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HOMOTOPY TYPE OF MODULI SPACES OF G-HIGGS BUNDLES

AND REDUCIBILITY OF THE NILPOTENT CONE

C. FLORENTINO, P. B. GOTHEN, AND A. NOZAD

Abstract. Let G be a real reductive Lie group, and HC the complexification of its
maximal compact subgroup H ⊂ G. We consider classes of semistable G-Higgs bundles
over a Riemann surface X of genus g > 2 whose underlying HC-principal bundle is
unstable. This allows us to find obstructions to a deformation retract from the moduli
space of G-Higgs bundles over X to the moduli space of HC-bundles over X , in contrast
with the situation when g = 1, and to show reducibility of the nilpotent cone of the
moduli space of G-Higgs bundles, for G complex.

1. Introduction

A Higgs bundle on a Riemann surface X is a pair (E,ϕ), where E is a rank n holo-
morphic vector bundle over X and ϕ ∈ H0(End(E) ⊗ K) is a holomorphic endomor-
phism of E twisted by the canonical bundle K of X . Higgs bundles appeared first in
the work of Hitchin [Hi87] and Simpson [Si92, Si88]. The non-abelian Hodge Theorem
[Co88, Do87, Hi87, Si88] identifies the moduli space of Higgs bundles with the character
variety for representations of the fundamental group of X into GL(n,C).

The appropriate objects for extending the non-abelian Hodge Theorem to representa-
tions of the fundamental group in a real reductive Lie group G (see, e.g., [Hi92, GGM09,
Go14]) are called G-Higgs bundles. There are natural notions of stability, semistability,
and polystability for G-Higgs bundles, leading to corresponding moduli spaces M(G)
(see [GGM09] for the general theory). Again, there is an identification between M(G)
and the moduli space of flat G-connections on X .

Motivated partially by this identification, the moduli space of G-Higgs bundles has been
extensively studied. When G is a complex semisimple Lie group Biswas and Florentino
proved in [BF11] that the moduli space of topologically trivial principal G-bundles over a
compact Riemann surface (which are actually H-Higgs bundles, where H is the maximal
compact subgroup of G) is not a deformation retraction of the moduli space of topologi-
cally trivial G-Higgs bundles. This result contrasts with the main theorem of Florentino
and Lawton [FL09] which says that the moduli space of flat H-connections on an open
surface X is a strong deformation retraction of the moduli space of flat G-connections
on X , for complex reductive G.

Our aim in this paper is to generalize the above mentioned theorem of Biswas and Flo-
rentino to the case of real reductive Lie groups. Using the non-abelian Hodge theorem,
the question is to prove that the moduli spaces of semistable principal HC-bundles, which
we denote by N (HC), is not a deformation retraction of the moduli spaces of semistable
G-Higgs bundles M(G), where HC is the complexification of H . We recall that the
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topological invariants of the underlying principal bundles label unions of connected com-
ponents of the moduli spaces, so in order to study deformation retraction from M(G) to
N (HC) we should consider separately each topological type. In this paper, we address
the case of trivial topological type.

Our strategy is as follows. We use the C∗-action on the moduli space of G-Higgs
bundles, given by multiplication of the Higgs field, and show (Proposition 2.10) that it
provides a deformation retraction onto the nilpotent cone: the pre-image of zero under
the Hitchin map, defined in section 2.4.1. Therefore, we reduce the question to finding
obstructions to a deformation from the nilpotent cone to N (HC). Then we prove that
such obstructions are semistable G-Higgs bundles whose underlying HC-bundle is unstable
and we show existence of these obstructions by using the construction of [GPR15], stated
in Proposition 3.9. This result allows us also to deduce the reducibility of the nilpotent
cone of the moduli space of G-Higgs bundles when G is a connected reductive complex
Lie group.

More precisely, our main results are the following theorems (see Theorems 3.12 and
3.15 below; note that the moduli spaces may be singular).

Theorem A. Let G be a non-abelian connected reductive complex Lie group. Then the
nilpotent cone in the moduli space of G-Higgs bundles of trivial topological type is not
irreducible.

Theorem B. Let G be a non-abelian (real or complex) connected reductive Lie group
of non-Hermitian type or connected simple real Lie group of Hermitian non-tube type.
Then the moduli space of semistable principal HC-bundles of trivial topological type is
not a deformation retraction of the moduli space of semistable G-Higgs bundles of trivial
topological type.

2. Moduli of Higgs bundles and the nilpotent cone

2.1. G-Higgs bundles. Let X be a compact connected Riemann surface of genus g, for
g > 2, and let K = T ∗X be the canonical bundle of X . Let G be a (real or complex)
connected reductive Lie group with a choice of a maximal compact subgroup H ⊂ G,
and denote by HC the complexification of H .

