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Abstract. Airports are important infra-structures for the air transportation 

business. One of the major operational constraints is the peak of passengers in 

specific periods of time. Airline companies take into consideration the airport 

capacity when building the airline schedule and, because of that, the execution 

of the airline operational plan can contribute to improve or avoid airport peak 

problems. The Airline Operations Control Center (AOCC) tries to solve 

unexpected problems that might occur during the airline operation. Problems 

related to aircrafts, crewmembers and passengers are common and the actions 

towards the solution of these problems are usually known as operations 

recovery. In this paper we propose a way of measuring the AOCC performance 

that takes into consideration the relation that exists between airline schedule 

and airport peaks. The implementation of a Distributed Multi-Agent System 

(MAS) representing the existing roles in an AOCC, is presented. We show that 

the MAS contributes to minimize airport peaks without increasing the 

operational costs of the airlines. 
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1   Introduction 

Airports are a very important infrastructure for air transportation. They provide 

services for airlines and, also, for the passengers that fly on those airlines. Airport 

operators like to speak of the business of the airport in terms of throughput of 

passengers and cargo as represented by the annual number of passengers processed or 

the annual turnover of tons of air freight. This is entirely understandable because, 

most likely, the annual income is determined by these two parameters. However, from 

an operational point of view, it is the peak flows that determine the physical and 

operational costs involved in running a facility. Assigning staff and physical facilities 

are much more dependent on hourly and daily requirements than on annual 

throughput. 



Airline companies, during their Airline Scheduling Process (especially during the 

Flight Schedule Generation phase) take into consideration the agreed schedule 

regarding departures/arrivals of the airports, especially important on hub airports (for 

more information regarding this process see [8]). Given the above, we believe that it 

is important for the airline company to operate according to the schedule, not only due 

to the fact that the airline schedule is the optimal one from the airline perspective but, 

also, because it takes into consideration the airport capacity and, therefore, the airport 

peaks. Through operations control mechanisms the airline company monitors all the 

flights checking if they follow the schedule that was previously defined by other areas 

of the company. Unfortunately, some problems arise during this phase [5]. Those 

problems are related to crewmembers, aircrafts and passengers. The Airline 

Operations Control Centre (AOCC) is composed by teams of people specialized in 

solving the above problems under the supervision of an operation control manager. 

Each team has a specific goal contributing to the common and general goal of having 

the airline operation running with few problems as possible. The process of solving 

these problems is known as Disruption Management [11] or Operations Recovery. 

In this paper we propose a way of measuring the AOCC performance so that, in the 

decision process, the AOCC takes into account the relation that exists between airport 

peaks and the airline schedule. We present the architecture and specification of a 

multi-agent system that was developed for a real airline company, that uses our 

proposed measure (among other criteria) to solve operational problems. 

The rest of the paper is organized as follows. In section 2 we present some related 

work. Section 3 explains the relation between airport peaks and airline schedule and 

proposes the AOCC performance criteria. Section 4 shows the architecture and 

specification of our MAS. In section 5 we present the scenario used to evaluate the 

system as well as the results of the evaluation. Finally, we discuss and conclude our 

work in section 6. 

2   Related work 

We divided the bibliography we have analyzed in three main areas: aircraft recovery, 

crew recovery and integrated recovery.  

Aircraft Recovery: Liu et al. [12] proposes a “multi-objective genetic algorithm to 

generate an efficient time-effective multi-fleet aircraft routing algorithm” in response 

to disruption of flights. It uses a combination of a traditional genetic algorithm with a 

multi-objective optimization method, attempting to optimize objective functions 

involving flight connections, flight swaps, total flight delay time and ground turn-

around times. According to the authors “(…) the proposed method has demonstrated 

the ability to solve the dynamic and complex problem of airline disruption 

management”. As in other approaches, the authors do use the delay time in the 

objective functions trying to minimize the delays for all aircrafts and flights. Although 

there are other differences regarding our approach, the main one is that we emphasize 

the role of the airport trying to minimize the difference between the real and schedule 

plan of the airline at each airport. 



