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Abstract The identification of atherosclerotic plaque

components, extraction and analysis of their morphol-

ogy represent an important role towards the predic-

tion of cardiovascular events. In this article, the classi-

fication of regions representing calcified components in

Computed Tomography Angiography (CTA) images of

the carotid artery is tackle. The proposed classification

model has two main steps: the classification per pixel

and the classification per region. Features extracted

from each pixel inside the carotid artery are submitted

to four classifiers in order to determine the correct class,

i.e. calcification or non-calcification. Then, geometrical

and intensity features extracted from each candidate

region resulting from the pixel classification step are

submitted to the classification per region in order to

determine the correct regions of calcified components.

In order to evaluate the classification accuracy, the re-

sults of the proposed classification model were com-

pared against ground truths of calcifications obtained

from micro Computed Tomography images of excised

atherosclerotic plaques that were registered with in vivo
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CTA images. The average values of the Spearman cor-

relation coefficient obtained by the Linear Discriminant

Classifier were higher than 0.80 for the relative volume

of the calcified components. Moreover, the average val-

ues of the absolute error between the relative volumes

of the classified calcium regions and the ones calculated

from the corresponding ground truths were lower than

3%. The new classification model seems to be adequate

as an auxiliary diagnostic tool for identifying calcifica-

tions and allowing their morphology assessment.

Keywords Medical Imaging · Pattern Recognition ·
Classification · Atherosclerosis

1 Introduction

Cardiovascular diseases represent one of the main causes

of the increasing number of deaths around the world.

Therefore, the early diagnosis of pathological conditions

is important to minimize clinical cases such as heart

attacks, transient ischemic attacks and even the occur-

rence of strokes. In a broader research study, Mendis

et al [1] revealed alarming numbers regarding cardio-

vascular disease prevention and control: according to

World Health Organization, cardiovascular diseases rep-

resented 31% of deaths of people in the world in 2011;

and in 2008, cardiovascular diseases were responsible

for the death of more than 17 millions of people with

less than 60-year-old [1].

Atherosclerosis is an underlying disease responsible

for the occurrence of heart attacks and strokes. Atheroscle-

rotic plaques are formed when fatty material and choles-

terol are deposited inside the wall of the artery. In

an advanced stage, the plaques are composed by lipid

core, fibrous tissue, intraplaque hemorrhage and calcifi-

cations. Atherosclerosis reduces the blood flow through
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the artery, leading to serious complications such as heart

attacks and strokes. Hence, in order to prevent such
risks, as appropriate treatment or rehabilitation plan

should be designed based on imaging exams.

Technological advances in computational systems

for imaging-based diagnosis allow the detection and as-

sessment of atherosclerotic lesions. Computed Tomogra-

phy (CT), Magnetic Resonance (MR) and ultrasound

are examples of less invasive imaging modalities that

have been widely used in evaluating the presence and as-

sess the morphology of atherosclerotic plaques [2, 3, 4].

Although x-ray angiography allows the assessment of

the lumen diameter, this imaging modality does not

provide enough quality to identify the components of

atherosclerotic plaques [5]. Currently, the correct diag-

nosis of atherosclerotic plaque components is performed

based on images of the carotid artery acquired from ul-

trasound, CT and MR examinations in a noninvasive

way, which allows the visualization of such plaques and

the identification of the associated components.

Previous studies [6, 7, 8, 9, 10, 11] have confirmed

the importance of the atherosclerotic plaque compo-

nents in evaluating the risks of cerebrovascular diseases.

The assessment of the atherosclerotic plaque composi-

tion is important to identify risks related to plaque rup-

ture and embolization, as well as risks to transient is-

chemic attacks, amaurosis fugax and strokes. Although

visual analysis has been proposed for quantifying the

atherosclerotic plaque composition in images, the intra

and intervariability between experts might impair the

correct diagnosis. Therefore, the development of compu-

tational algorithms plays an important role to expedite

the assessment of atherosclerotic plaques and avoid the

intervariability between experts.

Computational algorithms have been proposed to

segment atherosclerotic plaques and associated compo-

nents in images [12], which allows the assessment of the

plaques in order to predict the risk of cardiovascular

and cerebrovascular diseases more quickly. Techniques

of image processing, clustering and supervised classifi-

cation are examples of computational approaches sug-

gested in several studies for identifying the main com-

ponents of atherosclerotic plaques in a semi-automatic

or fully automatic way [12]. Moreover, advances in dy-

namic learning approaches have been made to adapt

the classification of the input data in the context of dy-

namic scenarios. Multi-armed bandits are especial cases

of algorithms where the learning of features of the input

data is typically dynamic and based on the knowledge

of the evaluated environment. It is important on the

scope of recommendation systems such as advertising,

videos and movies as reported in the studies of Gentile

et al [13], Li et al [14] and Korda et al [15], but could

also be suitable for dynamic evaluation of medical im-

ages as proposed in Song et al [16] and Gutiérrez et al
[17]. Concerning the performance measurements of clas-

sification tasks, several studies have also been carried

out to address the relative frequency, i.e quantification

of each class in the context of classification assignments.

Quantification is important to accurately calculate the

amount of samples that belong to each class regardless

the imbalance of the data and the dynamic changes of

the number of samples belonging to each class in the

testing set. An online stochastic method was proposed

by Kar et al [18] to tackle the balance between classifi-

cation and quantification performance.

According to several studies, the presence of calci-

fications represents an advanced stage of atherosclero-

sis [19] [20]. Therefore, this article proposes the classi-

fication of calcified components in CTA images of the

carotid artery. Briefly, the proposed classification model

has two main steps: the classification per pixel and the

classification per region. In the first step, intensity and

distance features extracted from each pixel inside the

carotid artery are submitted to four classifiers in or-

der to obtain the candidate regions representing calci-

fied components. Thereafter, geometrical and intensity

features extracted from each candidate region are sub-

mitted to the classification per region step in order to

determine the regions corresponding to true calcifica-

tions.

One of the main contributions of this study is the

ability of the proposed model to overcome possible clas-

sification errors induced by misalignments of the regis-

tration between micro CT images of excised atheroscle-

rotic plaques and related in vivo CTA images. Briefly,
the used ground truths of the calcified components were

obtained from micro CT images, including parts of the

lumen and other regions with intensity similar to cal-

cifications in CTA images that may affect the classifi-

cation results, leading to erroneously determination of

the calcium regions. The novelty of the proposed classi-
fication model is the inclusion of a second classification

step that has the ability to handle the regions identified

in the pixel classification step with intensity similar to

calcifications of the atherosclerotic plaques. Geometri-

cal features such as the area of the classified region and

its relative percentage with respect to the carotid wall

have particular aspects in calcified components when

compared to non-calcium regions. In fact, the inclusion

of the classification per region step provided results sig-

nificantly better than the ones exclusively obtained by

the classification per pixel step. In a practical applica-

tion point-of-view, the proposed classification model is

suitable as a computer aided diagnosis tool that might

help physicians in expediting the identification of the
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calcium regions for establishing a better treatment plan.

In addition, since the presence of outliers and the dis-
tances of each pixel to the contours of the lumen and

carotid artery under analysis can influence the final clas-

sification results, a study on these factors was also per-

formed.

This article is organized as follow: Section 2 intro-

duces previous studies related to the classification of

atherosclerotic plaque components in images acquired

by well-know imaging modalities. Section 3 presents a

description of the proposed classification model. Sec-

tion 4 presents the classification results obtained by

the proposed classification model and the comparison

between these results and the corresponding ground

truths. The advantages and limitations of the proposed

model are discussed in Section 5. Finally, the conclu-

sions are drawn in Section 6.

