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Abstract: We study the equilibria of an Ordinary Differencial Equation (ODE) system where CD4+

effector or helper T cells and Regulatory T cells (Tregs) are present. T cells trigger an immune
response in the presence of their specific antigen. Regulatory T cells (Tregs) play a role in limiting
auto-immune diseases due to their immune-suppressive ability. Here, we present explicit exact
formulas that give the relationship between the concentration of T cells, the concentration of Tregs,
and the antigenic stimulation of T cells, when the system is at equilibria, stable or unstable. We
found a parameter region of bistability, limited by two thresholds of antigenic stimulation of T cells
(hysteresis). Moreover, there are values of the slope parameter of the tuning for which an isola-center
bifurcation appears, and, for some other values, there is a transcritical bifurcation. We also present
time evolutions of the ODE system.

Keywords: CD4+ T cells; CD4+ Tregs; bifurcation; eigenvalues; ODE model
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1. Introduction

The human immune system can be triggered by pathogen infections—its primary function is the
protection of the host from invasion by virus, bacteria, or parasites. Lymphocytes are a part of the
immune system that recognize and respond to specific antigens; they are a subset of the Leukocytes,
also known as white blood cells. T cells are a group of Lymphocytes that mature in the thymus.
When T cells find their specific antigens, they become activated and start secreting growth cytokines,
namely Interleukin 2 (IL-2). The population of T cells consists of different types, each with different
immunological functions and phenotypes. However, the immune response of T cells is specific: it
opposes the progression of an infection, which is identified by the unique set of antigen receptors
(T cell receptors, TCR) it activates on the T cells surface, while interacting with antigen presenting cells
(APCs). Usually, T cells proliferate rapidly at the maximum expansion rate following the activation
of a small but large enough number of them by a pathogen—a quorum threshold. The infection
may be removed during this expansion phase, the expansion stops after some time, and the number
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of activated T cells is reduced drastically, while some of them may become memory T cells during
this process.

Healthy individuals should have their immune systems capable of differentiating between cells
infected with a pathogen and uninfected cells. However, this is not always the case: the immune system
may fail to differentiate the uninfected cells from infected ones, targeting self-antigens and triggering an
autoimmune response, which may cause tissue damage and even death [1]. Autoimmunity may appear
and evolve due to causes that may be linked to genetic, age, or environmental characteristics [2,3].
One possible pathway towards autoimmunity is a previous infection by a pathogen which had peptides
imitating its host (“molecular mimicry”), in an attempt to evade the immune system. This may lead to
autoimmunity due to cross-reactivity [4,5].

Regulatory T cells (Tregs) take part in limiting these mistakes due to their immune-suppressive
ability. They mature in the thymus after positive selection by self peptides [6]. Tregs express
Foxp3, which triggers the expression of CD25, CTLA-4, and GITR, all related with a suppressing
phenotype [7]. The growth of conventional T cells is inhibited in the vicinity of Tregs that were activated
by APCs [8–10], partially due to the inhibition of IL-2 secretion by the T cells [11,12]. A delicate fit is
required to allow the proliferation of T cells once a pathogen appears, while having autoimmunity
controlled at the same time. In order to develop immune responses in the presence of Tregs, there is
a need to activate a larger number of T cells [13]. Hence, by modulating the local population size
of active Tregs, the amount of T cells necessary to develop an immune response can be increased.
Some research used mathematical modelling to study the effects of the inhibition of IL-2 secretion by
regulatory T cells. They showed how a balance is established and controlled between appropriate
immune activation and immune response suppression. For the state of the art and trends, see [14,15].
Models of T cells dynamics usually require a quorum threshold to be achieved to develop an immune
response, and there is a bistability region on the parameter space [8–10,13,16–18]. Depending on
the strength of activation and initial conditions, below a certain threshold of autoimmune antigenic
stimulation, the autoimmune population is controlled at low concentrations while Tregs population is
in homeostasis. Beyond a second threshold, the autoimmune population expands and escapes control.
For antigenic stimulation levels between the two thresholds, escape requires the initial load to be
sufficiently high. This is a common phenomenon, termed as hysteresis.

