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Abstract. Airports are important infra-structures for the air transportation
business. One of the major operational constraints is the peak of passengers in
specific periods of time. Airline companies take into consideration the airport
capacity when building the airline schedule and, because of that, the execution
of the airline operational plan can contribute to improve or avoid airport peak
problems. The Airline Operations Control Center (AOCC) tries to solve
unexpected problems that might occur during the airline operation. Problems
related to aircrafts, crewmembers and passengers are common and the actions
towards the solution of these problems are usually known as operations
recovery. In this paper we propose a way of measuring the AOCC performance
that takes into consideration the relation that exists between airline schedule
and airport peaks. The implementation of a Distributed Multi-Agent System
(MAS) representing the existing roles in an AOCC, is presented. We show that
the MAS contributes to minimize airport peaks without increasing the
operational costs of the airlines.
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1 Introduction

Airports are a very important infrastructure for air transportation. They provide
services for airlines and, also, for the passengers that fly on those airlines. Airport
operators like to speak of the business of the airport in terms of throughput of
passengers and cargo as represented by the annual number of passengers processed or
the annual turnover of tons of air freight. This is entirely understandable because,
most likely, the annual income is determined by these two parameters. However, from
an operational point of view, it is the peak flows that determine the physical and
operational costs involved in running a facility. Assigning staff and physical facilities
are much more dependent on hourly and daily requirements than on annual
throughput.



Airline companies, during their Airline Scheduling Process (especially during the
Flight Schedule Generation phase) take into consideration the agreed schedule
regarding departures/arrivals of the airports, especially important on hub airports (for
more information regarding this process see [8]). Given the above, we believe that it
is important for the airline company to operate according to the schedule, not only due
to the fact that the airline schedule is the optimal one from the airline perspective but,
also, because it takes into consideration the airport capacity and, therefore, the airport
peaks. Through operations control mechanisms the airline company monitors all the
flights checking if they follow the schedule that was previously defined by other areas
of the company. Unfortunately, some problems arise during this phase [5]. Those
problems are related to crewmembers, aircrafts and passengers. The Airline
Operations Control Centre (AOCC) is composed by teams of people specialized in
solving the above problems under the supervision of an operation control manager.
Each team has a specific goal contributing to the common and general goal of having
the airline operation running with few problems as possible. The process of solving
these problems is known as Disruption Management [11] or Operations Recovery.

In this paper we propose a way of measuring the AOCC performance so that, in the
decision process, the AOCC takes into account the relation that exists between airport
peaks and the airline schedule. We present the architecture and specification of a
multi-agent system that was developed for a real airline company, that uses our
proposed measure (among other criteria) to solve operational problems.

The rest of the paper is organized as follows. In section 2 we present some related
work. Section 3 explains the relation between airport peaks and airline schedule and
proposes the AOCC performance criteria. Section 4 shows the architecture and
specification of our MAS. In section 5 we present the scenario used to evaluate the
system as well as the results of the evaluation. Finally, we discuss and conclude our
work in section 6.

2 Related work

We divided the bibliography we have analyzed in three main areas: aircraft recovery,
crew recovery and integrated recovery.

Aircraft Recovery: Liu et al. [12] proposes a “multi-objective genetic algorithm to
generate an efficient time-effective multi-fleet aircraft routing algorithm” in response
to disruption of flights. It uses a combination of a traditional genetic algorithm with a
multi-objective optimization method, attempting to optimize objective functions
involving flight connections, flight swaps, total flight delay time and ground turn-
around times. According to the authors “(...) the proposed method has demonstrated
the ability to solve the dynamic and complex problem of airline disruption
management”. As in other approaches, the authors do use the delay time in the
objective functions trying to minimize the delays for all aircrafts and flights. Although
there are other differences regarding our approach, the main one is that we emphasize
the role of the airport trying to minimize the difference between the real and schedule
plan of the airline at each airport.



Crew Recovery: In Abdelgahny et al. [1] the flight crew recovery problem for an
airline with a hub-and-spoke network structure is addressed. The paper details and
sub-divides the recovery problem into four categories: misplacement problems, rest
problems, duty problems, and unassigned problems. The proposed model is an
assignment model with side constraints. Due to the stepwise approach, the proposed
solution is sub-optimal. According to the authors the tool is able to “solve for the
most efficient crew recovery plan with least deviation from originally planned
schedule”. The major drawback is that it only includes one resource (crew) and does
not consider the passenger dimension.