2 Previous studies

Several studies have been proposed to identify

atherosclerotic plaque components in MR and CTA im-

ages of carotid and coronary arteries. Vukadinovic et al

[21] proposed the segmentation of calcium regions in

atherosclerotic plaques of the carotid artery in CTA im-

ages based on the following steps: a level set approach

is used to segment the lumen of the carotid artery in

the CTA image under analysis; then, features of the

candidate calcium regions are extracted and used to

classify them as belonging to calcium or non-calcium

components; afterwards, features are extracted to clas-

sify the pixels as inside or outside the carotid wall; and

then, an ellipse fitting procedure is used to detect the

carotid wall boundary. In this work, the lumen and cal-

cium regions are combined to delineate the contour of

the carotid wall since the calcium appears in the inner

region of the carotid artery.

van Engelen et al [22] proposed the classification of

atherosclerotic plaque components in CTA and MR im-

ages of the carotid artery. The main objective of this

study was to handle the misalignments between in vivo

and histological images of atherosclerosis by measuring

the probability and Dice overlap of each voxel relatively

to the corresponding ground truth. The combination

of features extracted from each voxel of the CTA and

MR images was also addressed. After the registration

of the in vivo with histological and micro CT images,

each component of the ground truth was binarized and

blurred with a Gaussian filter in order to create soft

labels that indicate the probability of each voxel to be-

longing to an atherosclerotic plaque component. Addi-

tionally, the rejection of outliers was also performed to

address the misalignments of the plaque components

manually delineated in histological images with the cor-

responding CTA and MR images. For the classification

of the plaque components into calcification, fibrous tis-

sue and lipid-rich necrotic core, 24 features were ex-

tracted from each voxel and submitted to a Linear Dis-

criminant Classifier, which provided better results than

a Support Vector Machine (SVM) with a Radial Basis

Function (RBF) kernel.

Wintermark et al [23] proposed the identification

of atherosclerotic plaque components in CTA images

of the carotid artery based on the analysis of the

Hounsfield Unit (HU) values. The HU values obtained

from a 2x2 mm square template centred at each pixel

of the CTA image under analysis are used in a linear

mixed model to obtain the appropriate mean HU val-

ues for each atherosclerotic plaque component. In terms

of the classification results, the calcium regions classi-

fied based on the intensity obtained from the CTA im-

ages were in perfect accordance with the corresponding
ground truths manually delineated in histological im-

ages.

de Graaf et al [24] proposed an automatic method to

identify the atherosclerotic plaque components in CTA

images of the coronary artery. The extraction of each

component was performed by using two approaches:

fixed threshold and dynamic threshold. The first ap-

proach is based on fixed HU values for extracting each

plaque component, whereas the second one defines the

cut-off values based on the luminal intensity. The dy-

namic threshold is based on the fact that the lower the

luminal intensity is, the lower will be the HU value of

the atherosclerotic plaque. Thus, the HU values of each

plaque component are defined based on the luminal at-

tenuation.

The main limitation of the above-mentioned studies

regards the usage of fixed HU values for identifying the

atherosclerotic plaque components, as in Vukadinovic

et al [21], Wintermark et al [23] and de Graaf et al

[24]. Additionally, the identification of calcified regions

in atherosclerotic lesions can be more effective when

features extracted from CTA images are used in the

classification process. Hence, instead of using images

acquired by different imaging modalities as suggested

in van Engelen et al [22], the proposed approach only

uses CTA images.

3 Materials and Methods

3.1 CTA images used

The images of the carotid artery selected for this study

were previously used in a research by van Engelen et al

[22] and kindly provided by the authors on request. The
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proposed classification method was performed on im-

ages that are regions of interest surrounding the carotid
arteries. A registration procedure was previously per-

formed to align the original MR images with the cor-

responding histological images, which only contained

the region of the arteries under study [22]. Once the

alignment was completed, the MR images were cropped

to only obtain the part that matched the histological

images [22]. The original dataset was composed of five

MRI scans acquired from thirteen patients: T1-weighted

(T1W), Proton DensityWeighted (PDW), Time-of-Flight

(TOF) and two 3D-T1W scans. The first three MRI

scans were acquired without administration of intra-

venous contrast media, whereas the 3D-T1W scans were

acquired with and without contrast media. The post-

contrast 3D-T1W scan was performed 4.6±3.4 minutes

after the administration of the contrast media. Each

MR imaging scan is composed of approximately 17.7±4.8

slices per patient; each slice has a pixel size of 0.25 mm
x 0.25 mm. CTA images were also acquired to provide

details for the registration of these images with the his-

tological images and to facilitate the manual segmenta-

tions of the lumen, vessel wall and plaque components.

The manual delineations of the lumen and carotid wall

in the CTA and MR images were also provided. As al-

ready mentioned, the used images were acquired for a

previous study that was approved by the Medical Com-

mittee of the Erasmus Medical Center; all the evaluated

patients provided written consensus for the use of the

images [22]. More details about the MR and CTA imag-

ing datasets are available in van Engelen et al [22].

From the original image dataset, we used all CTA

images with their corresponding ground truth of the

atherosclerotic plaque components and manual delin-

eations of the contours of the lumen and carotid wall

made by one expert. In total, 230 CTA images are avail-

able with the dataset provided. The ground truths of

the atherosclerotic plaque components are available in

177 CTA images and the manual delineations of the
lumen and carotid wall are available in 184 CTA im-

ages. The manual delineations of the fibrous tissue and

lipid-rich necrotic core were made on the histological im-

ages, whereas the ground truths of the calcified compo-

nents were obtained by using a fixed threshold value on

the micro CT images acquired from the excised plaques

[22].

3.2 Proposed model

The proposed classification model has two main steps,

as depicted in Fig. 1.

The classification per pixel represents the first step

of the proposed model and it consists in classifying each

pixel inside the carotid wall provided by the ground

truth as belonging or not to calcifications. Features ex-

tracted from the following CTA images are used in this

step: the original image, the original image after been

smoothed by a Gaussian filter, the original image af-

ter been smoothed by a mean filter and the same in-

put image after the application of a Sigmoid filter. The

second step consists in classifying the regions resultant

from the previous step in order to determine the ones

that represent true calcifications of the atherosclerotic

lesions. Hence, geometrical and intensity features of the

regions obtained by the first step are extracted and sub-

mitted to the second step which performs the classifica-

tion per region.

3.2.1 Feature extraction

Feature extraction plays an important role in the accu-
racy of the classification result. Calcifications are char-

acterized as regions having the highest intensity in CTA

images. However, features extracted from the lumen re-

gion represent a challenge for classifying the calcified

components due to the similarity of their intensity val-

ues. Moreover, small regions corresponding to image

noise could also be classified as calcifications. Hence, the

model proposed in this study takes into account the in-

tensities of the calcium and lumen regions, as well as ge-

ometrical features extracted from the candidate regions

previously classified in the pixel classification step.

The following filters are applied to highlight the cal-

cium regions relatively to other structures present in

the original CTA images: a Gaussian filter with a stan-

dard deviation σ; a mean filter with a NxN neighbour-

hood; and a Sigmoid filter that is applied to highlight

a range of intensities and attenuate the intensities out-

side this range. The Gaussian and mean filters are used

to smooth the original CTA images in order to remove

noise artefacts, whereas the Sigmoid filter is employed

to improve the contrast of regions having high intensi-

ties. The Sigmoid filter is based on a pixel-wise function

defined as:

f(x) = min+
max−min

1 + e
β−x
α

, (1)

where min and max are the minimum and maximum

intensities of the resultant image f(x), respectively, and

α and β are enhancing parameters defined according to

the intensities of the structure to be enhanced. Exam-

ples of CTA images obtained after the application of

the above-mentioned imaging filters are illustrated in

Fig. 2.
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Fig. 1 Diagram of the proposed classification model.

(a) (b) (c) (d)

Fig. 2 Examples of images resulting from the Gaussian,
mean, and Sigmoid filters: a) Original CTA images; b) Images
resulting from the original images after applying a Gaussian
filter with σ = 2, c) a mean filter with N = 3, and d) a
Sigmoid filter with α = 50 and β = 256.

The brightest regions corresponding to possible cal-

cifications are enhanced by the application of the Sig-

moid filter, as one can realize in Fig. 2d. For the pixel

classification step, the intensity features obtained from

each pixel of the original and filtered CTA images are

used as inputs for the classifiers. Table 1 indicates the

features used in the two steps of the proposed classifi-

cation model.