By an HC-bundle over X we always mean a holomorphic principal HC-bundle over X .
Recall that this is a holomorphic fibre bundle π : E → X with a holomorphic HC-action
which is free and transitive on each fibre and E is required to admit holomorphic HC-
equivariant local trivializations E|U ∼= U ×HC over small open sets U ⊂ X . Denote by
N (HC) the moduli space of semistable principal HC-bundles over X ; the construction
of the moduli space can be found in [Ra96]. It is a union of connected components (see
[Ra75])

N (HC) =
∐

d

Nd(H
C)

indexed by the elements d ∈ π1(H
C

) which correspond to topological types of principal

HC-bundles E over X . Moreover, for each d ∈ π1(H
C

), Nd(H
C) is non-empty.

If hC ⊂ gC are the corresponding Lie algebras, there is a (complexified) Cartan decom-
position

gC = hC ⊕mC

where mC is a complex vector space. The restriction of the adjoint representation
Ad : GC → GL(gC) to HC preserves the Cartan decomposition and induces the isotropy
representation of HC on mC:

(2.1) ι : HC → GL(mC).
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Given a HC-bundle E, denote by E(mC) the vector bundle with fibres mC associated to
E via the isotropy representation, i.e., E(mC) = E ×ι m

C.

Definition 2.1. A G-Higgs bundle on a Riemann surface X is a pair (E,ϕ) which consists
of a principal HC-bundle E and a holomorphic section ϕ of the bundle E(mC)⊗K. The
section ϕ is called the Higgs field.

Remark. We have the following particular cases.

(1) If G is itself a compact group, then mC = 0, so the Higgs field is identically zero,
and we recover the notion of principal HC = GC-bundle.

(2) When G is a complex group, then we have HC = G and also mC = g. So, a G-
Higgs bundle is a pair (E,ϕ), where E is a G-bundle and ϕ ∈ H0(X,E(g)⊗K) =
H0(X,Ad(E) ⊗K).

(3) When G is non-compact of Hermitian type there is an almost complex structure
on mC defined by the adjoint action of a special element J in the center z of
h with J2 = −id. The almost complex structure splits mC into HC-invariant
±i-eigenspaces

mC = m+ ⊕m−

and therefore splits the bundle E(mC) = E(m+) ⊕ E(m−). Hence the Higgs field
decomposes as ϕ = (ϕ+, ϕ−) where

(2.2) ϕ+ ∈ H0(X,E(m+) ⊗K), ϕ− ∈ H0(X,E(m−) ⊗K).

The notion of G-Higgs bundle includes several interesting particular cases. When G
is a classical Lie group, G-Higgs bundles can be defined in terms of holomorphic vector
bundles with additional structure, as follows.

Example 2.2. A GL(n,C)-Higgs bundle on X is a pair (E,ϕ), where E is a rank n
holomorphic vector bundle over X and ϕ ∈ H0(End(E) ⊗ K) is a holomorphic endo-
morphism of E twisted by K. This is the original notion of Higgs bundle introduced by
Hitchin [Hi87]. Similarly, a SL(n,C)-Higgs bundle is a pair (E,ϕ), where E → X is a
holomorphic rank n vector bundle with det(E) = O and ϕ ∈ H0(X,End(E) ⊗K) with
tr(ϕ) = 0.

Example 2.3. A SO(n,C)-Higgs bundle is a pair (E,ϕ) where E is a SO(n,C)-bundle
and ϕ ∈ H0(E(so(n,C))⊗K). Using the standard representations of SO(n,C) in Cn we
can associate to E a holomorphic vector bundle W of rank n with trivial determinant,

W = E ×SO(n,C) C
n,

together with a non-degenerate symmetric quadratic form Q ∈ H0(S2W ∗); we can think
of Q as a symmetric holomorphic isomorphism Q : W → W ∗. The Higgs field in terms of
the vector bundle W is a holomorphic section ϕ ∈ H0(End(W )⊗K) satisfying Q(u, ϕv) =
−Q(ϕu, v) and tr(ϕ) = 0.

Example 2.4. Let G = SL(n,R). The Cartan decomposition of the Lie algebra is given
by

sl(n,R) = so(n) ⊕m,

where m = {symmetric real matrices of trace 0}. So a SL(n,R)-Higgs bundle is a pair
(E,ϕ), where E is a SO(n,C)-bundle and ϕ ∈ H0(E(mC) ⊗K). Hence a SL(n,R)-Higgs
bundle can be viewed as a triple (W,Q, ϕ), where (W,Q) is a holomorphic orthogonal
bundle with det(W ) = O, and ϕ is a traceless holomorphic section of End(W ) ⊗K that
is symmetric with respect to Q, i.e. QϕTQ = ϕ.
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2.2. Moduli spaces. For the construction of moduli spaces, as usual one introduces
several notions of stability. The notions of stability, semistability and polystability for
G-Higgs bundles depend on a real parameter α and generalize the usual slope stability
condition for Higgs bundles and Ramanathan’s stability condition for principal bundles.
In the present work we consider only the particular case α = 0, because this is the relevant
value for relating G-Higgs bundles to representations of π1(X) via the non-abelian Hodge
theorem. Thus we simply say polystable instead of 0-polystable and likewise for stable
and semistable, and refer the reader to [GGM09] for the general definitions.