Integrated Recovery: Bratu et al. [4] presents two models that considers aircraft
and crew recovery and through the objective function focuses on passenger recovery.
They include delay costs that capture relevant hotel costs and ticket costs if
passengers are recovered by other airlines. The objective is to minimize jointly airline
operating costs and estimated passenger delay and disruption costs. According to the
authors, “(...) decisions from our models can potentially reduce passenger arrival
delays (...) without increasing operating costs”. The main difference regarding our
approach is that we emphasize the role of the airport trying to minimize the difference
between the real and schedule plan of the airline at each airport. Castro and Oliveira
[6] present a Multi-Agent System (MAS) to solve airline operations problems, using
specialized agents in each of the three usual dimensions of this problem: crew, aircraft
and passengers. The authors only use operational costs on the decision process
ignoring if the AOCC is near the original schedule or not.

Other Application Domains: Agents and multi-agent systems have been applied
both to other problems in air transportation domain and in other application domains.
A brief and incomplete list of such applications follows. Tumer and Agogino [14]
developed a multi-agent algorithm for traffic flow management. Wolfe et al. [15] uses
agents to compare routing selection strategies in collaborative traffic flow
management. For ATC Tower operations, Jonker et al. [9] have also proposed the use
of multi-agent systems. As a last example, a multi-agent system for the integrated
dynamic scheduling of steel production has been proposed by Ouelhadj [13].

3 Airport Peaks, Airline Schedule and Operations Performance

According to Ashford et al. [2] there are four ways of describing variations in demand
level with time:

1. Annual variation over time.

2. Monthly peaks within a particular year.

3. Daily peaks within a particular month or week.

4. Hourly peaks within a particular day.

The first one is very important from the viewpoint of planning and provision of
facilities. For our work, we concentrate on monthly, daily and hourly peaks, because
these are the ones that have more impact on day-to-day operations of the airports and
airlines. The goal of airport operators is to spread demand more evenly over the



operating day in order to decrease the costs associated with running the airport at peak
times, avoiding, as much as possible, situations like the one presented in Figure 1.

On the other hand, airlines are looking to maximize fleet utilization and offer
flights in more attractive slots. Additionally, airlines that operate in a hub-and-spoke,
due to the characteristics of such an operation, want to minimize the total travel time
and, for that, they need to rapidly connect the passengers that are arriving from long-
haul flights to short-haul flights and vice-versa.
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Fig. 1. Hourly variations of passenger traffic in a typical peak day (Source: BAA plc.)

As it is possible to see in Figure 2 this type of network makes airline companies to
schedule waves, that is, a high number of aircrafts arriving or departing at the hub in a
short time interval.
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Fig. 2. Schedule structure of the Alitalia hub in Milan (MXP). (Source: [7])

Given the difference between the goal of the airport operator and the goal of the
airline, there is, therefore, “a potential conflict between the airline satisfying its
customer, the passenger, and the airport attempting to influence the demands of its
customer, the airline” [2]. Because of that, it is important that airport operators and
airlines cooperate regarding the flight schedule definition.



International Air Transport Association (IATA) has developed a general policy in
scheduling so that, at some airports with official limitations, general government
authorities carry out the coordination. From our own personal knowledge of the air
transportation business as well as according to Ashford et al. [2], it is much more
common the situation where the airlines establish themselves an agreed schedule
through the mechanism of airport coordinator. The largest or national carrier of the
airport, assumes the role of airport coordinator (TAP in Lisbon, Lufthansa in
Frankfurt and BA in Heathrow, for example) and at semi-annual IATA scheduling
conferences, they are able to set an agreed schedule for the airports they represent. As
we stated before, the Airline Scheduling Process takes into consideration the agreed
schedule. The goal of that process is to create an airline schedule that is optimal in
regard to a given objective, usually operating profit [8], that is, minimum costs and
maximum revenues. To operate according to the schedule is not an easy task. Airline
companies face a lot of unexpected events during the operations of their flights [11].
However a good disruption management process should exist to minimize the impact
of the unexpected events and, according to Yu [16] return to the original schedule as
soon as possible!. For that, the AOCC should take decisions when solving disruptions
that tend to the original schedule. We propose to measure the performance of
AOCC’s according to Equation 1.
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where
f € F;F = {flights}, a € A; A = {airports}
t = time period (days),t =z a <3,
a = start datetime of the AOCC
B = end datetime of the AOCC
Adt(s .4 ¢ schedule/actual departure variation
Aat(s .+ ¢ schedule/actual arrival variation

We might say that if p->0 (tends to) then the real operation of the airline is running
near the original schedule contributing to improve the performance of the airport
during peak times. At the same time, we might say that the AOCC is contributing to
minimize the real operational costs. In the next section we present the multi-agent
system (MAS) we have developed to help the AOCC. The MAS uses the performance
criteria above (Equation 1) and, also, other criteria related with operational costs.