Crew Recovery: In Abdelgahny et al. [1] the flight crew recovery problem for an 

airline with a hub-and-spoke network structure is addressed. The paper details and 

sub-divides the recovery problem into four categories: misplacement problems, rest 

problems, duty problems, and unassigned problems. The proposed model is an 

assignment model with side constraints. Due to the stepwise approach, the proposed 

solution is sub-optimal. According to the authors the tool is able to “solve for the 

most efficient crew recovery plan with least deviation from originally planned 

schedule”. The major drawback is that it only includes one resource (crew) and does 

not consider the passenger dimension. 

Integrated Recovery: Bratu et al. [4] presents two models that considers aircraft 

and crew recovery and through the objective function focuses on passenger recovery. 

They include delay costs that capture relevant hotel costs and ticket costs if 

passengers are recovered by other airlines. The objective is to minimize jointly airline 

operating costs and estimated passenger delay and disruption costs. According to the 

authors, “(…) decisions from our models can potentially reduce passenger arrival 

delays (…) without increasing operating costs”. The main difference regarding our 

approach is that we emphasize the role of the airport trying to minimize the difference 

between the real and schedule plan of the airline at each airport. Castro and Oliveira 

[6] present a Multi-Agent System (MAS) to solve airline operations problems, using 

specialized agents in each of the three usual dimensions of this problem: crew, aircraft 

and passengers. The authors only use operational costs on the decision process 

ignoring if the AOCC is near the original schedule or not. 

Other Application Domains: Agents and multi-agent systems have been applied 

both to other problems in air transportation domain and in other application domains. 

A brief and incomplete list of such applications follows. Tumer and Agogino [14] 

developed a multi-agent algorithm for traffic flow management. Wolfe et al. [15] uses 

agents to compare routing selection strategies in collaborative traffic flow 

management. For ATC Tower operations, Jonker et al. [9] have also proposed the use 

of multi-agent systems. As a last example, a multi-agent system for the integrated 

dynamic scheduling of steel production has been proposed by Ouelhadj [13]. 

3   Airport Peaks, Airline Schedule and Operations Performance 

According to Ashford et al. [2] there are four ways of describing variations in demand 

level with time: 

1. Annual variation over time. 

2. Monthly peaks within a particular year. 

3. Daily peaks within a particular month or week. 

4. Hourly peaks within a particular day. 

 

The first one is very important from the viewpoint of planning and provision of 

facilities. For our work, we concentrate on monthly, daily and hourly peaks, because 

these are the ones that have more impact on day-to-day operations of the airports and 

airlines. The goal of airport operators is to spread demand more evenly over the 



operating day in order to decrease the costs associated with running the airport at peak 

times, avoiding, as much as possible, situations like the one presented in Figure 1.  

On the other hand, airlines are looking to maximize fleet utilization and offer 

flights in more attractive slots. Additionally, airlines that operate in a hub-and-spoke, 

due to the characteristics of such an operation, want to minimize the total travel time 

and, for that, they need to rapidly connect the passengers that are arriving from long-

haul flights to short-haul flights and vice-versa. 

 

 

Fig. 1. Hourly variations of passenger traffic in a typical peak day (Source: BAA plc.) 

As it is possible to see in Figure 2 this type of network makes airline companies to 

schedule waves, that is, a high number of aircrafts arriving or departing at the hub in a 

short time interval.  

 

 

Fig. 2. Schedule structure of the Alitalia hub in Milan (MXP). (Source: [7]) 

Given the difference between the goal of the airport operator and the goal of the 

airline, there is, therefore, “a potential conflict between the airline satisfying its 

customer, the passenger, and the airport attempting to influence the demands of its 

customer, the airline” [2]. Because of that, it is important that airport operators and 

airlines cooperate regarding the flight schedule definition. 



International Air Transport Association (IATA) has developed a general policy in 

scheduling so that, at some airports with official limitations, general government 

authorities carry out the coordination. From our own personal knowledge of the air 

transportation business as well as according to Ashford et al. [2], it is much more 

common the situation where the airlines establish themselves an agreed schedule 

through the mechanism of airport coordinator. The largest or national carrier of the 

airport, assumes the role of airport coordinator (TAP in Lisbon, Lufthansa in 

Frankfurt and BA in Heathrow, for example) and at semi-annual IATA scheduling 

conferences, they are able to set an agreed schedule for the airports they represent. As 

we stated before, the Airline Scheduling Process takes into consideration the agreed 

schedule. The goal of that process is to create an airline schedule that is optimal in 

regard to a given objective, usually operating profit [8], that is, minimum costs and 

maximum revenues. To operate according to the schedule is not an easy task. Airline 

companies face a lot of unexpected events during the operations of their flights [11]. 