Two additional features are used in the pixel classi-

fication step: the distances of the pixel under analysis

to the boundaries of the lumen and wall of the carotid

artery. In addition, the average intensities of the lumen

and carotid wall regions in the original CTA image are

also used.

3.2.2 Outliers removal

The detection of outliers represents an important task

in data analysis and one of the most important pre-

processing steps for improving the robustness, perfor-

mance and accuracy of a classification model. An outlier

is characterized as an observation that is far from the

remainder ones in a dataset. The presence of outliers of-

ten decreases the performance and accuracy of the used

classifier due to the increase of the observations vari-

ance. Hence, the removal of outliers plays an important

role to reduce the observations variance and improve

the accuracy of the associated classification model.

Regarding the classification of calcified regions, the

outliers are often related to pixels corresponding to mis-

alignments of the histological images with the MR and

CTA images resultant from the registration step de-

scribed in van Engelen et al [22]. Therefore, the iden-

tification and removal of these pixels from the training

and testing sets were tackled.

The boxplot analysis is an important statistical tool

commonly used to evaluate the distribution and vari-

ability of the observations under study. Additionally,

abnormal observations can also be identified by means

of boxplots. An approach based on boxplots is proposed

in this study to detect and remove outliers before the

training phase of the classification process. Firstly, the

examples of the training set are separated into calcifi-
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Table 1 Features used in the proposed classification model.

Id. Classification per pixel Id. Classification per region

F1 Intensity of the original image F21 Percentage of the area relatively to the carotid wall
F2 Intensity of the image (Gaussian filter) F22 Area of the region
F3 Intensity of the image (Mean filter) F23 Average intensity of the lumen †
F4 Intensity of the image (Sigmoid filter) F24 Average intensity of the carotid wall †
F5 Average intensity (Original image)* F25 Distance of the centroid of the region to the lumen
F6 Average intensity (Gaussian filter)* F26 Distance of the centroid of the region to the carotid wall
F7 Average intensity (Mean filter)*
F8 Average intensity (Sigmoid filter)*
F9 Minimum intensity (Original image)*
F10 Minimum intensity (Gaussian filter)*
F11 Minimum intensity (Mean filter)*
F12 Minimum intensity (Sigmoid filter)*
F13 Maximum intensity (Original image)*
F14 Maximum intensity (Gaussian filter)*
F15 Maximum intensity (Mean filter)*
F16 Maximum intensity (Sigmoid filter)*
F17 Average intensity of the lumen †
F18 Average intensity of the carotid wall †
F19 Distance of the pixel to the lumen contour
F20 Distance of the pixel to the carotid wall contour

*Features extracted from a 3x3 neighbourhood centred at each pixel of the original and filtered CTA images.
†Features extracted from the original CTA image.

cations and non-calcifications. Then, boxplots of each

intensity feature extracted from the pixels of the input

CTA image that are inside the carotid wall are gener-

ated and combined in order to provide the distribution

of the training examples for all features used. An illus-

tration of the combined boxplots built is presented in

Fig. 3.

From the boxplots in Fig. 3, it is possible to no-

tice that the outliers of the features F4, F8, F12 and

F16 (see Table 1) in the non-calcified components rep-

resented by the highest intensity values might belong to

calcified regions (Fig. 3b). Likewise, the outliers in the

calcified components represented by the lowest inten-

sity values and the ones of the feature F12 represented

by the highest intensity values (Fig. 3a) may belong

to non-calcified regions. The outliers belonging to each

class, i.e. calcification and non-calcification subsets, are
evaluated in order to find the ones that are present in

all features. Then, these outliers are removed from the

corresponding subset. The boxplot analysis continues

until all outliers have been removed. A new training set

without the outliers found is generated and submitted

to the classification model.

3.2.3 Training and testing of the classifiers

After selecting the features and removing the outliers,

a set of classifiers is used for the classification model.

Decision tree, Support Vector Machine (SVM), Naive

Bayes and Linear Discriminant Classifier (LDC) were

selected to perform the classification of the pixels and,

subsequently, the candidate regions representing possi-

ble calcified regions in atherosclerotic lesions.

Decision Trees are one of the most simple and effec-

tive models used in inductive inference. A decision tree

is trained according to a training set and then, other ex-

amples are classified according to the same tree model.

The graphical representation of the decision tree is com-

posed of lines that are used to identify the decision to be

made, for example, ”yes” or ”no”, and nodes to identify

the issues to be decided. Each branch formed by lines

and nodes ends in a leaf node that identifies the most

likely consequence of the sequence of decisions made.

The choice of Decision Tree is due to its simple imple-

mentation, performance and effectiveness in classifying

problems involving sequential decisions.

Support Vector Machines have been adopted for the

classification of patterns into two classes separated by

a decision hyperplane. The decision hyperplane is a sur-

face that separates the input data into two classes. The

goal of a SVM is to find an optimal decision hyperplane

that keeps a maximal gap between the examples under

analysis. Building an optimal hyperplane as a decision

surface is a fundamental step for increasing the sepa-

ration between the examples to be classified. However,

problems that are not linearly separable are common

in many classification problems. Hence, the mapping of

the nonlinear training set into a linearly separable space

is necessary in order to determine an optimal decision

hyperplane. The linearly separable space is called fea-

ture space, which is generated by a kernel function that
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(a) (b)

Fig. 3 Example of outliers detected by using boxplots built from all features and pixels of the images used in the classification
model: a) Boxplot of the calcified examples with the outliers represented in red; b) Boxplot of the non-calcified examples with
the outliers represented in red. (The identification of each feature is indicated in Table 1 in column “Classification per pixel”.)

maps the input examples of the nonlinear space onto a

space where the examples are linearly separable. Linear,

polynomial, Radial Basis Function (RBF) and Hyper-

bolic tangent are examples of kernel functions used in

several classification problems tackled by SVMs. SVMs

are suitable for binary classification problems. In this

study, a SVM was used with RBF, Sigmoid, Linear and

Polynomial based kernels, which are defined as:

RBF = k(x, y) = exp

(
−∥x− y∥2

2σ2

)
(2)

Sigmoid = k(x, y) = tanh(αxT y + c) (3)

Linear = k(x, y) = xT y + c (4)

Polynomial = k(x, y) = (αxT y + c)d (5)

The Naive Bayes classifier is one of the most simple

and effective probabilistic models used in many types

of classification problems. Given an example x in the

training phase, the Naive Bayes classifier calculates a

distribution Pr(x|c) for each class c = {−1, 1}, which
represents the probability of example x to belong to

class c. In the testing phase, the distribution with the

highest probability generated from each example is cal-

culated. The conditional probability used in the Naive

Bayes classifier is defined as:

P (ci|x) =
p(ci)p(x|ci)

p(x)
, (6)

where P (ci|x) is the posterior probability, i.e. the prob-

ability of example x belonging to class ci, p(ci) is the

probability of occurring class ci, p(x|ci) is the proba-

bility of occurring example x given class ci and p(x) is

the probability of occurring example x. Class ci with

the maximum posterior probability is assigned to the

input example x. The Naive Bayes classifier can also

be extended to examples having more than one feature;

in such cases, example x is represented by a vector of

features. Prior probabilities p(x|ci) of the features are

calculated and combined to obtain posterior probability

P (ci|x) of example x.

The LDC is a simple technique used for detecting

the group or class having the average value closer to the

one of the test examples. The average of each group is

obtained from the features of all examples belonging to

that group [25]. The LDC is defined as:

δk(x) = xT
∑

−1µk − 1

2
µT
k

∑
−1µk + log(πk), (7)

where δk(x) is the posterior probability, i.e. the proba-

bility of example x belonging to class k, k is the class,

x is the vector of features,
∑

is the covariance matrix

and µk is the mean of class k. Likewise the Naive Bayes
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classifier, the example represented by feature vector x

is assigned to class k that have the maximum posterior
probability δk(x).

