

ID 604: RAVINAS DE SEIRÓS (NORTE DE PORTUGAL). SIMULAÇÃO COM VISTA A PREVENIR O SEU REAPARECIMENTO

Bruno MARTINS¹; Ana CASTRO²; Carmen FERREIRA³; Luciano LOURENÇO⁴; Adélia NUNES⁵ ¹Departamento de Geografia e Turismo Universidade de Coimbra, RISCOS, CEGOT; <u>bruno.martins@uc.pt</u> ²ISEP – Instituto Superior de Engenharia do, CERENA-Polo FEUP; <u>amc@isep.ipp.pt</u> ³Departamento de Geografia da Universidade do Porto, CEGOT; ⁴Departamento de Geografia e Turismo Universidade de Coimbra, RISCOS, CEGOT; <u>luciano@uc.pt</u> ⁵Departamento de Geografia e Turismo Universidade de Coimbra, RISCOS, CEGOT; <u>adelia.nunes@ci.uc.pt</u>

RESUMO: Neste trabalho são analisadas as ravinas de Seirós, localizadas próximo de Ribeira de Pena, no Norte de Portugal, e que, numa área agrícola, se instalaram sobre um coluvião. As ravinas formaram-se após um episódio de chuva intensa e concentrada, entre os dias 14 e 15 de dezembro de 2015. Este episódio chuvoso permitiu o galgamento de um canal, de geometria retangular, com cerca de 49 metros de comprimento, 0,70 metros de largura e 0,75 metros de profundidade, construído pelo proprietário do terreno agrícola como forma de proteção da escorrência proveniente de montante. Para além da caracterização e a análise dos factores que estiveram na génese das ravinas, este estudo também pretende discutir a adequação desta estratégia como forma de prevenção e mitigação do risco de ravinamento. Com base nos resultados obtidos pela simulação apresentada, torna-se claro que, para episódios de precipitação semelhantes o canal não é eficaz. Como medida mitigadora, sugere-se o aumento da profundidade da secção transversal do canal, cuja altura mínima recomendada deverá ser de 120 cm.

PALAVRAS-CHAVE: Ravinas; erosão hídrica; estratégias de controlo e mitigação; Seirós (norte de Portugal)

1. INTRODUÇÃO

Os processos de erosão hídrica associados a ravinamentos podem traduzir-se em prejuízos agrícolas, perda da capacidade produtiva dos solos e perda de qualidade da água, em especial dos rios, lagos e reservatórios (Bufalo e Nahon 1992; Martinez-Casasnovas, 2003). A formação de ravinas está associada a determinadas condições meteorológicas, designadamente precipitações intensas e concentradas, por vezes localizadas e prolongados que agravam substancialmente os riscos de erosão, do mesmo modo que está relacionada com certos fatores físicos, tais como o declive, a forma e o tamanho da vertente, ou com as propriedades físicas, químicas e

mineralógicas dos solos e, ainda, com a presença de material pouco coeso a regularizar as vertentes, como é o caso dos mantos de alteração ou dos depósitos de vertente. Por outro lado, Os factores antrópicos são, frequentemente, muito importantes na instalação e evolução das ravinas, bem como na capacidade erosiva das mesmas, através da remoção da vegetação, desflorestação, incêndios florestais, lavra, instalação de pastagens e da construção de estradas (Reid e Dune 1996; Nyssen *et al.*, 2002; Douglas e Pietroniro 2003; Ezezika e Adetona 2011; Lourenço *et al.*, 2014; Martins *et al.*, 2017). Na maioria das vezes, essa intervenção promove a concentração da escorrência, diminuindo de forma significativa a capacidade de infiltração.

Neste trabalho, é apresentado o exemplo de um conjunto de ravinas formadas numa área agrícola, sobre um coluvião, em Seirós, próximo de Ribeira de Pena, no Norte de Portugal. As ravinas formaram-se durante um episódio de chuva intensa e concentrada, em dezembro de 2015. A existência de um canal retangular de 49 metros de comprimento, 0,70 metros de largura e 0,75 metros de altura, construído pelo proprietário do terreno, como forma de proteção da escorrência a montante do terreno de cultivo, contribuiu para uma concentração excecional da escorrência que, sendo insuficiente para a conter, permitiu o transbordo e a consequente formação de 8 ravinas. A presença dessas ravinas impossibilitou a prática agrícola durante cerca de um ano, após o qual o proprietário, com recurso a maquinaria, não só neutralizou as ravinas, mas também procedeu à reconstrução do canal de proteção, parcialmente destruído durante o episódio chuvoso, tendo voltado a funcionar novamente como único meio de controlo de erosão.