However a good disruption management process should exist to minimize the impact 

of the unexpected events and, according to Yu [16] return to the original schedule as 

soon as possible1. For that, the AOCC should take decisions when solving disruptions 

that tend to the original schedule. We propose to measure the performance of 

AOCC’s according to Equation 1. 

 

 

(1) 

We might say that if ρ->0 (tends to) then the real operation of the airline is running 

near the original schedule contributing to improve the performance of the airport 

during peak times. At the same time, we might say that the AOCC is contributing to 

minimize the real operational costs. In the next section we present the multi-agent 

system (MAS) we have developed to help the AOCC. The MAS uses the performance 

criteria above (Equation 1) and, also, other criteria related with operational costs. 

4   System Architecture and Specification 

System overview: This section presents the architecture and specification of the 

multi-agent system (MAS) we have developed for the airline operations control centre 

(AOCC). Figure 3 shows one instance of the architecture of the system. There are 

seven types of agents: 

                                                           
1 Assuming the original schedule as the optimal one. 



 Monitor, which monitors the operation of the airline company.  

 EventType, which defines the types of events that must be detected. 

 ResolutionManager, which receives a problem and manages the resolution in 

cooperation with the specialist agents. 

 SimmAnneal and HillClimb, specialist agents responsible for the resolution of a 

problem, using simulated annealing and hill climb algorithms, respectively. 

 Supervisor, the agent that interacts with the human supervisor, showing the 

solutions proposed and requesting authorization to apply them. 

 ApplySolution, the agent that is responsible to apply the solution in the 

environment. 

Figure 3 shows also the existence of a data store, which has information about the 

airline company operations. The data store is accessed by the Monitor, Specialist and 

ApplySolution agent. The communication between the agents is done through the 

JADE system [3] and the data is passed between agents as serializable Java objects. 

 

Fig. 3.  Overall architecture of the Multi-Agent System 

Airline Schedule and Actual Operational Plan Definition: In a simplified 

version of an airline schedule, we may say that it is composed of flights and the 

resources necessary to perform those flights (aircraft and crewmembers), in a specific 

period. The AOCC typically takes control of the airline operational plan some 

hours/days before the operation of a flight until some hours/days after. We can define 

the airline schedule plan S as: 

 

(2) 



Similarly, the actual operational plan R can be defined as:  

 

(3) 

In the case of Equation 3 the components reflect the actual data as opposed to the 

schedule data in S (the airline schedule plan). 

Problem Specification: When agent Monitoring detects a problem that needs to be 

solved, a problem is raised and a solution is requested (through a Fipa-Request2 

protocol) from the ResolutionManager agent. Equation 4 represents the problem. 

 

(4) 

For example: crewmember 231, delayed 10 minutes for flight TP438, departing 

from Lisbon would be represented as problem: 

 

p{tp438,lis,0715}=(001,09/07/01-0715,crew delay,231,10,problem,3,0,0,s{tp438,lis,0715}). 

 

At this stage, the Monitoring agent only adds to the Problem, information related with 

the operational plan time window that should be involved in the resolution process. In 

the example above, each specialist agent only considers flights between 04:15 and 

10:15 of day 09/07/01 (09/07/01 07:15 ± 3 hours).  