As already mentioned, the proposed classification

approach has two main steps: the first step concerns

the classification of each pixel of the original and fil-

tered CTA images inside the mask of the ground truth,

whereas in the second step the classification of the can-
didate regions resulting from the first step is performed

to identify the ones that correspond to true calcified re-

gions. Hence, two models were developed for each step

of the classifier under analysis.

Leave-one-out and k-fold cross-validation were per-

formed in the CTA images of the thirteen patients un-

der study. The leave-one-out cross-validation was ap-

plied in repeatedly steps, with the images of 12 patients

used in the training step and the images of the remain-

ing 13th patient used for testing the classifiers. The

k-fold cross-validation method consists in dividing the

dataset into mutually exclusive subsets of the same size.

A subset is used for testing the classifier and the k − 1

subsets are employed for building the model of the clas-

sifier. This process is performed k times by alternating

the subset of observations used for testing the classifier.

In order to evaluate the influence of the distance

features and of the outliers removal process, the ap-

proaches indicated in Table 2 were studied.

Two new sets of training and testing examples were

generated from each approach indicated in Table 2 for

each iteration of the leave-one-out and k-fold cross-validation

techniques. Additionally, the outliers removal was per-

formed in each iteration of the two cross-validation tech-

niques. Hence, four models of each classifier were built

in the training step of the pixel classification step.

For the training of the classifiers in the pixel classifi-

cation step, a binary image of the carotid wall obtained

from the ground truth corresponding to the atheroscle-

rotic plaque components was built for selecting only the

pixels of the CTA images that are inside the carotid

artery. Then, the features extracted from each pixel

were submitted to the classifier corresponding to each

approach indicated in Table 2.

As to the region classification step, the region cor-

responding to the lipid-rich necrotic core was used as

reference for the non-calcified class. The choice of the

lipid-rich necrotic core was due to the intensity and

geometrical features that differ from the calcium com-

ponents in CTA images, making it appropriate for a bi-

nary classification in the region classification step. The

features of the regions of the binary images resultant

from each approach of the pixel classification step were

extracted and submitted to the classifiers that perform

the classification of each potential calcified region.

Regarding the testing of the classifiers under anal-

ysis, the pixels inside the manually delineated carotid

wall were used for testing and validating the accuracy

of the chosen classifiers. The extraction of the pixels

inside the binary image representing the carotid wall is

illustrated in Fig. 4.

(a) (b) (c)

Testing

Training

(d) (e) (f)

Fig. 4 Illustration of the procedure used to select the pix-
els inside the carotid wall for extracting the features to be
used in the pixel classification step of the proposed classifica-
tion model: a) The ground truth of the atherosclerotic plaque
components; b) Binary image of the ground truth with the
carotid wall represented in white; c) Part of the original CTA
image inside the carotid wall; d) The manual delineations of
the lumen and carotid wall; e) Binary image obtained from
the manual delineations with the carotid wall represented in
white; f) Part of the original CTA image inside the carotid
wall.

For the pixel classification step, the intensity and

distance features described in Table 1 were extracted

from the original and filtered CTA images belonging to

the testing set for the classification process. The inten-

sities of each pixel of the original CTA image inside the

previously identified regions along with geometrical fea-

tures of each candidate region were then submitted to

the classifiers that perform the classification per region.

4 Results

The accuracy of the classification model proposed in

this study was evaluated by means of the absolute er-

ror and Spearman correlation between the areas and

volumes of the classified calcium regions and those cal-

culated from the corresponding ground truths. The rel-

ative and absolute areas and volumes of the calcium

regions were calculated in order to evaluate the results

generated by the classification model. The relative area

and volume represent the percentage of the calcium

region occupied in the total area and volume of the

carotid artery. The absolute area and volume are the

total area and volume of the related calcium region, re-

spectively. In image processing and analysis, the correla-

tion coefficient is an important index to assess the accu-
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Table 2 Approaches adopted to verify the influence of the distance features and of the outliers removal process.

Outlier removal Usage of the distances to the lumen and carotid wall

Approach 1 No Yes
Approach 2 No No
Approach 3 Yes Yes
Approach 4 Yes No

racy of computational methods in identifying structures

in images. By comparing the computationally identified

structure with the corresponding manual delineation in

the image under analysis, the correlation coefficient pro-

vides a value that represents the accuracy of the au-

tomatic or semi-automatic method. The higher is the

value of the coefficient, more accurate is the computa-

tional method. Concerning the method proposed in this

article, the Spearman correlation coefficient was used to

compare our results with the ones reported in previous

studies. The evaluation by means of the Area Under
the Curve (AUC), sensitivity and specificity was not

possible due to the existent misalignment between the

ground truths obtained from the micro CT images and

the corresponding in vivo CTA images.

The following parameters were defined to perform

the classification process: the value of parameter σ of

the Gaussian filter was defined as equal to 2; the val-

ues of α and β parameters of the Sigmoid filter were

defined as equal to 50 and 256, respectively; neighbour-

hoodNxN of the mean filter was set to 3x3; the number

of iterations to remove outliers of the training and test-

ing sets was defined as equal to 50; the value of k of the

k-fold cross-validation approach was set to 10 since this

is the most used value in several classification problems;

the values of σ and of penalty term C of the RBF kernel

were defined as equal to 1 (one) since these values have

been commonly used in several studies; the best order d

of the polynomial kernel was defined as equal to 3; tests

using the Sigmoid kernel with the value of parameter

α varying from 0.5 to 1 and parameter C equal to -1

were performed in each iteration of the k-fold and leave-

one-out validation techniques in order to evaluate the

classification performance. The choice of the SVM ker-

nel depends on the linear separation of the data under

analysis. The linear kernel is suitable for datasets where

the groups to be classified are linearly separable for the

input features. However, non-linear and sparse datasets

are more difficult to separate using a linear plane. Fig.
5 illustrates the sparsity of the data corresponding to

the calcium and non-calcium classes with respect to the

intensity features indicated in Table 1.

The non-linear behaviour of the data depicted in Fig.

5b and Fig. 5c could make the SVM classification more

prone to errors. Therefore, the use of the RBF, Sigmoid

and polynomial kernels was an attempt to evaluate the

classification results for the non-linear data.

The average absolute errors of the relative areas and

volumes for each parameter α tested in the Sigmoid ker-

nel by means of the leave-one-out validation technique

are indicated in Tables 3 and 4, respectively.

As shown and emphasized in Tables 3 and 4, the

lowest average absolute errors were obtained when pa-

rameter α was equal to 0.5 in the majority of the per-

formed tests. Therefore, the remaining discussion of the

Sigmoid kernel results is made with the value of param-

eter α equal to 0.5.

Examples of the classification results per pixel and

per region obtained by each classifier under analysis are

shown in Fig. 6.

As shown in Fig. 6a, the lumen region of the CTA

image under study overestimated the size of the lumen

of the related ground truth obtained from the manual

delineation, causing that part of the lumen in the input

image be used in the pixel classification step. Hence,

the referred part of the lumen was classified as calci-

fication due to the similarity of its grayscale intensity

with the grayscale intensity of true calcified regions. In

these cases, the region classification step plays an im-

portant role to evaluate the geometrical properties of

the candidate regions previously classified by the pixel

classification step in order to select those that repre-

sent true calcifications. After the classification per re-

gion, the mentioned part of the lumen was disregarded

and only the region corresponding to a calcification re-
mained in the final classification result. The results pro-

vided by the SVM with the RBF and polynomial ker-

nels, as well as the results of the LDC classifier, are

also in accordance with the ground truth as shown in

Fig. 6a. The examples illustrated in Fig. 6b-c also show

the good accordance of the results obtained by most

of the classifiers under analysis with the corresponding

ground truths.

Examples resultant from each approach indicated in

Table 2 in the pixel classification step are shown in Fig.

7.