4 System Architecture and Specification

System overview: This section presents the architecture and specification of the
multi-agent system (MAS) we have developed for the airline operations control centre
(AOCC). Figure 3 shows one instance of the architecture of the system. There are
seven types of agents:

! Assuming the original schedule as the optimal one.



— Monitor, which monitors the operation of the airline company.

— EventType, which defines the types of events that must be detected.

— ResolutionManager, which receives a problem and manages the resolution in
cooperation with the specialist agents.

— SimmAnneal and HillClimb, specialist agents responsible for the resolution of a
problem, using simulated annealing and hill climb algorithms, respectively.

— Supervisor, the agent that interacts with the human supervisor, showing the
solutions proposed and requesting authorization to apply them.

— ApplySolution, the agent that is responsible to apply the solution in the
environment.

Figure 3 shows also the existence of a data store, which has information about the
airline company operations. The data store is accessed by the Monitor, Specialist and
ApplySolution agent. The communication between the agents is done through the
JADE system [3] and the data is passed between agents as serializable Java objects.
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Fig. 3. Overall architecture of the Multi-Agent System

Airline Schedule and Actual Operational Plan Definition: In a simplified
version of an airline schedule, we may say that it is composed of flights and the
resources necessary to perform those flights (aircraft and crewmembers), in a specific
period. The AOCC typically takes control of the airline operational plan some
hours/days before the operation of a flight until some hours/days after. We can define
the airline schedule plan S as:

S= {SUvavf}: Sraty = (id’ dpgf.a,t}'ar{j‘.a)t}' dt{sf,a.t}' at{sf.a.t}'ac{sf,a,t}' Cmif,a,t}’togf,a)t})} 2
tza<p

where

id : flight identification

dpgf’a’t} : sched. departure airport; dpfm,:} € A,a!;of,,"m =a

arf .4t Sched. arrival airport; ar ., €A, a5 #a

dt; o ¢ Sched. departure date time

atf, . ¢ sched. arrival date time

acfy . ¢ Sched.aircraft assigned flight; acfy, . € AC: AC = {aircrafts}
cmiﬂm} : sched. crew assigned flight; cmff‘alt) € CM: CM = {crewmembers}
taff‘ﬁﬁ : sched. total operational cost



Similarly, the actual operational plan R can be defined as:

R={rranTiran = (1400001 0.0 87 0.0 Q7 a0y O 0. M7 a1y 1010} 3)
tza<pB

In the case of Equation 3 the components reflect the actual data as opposed to the
schedule data in S (the airline schedule plan).

Problem Specification: When agent Monitoring detects a problem that needs to be
solved, a problem is raised and a solution is requested (through a Fipa-Request®
protocol) from the ResolutionManager agent. Equation 4 represents the problem.
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where
id : problem id.

P —
dtf . n = ati . g

et[’;’u’t) € E:E = {flight delay,crew delay,pax delay}
d[y;uﬂ : minutes of delay

ro;a‘ﬂ =0} 4
SW(?,M} € SV: 8V = {warning, problem}

tw;m} : time window for change, @ < (tw{;yalt) - dt(’;lmt)); B> (tw{;’a’t) + dt;u‘ﬂ)

P = Mipag  Uf et g ={crew delay}
tras @, otherwise

0, if Pir.an raised by Monitor agent

P _ o A
bd[f'"“ - {> 0, after CFP by ResolutionManager agent bid dealine in minutes.

0, if Dif.azy Taised by Monitor agent

(ran = : candidate solution deadline in minutes.
esdipa) {> 0, after accept_proposal by ResolutionManager agent candtaate sofution deadine in minutes.

For example: crewmember 231, delayed 10 minutes for flight TP438, departing
from Lisbon would be represented as problem:

p {tp438,lis,0715}=(00 1 ,09/07/0 1-071 S,CI'CW delay,23 1 N 1 O,problem,3 ,0,0,S {tp438,lis,071 5}).

At this stage, the Monitoring agent only adds to the Problem, information related with
the operational plan time window that should be involved in the resolution process. In
the example above, each specialist agent only considers flights between 04:15 and
10:15 of day 09/07/01 (09/07/01 07:15 £ 3 hours).