O estudo apresentado tem como objetivo a caracterização das ravinas, bem como, analisar os fatores determinantes na sua formação. Além disso, pretende-se ainda discutir a adequação da estratégia existente como forma de prevenção e mitigação do risco de ravinamento.

2. LOCALIZAÇÃO DA ÁREA DE ESTUDO

As ravinas de Seirós localizam-se a nordeste de Ribeira de Pena (fig. 1). A área integra os terrenos autóctones da Zona-Centro-Ibérica (ZCI) e dos mantos parautóctones da Zona Galiza-Trás-os-Montes (ZGTM), em particular no seu ramo SE (Ribeiro, 2013). O substrato rochoso corresponde a metassedimentos da formação pelito-grauváquica do Silúrico inferior que integra o complexo de unidades parautóctones de carreamento maior. Trata-se de uma formação constituída por xistos cinzentos com intercalações de xistos negros, ampelitos e liditos, com alternância de pelitos psamíticos, grauvaques e tufos vulcânicos.

Do ponte de vista climático, caracteriza-se, de acordo com a classificação de Köppen, por um clima temperado de verão seco e suave (**Csb**) e com elevados quantitativos de precipitação no

outono-inverno. Tendo por referência a estação de Cabeceira de Bastos, a média anual de precipitação ultrapassa os 1450mm, sendo que mais de 70% se concentra entre Outubro e Março. Analisando a longa séries de dados diários disponíveis, desde 1913, concluímos que cerca de 10% dos dias assinalam quantitativos de precipitação superiores a 15mm.

Figura 272 Mapa hipsométrico e de localização da área de estudo.

3. METODOLOGIA

A análise morfológica das ravinas foi obtida a partir das medições obtidas a partir de barra de ferro graduada. A distância entre os pontos de medição foi de cerca de 1 metro, salvo variações significativas no perfil da ravina, nomeadamente na largura e / ou altura das paredes laterais.

Os dados de precipitação foram obtidos diretamente do Instituto Português do Mar e da Atmosfera (IPMA) e do Sistema Nacional de Informação de Recursos Hídricos (SNIRH).

Foi estimada a capacidade de vazão do canal de drenagem existente e o fluxo gerado pelo episódio de precipitação ocorrido. A taxa de escoamento da bacia, Q (m^3/s), foi obtida de acordo com o Método Racional (equação 1), particularmente adequado para bacias de pequena dimensão e em trabalhos relacionados com estratégias de controlo erosivo por ação de ravinamentos (Ezezika e Adetona, 2011; Ehiorobo *et al.*, 2013).

 $\mathbf{Q} = \mathbf{C} \cdot \mathbf{I} \cdot \mathbf{A} \qquad (\text{eq. 1})$

Onde: C é um coeficiente de escoamento (adimensional), I representa a intensidade da chuva $(m^3/s/m^2)$ e A (m^2) a área da bacia de drenagem.

A área das bacias de drenagem foi determinada utilizando software ArcGIS, tendo sido delimitada a partir da análise das curvas de nível e da orientação do fluxo de escoamento. A capacidade do canal de drenagem aberto para transportar o escoamento gerado (considerando um fluxo uniforme e um regime permanente) foi estimada tendo em consideração tanto a equação de continuidade (equação 2) quanto a equação de velocidade de Manning-Strickler (equação 3):

$$\mathbf{Q} = \mathbf{S}_{\mathrm{m}} \cdot \mathbf{V} \qquad (\mathrm{eq.}\ 2)$$

$$V = K \cdot R^{2/3} J^{1/2}$$
 (eq. 3)

Onde: Q (m^3/s) representa o fluxo de escoamento gerado no canal, Sm (m^2) a seção molhada do canal, V (m/s) a velocidade do fluxo, K a rugosidade obtida a partir do coeficiente de Manning, R (m) o raio hidráulico e J (m/m^{-1}) a inclinação do canal.

4. RESULTADOS

O canal existente (fig. 2-A), construído pelo proprietário do campo agrícola, terá permitido a concentração da escorrência que, devido ao seu valor excecional, acabou por transbordar e, desta forma, desencadeou a formação da rede de ravinas (fig. 2-B). Entre as 20h e as 2h dos dias 14 e 15 de dezembro foram precipitados cerca de 15mm num período de tempo de uma hora (fig. 3).

A

A precipitação ocorrida dias antes terá contribuído para um aumento significativo da saturação do solo, aumentando a capacidade de escorrência da bacia de drenagem. Com base nos registos pluviométricos obtidos para as estações meteorológicas vizinhas, de Boticas e Celorico de Basto, foram identificados três períodos de intensa precipitação. Um período com início em novembro, outro, mais curto e de menor intensidade entre os dias 21 e 23 de novembro, e um período de

В

maior intensidade, e com valores acumulados de maior grandeza, entre os dias 7 e 9 de dezembro (fig. 4), num total a oscilar entre os 100 e os 150mm.