The classification results were improved after the

outliers removal as can be perceived in Fig. 7(d-e), mainly

in the case of the CTA image shown in the third row.
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(a) (b)

(c) (d)

Fig. 5 Examples of the data distribution for the calcium and non-calcium pixels for some features described in Table 1: a)
Distribution of the pixels’ intensity of the original CTA images (feature F1) and the minimum intensity of the pixels of the
original CTA images (feature F9); b) Distribution of the pixels’ intensity of the original CTA images (feature F1) and the
average intensities of the images filtered by the Sigmoid filter (feature F8); c) Distribution of the pixels’ intensity of the original
CTA images (feature F1) and the average intensities of the lumen of the original CTA images (feature F17); d) Distribution
of the average intensities of the images filtered by the Sigmoid filter (feature F8) and the minimum intensities of the original
CTA images (feature F9).

Table 3 Average absolute errors of the relative area for each value of parameter α tested in the Sigmoid kernel by means of
the leave-one-out validation technique. (Best values in bold.)

α=0.5 α=0.6 α=0.7 α=0.8 α=0.9 α=1

Approach 1
Per pixel 31.08 ± 23.51 32.26 ± 24.84 34.67 ± 24.07 35.03 ± 24.81 33.67 ± 24.02 32.54 ± 22.60

Per region 6.16 ± 7.20 6.18 ± 11.69 6.98 ± 10.20 6.74 ± 9.53 7.63 ± 11.45 6.40 ± 8.04

Approach 2
Per pixel 20.74 ± 20.00 22.26 ± 22.82 30.00 ± 26.84 29.83 ± 25.64 38.85 ± 23.20 33.11 ± 24.89

Per region 4.83 ± 5.50 6.21 ± 10.07 8.73 ± 15.04 7.62 ± 8.97 8.77 ± 11.57 9.41 ± 16.08

Approach 3
Per pixel 21.93 ± 23.23 22.58 ± 22.91 23.85 ± 23.00 25.03 ± 22.61 25.77 ± 22.33 27.52 ± 21.86

Per region 5.01 ± 6.48 6.81 ± 10.57 6.97 ± 10.98 4.56 ± 6.26 6.02 ± 7.69 5.43 ± 6.40

Approach 4
Per pixel 11.79 ± 14.95 11.55 ± 14.61 11.43 ± 14.48 13.27 ± 15.30 15.08 ± 16.10 17.92 ± 18.19

Per region 3.29 ± 4.56 4.51 ± 9.38 4.28 ± 9.25 4.62 ± 6.37 4.77 ± 6.33 4.81 ± 6.02

*The values are expressed in percentage.
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Table 4 Average absolute errors of the relative volume for each value of parameter α tested in the Sigmoid kernel by means
of the leave-one-out validation technique. (Best values in bold.)

α=0.5 α=0.6 α=0.7 α=0.8 α=0.9 α=1

Approach 1
Per pixel 24.31 ± 13.29 25.16 ± 16.94 27.34 ± 15.93 27.89 ± 18.35 29.92 ± 18.40 27.82 ± 16.02

Per region 3.69 ± 2.92 4.10 ± 3.40 5.27 ± 4.07 4.15 ± 3.37 4.34 ± 3.33 4.14 ± 3.63

Approach 2
Per pixel 20.08 ± 15.91 20.52 ± 15.57 29.01 ± 21.08 29.77 ± 21.56 37.15 ± 21.44 33.60 ± 21.83

Per region 3.35 ± 2.05 4.34 ± 3.57 9.30 ± 14.39 4.57 ± 3.86 4.97 ± 3.65 6.01 ± 6.97

Approach 3
Per pixel 16.03 ± 13.64 16.91 ± 13.42 18.12 ± 13.16 19.40 ± 12.96 20.12 ± 12.90 21.83 ± 12.49

Per region 3.42 ± 2.9 4.60 ± 3.92 4.97 ± 4.47 3.18 ± 2.83 3.72 ± 2.85 3.17 ± 3.10

Approach 4
Per pixel 10.13 ± 9.51 10.30 ± 9.41 10.33 ± 9.42 12.33 ± 9.46 13.78 ± 9.51 16.20 ± 12.16

Per region 2.74 ± 3.11 3.43 ± 3.80 3.69 ± 4.29 3.36 ± 3.13 3.34 ± 2.81 2.90 ± 3.05

*The values are expressed in percentage.

(c) (d)

(a) (b)

Fig. 6 Examples of classification results obtained by each classifier under comparison in the pixel and region classification
steps.
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(a) (b) (c) (d) (e) (f)

Fig. 7 Examples of classification results obtained by each
approach indicated in Table 2 in the pixel classification step:
a) Original CTA images; b) Classification results obtained by
Approach 1; c) Classification results obtained by Approach
2; d) Classification results obtained by Approach 3; e) Clas-
sification results obtained by Approach 4; f) Corresponding
ground truths of the calcified components.

Regarding the comparison of the computational re-

sults with the ground truths, the LDC obtained bet-
ter results than the remainder classifiers as can be per-

ceived in the examples of Fig. 6.

The average error and Spearman correlation between

the computational results and the corresponding ground

truths as to the k-fold cross-validation technique for

each approach and classifier are shown in Fig. 8, Fig. 9

and Fig. 10. In addition, the average bias of the relative

areas and volumes are indicated in Tables 5 and 6.

Regarding the relative percentage of the classified

calcium regions with respect to the total area of the

carotid wall, the average absolute errors decreased for

almost of the classifiers after the employment of the

classification per region, mainly for Approaches 3 and

4, as can be observed in Fig. 8. Additionally, the av-

erage absolute errors obtained from the classification

performed by the LDC were lower than those obtained

from the other classifiers, mainly for Approaches 1 and

2. In terms of the results obtained by Approach 3, the

average absolute error of the relative area obtained from

the LDC results decreased from 12.32% to 4.07% after

the employment of the classification per region on the

results obtained from the classification per pixel step.

Similar improvements were also obtained for Approach

4, where the average absolute error of the relative area

decreased from 12.22% to 4.06% after the classification

per region. As shown in Fig. 8 (plots of the second

row), a significant reduction of the absolute errors of

the relative volume was also achieved after classifying

each region resultant from the pixel classification step,

leading the absolute errors of Approaches 3 and 4 to

decrease from 10.94% and 10.84% to 2.03% and 2.14%,

respectively. In terms of the absolute area and volume of

the calcifications, similar improvements were also found

with the classification per region as shown in Fig. 9. Ad-

ditionally, the average absolute errors of the absolute

area and volume of the calcium regions were also lower

for the LDC in all approaches (Fig. 9b).

Improvements on the Spearman correlation coeffi-

cients were also achieved from the classification of the

candidate regions resultant from the pixel classification

step. As shown in Fig. 10b, a significant increase of the

correlation coefficients between the area and volume of

the classification results and those calculated from the

corresponding ground truths was obtained after the re-

gion classification step for most of the classifiers used,

mainly for Approaches 3 and 4. Moreover, the results

obtained by the LDC were also better than the ones ob-

tained from the other classifiers. Regarding the results

obtained by the LDC, the Spearman correlation coeffi-

cient between the relative area calculated from the clas-

sified calcium regions and the ones obtained from the

corresponding ground truths was 0.14 for Approach 3

of the pixel classification step. The correlation coeffi-

cient for the same approach increased to 0.55 after the

application of the classification per region. Regarding

the relative volume obtained by using Approach 3, the

Spearman correlation coefficient increased from 0 (zero)

to 0.85 after the application of the classification per re-

gion. With respect to Approach 4, the Spearman corre-

lation coefficients between the relative area and volume

of the classification results and those calculated from

the ground truths were 0.14 and -0.04, respectively, for

the pixel classification step. The correlation coefficients

increased to 0.56 and 0.83, respectively, after the clas-

sification of the candidate regions obtained from the

pixel classification step. Similar improvements in the

Spearman correlation coefficients of the absolute area

and volume of the calcium regions were also achieved

for all approaches and classifiers as shown in Fig. 10

(plots of the second row).