Resolution Manager: Agent ResolutionManager responds to the request from
Monitoring agent, issuing a RFP to the specialist agents SimmAnneal and HillClimb
and adding to the Problem the bid deadline and the deadline to receive candidate
solutions (for example, bdp{tp43g’1isyo7]5}:1 and CSdp{lp438,]is’0715}:5). At this level a Fipa—
Contract.net protocol is used to negotiate with the specialist agents. The specialist
agents interested to respond to the RFP, should manifest that intention before the bid
deadline. The specialist agents have a limited amount of time to find a candidate
solution that is represented by csd” { p438,1is,0715) 1N Pyipass liso71sy (example above). The
first step of the specialist agents is to obtain the flights that are in the time window of
the problem, represented by twp{ wa3gliso71s)- 1he set FTy, represents these initial

2 http://www.fipa.org



flights and will be the initial solution of the problem. The crewmembers and aircraft
exchanges are made between flights of FT ;. Finally, when a candidate solution is
found, the specialist agents send it to the ResolutionManager agent. Equation 5
defines a candidate solution.

PS = {psgy: psgy = (id, b5, e, PR}, (ombs ) T )} )
where

p € PR

id : problem solution identification

ic{’:}: initial solution cost

fc{f} : final solution cost
ps

{regy} ¢ Fry,

femf} C CM

A representation of a candidate solution for the example problem above could be:
pS{()o] }:(1200,959, {ﬂlghts} 5 {crewmembers} ,r{[p4387“sy0715}).

For each and all candidate solutions agent ResolutionManager calculates the AOCC
Performance p, using Equation 1. The candidate solution with the minimum value of
p will be the one that it is sent to the Supervisor for approval.

Solution generation and evaluation: The generation of a new solution, by the
specialist agents HillClimb and SimmAnneal, is made by finding a successor that
distances itself to the current solution by one unit, that is, the successor is obtained by
one, and only one, of the following operations:

— Swap two aircrafts between flights that belong to the flights that are in the time
window of the problem.

— Swap two crewmembers between flights that belong to the flights that are in the
time window of the problem.

— Swap an aircraft that belongs to the flights that are in the time windows of the
problem with an aircraft that that is not being used.

— Swap a crewmember of a flight that belongs to the flights that are in the time
window of the problem with a crewmember that isn’t on duty, but is on standby.

When choosing the first element (crewmember or aircraft) to swap, there are two
possibilities:
— Choose randomly
— Choose an element that is delayed.

This choice is made based on the probability of choosing an element that is late,
which was given a value of 0.9, so that the algorithms can proceed faster to good
solutions (exchanges are highly penalized, so choosing an element that is not late
probably won’t reduce the cost, as a possible saving by choosing a less costly element
probably won’t compensate the penalization associated with the exchange). If the
decision is to exchange an element that is delayed, the list of flights will be examined
and the first delayed element is chosen. If the decision is to choose randomly, then a
random flight is picked, and a crewmember or the aircraft is chosen, depending on the



probability of choosing a crewmember, which was given a value of 0.85. When
choosing the second element that is going to swap with the first, there are two
possibilities:

— Swap between elements of flights.

— Swap between an element of a flight and an element that isn’t on duty.

This choice is made based on the probability of choosing a swap between elements
of flights, which was given a value of 0.5. The evaluation of the solution is done by
an objective function that measures four types of costs:

— The costs with crewmembers. Those costs take into consideration the amount that
has to be paid to the crewmember (depends on the duration of the flight), and the
base of the crewmember (for instance, assign a crewmember from Oporto to a
flight departing from Lisbon has an associated cost that would not be present if the
crewmember’s base was Lisbon).

— The costs with aircrafts. Those costs take into consideration the amount that has to
be spent on the aircraft (depends on the duration of the flight), and the base where
the flight actually is.

— The penalization for exchanging elements.

— The penalization for delayed elements. The cost associated with this aspect is the
highest, because the goal is to have no delayed elements.

These types of costs are taken into account in Equation 6:

tc = cmc + amc + exW « numkE + dIW = numD (6)

Where
[CM| 7
cme = Z (¢; * bef) /numCm

=1
where
i € CM; CM = {all crewmembers in flight}
1 < bef < 2: base crew factor
numCm : number of crew members in CM

|AC| (8)
amec = (ac; = baf) /nmumAc

where

J € AC; AC = {aircraft same fleet}
1 < baf < 2 : base aircraft factor
numAc : number of aircrafts in AC

exW was given a value of 1000, and dIW a value of 20000.