Burroughts et al. [13,19–22] studied the CD4+ T cell proliferation thresholds under the presence
of Tregs. They studied the regulation of local immune responses by Tregs; determined the analytic
formula that gives the equilibria between the concentration of T cells and Tregs; and observed the
points where a cusp bifurcation occurs and the hysteresis unfolds, showing a drastic change in the
dynamical behaviour [13,19,22]. Pinto et al. [18] introduced an asymmetry in the death rates of T cells.
They considered a situation whereby the secreting T cells die at a lower rate than the non secreting T
cells, and the active Tregs also die at a lower rate than the inactive Tregs, in order to imitate the presence
of memory T cells. An effect of the asymmetry is the improvement of the efficiency of the immune
responses due to a higher rate of cytokine secretion and a lower average death rate of T cells [18,20,21].
Pinto et al. [18] also included a linear tuning to simulate the direct association between the antigenic
stimuli of T cells and Tregs, inasmuch as both are mediated by APCs. Burroughs et al. [20] showed
numerically that, when we increase the slope of the linear tuning, at some point, we may observe the
appearance of an isola-center bifurcation, a point separated from the hysteresis. For higher values of
the slope parameter, we observe an isola, a loop shaped region isolated from the hysteresis. The isola
increases in size until it reaches the hysteresis at the transcritical bifurcation point. Larger values of the
slope parameter result in a wider hysteresis. Oliveira et al. [23] further analyzed the asymmetric model
with the tuning, presented approximate formulas that describe the balance between the concentration
of T cells and Tregs, and reported that the approximate formulas deviate up to 10% in the region
of the parameter space they studied. The validity of these types of models is supported since they
were able to simulate qualitatively the appearance of autoimmunity by cross-reactivity [13], and the
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appearance [21] and the suppression [24] of autoimmunity due to bystander CD4+ T cells. Moreover,
Afsar et al. [25] fitted a model with two pathogen-responding clonotypes to laboratory data.

In this work, we study an immune response model with the presence of effector or helper CD4+

T cells and CD4+ Tregs. We use the model presented in Burroughs et al. [13] with the asymmetry
and the linear tuning introduced in Pinto et al. [18]. Here, we deepen previous results by explicitly
computing the equilibria and their eigenvalues, thus determining the hysteresis, the isola-center,
and the transcritical bifurcations. Furthermore, we study the effect of the slope parameter of the
tuning on the equilibria and we compute time responses for different values of the parameters and for
distinct initial conditions. In Section 2, we describe the immune response model and its five ordinary
differential equations. In Section 3, we present the equilibria of the model where we show the explicit
formulas that give the relationship between the concentrations of T cells, Tregs, interleukin 2, and
the antigenic stimulation of T cells. Furthermore, we obtain the Jacobian matrix and compute its
eigenvalues. We perform the stability analysis in Section 4. Section 5 has time evolutions of the ODE
system. The work is concluded in Section 6.

2. Theory

We study the immune response model in Section 3 of Burroughs et al. [20] and Pinto et al. [18],
which considers a system with conventional T cells and Tregs with processes illustrated in Figure 1
of Pinto et al. [18]. T cells and Tregs are activated by their specific antigens. The levels of antigenic
stimulation of T cells and Tregs are denoted by b and â, respectively. Self antigens stimulate Tregs from
the inactive state R to the active state R∗. When stimulated, effector or helper T cells pass from the non
secreting state T to the IL-2 secreting state T∗ (becoming effector in the process). T cells and Tregs in
either state proliferate when IL-2 is present. Tregs do not secrete IL-2, and proliferate at a lower rate
than T cells [12]. We consider an influx of (auto) immune T cells and Tregs into the tissue, Tin, and Rin,
respectively. This can stand for the circulation of effector T cells from the lymph nodes or the arrival
of naïve helper T cells from the thymus. We assume that death may occur independently of other
processes or by Fas-FasL induced death [26]. The former terms have equal values for T cells or Tregs
but stimulated T cells and Tregs die at a lower rate than relaxed T cells and Tregs. The latter (quadratic)
death term works as growth limitation mechanism, assumed to act on all T cells and Tregs equally.
The model comprises of five ordinary differential equations with compartments for: inactive Tregs
R, active Tregs R∗, non secreting T cells T, secreting activated T cells T∗, and interleukin 2 density I.
We assume a linear tuning â(b) = a + mb, as in Burroughs et al. [20] and Pinto et al. [18], to emulate
the direct association between the antigenic stimuli b of T cells, and â of Tregs:

dR
dt

= (ερI − β(R + R∗ + T + T∗)− dR)R + k̂(R∗ − aR−mbR) + Rin,

dR∗

dt
= (ερI − β(R + R∗ + T + T∗)− dR∗)R∗ − k̂(R∗ − aR−mbR),

dT
dt

= (ρI − β(R + R∗ + T + T∗)− dT)T + k(T∗ − bT+γR∗T∗) + Tin,

dT∗

dt
= (ρI − β(R + R∗ + T + T∗)− dT∗)T∗ − k(T∗ − bT+γR∗T∗),

dI
dt

= σ(T∗ − (α(R + R∗ + T + T∗) + δ)I).