Remark 2.5. To a G-Higgs bundle, for G ⊂ GL(n,C), we can naturally associate a
GL(n,C)-Higgs bundle. By this correspondence, semistability of a G-Higgs bundle is
equivalent to semistability of the associated GL(n,C)-Higgs bundle. For stability the
situation is more subtle: it is possible for a stable G-Higgs bundle to induce a strictly
semistable GL(n,C)-Higgs bundle.

2.3. Components of moduli spaces. To a given G-Higgs bundle we can associate the
topological invariant of the underlying HC-bundle. As mentioned before, for connected
HC, topological types are well-known [Ra75] to be classified by elements of

π1(H
C) = π1(H) = π1(G).

Definition 2.6. For a fixed d ∈ π1(G), the moduli space of polystable G-Higgs bundles
Md(G) is defined to be the set of isomorphism classes of polystable G-Higgs bundles
(E,ϕ) with c(E) = d.

These moduli spaces are complex algebraic varieties, due to constructions of Schmitt
[Sc05, Sc08]. We have the disjoint union

M(G) =
∐

d

Md(G).

When G is a complex reductive Lie group the moduli space Md(G) is connected and
non-empty, for every d ∈ π1(G) (see [GO16]). But the situation is very different when
G is a real reductive Lie group. In this case the moduli space Md(G) can be a union of
several connected components and can also be empty for some d ∈ π1(G).

The following are three known cases of real Lie groups for which there exists a topo-
logical type d such that Md(G) is disconnected:

(1) When G is a split real form, proved by Hitchin [Hi92],
(2) When G is non-compact of Hermitian type, the Cayley correspondence [BGG06]

provides extra components in the moduli space for maximal Toledo invariant
(defined below). For G = SL(2,R), this goes back to Goldman [Gol80].

(3) When G = SO0(p, q) there are, in general, extra components not accounted for
by the preceding mechanisms, see [Co17, ABCGGO18].

In the case when G is non-compact of Hermitian type one can define an integer invariant
τ(E,ϕ) called the Toledo invariant which is an element of the torsion free part of π1(H).
This invariant is bounded by a Milnor-Wood inequality, beyond which the moduli spaces
are empty. In fact, if G is non-compact of Hermitian type and (E,ϕ+, ϕ−) is a semistable
G-Higgs bundle, then the Toledo invariant τ = τ(E) satisfies

(2.3) − rk(im(ϕ+))(2g − 2) 6 τ 6 rk(im(ϕ−))(2g − 2),

(see [BGR, GN]) where ϕ+, ϕ− are defined in (2.2).

Example 2.7. A SL(2,R)-Higgs bundle has the form

E = (W = L⊕ L∗, Q =

(

0 1
1 0

)

, ϕ =

(

0 ϕ+

ϕ− 0

)

),
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where L is a line bundle, ϕ+ ∈ H0(X,L2 ⊗K) and ϕ− ∈ H0(X,L−2 ⊗K). The group
SL(2,R) is of Hermitian type and the Toledo invariant is τ(E) = 2 deg(L). The inequality
(2.3) implies |deg(L)| 6 g − 1 and, if both ϕ+ and ϕ− are non-zero, any E satisfying
this inequality is semistable. Moreover, if ϕ+ = 0, then E is semistable if and only if
deg(L) > 0 and if ϕ− = 0, then E is semistable if and only if deg(L) 6 0. Thus, if the
Higgs field vanishes then E is semistable if and only if deg(L) = 0.

Remark 2.8. It follows from (2.3) that, if G is of Hermitian type and (E, 0) is a semistable
G-Higgs bundle, then τ(E) = 0.

For all the real connected semisimple classical groups of Hermitian type, namely
SU(p, q), Sp(2n,R), SO∗(2n) and SO0(2, n) we have π1(H) ∼= Z, except G = SO0(2, n)
with n > 3 for which π1(H) ∼= Z ⊕ Z2. So in these cases, i.e. excepting SO0(2, n), the
topological type of the G-Higgs bundle is determined by the Toledo invariant.

2.4. The C∗-action on the moduli spaces and retraction to the nilpotent cone.

In this subsection we show how the use of a C∗-action on the moduli space of G-Higgs
bundles implies a deformation retraction onto the nilpotent cone.

The moduli space of G-Higgs bundles Md(G) admits a non-trivial holomorphic C∗-
action [Hi87, Si92] by multiplication of the Higgs field,

(2.4) z · (E,ϕ) = (E, zϕ).