Regarding the agent that implements a Simmulated Annealing algorithm [10], there
is a probability that a new solution is selected even if the cost is not smaller than the



previous one. Our agent has used the following values for calculating this probability:
0=0.8, T=10 and T updated every N iterations (N=2).

5 Scenario and Experiments

Scenario: To evaluate our approach we have setup the same scenario used by the
authors in [6] that include 3 operational bases (A, B and C). Each base, corresponding
to a different airport, includes their crewmembers each one with a specific roster.
Airport B is the Hub of the airline. In this small experiment it is included 15 flights,
36 crewmembers and 4 aircrafts. After setting-up the scenario we found the solutions
for each crew event using our system (running only once). After that, the AOCC
performance for each method was calculated according to Equation 1 and considering
a one month period. As a final step, the solutions found by our system were presented
to AOCC users to be validated regarding feasibility and correctness.

Results: Table 1 presents the results that compare our method (method B) with the
one used by Castro and Oliveira [6]. From the results obtained we can see that method
B increased 1.38 times the performance of the AOCC. As we stated in section 3, if the
AOCC performance tends to zero it means that the airline is operating (in terms of
flight departure and arrivals times) more according to the airline schedule and,
because of the relation that exist between airline schedule and airport peaks (as we
explained in section 3), it means that the airline contributes also to a better passenger
flow at the airports. From Table 1 we see that performance of AOCC in our method
(B) is closer to zero than previous method.

Regarding the performance in each airport, our approach improved the
performance of the AOCC in airport A and B by 2 and 1.75 times, respectively. For
airport C the performance is the same of previous method. Another important result is
the total costs. Our method is 23% less expensive than the previous one.

Table 1. Comparison of the results

Method A | Method B A/B
Flights P P
Global 180 130 1.38
- Airport A 3 40 20 2.00
(0-13h) 1 30 20
(13-20h) 2 10 0
(20-24h) 0 0
- Airport B 7 70 40 1.75
(0-13h) 2 10 10
(13-20h) 4 50 30
(20-24h) 1 10 0
- Airport C 5 70 70 0.00
(0-13h) 3 20 15
(13-20h) 2 50 55
(20-24h) 0 0 0
Total costs 11628 8912 -23%




6 Discussion and Conclusions

In this paper we proposed a way of evaluating the performance of the AOCC that
takes into consideration the relation that exists between the airport peaks (airport
capacity) and the airline schedule.

We have implemented a MAS that represents the roles in the AOCC and that
solves the unexpected problems that usually happens on airline operations. Our MAS
is able to take decisions taking into consideration the AOCC performance as well as
the airline operational costs. Preliminary results show that it is possible to contribute
to minimize the airports peaks without increasing the airline operational costs.
However, due to the probabilistic nature of the simulated annealing algorithm and due
to the fact that we have run our system only once to get the results, we cannot
generalize the results presented here. Another conclusion that we are able to take from
the results in Table 1, is that it would be important to collect the reason that caused
the flight/crew delay, i.e., due to weather conditions, ATC and/or airport restrictions,
aircraft malfunction, etc. This information would help to understand some of the
results. For example, it could help to understand why the performance on airport C is
the same as the one obtained by the previous method.

We also point out that these results, per se, do not mean that we are able to solve
all the airport peak problems in a specific airport. The airport peak problems are the
result of the passenger flow that is generated by several airline schedules that operate
at the airport. It would be necessary that all airlines implemented a similar system to
reach to such a conclusion. However, in the airports where an airline has a hub-and-
spoke network, the majority of the passenger flow is generated by a single airline
company. In those cases, our approach could contribute significantly to minimize the
airport peak problems.

Finally, our MAS is an integrated system that automates much of the disruption
management process, from the monitoring of the operation of the company in its
several bases, to the detection of events and the resolution of the problems
encountered. Additionally, our MAS is oriented to the future: its distributed nature
and the fact that it is based on agents that are specialists in solving problems easily
allows the insertion into the system of new agents that solve new kinds of problems
that were identified in the meantime, or that resolve the current types of problems
using different methods. It is thus a truly scalable solution, prepared to sustain the
growth of the airline company. Although the goals have been achieved, it is important
to consider a number of improvements that could be made on future developments,
and that could enrich it. In terms of the algorithms used to solve the problems, other
meta-heuristics can be implemented, as well as methods based in the area of
operational research. The fact that this is a distributed system means that there is no
theoretical limit to the number of agents that try to solve, at the same time, the same
problem. It is also important to collect more data and run the system several times to
get more conclusive and generic results.
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