The parameters of our model and their default values are presented in Table 1.
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Table 1. Values of parameters for our model of T cells and Tregs, adapted from [13,23].

Parameter Symbol Range Value

T cell T, T∗

T cell Maximum growth rate 1 ρ
/

α < 6day−1 4 day−1

Death rate of inactive T cells (day−1) dT 0.1–0.01 [27] 0.1
Death rate ratio of active: inactive T cells dT∗/dT 0.01–100 0.1
Capacity of T cells 2 ρ

/
(αβ) 106–107 cells/ml [28] 107 cells/ml

Input rate of inactive T cells (cells/ml/day) Tin 0–104 100
Secretion reversion (constant) 3 k hrs-days 0.1 h−1

Antigen stimulation level bk 10−4–105 × k̂ Bifurcation parameter

Tregs R, R∗

Growth rate ratio Treg:T ε < 1 0.6
Relaxation rate k̂ hrs-days 0.1 h−1

Death rate ratio of inactive Tregs : inactive T cells dR
/

dT 0.01− 100 1
Death rate relative ratio of Tregs : T cells dR∗

dR

/ dT∗
dT

0.01–100 1
Input rate ratio of inactive Tregs : inactive T cells Rin/Tin 0− 102 1
Homeostatic capacity 4 Rhom 10–105 cells/ml 104 cells/ml
Tregs basal antigen stimulation level (for b = 0) ak̂ 0–10 per day 1 per day
Homeostatic capacity 4 Rhom 10–105 cells/ml 104 cells/ml
Secretion inhibition γ 0.1–100 ×R−1

hom 10 R−1
hom

Slope of the tuning m 0–1 Bifurcation parameter

Cytokines
Max. cytokine concentration 5 1

/
α 100–500 pM 200 pM

IL2 secretion rate σ 0.07, 2 fgrms h−1 [29] 6 106 molecs s−1 cell−1

Cytokine decay rate σδ hrs-days 1.5 h−1 [30]
1 Minimum duration of SG2 M phase αρ−1 ≈ 3 hrs. 2 Maximum T cell density for severe infections, based on
lymphocytic choriomeningitis virus (LCMV). 3 This is in absence of Tregs. 4 Homeostatic capacity of Tregs is

given by Rhom = Rin

(
dR −

k̂a(dR−dR∗ )
dR∗+k̂(1+a)

)−1
. 5 This is taken as 20 times the receptor affinity (10pM). 6 Naive

and memory cells respectively. This corresponds to 3× 103–105 molecules per h, IL2 mass 15–18 kDa.

3. Equilibria of the Model

Let the total concentration of T cells be x = T + T∗ and the total concentration of Tregs be
y = R + R∗. When at equilibrium, the derivatives vanish and the equations of the system become:

(ερI−β(x + y)− dR)R + k̂(R∗ − aR−mbR) + Rin = 0 , (1)

(ερI−β(x + y)− dR∗)R∗ − k̂(R∗ − aR−mbR) = 0 , (2)

(ρI − β(x + y)− dT)T + k(T∗ − bT+γR∗T∗) + Tin = 0 , (3)

(ρI − β(x + y)− dT∗)T∗ − k(T∗ − bT+γR∗T∗) = 0 , (4)

σ(T∗ − (α(x + y) + δ)I) = 0. (5)

We present here explicit formulas for the equilibria, stable or unstable, that represent the
relationship between the concentration of T cells x, the concentration of Tregs y and the antigenic
stimulation of T cells b. Let A, B, U, L, W, C, E, F, G and H be such that:
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A(x, y) = α(x + y) + δ ,

B(x, y) = β(x + y) ,

U(x, y) = (B + dT)x− Tin ,

L(x, y) = ρx + (dT − dT∗)A ,

W(x, y) = BL− ερU ,

C(x, y) = dRyL + Wy− RinL ,

E(x, y) = (((B + dT∗ + k)L− ρU)(dR − dR∗) + kγC) AU ,

F(x, y) = k(xL− AU)(dR − dR∗)L ,

G(x, y) = W + (dR∗ + k̂)L ,

H(x, y) = k̂ ((dR − dR∗)Ly− C) L .