From the gauge theory point of view one can observe that the action of the subgroup
S1 ⊂ C∗ on the moduli space is Hamiltonian with proper moment map defined as follows

f : Md(G) → R

(E,ϕ) 7→ ‖ϕ‖2 :=

ˆ

X

|ϕ|2vol.

When the moduli space Md(G) is smooth, the theorem of Frankel [Fr59] implies that f
is a perfect Bott-Morse function. Another consequence of the fact that f is a moment
map for the Hamiltonian S1-action is that the set of critical points of f coincides with
the set of fixed points of the action. We also recall that the sets of fixed points of the
actions of S1 and C∗ coincide. Let {Fλ}λ∈Λ be the set of the irreducible components of
the fixed point set of the C∗-action on Md(G), with Λ an index set.

There exists a Morse stratification on the moduli spaces Md(G) which coincides with
ther Bia lynicki-Birula stratification, due to results of Kirwan in [Ki84]. It is defined as
follows. Let

Uλ := {(E,ϕ) ∈ Md(G) | lim
z→0

z · (E,ϕ) ∈ Fλ}.

Then ∪λUλ gives a stratification of Md(G).
One can also define the so-called downward Morse flow of Fλ which, again due to the

result of Kirwan, is given by the sets Dλ := {(E,ϕ) ∈ Md(G) | lim
z→∞

z ·(E,ϕ) ∈ Fλ}. Using

the label 0 ∈ Λ to denote the fixed point set of G-Higgs bundles with zero Higgs field, it
is clear that we have F0 = Nd(H

C). Note that Md(G) does not have to be smooth for
the Bia lynicki-Birula stratification to be defined.

2.4.1. Nilpotent Cone. Take a basis {β1, · · · , βr} for the G-invariant polynomials on the
Lie algebra gC (under the adjoint action) and let di = deg(βi). Given a G-Higgs bundle
(E,ϕ), the evaluation of βi on ϕ gives a section βi(ϕ) ∈ H0(X,Kdi). For a fixed d ∈ π1(G)
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the (restricted) Hitchin map is defined to be

H : Md(G) →
⊕

H0(X,Kdi)

(E,ϕ) 7→ (β1(ϕ), . . . , βr(ϕ)).

For example when G = GL(n,C) then βi(ϕ) can be taken to be tr(∧iϕ) and di = i for all
i = 1, . . . , n. The Hitchin map is proper for any choice of basis; see [Hi87, Hi92]. A more
general direct construction (i.e. without passing to the complex group) of the Hitchin
map for real G can be found in [GPR15].

The pre-image of zero under the Hitchin map H−1(0) ⊂ Md(G) is called the nilpotent
cone. This was defined by Laumon [La88] in the case of a complex group, and by abuse of
language we use the same name when G is a real Lie group. The Hitchin map is algebraic,
so the nilpotent cone is a subscheme which is, in general, neither reduced nor irreducible
(see [Hi17] for a precise analysis in the case G = SL(2,C)). However, we shall view it as
a subvariety1, i.e., we consider the associated reduced scheme.

Proposition 2.9. [Ha] The downward Morse flow coincides with the nilpotent cone, more
precisely

H−1(0) =
⋃

λ∈Λ

D̄λ.

From the above proposition and the fact that H is proper we can also deduce that each
component of the nilpotent cone is a projective variety. The following result generalizes
the one for semisimple complex G given in [BF11], with an analogous proof.

Proposition 2.10. Let G be a real reductive Lie group. Then the nilpotent cone H−1(0)
is a deformation retraction of the moduli space Md(G).

Proof. Fixing a Hermitian metric on X it induces a Hermitian metric on K, and hence
a inner product on each vector space H0(X,Kdi). Consider the following composition
map:

Md(G)
H
→

r
⊕

i=1

H0(X,Kdi)
f
→ R>0,

(s1, · · · , sr) 7→
r

∑

i=1

‖si‖
1

di .

Since both the Hitchin map H and f are proper, the inverse image (f ◦H)−1([0, ǫ]) =: Uǫ

is a compact neighborhood of the nilpotent cone. Note that for any real t > 0 and
si ∈ H0(X,Kdi) we have ‖t.si‖ = tdi‖si‖ and hence

f(ts1, · · · , tsr) = t f(s1, · · · , sr)(2.5)

Using the C∗-action on the moduli space of G-Higgs bundles (2.4) we define the follow-
ing homotopy between the identity map of Md(G) and a retraction onto Uǫ as follows:

F : Md(G) × [0, 1] → Md(G)

(E,ϕ) 7→











{

(E, t0 · ϕ) t 6 t0 := ǫ
f(H(E,ϕ))

(E, t · ϕ) t > t0
if f(H(E,ϕ)) > ǫ

(E,ϕ) if f(H(E,ϕ)) 6 ǫ

1We shall not require varieties to be irreducible.
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Indeed, we have

F((E,ϕ), t) = (E,ϕ), for (E,ϕ) ∈ Uǫ

F((E,ϕ), 1) = (E,ϕ), for (E,ϕ) ∈ Md(G).