Resolution Manager: Agent ResolutionManager responds to the request from 

Monitoring agent, issuing a RFP to the specialist agents SimmAnneal and HillClimb 

and adding to the Problem the bid deadline and the deadline to receive candidate 

solutions  (for example, bd
p

{tp438,lis,0715}=1 and csd
p
{tp438,lis,0715}=5). At this level a Fipa-

Contract.net protocol is used to negotiate with the specialist agents. The specialist 

agents interested to respond to the RFP, should manifest that intention before the bid 

deadline. The specialist agents have a limited amount of time to find a candidate 

solution that is represented by csd
p
{ tp438,lis,0715} in p{tp438,lis,0715} (example above). The 

first step of the specialist agents is to obtain the flights that are in the time window of 

the problem, represented by tw
p
{ tp438,lis,0715}. The set FT{p} represents these initial 

                                                           
2 http://www.fipa.org 



flights and will be the initial solution of the problem. The crewmembers and aircraft 

exchanges are made between flights of FT{p}. Finally, when a candidate solution is 

found, the specialist agents send it to the ResolutionManager agent. Equation 5 

defines a candidate solution. 

 

(5) 

A representation of a candidate solution for the example problem above could be: 

 

ps{001}=(1200,959,{flights},{crewmembers},r{tp438,lis,0715}). 

 

For each and all candidate solutions agent ResolutionManager calculates the AOCC 

Performance ρ, using Equation 1. The candidate solution with the minimum value of 

ρ will be the one that it is sent to the Supervisor for approval. 

Solution generation and evaluation: The generation of a new solution, by the 

specialist agents HillClimb and SimmAnneal, is made by finding a successor that 

distances itself to the current solution by one unit, that is, the successor is obtained by 

one, and only one, of the following operations: 

 Swap two aircrafts between flights that belong to the flights that are in the time 

window of the problem. 

 Swap two crewmembers between flights that belong to the flights that are in the 

time window of the problem. 

 Swap an aircraft that belongs to the flights that are in the time windows of the 

problem with an aircraft that that is not being used. 

 Swap a crewmember of a flight that belongs to the flights that are in the time 

window of the problem with a crewmember that isn’t on duty, but is on standby. 

 

When choosing the first element (crewmember or aircraft) to swap, there are two 

possibilities:  

 Choose randomly  

 Choose an element that is delayed. 

 

This choice is made based on the probability of choosing an element that is late, 

which was given a value of 0.9, so that the algorithms can proceed faster to good 

solutions (exchanges are highly penalized, so choosing an element that is not late 

probably won’t reduce the cost, as a possible saving by choosing a less costly element 

probably won’t compensate the penalization associated with the exchange). If the 

decision is to exchange an element that is delayed, the list of flights will be examined 

and the first delayed element is chosen. If the decision is to choose randomly, then a 

random flight is picked, and a crewmember or the aircraft is chosen, depending on the 



probability of choosing a crewmember, which was given a value of 0.85. When 

choosing the second element that is going to swap with the first, there are two 

possibilities:  

 Swap between elements of flights. 

 Swap between an element of a flight and an element that isn’t on duty. 

 

This choice is made based on the probability of choosing a swap between elements 

of flights, which was given a value of 0.5. The evaluation of the solution is done by 

an objective function that measures four types of costs: 

 The costs with crewmembers. Those costs take into consideration the amount that 

has to be paid to the crewmember (depends on the duration of the flight), and the 

base of the crewmember (for instance, assign a crewmember from Oporto to a 

flight departing from Lisbon has an associated cost that would not be present if the 

crewmember’s base was Lisbon). 

 The costs with aircrafts. Those costs take into consideration the amount that has to 

be spent on the aircraft (depends on the duration of the flight), and the base where 

the flight actually is. 

 The penalization for exchanging elements. 

 The penalization for delayed elements. The cost associated with this aspect is the 

highest, because the goal is to have no delayed elements. 

 

These types of costs are taken into account in Equation 6: 

 
(6) 

 

Where 

 

(7) 

 

(8) 

exW was given a value of 1000, and dlW a value of 20000.  

 

Regarding the agent that implements a Simmulated Annealing algorithm [10], there 

is a probability that a new solution is selected even if the cost is not smaller than the 



previous one. Our agent has used the following values for calculating this probability: 

α=0.8, T=10 and T updated every N iterations (N=2). 

5   Scenario and Experiments 

Scenario: To evaluate our approach we have setup the same scenario used by the 

authors in [6] that include 3 operational bases (A, B and C). Each base, corresponding 

to a different airport, includes their crewmembers each one with a specific roster. 