Theorem 1. At equilibrium I, T∗, and R∗ are given by

I(x, y) =
U
L

, T∗(x, y) = AI, R∗(x, y) =
C

(dR − dR∗)L
,

and the antigen function b is given by

b(x, y) =
E
F

.

Furthermore, the balance between the concentration of T cells and Tregs is given by

(aF + mE)H − CFG = 0.

We can compute the equilibria by choosing a positive real number for the concentration of T
cells x and then applying the formulas in Theorem 1. A biologically valid solution will have positive
real numbers for all variables and for the antigenic stimulation b of T cells. After choosing the value
of the concentration of T cells x, we can use the balance equation to obtain the candidates for the
concentration of Tregs y. The balance equation is a ninth order polynomial on the concentration of
Tregs y and its terms include the concentration of T cells x and the parameters, except the antigenic
stimulation b of T cells. Thus, the zeros of the balance equation correspond to the candidates for
the concentration of Tregs y. Afterwards, we can use the value of x and each valid candidate y to
compute the corresponding values of the antigenic stimulation b of T cells, concentration of active
Tregs R∗, concentration of secreting T cells T∗, and IL-2 cytokine concentration I. With these values, it
is straightforward to compute the concentration of inactive Tregs R and concentration of non-secreting
T cells T. The derivation of the formulas in Theorem 1 is presented below.

Proof. By Equation (5), using the definition of A

T∗ = AI .

Adding Equations (3) and (4), we obtain

(ρI − B)(T + T∗)− dTT − dT∗T∗ + Tin = 0 .

Noting that x = T + T∗ and using T∗ = AI, we get

(ρI − B)x− dT(x− AI)− dT∗AI + Tin = 0 .
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Hence,

I =
(B + dT)x− Tin

ρx + (dT − dT∗)A
.

This proves the formula for I.
To prove the formula for R∗, we add Equations (1) and (2), obtaining

(ερI − β(x + y)) y− dRR− dR∗R∗ + Rin = 0 .

Noting that y = R + R∗ and using the definition of B and I, we get(
ερ

U
L
− B

)
y− dRy + (dR − dR∗)R∗ + Rin = 0 .

Multiplying by L and using the definition of C, we have

−C + (dR − dR∗)LR∗ = 0 .

Now, let us prove the formula for b. From Equation (4), we obtain

kbT = −((ρI − B− dT − k)− kγR∗)T∗ .

Solving for b and noting that x = T + T∗, we get

b =
((B + dT∗ + k− ρI) + kγR∗)T∗

k(x− T∗)
.

Using the expressions for I and T∗, and multiplying the numerator and denominator by L

b =
(((B + dT∗ + k)L− ρU) + kγLR∗) AU

k(xL− AU)L
.

Using the equation for R∗ and multiplying the numerator and the denominator by (dR − dR∗)

b =
(((B + dT∗ + k)L− ρU)(dR − dR∗) + kγC) AU

k(xL− AU)(dR − dR∗)L
.

Let us prove the balance equation between x and y. Applying y = R + R∗ and the definition of B and
I in Equation (2), we get

(ερU/L− B− dR∗) R∗ − k̂R∗ + k̂a(y− R∗) + k̂mb(y− R∗) = 0 .

Multiplying by L results in

−
(

BL− ερU + (dR∗ + k̂)L
)

R∗ + k̂
(

a + m
E
F

)
(y− R∗)L = 0 .

Using the expressions for G and R∗, we obtain

− CG
(dR − dR∗)L

+ k̂
(

aF + mE
F

)(
y− C

(dR − dR∗)L

)
L = 0 .

We finish the proof by multiplying the above equation by (dR − dR∗ )LF and using the definition
of H.