Next we prove F((E,ϕ), 0) ∈ Uǫ to conclude that Uǫ is a deformation retraction of
Md(G). Clearly if f(H(E,ϕ)) 6 ǫ then F((E,ϕ), 0) = (E,ϕ) ∈ Uǫ. If f(H(E,ϕ)) > ǫ
then

f(H(F((E,ϕ), 0))) = f(H(E, t0 · ϕ)) = t0 f(H(E,ϕ)) = ǫ,

in the last equality we use the equality (2.5).
The nilpotent cone is a proper subvariety of Md(G) so it is a finite CW-complex and

an absolute deformation retract (see, for example, [BCR98]). Hence, there is some open
neighborhood U ⊇ H−1(0) such that U deformation retracts to H−1(0). Choose ǫ small
enough so that Uǫ ⊂ U , this is possible as H is proper. Therefore the composition
of deformation retraction of U into the nilpotent cone and of Md(G) into Uǫ gives a
retraction of Md(G) into the nilpotent cone. �

3. The obstructions to a deformation retraction

For every topological type d ∈ π1(H) there is a natural inclusion Nd(H
C) ⊂ Md(G)

which comes from considering principal HC-bundles as G-Higgs bundles with zero Higgs
field. Thus, we have

Nd(H
C) ⊂ H−1(0) ⊂ Md(G),

and we can identify Nd(H
C) = F0. Thus, in order to discuss obstructions to the de-

formation retraction from the moduli spaces of G-Higgs bundles to Nd(H
C), by using

Proposition 2.10, it is enough to study the obstructions to deformation retraction from
the nilpotent cone to Nd(H

C) = F0, which we do next.

Remark. In the case when G is non-compact of Hermitian type, by Remark 2.8 the right
question to ask would be the deformation retraction from Md(G) to Nd(H

C) for trivial
topological type d = 0.

3.1. Additive homology of Md(G). In this section we consider homology with C-
coefficients. The following lemmas are of course well known but, for completeness, we
include proofs.

Recall that we do not require algebraic varieties to be irreducible. We understand the
dimension of a variety Y to be the maximal dimension of an irreducible component of
Y . We also recall that any projective variety has the structure of a finite CW-complex
and that this can taken to be compatible with any given subvariety [BCR98, Hir75].
Finally we recall that any irreducible projective variety Y of dimension r has a non-zero
fundamental class [Y ] ∈ H2r(Y ) ∼= C (see, e.g., [Ha75, II.7.6]) and that Hn(Y ) = 0 for
n > 2 dim(Y ).

Lemma 3.1. Let Y be a projective variety of dimension r. Then H2r(Y ) ∼= Cn, where n
is the number of irreducible components of Y of dimension r.

Proof. We prove the result by induction on the number of irreducible components of Y ,
the case n = 1 being the result described in the paragraph preceding the lemma. So let
Y = Y1 ∪ Y2, where Y1 is irreducible and Y2 has n− 1 irreducible components.

Let r = dim(Y ). Since dim(Y1∩Y2) < r we have Hn(Y1∩Y2) = 0 for n > 2r− 2. Thus
the Mayer–Vietoris sequence for Y = Y1 ∪ Y2 gives

0 → H2r(Y1) ⊕H2r(Y2)
∼=
−→ H2r(Y ) → 0.
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Since by induction the desired result holds for Y1 and Y2, the lemma follows. �

Lemma 3.2. Let Y be a projective variety and suppose that Y = Y1 ∪ Y2, where Yi ( Y
is non-empty and closed for i = 1, 2. Then Yi and Y have non-isomorphic homology for
i = 1, 2.

Proof. Let r = dim(Y ). If both Y1 and Y2 have dimension r, the result is immediate from
Lemma 3.1. It remains to consider the case when dim(Y1) = s < r and dim(Y2) = r, say.
Since clearly Y and Y1 have distinct homology we just have to show that Y and Y2 have
distinct homology. For this, note first that we may remove any irreducible components of
Y1 which are contained in Y2 and still have the hypotheses of the Lemma satisfied. Then,
by decomposing into irreducible components, we see that dim(Y1∩Y2) < s. Therefore we
have Hn(Y1 ∩ Y2) = 0 for n > 2s− 2. Thus the Mayer–Vietoris sequence for Y = Y1 ∪ Y2

gives

0 → H2s(Y1) ⊕H2s(Y2)
∼=
−→ H2s(Y ) → 0.

