped with the “quality” of an expert. In
Q-Learning this was easy to observe because there were situations, far into the trials, for
which advice was being given concerning states that had never been visited before. In the
next section some measures to prevent this problem will be discussed.
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5 Conclusionsand Future Work

As mentioned in the previous section, advice-exchange seems to be a promising way
in which agents can profit from mutual interaction during the learning process. However,
this is just the beginning of a search, where a few questions were answered and many were
raised. A thorough analysis of the conditions in which this technique is advantageous is
still necessary. It is important to discover how this technique performs when agents are
not just communicating information about similar learning problems, but attempting to
solve the same problem in a common environment. The application of similar methods to
other type of learning agents, as well as other problems, is also an important step in the
validation of this approach.

For the time being, a more realistic traffic environment is under development based
on the Nagel-Schreckenberg model for traffic simulation (Nagel and Shreckenberg, 1992).
We hope that this new formulation provides a richer environment in which advice-exchange
can be more thoroughly tested. One of the main problems observed with advice-exchange
is that bad advice, or blind reliance, can hinder the learning process, sometimes beyond
recovery. One of the major hopes to deal with this problem is to develop a technique in
which advisors can measure the quality of their own advice, and advisees can develop
trust relationships, which would provide a way to filter bad advice. This may be espe-
cially interesting if trust can be associated with agent-situation pairs, and may allow the
advisee to differentiate who is the expert on the particular situation it is facing. Work on
“trust” has been reported recently in several publications, one of the most interesting for
the related subject being (Sen et al., 2000).

Another interesting issue rises from the fact that humans usually offer unrequested
advice for limit situations. Either great new discoveries or actions that may be harmful
for the advisee seem to be of paramount importance in the use of advice. Rendering
unrequested advice at critical points, by showing episodes of limit situations, also seems
like a promising approach to improve the skills of a group of learning agents. The same
applies to the combination of advice from several sources.

These techniques may require an extra level of skills: more elaborate communication
and planning capabilities, long-term memory, etc. These capabilities fall more into the
realm of symbolic systems. The connection between symbolic and sub-symbolic layers,
which has been also an interesting and rich topic of research in recent years, may play an
important role in taking full advantage of some of the concepts outlined in this work. Our
major aim is to, through a set of experiments, derive some principles and laws under which
learning in the Multi Agent System framework proves to be more effective, and inherently
different from just having agents learning as individuals (even if they are interacting in
the same environment).
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