Mathematics 2020, 8, 293 7 of 14

After obtaining the equilibria, we can assess the stability and the local behaviour of the time
dynamics by computing numerically the eigenvalues using the Jacobian of the ODE system given by

J(x, y) = f (R(x, y), R∗(x, y), T(x, y), T∗(x, y), I(x, y))

=


J11 −βR + k̂ −βR −βR ερR

−βR∗ + k̂(a + mb) J22 −βR∗ −βR∗ ερR∗

−βT −βT + kγT∗ J33 −βT + k + kγR∗ ρT
−βT∗ −βT∗ − kγT∗ −βT∗ + kb J44 ρT∗

−σαI −σαI −σαI σ− σαI J55


where

J11 = ερI − β(R + x + y)− dR − k̂(a + mb),
J22 = ερI − β(R∗ + x + y)− dR∗ − k̂,
J33 = ρI − β(T + x + y)− dT − kb,
J44 = ρI − β(T∗ + x + y)− dT∗ − k− kγR∗,
J55 = −σ(α(x + y) + δ) .

4. Stability Analysis

We observe that the balance between the concentration of T cells and that of Tregs varies with the
slope parameter m. For the default values of the parameters, we observe that, for lower values of the
slope m, a hysteresis is present with its bistability region.

As we further increase the slope, we find up to three possible values of the concentration of the
Tregs for each value of the concentration of T cells. In Figures 1–3, we can observe the equilibria
manifold and its cross-sections for m = 0.2765.

Figure 1. Equilibria manifold obtained from Theorem 1. (a) balance between the concentration of T
cells x = T + T∗ and that of Tregs y = R + R∗. The shading color indicates the real part of the largest
eigenvalue Re(λ), increasing from black to blue for stable equilibria, and unstable equilibria from green
to yellow. The red and the magenta lines show the bifurcations, when Re(λ) = 0. (b) cross-section for
m = 0.2765. The line type indicates stable (solid) or unstable (dashes) equilibria.

We observe in Figure 1 that the concentration of Tregs y is lower when the concentration of T cells
x decreases towards 103 and when the concentration of T cells x increases toward 107. In Figure 2, we
can verify that, for high values of the antigenic stimulation b of T cells, the concentration of T cells
x is high and the concentration of Tregs y is low, corresponding to an immune response state of the T
cells. The controlled state of the T cells is present for low values of the antigenic stimulation b of T cells,
being characterized by low values of the concentration of T cells x and concentrations of Tregs y close
to their homeostatic values Rhom. For intermediate values of the antigenic stimulation b of T cells, we



Mathematics 2020, 8, 293 8 of 14

can observe a bistability region, with one equilibria presenting high concentrations of Tregs y and
intermediate concentrations of T cells x and the other equilibria being an immune response state. In
Figure 3, we observe that, for higher values of the antigenic stimulation b of T cells, the concentration
of inactive Tregs R is higher (and the concentration of active Tregs R∗ is lower) for lower values of
the slope parameter, due to the lower antigenic stimulation â of Tregs. As we increase the antigenic
stimulation b of T cells from lower values to higher values, initially we observe an increase in the
concentrations of the four cell types, which is supported by the increasing concentrations of secreting
T cells T∗ and the correspondent increase of IL-2 cytokines (data not shown).

Figure 2. Equilibria manifold obtained from Theorem 1. (a,b) relationship between the antigenic
stimulation b of T cells and the concentration of T cells x = T + T∗. (c,d) relationship between the
antigenic stimulation b of T cells and the concentration of Tregs y = R + R∗. (a,c) the axis pointing
upwards to the right is the slope parameter m. The shading color indicates the real part of the largest
eigenvalue Re(λ), increasing from black to blue for stable equilibria, and unstable equilibria from green
to yellow. The red and the magenta lines show the bifurcations, when Re(λ) = 0. (b,d) cross-sections
for m = 0.2765. The line type indicates stable (solid) or unstalbe (dashes) equilibria.

However, higher values of the antigenic stimulation b of T cells will lead to even larger numbers
of cells, which will make more relevant the Fas-FasL induced (quadratic) death. The resulting immune
response state is dominated by the compartment with the fittest cells: the secreting T cells T∗, since these
have the highest growth rate and the lowest death rate among the four cell types studied here.
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Figure 3. Equilibria manifold obtained from Theorem 1. Relationship between the antigenic stimulation
b of T cells and (a) the concentration of non-secreting T cells T, (b) the concentration of secreting T
cells T∗, (c) the concentration of inactive Tregs R, and (d) the concentration of active Tregs R∗. The axis
pointing upwards to the right is the slope parameter m. The shading color indicates the real part of the
largest eigenvalue Re(λ), increasing from black to blue for stable equilibria, and from green to yellow
for unstable equilibria. The red and the magenta lines show the bifurcations, when Re(λ) = 0.