Airport B is the Hub of the airline. In this small experiment it is included 15 flights, 

36 crewmembers and 4 aircrafts. After setting-up the scenario we found the solutions 

for each crew event using our system (running only once). After that, the AOCC 

performance for each method was calculated according to Equation 1 and considering 

a one month period. As a final step, the solutions found by our system were presented 

to AOCC users to be validated regarding feasibility and correctness. 

Results: Table 1 presents the results that compare our method (method B) with the 

one used by Castro and Oliveira [6]. From the results obtained we can see that method 

B increased 1.38 times the performance of the AOCC. As we stated in section 3, if the 

AOCC performance tends to zero it means that the airline is operating (in terms of 

flight departure and arrivals times) more according to the airline schedule and, 

because of the relation that exist between airline schedule and airport peaks (as we 

explained in section 3), it means that the airline contributes also to a better passenger 

flow at the airports. From Table 1 we see that performance of AOCC in our method 

(B) is closer to zero than previous method.  

Regarding the performance in each airport, our approach improved the 

performance of the AOCC in airport A and B by 2 and 1.75 times, respectively. For 

airport C the performance is the same of previous method. Another important result is 

the total costs. Our method is 23% less expensive than the previous one. 

Table 1. Comparison of the results 

  Method A Method B A/B 

 Flights ρ  ρ   

Global  180  130  1.38 

- Airport A 3 40  20  2.00 

      (0-13h) 1 30  20   

      (13-20h) 2 10  0   

      (20-24h) 0   0   

- Airport B 7 70  40  1.75 

      (0-13h) 2 10  10   

      (13-20h) 4 50  30   

      (20-24h) 1 10  0   

- Airport C 5 70  70  0.00 

      (0-13h) 3 20  15   

      (13-20h) 2 50  55   

      (20-24h) 0 0  0   

       

Total costs  11628  8912  -23% 



6   Discussion and Conclusions 

In this paper we proposed a way of evaluating the performance of the AOCC that 

takes into consideration the relation that exists between the airport peaks (airport 

capacity) and the airline schedule. 

We have implemented a MAS that represents the roles in the AOCC and that 

solves the unexpected problems that usually happens on airline operations. Our MAS 

is able to take decisions taking into consideration the AOCC performance as well as 

the airline operational costs. Preliminary results show that it is possible to contribute 

to minimize the airports peaks without increasing the airline operational costs. 

However, due to the probabilistic nature of the simulated annealing algorithm and due 

to the fact that we have run our system only once to get the results, we cannot 

generalize the results presented here. Another conclusion that we are able to take from 

the results in Table 1, is that it would be important to collect the reason that caused 

the flight/crew delay, i.e., due to weather conditions, ATC and/or airport restrictions, 

aircraft malfunction, etc. This information would help to understand some of the 

results. For example, it could help to understand why the performance on airport C is 

the same as the one obtained by the previous method.  

We also point out that these results, per se, do not mean that we are able to solve 

all the airport peak problems in a specific airport. The airport peak problems are the 

result of the passenger flow that is generated by several airline schedules that operate 

at the airport. It would be necessary that all airlines implemented a similar system to 

reach to such a conclusion. However, in the airports where an airline has a hub-and-

spoke network, the majority of the passenger flow is generated by a single airline 

company. In those cases, our approach could contribute significantly to minimize the 

airport peak problems. 

Finally, our MAS is an integrated system that automates much of the disruption 

management process, from the monitoring of the operation of the company in its 

several bases, to the detection of events and the resolution of the problems 

encountered. Additionally, our MAS is oriented to the future: its distributed nature 

and the fact that it is based on agents that are specialists in solving problems easily 

allows the insertion into the system of new agents that solve new kinds of problems 

that were identified in the meantime, or that resolve the current types of problems 

using different methods. It is thus a truly scalable solution, prepared to sustain the 

growth of the airline company. Although the goals have been achieved, it is important 

to consider a number of improvements that could be made on future developments, 

and that could enrich it. In terms of the algorithms used to solve the problems, other 

meta-heuristics can be implemented, as well as methods based in the area of 

operational research. The fact that this is a distributed system means that there is no 

theoretical limit to the number of agents that try to solve, at the same time, the same 

problem. It is also important to collect more data and run the system several times to 

get more conclusive and generic results. 
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