Figura 274 Precipitação acumulada e valores de precipitação horária entre as 5h do dia 14 e as 5 h do dia 15 de dezembro | Fonte dos dados: SNIRH

Figura 275 Valores diários e acumulados de precipitação para as estações de Boticas e Cabeceiras de Basto entre os dias 1 de novembro e 15 de dezembro | Fonte dos dados: IPMA e SNIRH.

As ravinas desenvolveram-se sobre um leptossolo e, mais em profundidade, sobre um coluvião, numa área agrícola com cerca de 12º de declive. O coluvião é caracterizado por uma coloração alaranjada com a presença de clastos redondos que raramente ultrapassam 30cm de diâmetro. A

1171

matriz do coluvião é constituída por silte e argila e, em média, representa 20% do material. A textura é dominada pelas frações de 0,125 mm e 0,063 mm. A curva granulométrica indica valores que variam entre 0,2 e 0,34 mm, no caso da mediana, e entre 0,36 e 1,15 mm, no caso da média. O valor médio de calibração é de 2,47, com um intervalo a variar entre 3,16 e 1,38. O valor médio de assimetria é de 2,08 e a curtose 1,87.

A caracterização da morfologia das ravinas é descrita pelas variáveis listadas na tabela I. A ravina mais extensa tem um comprimento aproximado de 22 metros e o da mais curta é da ordem de 6 metros. A largura média varia entre 0,4 e 1,7m e a relação largura/profundidade (RLP) oscila entre 0,8 e 3,2 (tabela I).

Ravina	С	LM	PM	DID	ISMR	AIR	IR	ABR	РМС	VSP	PESP
ID	(m)	(m)	(m)	кLР	(m m ⁻¹)	(°)	(m m ⁻¹)	(m ²)	(m)	(m ³)	(ton)
G 1	22	1,4	1,2	1,2	0,09	0,23	39,8	1,3	54,1	80,2	22
G 2	19	1,7	2,1	0,8	0,03	0,08	42,4	2,5	108,4	165,9	19
G 3	12	0,4	0,3	1,6	0,08	0,18	3,8	0,6	1,5	1,2	12
G 4	15	0,6	0,4	1,6	0,04	0,06	7,2	0,4	3,8	2,9	13
G 5	18	1,1	0,9	1,2	0.,07	0,07	16,7	0,9	15,2	17,9	18
G 6	13	0,8	0,3	3,2	0,03	0,07	4,8	0,9	1,4	1,3	14
G 7	13	0,5	0,4	1,1	0,04	0,08	4,2	0,3	1,1	0,8	12
G 8	6	0,6	0,5	1,3	0,08	0,21	22,2	0,4	14,6	13,7	11

Tabela 117 Características morfológicas mais significativas das ravinas

C – comprimento; LM – largura média; PM – profundidade média; RLP – relação largura e profundidade; ISMR – inclinação da superfície a montante da ravina; AIR – ângulo de inclinação da ravina; IR – inclinação da ravina; ABR – área base da ravina; PMC – profundidade média do coluvião; VSP – volume de solo perdido; PESP – peso estimado de solo perdido.

Verifica-se uma correlação positiva e moderada entre a profundidade e o comprimento das ravinas (r = 0,63), entre o comprimento e a perda volumétrica do solo (r = 0,60) e entre o comprimento e o peso estimado de solo perdido (r = 0,58). A correlação entre a RLP e a perda volumétrica de solo é negativa e moderada (r = -0,50) tal como a correlação entre a RLP e o peso estimado do solo (r = -0,60). A profundidade das ravinas depende, em larga medida, da espessura do coluvião (r = 0,64). A densidade do coluvião varia entre 1,01g/cm³ e 1,60g/cm³, com aumento em profundidade na razão de 0,60g/cm³/m. A perda total de solo estimada é cerca de 284m³.

De acordo com a equação 1, e considerando um coeficiente de escoamento (C) de 0,82 (adimensional), para um cenário de precipitação de 15 mm por hora e uma área de drenagem de

4,9 ha, o escoamento gerado pela bacia (Q) é de 0,18 m³/s. Com base no modelo de drenagem do canal, a solução existente para a prevenção de ocorrências de ravinamento não foi suficiente (tabela II).