Since, by Lemma 3.1, H2s(Y1) 6= 0, we see that H2s(Y2) and H2s(Y ) are distinct, as
desired. �

Lemma 3.3. Assume that there exists a component Fλ of the fixed locus with λ 6= 0.
Then we may choose λ 6= 0 such that

D̄λ ∩ F0 =
{

lim
z→0

(E, zϕ) | (E,ϕ) ∈ Dλ

}

.

Proof. Following Simpson [Si94, S11], we may consider a C∗-equivariant embedding of
H−1(0) as a projective variety, where the ambient projective space has a standard posi-
tively weighted C∗-action and F0 lies in the weight zero subspace. Then the component Fλ

with the lowest non-zero weight of the C∗-action satisfies the condition of the lemma. �

Proposition 3.4. Suppose that there is a non-empty Fλ, for some λ 6= 0. Then Md(G)
and Nd(H

C) have distinct additive singular homology.

Proof. Consider the closed subspace D̄λ ⊂ H−1(0). If F0 is not contained in D̄λ then
Lemma 3.2 gives the conclusion. Otherwise Lemma 3.3 tells us that, for suitable λ, any
(E, 0) ∈ F0 is of the form (E, 0) = limz→0(E, zϕ) with (E,ϕ) ∈ Dλ. Now consider the
C∗-invariant subspace of D̄λ,

D̄0
λ = {(E,ϕ) ∈ D̄λ | lim

z→0
(E, zϕ) ∈ F0}.

By Lemma 3.3, the map D̄0
λ → F0 given by (E,ϕ) 7→ (E, 0) is a surjective morphism.

Moreover, it is clearly C∗-equivariant. Hence, since the C∗-action is non-trivial on D̄0
λ

and trivial on F0, we conclude that dim D̄λ > dimF0. Therefore Lemma 3.1 shows that
H−1(0) and F0 have distinct homology, as was to be shown. �

Corollary 3.5. Suppose that there exists a semistable G-Higgs bundle (E,ϕ) for which
E is unstable as a principal HC-bundle. Then Md(G) and Nd(H

C) have distinct additive
singular homology.

Proof. Let (E,ϕ) be a semistable Higgs bundle and suppose lim
t→0

(E, tϕ) is (E, 0). Then E

is a semistable HC-bundle. So, our hypothesis implies lim
t→0

(E, tϕ) = (E0, ϕ0) with ϕ0 6= 0.

Therefore (E0, ϕ0) ∈ Fλ, with λ 6= 0 (as ||ϕ0|| 6= 0) and hence the result follows using
Proposition 3.4. �
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3.2. The associated Higgs bundle. The following can be found in [Hi92, GPR15].
Again, let G be a real reductive Lie group with maximal compact subgroup H , and gC

be the complexification of the Lie algebra g of G. Let σ : gC → gC be the corresponding
(C-antilinear) real structure and let θ : gC → gC be the (C-linear) Cartan involution.
Consider the Cartan decomposition

gC = hC ⊕mC

into ±1-eqigenspace for θ.
For example, for G = SL(2,R), the Cartan involution is θ : X 7→ −X t and the Cartan

decomposition of sl(2,C) under θ is

sl(2,C) = so(2,C) ⊕ sym0(2,C)

where so(2,C) denotes the trace zero complex diagonal matrices, and sym0(2,C) the
complex antidiagonal matrices.

When G is non-abelian, there is a σ and θ-equivariant injective morphism

ρ′ : sl(2,C) → gC,

such that ρ′ = ρ′+ ⊕ ρ′−, where

ρ′+ : so(2,C) → hC, ρ′− : sym0(2,C) → mC.(3.1)

Since SL(2,C) is simply-connected ρ′ lifts to

ρ : SL(2,C) → GC.(3.2)

On the other hand, the restriction ρ′|sl(2,R) : sl(2,R) → g lifts to a θ-equivariant group
homomorphism, still denoted by ρ

ρ : SL(2,R) → G(3.3)

which takes SO(2) to H . We denote by ρ+ the complexification of the restriction ρ|SO(2)

ρ+ : SO(2,C) → HC.(3.4)

given an SL(2,R)-Higgs bundle (E ′, ϕ′) we can construct a G-Higgs bundle (E,ϕ) via
(3.4) and (3.1) in the following way:

E := E ′ ×SO(2,C) H
C, ϕ := ρ′−(ϕ′) ∈ H0(X,E(mC) ⊗K).(3.5)

More generally we have the following: let f : G′ → G be a morphism of reductive
Lie groups. This induces a morphism f : H ′C → HC, still denoted by the same symbol.
Given a G′-Higgs bundle (E ′, ϕ′) one can associate a G-Higgs bundle (E,ϕ), which is
called the extended G-Higgs bundle via f , with E := E ′ ×H′C HC. Moreover, since

ϕ′ ∈ H0(X,E(m′C) ⊗K) we get a section of

E(mC) := E(m′C) ×
i◦F

mC,

where i is the isotropy representation for G′. Hence ϕ′ defines via the homomorphism
F := Def : g′ → g, a Higgs field ϕ on E.

