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IRREDUCIBILITY OF MODULI OF SEMISTABLE CHAINS AND

APPLICATIONS TO U(p, q)-HIGGS BUNDLES

STEVEN BRADLOW, OSCAR GARCÍA-PRADA, PETER GOTHEN,
AND JOCHEN HEINLOTH

To Nigel Hitchin

Abstract. We give necessary and sufficient conditions for moduli spaces of
semistable chains on a curve to be irreducible and non-empty. This gives in-
formation on the irreducible components of the nilpotent cone of GLn-Higgs bun-
dles and the irreducible components of moduli of systems of Hodge bundles on
curves. As we do not impose coprimality restrictions, we can apply this to prove
connectedness for moduli spaces of U(p, q)-Higgs bundles.

1. Introduction

The aim of this article is to show that moduli spaces of systems of Hodge bundles
on curves and character varieties for the unitary groups U(p, q) are connected, once
the numerical invariants of the corresponding bundles are fixed (Theorems 4.1 and
5.1). For the character varieties it has been known for a long time [4, 3] that
the closure of the space of representations corresponding to stable Higgs bundles is
connected, but (except for some special cases [16, 13]) the possibility of components
without stable points remained a somewhat nagging possibility.

We approach the problem using the fact that systems of Hodge bundles can be
viewed as holomorphic chains. As a consequence we also show that the necessary
conditions found in [6] for the existence of semistable chains on a curve are also
sufficient conditions. This also gives a concrete, but complicated, enumeration of
the irreducible components of the so called global nilpotent cone on a curve in case
rank and degree are coprime, and an estimate in the general case (Corollary 6.1).

The results follow from a more detailed study of wall crossing phenomena for
moduli spaces of semistable chains for varying stability conditions that extend ar-
guments from [9]. The key problem for our applications is to extend these arguments
to the boundary case of walls containing the stability condition induced from stabi-
lity of Higgs bundles. There the available results turn out to be just strong enough
to show that an irreducible stack for a slightly larger stability parameter contains
representative of every S-equivalence class.
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For the application to U(p, q)-Higgs bundles it is sufficient to prove the above
results for moduli spaces of triples only, for which the wall crossing is easier to
understand. We have therefore tried to illustrate our arguments in this special case
throughout, before giving the general argument.

The structure of the article is as follows. In Section 2 we set up the notation
and recall the standard notions of stability for holomorphic chains. In Section 3
we prove that the necessary conditions for the existence of semistable chains found
in [6] are also sufficient if the stability parameter α is larger than the value αHiggs

coming from Higgs bundles (Theorem 3.2). In Section 4 we extend this to the
boundary case α = αHiggs (Theorem 4.1). In Section 5 we apply these results
to prove connectedness of the U(p, q)-character varieties. The application to the
components of the global nilpotent cone is then explained in the last section.

After this work was completed Tristan Bozec managed to give a complete com-
binatorial description of the irreducible components of the global nilpotent cone in
[2] using closely related methods.

Many of the ideas in this article have their origin in Nigel Hitchin’s work. Indeed,
in his seminal paper [10] he introduced Higgs bundles and their use in the study of
character varieties for surface groups — in particular for representations in SL2R =
SU(1, 1) — and he used length two chains of line bundles to study the topology
of the moduli spaces. We would like to take this opportunity to acknowledge his
influence on us and our work, and we take great pleasure in dedicating this article
to him.

2. Recollection on moduli spaces of chains

By [14, Section 4] the moduli spaces of Higgs bundles carry a C∗-action for which
the fixed points parametrize systems of Hodge bundles. In the case of U(p, q)-
Higgs bundles, these fixed points have an elementary description as moduli spaces
of holomorphic chains that were studied in detail in [1].

In this section we therefore briefly recall the basic notions on chains of vector
bundles and stability for these objects as well as the foundational results on their
moduli that we will need.

2.1. Definitions and Notation. Throughout we will fix a smooth projective curve
C of genus g over a field k of characteristic 0 and assume that g ≥ 1. We denote
the sheaf of differentials on C by Ω.