We computed numerically the eigenvalues (see Figure 4) using the Jacobian of the ODE system,
in terms of the pair (x, y). We observe that, for the parameters considered, using the balance equation,
we have that the concentration of Tregs y is also a multi-valued function of the concentration of T cells
x (see Figure 2). Hence, the stability of the equilibria and the bifurcation boundary can be characterized
only in terms of the concentration of T cells x. By Theorem 1, all the equilibria points are characterized
in terms of the pairs (x, y) satisfying the balance equation. Thus, their stability (or instability) is
also dependent on (x, y). The bifurcation boundary B is the set of equilibria points (R, R∗, T, T∗, I)
with the property that at least one of the eigenvalues has real part equal to zero and all the other
eigenvalues have a non-positive real part. Therefore, using Theorem 1, the bifurcation boundary B
can be fully characterized in terms of the pairs (x, y) satisfying the balance equation. By Theorem 1,
the antigenic stimulation of T cells (parameter b) is fully characterized by the pair (x, y) satisfying the
balance equation. Hence, the projection of the bifurcation boundary B in the antigenic stimulation of T
cells, is well characterized, resulting in a lower threshold bL and a higher threshold bH of antigenic
stimulation of T cells (see Figure 4).

The eigenvalues allow us to determine the stability of the equilibria and the time dynamics
in a neighborhood of the equilibria. For an antigenic stimulation of T cells below the threshold bL,
we observe one stable equilibrium, a controlled state, with a low concentration of T cells. For an
antigenic stimulation of T cells above the threshold bH , there is a stable equilibrium, an immune
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response state, with a high concentration of T cells. Between the two antigenic thresholds, bL and
bH , we find intervals with two stable equilibria, an immune response state, and a controlled state.
In the same interval, we also observe one unstable equilibrium, for intermediate concentrations of T
cells, that belongs to the separatrix of the basins of attraction of the stable equilibria. When the slope
parameter is m = mTC ≈ 0.2765, the relationship between the variables and the antigenic stimulation
b of T cells has two saddle-node bifurcations that bound the bistability region, for (xL; yL; bL) ≈
(4.1× 105; 1.2× 103; 2.8× 10−1) and (xH ; yH ; bH) ≈ (1.1× 104; 1.4× 105; 6.4× 102). Moreover, there is
a transcritical bifurcation at (xTC; yTC; bTC) ≈ (1.4× 104; 7.8× 103; 9.8× 10−1); see Figures 1–4. For
values of m in a neighbourhood of mTC, when we set m at a value below mTC, as we increase the
antigenic stimulation b of T cells, there will appear a gap along the direction of the antigenic stimulation
b of T cells. Thus, we can observe a hysteresis and an isola—present for antigenic stimulations of T
cells b > bTC. Further decreasing m will lead to a decrease in the size of the isola, until we observe that
the the isola vanishes in an isola-center bifurcation at m = mI < mTC. Setting m > mTC, as we increase
the antigenic stimulation b of T cells, we observe that the hysteresis does not touch itself and has a gap
in the direction of the concentration of T cells x. See Burroughs et al. [20] for further details.

Figure 4. Relation between the eigenvalues (λ) with the largest real part (blue line) and the second
largest real part (green dashes) with the antigenic stimulation b of T cells, for m = 0.2765. (a) the largest
real part of the eigenvalues can be positive for b between bL ≈ 2.8× 10−1 and bH ≈ 6.4× 102; and
that the second largest real part of the eigenvalues is negative. (b) the two shown eigenvalues can be
complex conjugate for b between∼2.1× 10−2 and∼2.5× 10−2, and for b between∼1.9 and∼6.1× 102.

5. Time Evolutions

We present some time evolutions of the ODE system, see Figure 5, considering the four initial
conditions in Table 2.

Table 2. Initial conditions for the time evolutions. Note that the initial condition 2 has higher T cell
concentrations and lower Tregs concentrations than the initial condition 3.