When G is connected, f induces a homomorphism between the fundamental groups

f∗ : π1(G
′) → π1(G)

and the topological type of the associated G-Higgs bundle corresponds to the image via
the map f∗. We recall the following result on polystability for the associated G-Higgs
bundle:
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Proposition 3.6. Let f : G′ → G be a morphism between reductive Lie groups (real or
complex). Let (E ′, ϕ′) be a G′-Higgs bundle and (E,ϕ) be the extended G-Higgs bundle
via f . Then, if (E ′, ϕ′) is semistable, then so is (E,ϕ). Thus the group homomorphism
f defines a morphism

Md(G
′) → Mf∗d(G)

(E ′, ϕ′) 7→ (E,ϕ)

Proof. This follows from [GPR15, Corollary 5.10], since the stability parameter is zero.
�

Proposition 3.7. Let H ′C and HC be connected complex Lie groups with H ′C semisimple
and HC reductive. Let f : H ′C → HC be a morphism with discrete kernel. Let E ′ be
a principal H ′C-bundle and let E be the principal HC-bundle obtained by extension of
structure group via f . If E ′ is unstable as a H ′C-bundle, then E is unstable as a HC-
bundle.

Proof. Since H ′C is semisimple, the unstable H ′C-bundle E ′ is destabilized by a re-
duction to a proper parabolic subgroup2. Now, if f is surjective, the result follows
from [Ra75, Proposition 7.1] — note that one needs to ensure that the image of a

proper parabolic in H ′C is a proper parabolic in HC, and the hypothesis on the ker-
nel of f achieves this. For the general case, suppose then that E ′ is not stable. It
follows that the principal H ′C/ ker(f)-bundle obtained by extension of structure group

via H ′C → H ′C/ ker(f) is also unstable. Thus, since E is obtained by extension of struc-

ture group via f : H ′C/ ker(f) → HC, we may assume that f is injective. The result now
follows from [GO16, Proposition 3.13]; note that this is result about G-Higgs bundles but
of course also applies to principal bundles, viewed as Higgs bundles with vanishing Higgs
field. �

Remark 3.8. Note that the case of surjective f is equally valid for G-Higgs bundles, with
essentially the same proof as that of [Ra75, Proposition 7.1]. Thus Proposition 3.7 in fact
applies to G-Higgs bundles as well. We shall, however, not need this.

The following result shows the existence of G-Higgs bundles (E,ϕ) ∈ Fλ, for λ 6= 0 as
in the hypothesis of Corollary 3.5:

Proposition 3.9. Let G be a non-abelian (real or complex) reductive connected Lie group.
Then there exists a semistable Higgs bundle (E,ϕ) ∈ M(G) with E an unstable principal
HC-bundle.

Proof. If G is complex, consider the SL(2,C)-Higgs bundle

(K1/2 ⊕K−1/2, ϕ =

(

0 0
1 0

)

).

Clearly this is a stable SL(2,C)-Higgs bundle and the underlying SL(2,C)-bundle K1/2⊕
K−1/2 is unstable. Now we take the extended G-Higgs bundle via (3.2) which we denote
by (E,ϕ). By Proposition 3.6 this is semistable and by Proposition 3.7 E is an unstable
principal G-bundle.

For G real, we can use a variation of the same idea. Consider the basic SL(2,R)-Higgs
bundle

(3.6) (K1/2 ⊕K−1/2, Q =

(

0 1
1 0

)

, ϕ =

(

0 0
1 0

)

)

2The semisimple assumption on H ′C is a subtle point: for example, a line bundle L with deg(L) 6= 0
is 0-unstable, however, there is no reduction to a proper parabolic of the structure group C∗.



HOMOTOPY TYPE OF MODULI SPACES 11

where 1 is the canonical section of Hom(K1/2, K−1/2 ⊗ K). Clearly this is a stable
SL(2,R)-Higgs bundle.

Let (E,ϕ) be the G-Higgs bundle obtained from the basic SL(2,R)-Higgs bundle (3.6)
via (3.5). Then, since the diagram

SL(2,R)
ρ

−−−→ G




y





y

SL(2,C)
ρ

−−−→ GC ⊃ HC

commutes, we can use the argument of the previous paragraph to conclude that the GC-
Higgs bundle (Ẽ, ϕ̃) obtained from (E,ϕ) by extension of structure group via G ⊂ GC

is a semistable GC-Higgs bundle, whose underlying principal GC-bundle Ẽ is unstable.
Finally note that Ẽ is obtained from E by extension of structure group via the inclusion
HC ⊂ GC. Hence the principal HC-bundle is also unstable (cf. Proposition 3.6). �

3.3. Reducibility of the nilpotent cone. Here we deduce reducibility of the nilpotent
cone when G is a connected reductive complex Lie group. Thus, in this subsection
G = HC.