Similar results were also achieved by means of the

leave-one-out cross-validation technique as illustrated

in Fig. 11, Fig. 12 and Fig. 13. In addiction, the average

bias of the relative area and volume obtained from the

leave-one-out cross-validation technique are indicated

in Tables 7 and 8.

Similar to the k-fold cross-validation technique, the

results obtained by the LDC were also better than the

ones generated by the remainder classifiers. In terms of

the relative area, the average absolute errors obtained

by the LDC in the pixel classification step were 2.49%,

2.46%, 12.48% and 12.27% for Approaches 1, 2, 3 and

4, respectively. After the application of the classifica-

tion per region, the average absolute errors were 2.56%,

2.38%, 4.10% and 4.07% for the same Approaches, re-

spectively. It is possible to notice a significant reduc-

tion of the average absolute errors of the relative area
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(a) (b)

Fig. 8 Average absolute errors of the relative areas and volumes obtained from the k-fold cross-validation technique for the
classifications (a) per pixel and (b) per region. (The first row represents the average absolute errors for the relative area, and
the second row the average absolute errors for the relative volume of the classified calcium regions.)

Table 5 Average bias obtained as to the relative areas of the classified calcium regions in each approach and classifier of the
k-fold cross validation technique. (Best values in bold.)

Decision tree SVM - RBF SVM - Linear SVM - Poly SVM - Sig Naive Bayes LDC

A1
Per pixel 7.19 ± 12.07 -2.08 ± 5.98 -3.82 ± 5.23 54.19 ± 28.29 33.15 ± 23.27 48.75 ± 42.00 -0.06 ± 4.74
Per region 1.23 ± 6.43 -2.59 ± 5.81 -3.82 ± 5.23 -2.80 ± 5.06 0.91 ± 10.84 -2.47 ± 5.56 -1.20 ± 3.96

A2
Per pixel 3.55 ± 7.27 -3.29 ± 5.12 -3.82 ± 5.23 -3.15 ± 4.85 27.16 ± 25.13 53.36 ± 41.70 0.29 ± 4.60
Per region 0.46 ± 4.90 -3.42 ± 5.17 -3.82 ± 5.23 -3.16 ± 4.86 2.20 ± 15.19 -2.49 ± 5.73 -0.70 ± 4.05

A3
Per pixel 16.18 ± 16.16 2.94 ± 9.87 1.77 ± 7.85 34.79 ± 26.47 24.19 ± 24.04 52.07 ± 42.17 11.67 ± 11.94
Per region 8.95 ± 17.19 0.18 ± 7.54 -0.31 ± 6.02 -2.46 ± 9.23 0.30 ± 10.69 -2.63 ± 5.64 1.89 ± 5.67

A4
Per pixel 15.49 ± 15.87 6.92 ± 10.97 3.09 ± 8.16 6.04 ± 9.97 13.50 ± 19.03 54.99 ± 41.49 11.60 ± 12.18
Per region 9.55 ± 17.11 0.76 ± 8.05 0.07 ± 6.17 1.59 ± 5.99 0.38 ± 14.16 -2.58 ± 5.62 1.92 ± 5.55

*The values are expressed in percentage.
*A1, A2, A3 and A4 represent Approaches 1 to 4.

obtained from Approaches 3 and 4 after the region clas-

sification step. For the absolute error of the relative

volume, the average values obtained from Approaches

1, 2, 3 and 4 were 2.13%, 1.89%, 11.00% and 10.80%,

respectively, for the pixel classification step. After the

classification per region, the average absolute errors de-

creased to 1.91%, 1.56%, 2.15% and 2.19%, respectively,

for the same Approaches. A significant reduction of the

absolute error was also achieved for Approaches 3 and

4. As shown in Fig. 12, regarding the average absolute

errors for the absolute area and volume of the calcium

regions, a similar decreasing behaviour was found after

the classification per region step.

The Spearman correlation coefficients obtained from

the leave-one-out cross-validation technique were simi-

lar to the ones calculated for the k-fold cross-validation

technique, showing the stability of the suggested classi-

fication model. The LDC classifier also showed better

results than the other classifiers. The Spearman cor-

relation coefficients between the relative areas of the
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(a) (b)

Fig. 9 Average absolute errors of the absolute areas and volumes obtained by the k-fold cross-validation technique for the
classifications (a) per pixel and (b) per region. (The first row represents the average absolute errors for the absolute area, and
the second row the average absolute errors for the absolute volume of the classified calcium regions.)

Table 6 Average bias obtained as to the relative volumes of the classified calcium regions in each approach and classifier of
the k-fold cross validation technique. (Best values in bold.))

Decision tree SVM - RBF SVM - Linear SVM - Poly SVM - Sig Naive Bayes LDC

A1
Per voxel 7.81 ± 10.79 -2.08 ± 4.14 -3.79 ± 3.38 49.13 ± 23.88 24.84 ± 16.90 41.23 ± 35.88 0.42 ± 3.95
Per region 1.17 ± 3.55 -2.70 ± 3.92 -3.79 ± 3.39 -2.90 ± 3.65 0.73 ± 6.53 -2.47 ± 2.87 -1.22 ± 2.34

A2
Per voxel 3.10 ± 2.12 -3.08 ± 3.39 -3.79 ± 3.39 -2.89 ± 3.14 26.53 ± 25.31 45.26 ± 37.04 0.65 ± 3.25
Per region 0.35 ± 1.72 -3.43 ± 3.31 -3.79 ± 3.39 -2.90 ± 3.15 3.88 ± 15.93 -2.47 ± 3.02 -0.82 ± 1.87

A3
Per voxel 14.06 ± 10.92 2.32 ± 7.54 1.81 ± 6.07 37.39 ± 19.33 17.34 ± 16.76 44.32 ± 36.55 10.71 ± 8.96
Per region 6.46 ± 10.19 -0.54 ± 5.10 -0.72 ± 4.31 0.22 ± 9.82 0.19 ± 5.58 -2.57 ± 3.29 1.74 ± 1.94

A4
Per voxel 13.29 ± 10.60 6.08 ± 7.89 2.96 ± 5.85 5.40 ± 7.10 11.39 ± 15.36 46.76 ± 36.77 10.63 ± 9.10
Per region 6.92 ± 10.73 -0.22 ± 4.66 -0.62 ± 4.05 1.55 ± 3.30 1.08 ± 11.15 -2.51 ± 3.06 1.81 ± 1.77

*The values are expressed in percentage.
*A1, A2, A3 and A4 represent Approaches 1 to 4.

classification results and the ones calculated from the

corresponding ground truths were 0.70, 0.73, 0.12 and

0.14, for Approaches 1, 2, 3 and 4, respectively, in the

pixel classification step. The Spearman correlation co-

efficients obtained from the region classification step

were 0.65, 0.70, 0.54 and 0.56 for the same Approaches,

leading to a significant increase of the correlation coef-

ficients for Approaches 3 and 4. Similar improvements

were also obtained as to the relative volumes. The cor-

relation coefficients between the relative volumes of the

classification results and the ones calculated from the

corresponding ground truths were 0.65, 0.70, -0.04 and

-0.07 for Approaches 1, 2, 3 and 4, respectively, in the

pixel classification step. On the other hand, the corre-

lation coefficients obtained after the classification per

region step were 0.69, 0.79, 0.83 and 0.81 for the same

Approaches. Likewise the relative area, significant im-

provements in the absolute areas of the classified cal-

cium regions were also achieved for Approaches 3 and 4
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(a) (b)

Fig. 10 Spearman correlation coefficients of the relative and absolute areas and volumes obtained by the k-fold cross-validation
technique for the classifications (a) per pixel and (b) per region. (The first row represents the Spearman correlation coefficients
for the relative area and volume of the classified calcium regions, whereas the second row the Spearman correlation coefficient
of the absolute area and volume of the same regions.)

Table 7 Average bias obtained as to the relative areas of the classified calcium regions in each approach and classifier of the
leave-one-out cross validation technique. (Best values in bold.)