Initial Condition R R∗ T T∗ I

1: immune response 30 30 0 107 200
2: intermediate + 4.0× 104 4.0× 104 1.3× 105 1.3× 105 6
3: intermediate - 4.5× 104 4.5× 104 1.2× 105 1.2× 105 5
4: controlled 500 500 103 0 0
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Figure 5. Time evolutions for two sets of values of the parameters and four initial conditions
(see Table 2). (a,b) b = 10−1 and m = 0.2765. Here, the only stable steady state is the controlled
state. (c,d) b = 30 and m = 0.2765. In this case, there are two stable steady states. (a,c) black
solid lines—total concentration of T cells x; blue dots—concentration of secreting T cells T∗; green
dashes—concentration of non-secreting T cells T. (b,d) black solid lines—total concentration of Tregs y;
blue dots—concentration of active Tregs R∗; green dashes—concentration of inactive Tregs R.

In Figure 5a,b, the value of the antigenic stimulation of T cells is low, b = 10−1, and the slope
parameter is m = 0.2765; the other parameters are at the default values in Table 1. For these values of
the parameters, there is only one stable steady state, a controlled state of the T cells, and the four initial
conditions approach it. In Figure 5c,d, the value of the antigenic stimulation of T cells is b = 30 and the
slope parameter is m = 0.2765; the other parameters are at their default values. For these values of the
parameters, there are two stable steady states: an immune response state of the T cells and a controlled
state of the T cells. We observe that the initial conditions 1, 2, and 4 approach an immune response
steady state; and the initial condition 3 approaches a controlled steady state, with low concentrations of
T cells. Moreover, although the initial conditions 2 and 3 are close, their time evolutions diverge from
each other, indicating that they belong to distinct basins of attraction of the equilibria. For the initial
condition 4, although it starts with a low concentration of T cells, the inhibition by the active Tregs
is insufficient to maintain the T cells controlled, thus the system approaches the immune response
steady state, after a transient period. Regarding the time dynamics, when the values of the antigenic
stimulation of T cells b are such that the eigenvalues have a negative real part and a nonzero imaginary
part, the trajectories in the neighborhood of the equilibria approach it in a spiraling trajectory in the
direction of the plane determined by the corresponding eigenvectors, and the time dynamics can have
damped oscillations. In particular, this behavior can be observed near the controlled equilibria, for
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values of the concentration of T cells x < 2× 104, and for values of antigenic stimulation of T cells b
between ∼2.1× 10−2 and ∼2.5× 10−2, and for b between ∼1.9 and ∼6.1× 102, though with periods
of oscillations larger than 100 days, and with a marked decay of the amplitude in each period (data not
shown).

6. Conclusions

We studied an immune response model with CD4+ T cells and CD4+ Tregs. We assumed
asymmetric death rates and considered that the antigenic stimulation of Tregs â is a linear function of b.
We have deepened previous findings, in particular those in the numeric study by Burroughs et al. [20]
and the approximate expressions by Oliveira et al. [23]. Here, we presented explicit formulas that
describe the exact relationship at equilibria (stable or unstable) between the concentration of T cells,
Tregs, IL-2 cytokine, and the antigenic stimulation of T cells. Furthermore, we also showed the
Jacobian matrix that allowed the computation of the eigenvalues and the stability of the equilibria.
When we changed the antigenic stimulation of T cells parameter, we observed a hysteresis with a
bistability region and a transcritical bifurcation, for a given value of the slope of the tuning parameter.
Moreover, we present some time evolutions for some values of the parameters. This type of model,
with two clonotypes of T cells, was applied to study the appearance of autoimmune responses due to
bystander proliferation of T cells, as in Burroughs et al. [21] and the suppression of of autoimmunity, as
in Oliveira et al. [24]. Additionally, the hysteresis, present for the parameter values we used, indicates
that treatment of autoimmunity might require a high level of immune suppression. However, immune
suppressive drugs that deplete significantly the concentration of CD4+ T cells might concomitantly
decrease the concentration of Tregs. If this happens to be the case, this treatment might not bring the
system into the basin of attraction of the controlled steady state. Hence, it is possible that, after the
immune suppressive treatment, the system might be in a state similar to the initial condition 4,
where apparently the T cells are controlled, but, as we observe in Figure 5c,d, after a transient time,
the concentrations of T cells approach instead the immune response steady state. Furthermore, for
parameters in a neighborhood of the transcritical bifurcation point, and considering an initial condition
near the controlled steady state, it is possible that a small perturbation might bring the system across
the separatrix of the basins of attraction. Thus, CD4+ T cells will be able to escape control and, after
some transient period, the system will approach the immune response steady state. Nevertheless, in
silico models can be useful in simulating innovative therapies, which makes room for only the more
promising ones being considered to be studied in in vivo experiments.
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