Proposition 3.10. Let G be a non-abelian connected reductive complex Lie group. Then
the topological type of the extended G-Higgs bundle (E,ϕ) constructed in Proposition 3.9
is zero.

Proof. The topological type of the basic SL(2,C)-Higgs bundle:

(K1/2 ⊕K−1/2, ϕ =

(

0 0
1 0

)

)

which we consider in the proof of Proposition 3.9 is zero and hence the topological type of
the extended G-Higgs bundle is zero as well, by the induced homomorphism between the
fundamental groups i∗ : π1(SL(2,C)) → π1(G) which is indeed trivial in this case. �

For the proof of the next result we shall need the notion of very stable G-bundles
which we recall from [La88, BR94]: A principal G-bundle P is said to be very stable if
H0(X, adP ⊗K) does not contain any non-zero nilpotent Higgs field.

Proposition 3.11. Let G be a non-abelian connected reductive complex Lie group. Then,
the nilpotent cone contains a component which does not belong to N0(G).

Proof. It follows from Proposition 3.9 and Proposition 3.10 that there exists a semistable
G-Higgs bundle (E,ϕ) of trivial topological type for which E is unstable as a principal
HC-bundle. This implies that there is some λ 6= 0 such that Fλ is non empty, see proof
of Corollary 3.5. And on the other hand, using the existence of very stable G-bundles
result, [BR94, Corollary 5.6], we can conclude that F0 is not contained in D̄λ and hence
the result follows. �

Theorem 3.12. Let G be a non-abelian connected reductive complex Lie group. Then
the nilpotent cone in the moduli space M0(G) of G-Higgs bundles of trivial topological
type is not irreducible.

Proof. It is immediate from Proposition 3.11. �

Remark 3.13. The above result was shown in [BF11] in the semisimple complex case. Our
result extends this to the complex reductive case. Since in the case of real reductive G we
do not have existence result of very stable G-bundles we could not conclude reducibility
of the nilpotent cone for this case.
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3.4. Non retracting and topological type. By putting together our previous result
here we prove that the moduli space of G-Higgs bundles does not deformation retract
onto the moduli space of principal bundles. Since we want to study the obstructions
to a deformation retraction from M(G) to N (HC), we should consider separately each
topological type, and here we consider trivial topological type. Thus, in order to apply
Corollary 3.5, we should look for a semistable G-Higgs bundle (E,ϕ) in M0(G) for which
E is unstable as a principal HC-bundle. The following result shows that Proposition 3.9
gives a topologically trivial G-Higgs bundle with unstable underlying HC-bundle.

Proposition 3.14. We have the following:

(i) Let G be a non-abelian connected simple real Lie group of Hermitian non-tube
type. Then the topological type of the extended G-Higgs bundle (E,ϕ) constructed
in Proposition 3.9 is zero.

(ii) Let G be a non-abelian connected reductive real Lie group of non-Hermitian type.
Then there is a polystable G-Higgs bundle (E,ϕ) of trivial topological type such
that E is an unstable HC-bundle.

Proof. Part (i) follows from [GPR15, Proposition 7.1, Proposition 7.2]. To prove Part (ii),
let G̃ be the universal cover of G and hence we have a surjective Lie group homomorphism

p : G̃ → G

such that ker(p) lies in the center of G̃. By Proposition 3.9 we obtain a polystable G̃-Higgs
bundle (Ẽ, ϕ̃) with unstable HC-bundle and since G̃ is simply-connected the topological

type of Ẽ is trivial. Therefore, by using Proposition 3.7 and Proposition 3.6 the extended
G-Higgs bundle via the covering map is the desired G-Higgs bundle. �

Remark. When G is a connected simple real Lie group of Hermitian tube type then the
topological type of the extended G-Higgs bundle (E,ϕ) as in Proposition 3.9 is maximal,
see [GPR15, Proposition 7.2]. Since we are studying the obstructions to a deformation
retraction from the moduli space of polystable G-Higgs bundles of trivial topological type
M0(G) to N0(H

C) we exclude this case in the above Proposition.

Finally putting our results together we obtain the following theorem. Note that the
moduli spaces are generally singular.

Theorem 3.15. Let G be a non-abelian (real or complex) connected reductive Lie group of
non-Hermitian type or connected simple real Lie group of Hermitian non-tube type. Then
the moduli space of semistable principal HC-bundles of trivial topological type N0(H) is
not a deformation retraction of the moduli space M0(G) of semistable G-Higgs bundles
of trivial topological type.

Proof. Combine Corollary 3.5, Proposition 3.9, Proposition 3.10 and Proposition 3.14. �
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