Decision tree SVM - RBF SVM - Linear SVM - Poly SVM - Sig Naive Bayes LDC

A1
Per pixel 6.06 ± 10.00 -2.05 ± 5.95 -3.82 ± 5.23 53.32 ± 31.08 30.96 ± 23.67 48.94 ± 41.87 -0.44 ± 4.08
Per region 1.31 ± 6.76 -2.63 ± 5.70 -3.82 ± 5.23 -3.04 ± 4.96 -0.23 ± 9.48 -2.41 ± 5.64 -0.99 ± 4.18

A2
Per pixel 3.32 ± 7.38 -3.25 ± 5.09 -3.82 ± 5.23 -3.08 ± 4.95 20.45 ± 20.30 53.41 ± 41.62 -0.08 ± 4.03
Per region 0.33 ± 4.98 -3.38 ± 5.14 -3.82 ± 5.23 -3.09 ± 4.96 1.08 ± 7.25 -2.43 ± 5.79 -0.53 ± 3.88

A3
Per pixel 16.56 ± 16.62 3.30 ± 10.27 2.26 ± 8.35 32.92 ± 26.41 21.48 ± 23.65 52.31 ± 42.02 11.84 ± 12.44
Per region 9.73 ± 17.42 0.39 ± 8.04 0.09 ± 6.76 -2.13 ± 9.42 -1.12 ± 8.12 -2.56 ± 5.76 2.03 ± 5.63

A4
Per pixel 15.83 ± 16.56 7.24 ± 11.24 3.20 ± 8.32 6.20 ± 10.08 10.82 ± 15.66 55.16 ± 41.36 11.67 ± 12.50
Per region 10.38 ± 17.40 1.01 ± 8.50 0.24 ± 6.39 1.74 ± 6.11 -2.68 ± 4.95 -2.51 ± 5.72 2.03 ± 5.49

*The values are expressed in percentage.
*A1, A2, A3 and A4 represent Approaches 1 to 4.

after the region classification step as can be perceived

in Fig. 13 (plots of the second row).

5 Discussion

The characterization of atherosclerotic plaque compo-

nents plays an important role towards the evaluation of

the disease progression. The composition of atheroscle-

rotic plaques has been seen as an important factor for

evaluating the risks of plaque rupture, as well as risks
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(a) (b)

Fig. 11 Average absolute errors of the relative areas and volumes obtained from the leave-one-out cross-validation technique
for the classifications (a) per pixel and (b) per region. (The first row represents the average absolute errors for the relative
area, and the second row the average absolute errors for the relative volume of the classified calcium regions.)

Table 8 Average bias obtained as to the relative volumes of the classified calcium regions in each approach and classifier of
the leave-one-out cross validation technique. (Best values in bold.)

Decision tree SVM - RBF SVM - Linear SVM - Poly SVM - Sig Nave Bayes LDC

A1
Per voxel 6.53 ± 9.37 -2.02 ± 4.19 -3.79 ± 3.39 47.41 ± 27.00 22.35 ± 16.61 41.47 ± 35.81 -0.03 ± 3.32
Per region 1.18 ± 4.30 -2.69 ± 3.95 -3.79 ± 3.39 -3.19 ± 3.48 -0.66 ± 4.77 -2.39 ± 2.95 -1.02 ± 2.66

A2
Per voxel 3.16 ± 2.39 -3.04 ± 3.39 -3.79 ± 3.39 2.81 ± 3.29 18.12 ± 18.28 45.33 ± 36.95 0.19 ± 2.70
Per region 0.27 ± 2.19 -3.40 ± 3.32 -3.79 ± 3.39 -2.82 ± 3.29 -1.14 ± 3.87 -2.40 ± 3.08 -0.61 ± 2.11

A3
Per voxel 14.43 ± 11.36 2.69 ± 7.71 2.19 ± 6.15 34.00 ± 20.27 14.07 ± 15.81 44.60 ± 36.45 10.80 ± 9.48
Per region 7.25 ± 9.96 -0.41 ± 5.23 -0.49 ± 4.48 0.54 ± 9.69 -1.52 ± 4.37 -2.51 ± 3.38 1.87 ± 1.91

A4
Per voxel 13.57 ± 11.34 6.37 ± 8.04 3.00 ± 5.88 5.53 ± 7.14 8.02 ± 11.49 46.95 ± 36.64 10.63 ± 9.46
Per region 7.71 ± 10.43 0.01 ± 4.91 -0.48 ± 4.06 1.67 ± 3.38 -2.63 ± 3.21 -2.47 ± 3.14 1.91 ± 1.77

*The values are expressed in percentage.
*A1, A2, A3 and A4 represent Approaches 1 to 4.

for embolization and neurological events. Previous stud-

ies suggested that the presence of calcified components

in atherosclerotic plaques represents an advanced stage

of the disease.

The classification of calcium regions in CTA images

of the carotid artery was successfully tackled in this

study. Firstly, the proposed classification model per-

forms the classification of each pixel inside the carotid

artery in order to obtain the candidate regions repre-

senting the calcifications of the atherosclerosis. Then,

the regions previously identified are submitted to the

region classification step in order to identify the ones

that represent true calcifications based on geometrical

and intensity features extracted from each region. Mis-

alignments between the histological images and the cor-

responding in vivo CTA images resulting from the used

registration procedure might affect the classification re-

sults due to the selection of parts of the lumen and

other regions having intensity similar to the one of cal-

cified components. Hence, pixels belonging to regions
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(a) (b)

Fig. 12 Average absolute errors of the absolute areas and volumes obtained from the leave-one-out cross-validation technique
for the classifications (a) per pixel and (b) per region. (The first row represents the average absolute errors for the absolute
area, and the second row the average absolute errors for the absolute volume of the classified calcium regions.)

corresponding to other structures of the carotid artery

may affect the accuracy of the results. Hence, a second

step to identify and maintain only the regions correctly

representing calcifications was included in the proposed

classification model, leading to results significantly bet-

ter than the ones exclusively obtained by the classifica-

tion per pixel step.

Besides the assessment of regions that do not cor-

respond to true calcifications of the atherosclerotic le-

sions, the removal of outliers represents an important

approach to increase the performance of the classifiers

and provide a better separation of the pixels belonging

to each class, i.e. calcium and non-calcium regions. The

presence of outliers decreases the ability of the classi-

fiers in separating the classes and determining the cor-

rect class of the input pixel, leading to errors in the

classification results and, consequently, the decreasing

of the accuracy of the classification model. Hence, an ap-

proach to remove outliers of the pixels selected for train-

ing and testing the classifiers in each cross-validation

iteration was proposed in this study. The boxplots of

the pixels belonging to each class were generated and

evaluated to determine the presence of outliers in the

experimental dataset based on all intensity features ex-

tracted from each pixel to be classified. Hence, common

pixels representing outliers in all features were removed

before the training and testing processes. The outliers

removal approach proposed here proved to be effective

in determining the correct class of each pixel and im-

proving the shapes of the calcified regions to make them

as close as possible to the ones of the corresponding

ground truths.