AMAC	ASM	РМ	RH	S _w .R^(2/3)	S _w .R^(2/3)	
у	<i>S_w=b</i> . <i>y</i>	$P_w=b+2y$	R=S _w /P _w		(valor de referência)	
1,30	0,65	3,10	0,21	0,23		ОК
1,20	0,60	2,90	0,21	0,21		ОК
1,00	0,50	2,50	0,20	0,17	0,18	Insuficiente
0,90	0,45	2,30	0,20	0,15		Insuficiente
0,80	0,40	2,10	0,19	0,13		Insuficiente

Tabela 118 Capacidade do canal considerando um de caudal de 0,18 m3/s, coeficiente de rugosidade de 82 e uma inclinação de 0,1%, para um valor de precipitação de 15mm/h

AMA - altura máxima de água no canal; ASM - área de secção molhada; PM - perímetro molhado; RH - raio hidráulico.

Mantendo o declive atual de 0,1%, e para um episódio de chuva semelhante, a eficácia do canal depende do aumento da sua altura para 120 cm (mais 20 cm que os atuais) ou, com mais confiança, para 130 cm.

5. CONCLUSÃO

A construção de um canal de geometria retangular foi a medida que o proprietário adoptou como forma de controlo erosivo. No entanto, esta medida revelou-se ser insuficiente para drenar a água gerada por um episódio de chuva intensa e concentrada. As ravinas formadas contribuíram para a degradação do solo, impossibilitando a prática agrícola por um período de um ano. Com base nos resultados obtidos pela simulação apresentada, torna-se claro que, para episódios de precipitação semelhantes o canal não é eficaz. Como medida mitigadora, sugere-se adaptar o canal alterando a sua secção transversal. A altura mínima recomendada é de 120 cm.

Tratando-se de uma área de elevados quantitativos de precipitação, e com um significativo número de dias a assinalarem uma forte concentração, o potencial erosivo da chuva constitui um fator fundamental para compreender o funcionamento dos processos erosivos neste território. Neste contexto urge delinear medidas de mitigação que contribuam para proteger o solo e evitar os processos de degradação e manter ou melhorar a sua qualidade.

6. **BIBLIOGRAFIA**

Bufalo, M. e Nahon, D. (1992). Erosional processes of Mediterranean badlands: a new erosivity index for predicting sediment yield from gully erosion. Geoderma, 52, pp. 133-147.

Douglas, I. e Pietroniro, A. (2003). Predicting road erosion rates in selectively logged tropical rain forests. In: DE BOER, D.; FROEHLICH, W. e MIZUYAMA, T. (Eds.) - Erosion Prediction in Ungauged Basins, Integrating Methods and Techniques. Proceedings of an International Symposium Sapporo, Japan, 8-9 July 2003, IAHS Press, Wallingford, UK, pp. 199-205.

Ehiorobo, J. & Ogirigbo, O. (2013). Gully Morphology and Gully Erosion Control in Calabar, Cross River State, Nigeria, Advanced Materials Research, Vol. 824, 656-666 p. https://doi.org/10.4028/www.scientific.net/AMR.824.656

Ezezika, O.; Adetona, O. (2011). Resolving the gully erosion problem in Southeastern Nigeria: Innovation through public awareness and community-based approaches. J. Soil Sci. Environ Manag, 2(10): 286-291.

Lourenço, Luciano e Nunes, Adélia (2014). O flagelo das chamas e a recorrência de eventos hidrogeomorfológicos intensos. O exemplo da bacia do rio Alva (Portugal). WATERLAT-GOBACIT Network Working Papers. Thematic Area Series SATAD – TA8 - "Water-related disasters: from trans-scale challenges to interpretative multivocality – Vol. 1 N.° 1, p. 43-90 (Print: ISSN 2056-4856; Online: ISSN 2056-4864); http://waterlat.org/WPapers/WPSATADNo1.pdf

Martinez-Casasnovas (2003). A spatial information technology approach for the mapping and quantification of gully erosion, Catena, Elsevier, 50:293–308. <u>https://doi.org/10.1016/S0341-8162(02)00134-0</u>

Martins, Bruno; Lourenço, Luciano; Hudson (2017). Ação antrópica e risco de ravinamento: o exemplo da ravina do Corgo (rio Alva), Territorium, n°24, Coimbra, p.221-234. http://www.uc.pt/fluc/nicif/riscos/Documentacao/Territorium/T24_Artg/T24_Artg16.pdf

Nyssen, J.; Moeyersons, J.; Poesen, J.; Deckers, J.; Mitiku, H. (2002). The environmental significance of the remobilisation of ancient mass movements in the Atbara-Tekeze headwaters, Northern Ethiopia. Geomorphology 49:303–322.

Reid, L.M. e DUNE T (1996). Rapid Evaluation of Sediment Budgets, 1996. Catena Verlag Gmbh, Reiskirchen, Germany, p.200.

Ribeiro, A. (2013a). A Evolução Geodinâmica de Portugal: uma introdução, in R. Dias, A. Araújo, P. Terrinha and J. C. Kellberg (eds.), Geologia de Portugal, vol. 1, Escolar Editora, Lisboa.