The areas and volumes of the calcium regions in the

CTA images used in this study are often larger than the

ones of the corresponding calcifications in the ground

truth. The ground truth of the calcified components was

obtained using micro CT images of the excised plaques

as described in van Engelen et al [22]. According to van

Engelen et al [22], the blooming artefacts often present

in CTA images may cause the overestimation of the cal-

cium components. The bias of the areas and volumes

resulting from Approaches 3 and 4 showed a positive

value when compared to Approaches 1 and 2. The av-

erage bias of the relative area obtained from the clas-

sification per region in Approaches 1, 2, 3 and 4 were

-1.20 ± 3.96%, -0.70 ± 4.05%, 1.89 ± 5.67% and 1.92 ±
5.55%, respectively, for the classification results of the

LDC in the k-fold cross-validation technique. In terms
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(a) (b)

Fig. 13 Spearman correlation coefficients of the relative and absolute areas and volumes obtained from the leave-one-out
cross-validation technique for the classifications (a) per pixel and (b) per region. (The first row represents the Spearman
correlation coefficients for the relative area and volume of the classified calcium regions, whereas the second row the Spearman
correlation coefficients of the absolute area and volume.)

of the relative volume, the average bias obtained from

the LDC in the k-fold cross-validation technique in the

region classification step were -1.22 ± 2.34%, -0.82 ±
1.87%, 1.74 ± 1.94% and 1.81 ± 1.77% for Approaches

1, 2, 3 and 4, respectively. Regarding the leave-one-out

cross validation technique, the average bias of the rel-

ative areas obtained by the LDC for Approaches 1, 2,

3 and 4 were -0.99 ± 4.18%, -0.53 ± 3.88%, 2.03 ±
5.63% and 2.03 ± 5.49%, respectively, for the region

classification step. Similarly, the average bias of the rel-

ative volumes obtained from the same Approaches were

-1.02 ± 2.66%, -0.61 ± 2.11%, 1.87 ± 1.91% and 1.91 ±
1.77%, respectively, concerning the results generated by

the LDC in the region classification step. Similarly to

the k-fold cross validation technique, the average bias

of Approaches 3 and 4 overestimated the ground truth

relatively to Approaches 1 and 2. The outliers removal

is responsible for the overestimation of the calcium re-

gions classified by Approaches 3 and 4. After removing

the outliers from the training and testing sets in each

iteration of the cross-validation technique, the good sep-

aration of the examples belonging to each class induces

the classifier to assign the correct class to the pixels un-

der analysis. Hence, the calcified components tend to

overestimate the corresponding ground truths since all

pixels of the calcium regions are correctly classified.

The Spearman correlation of the relative and abso-

lute areas of the classified calcium regions decreased in

Approaches 3 and 4 in comparison to the results ob-

tained from Approaches 1 and 2 in the region classifica-

tion step. As previously discussed, the overestimation

of the calcifications after the outliers removal is respon-

sible for affecting the size of the classified components,

leading the area of the calcified regions to increase sig-

nificantly in some cases. Since the areas of the classi-

fied calcium regions increase in comparison to the cor-

respondent ground truths, the Spearman correlation co-

efficients also decreased. As to the distance features, no

significant differences were found when the distances of

each pixel to the lumen and carotid wall contours were
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removed from the classification process. Hence, the clas-

sification model could be designed with only 18 inten-
sity features in the pixel classification step.

The classification results obtained by the LDC were

better than those obtained by the other classifiers that

are often used in many classification problems. The re-

sults obtained by van Engelen et al [22] also indicated

the better performance of the LDC in comparison to

a SVM with a RBF kernel. Other studies have also in-

dicated the superior performance of the LDC in classi-

fying atherosclerotic plaque components in images [26]

[27] [28]. Although decision trees have been widely used

in several studies dealing with different classification

problems, the large number of decisions makes the tree

more complex and prone to overfitting. Additionally,

small changes in the input values may still cause sig-

nificant changes in the model of the decision tree. As

shown in Fig. 10 and Fig. 13, the Spearman correla-

tion coefficients obtained from the decision tree were

better for Approaches 1 and 2 of the pixel and region

classification steps, achieving results equivalent to the

ones of the LDC. However, the correlation coefficients

obtained from the decision tree decreased significantly

in Approaches 3 and 4. Improvements in the results ob-

tained by the Naive Bayes classifier were also achieved

after applying the region classification step. However,

the results were still of lower quality than those of the

LDC. Although the Naive Bayes classifier is simple and

independent of irrelevant features, an important con-

dition for better results is that the features might be

conditionally independent for the given class. The re-

sults of the LDC were stable in all approaches, which

indicates that this classifier is more effective to classify

atherosclerotic plaque components, particularly the cal-

cified regions as proposed in this study.

The results obtained by the proposed classification

model are in accordance with the majority of the studies

proposed in the literature as to calcium identification

in CTA images of atherosclerotic plaques. De de Graaf
et al [24] reported a correlation of 0.73 between the

automatic and manual delineations of dense calcium re-

gions in CTA images of coronary arteries. In the study

carried out by Vukadinovic et al [29], the Pearson corre-

lation coefficient between the automatic and manual de-

lineations of the calcified regions was equal to 0.94 con-

sidering the volume of the identified components. The

identification of atherosclerotic plaque components pro-

posed by Wintermark et al [23] shown a perfect agree-

ment between the automatic and manual delineations

of the calcified components. Although the automatic

identification of the calcium regions was well-correlated

with the ground truths in the mentioned studies, the

proposed methods were based on HU values of the cal-

cified components. However, the HU values are defined

based on the used CTA image dataset, which can lead

to different results when the same HU values are used

in images belonging to distinct datasets. van Engelen

et al [22] reported a Spearman correlation coefficient

of 0.91 between the automatic and manual delineations

of calcium regions with respect to the relative volume

of the identified components. The average bias of the

relative volume between the automatic and manual de-

lineations reported in their study was equal to -0.2 ±
1.4. On the other hand, the classification model pro-

posed here obtained a Spearman correlation coefficient

of 0.83 and 0.81 for the relative volumes in Approaches

3 and 4, respectively, relatively to the manual delin-

eations of the calcium regions. The average bias of the

relative volumes obtained from the same approaches

were 1.87 ± 1.90 and 1.91 ± 1.77, respectively. The

classification model proposed by van Engelen et al [22]

is based on 24 features extracted from CTA and MR
images of carotid arteries. However, the classification

model proposed here is based on the identification of

calcium regions solely in CTA images. Hence, on a clin-

ical point-of-view, the proposed process is simpler and

less expensive since only one image modality is needed

in order to obtain similar results to the ones reported

in van Engelen et al [22].

The main limitation of the proposed classification

model is the number of features used to perform the

identification of calcified and non-calcified regions. Di-

mensionality reduction is often used to decrease the

computational cost of classifiers and represents an im-

portant step towards the selection of the relevant fea-

tures to be used in classification models. The outliers

removal is performed to avoid the incorrect assignment

of the correct class to each pixel due to the misalign-

ments between the ground truths manually delineated

in histological images and the input CTA images. How-

ever, the number of pixels of the calcified components

is significantly lower than the ones belonging to the

non-calcified regions. The relative area of the calcified

components is low relatively to the total area of the

carotid wall and the outliers removal might decrease the

number of examples of the calcified components. Hence,

manual delineations made directly in the CTA images

represent an effective approach to avoid the removal

of pixels with important information for the classifica-

tion process. Although the number of images used in

this study could be higher to make the analysis more

comprehensive and self-contained, the proposed classi-

fication model was designed to eliminate the require-

ment of using MR Images as proposed by the previous

study that used the same experimental dataset van En-

gelen et al [22]. Therefore, the same images were used
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to make the comparison more trustworthy and closer to

the referred study. In addition, the proposed classifica-
tion model is scalable as the number of images increase,

and adaptable to other datasets similar to the one used

here.

Despite the above-mentioned limitation, the classifi-

cation in two steps of calcium regions in CTA images of

the carotid artery seems to be effective in eliminating

regions not belonging to the true calcifications of the

atherosclerotic lesions.

6 Conclusions

The characterization of atherosclerosis is an intensive fo-

cus of research and represents an important step in eval-

uating the progression of the disease. The classification

of calcified components in CTA images of carotid arter-

ies was proposed. In the proposed classification model,

the original CTA images are submitted to an initial step

that processes the classification of each pixel inside the

carotid artery wall. Then, the candidate regions are sub-

mitted to the next step that performs the classification

per region in order to identify the ones corresponding to

true calcified components. Additionally, the proposed

outliers removal approach proved to be effective in im-

proving the separation of the pixels belonging to each

class, i.e. calcified and non-calcified regions, leading the

shapes of the classified calcium regions close to the ones

of the corresponding ground truths.

In this study, the region classification step was pro-

posed to effectively handle the incorrect classification

of regions resultant from misalignments of the ground

truths with the corresponding in vivo CTA images. The

method proved to be effective in eliminating regions

that do not correspond to true calcified components,

leading to improvements of the classification results and,

consequently, to a more efficient, reliable and accurate

classification model.
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