Remark 2.1. The restriction on the base field enters only through the use of [1,
Proposition 4.5]), for which no characteristic free proof has been found so far. The
assumption on the genus of the curve is needed to ensure that 2g − 2 ≥ 0, so that
[6, Proposition 4] applies).

Definition 2.2. A chain E• of length r on C is a collection

Er
φr
−→ Er−1

φr−1
−−→ . . .

φ1−→ E0

consisting of vector bundles Ej and morphisms of OC-modules φj : Ej → Ej−1.

Definition 2.3. For α = (α1, . . . , αr) ∈ Rr we will denote the α-slope by

µα(E•) :=

∑r

i=0 deg(E)i +
∑r

i=1 αi rank(E)i
∑r

i=0 rank(E)i
.
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Where convenient we denote by n = rk(E•) ∈ N
r+1
0 , d = deg(E•) ∈ Zr+1 the rank

and degree of the chain, and abbreviate |n| :=
∑r

i=0 ni. We will always assume
|n| > 0 (i.e. we allow some ni = 0, but not all of them). To emphasize that the
α-slope depends only on the numerical invariants we will also use the notation

µα(n, d) :=

∑r

i=0 di +
∑r

i=1 αini

|n|
.

Remark 2.4. In some formulae it is convenient to expand α to include α0, i.e. to
take α = (α0, α1, . . . , αr). Notice that if α + c = (α0 + c, α1 + c, . . . , αr + c) then
µα+c(E•) = µα(E•) + c. Since all important formulae involving α-slopes (e.g. (2.1))
involve differences of slopes, we can without loss of generality assume that α0 = 0.

Definition 2.5. We write αHiggs = (i(2g − 2))i=1,...r and will abbreviate by

α > αHiggs

the condition αi − αi−1 > 2g − 2 for i = 1, . . . r (where we assume α0 := 0).

Definition 2.6. A chain E• is called α-semistable, if for all subchains 0 6= F• ⊂ E•
we have

µα(F•) ≤ µα(E•) (2.1)

The chain is called α-stable if the inequality is strict for all subchains

Definition 2.7. The stack of chains of rank n and degree d is denoted by Chaind
n.

The open substack of α-semistable chains is denoted by Chaind,α−ss
n .

Remark 2.8. Chains of length 1 are usually called triples E1
φ

−→ E0. For these
objects the stability condition depends on a single real parameter α. The corre-
sponding α-slope is

µα(n, d) :=
d0 + d1 + αn1

n0 + n1

.

Remark 2.9. The relation to Higgs bundles is as follows: Any chain E• defines a
Higgs bundle E := ⊕i(Ei ⊗Ω−i) with Higgs field θ := ⊕φi : E → E ⊗Ω. Conversely,
any Higgs bundle (E , θ) that is a fixed point for the C∗-action θ 7→ tθ is of this form.

2.2. Necessary conditions for the existence of semistable chains. Our start-
ing point are the conditions for the existence of semistable chains introduced in [6],
which we will need to recall.

Definition 2.10. For a chain E• = (Er → · · · → E0) we will call the following chains
standard subchains of E•:

(1) For 0 ≤ k < r the chain E ′,≥k
• := (0 → · · · → 0 → Ek → · · · → E0).

(2) For all 0 ≤ k < j ≤ r such that nj < min{nk, . . . , nj−1} the chain

E ′,[k,j]
• := (Er → · · · → Ej+1 → Ej = · · · = Ej → Ek−1 → · · · → E0).

Dually we will call standard quotients of E• the chains

(3) For 0 < k ≤ r the chain E ′′,≤k
• := (Er → · · · → Ek → 0 → · · · → 0).

(4) For all 0 ≤ k < j ≤ r such that nk < min{nk+1, . . . , nj} the chain

E ′′,[k,j]
• := (Er → · · · → Ej+1 → Ek = · · · = Ek → Ek−1 → · · · → E0).
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Note that these types of chains are dual to each other, i.e. a standard subchain
of E• defines a standard quotient of the dual chain E∨

• .

Remark 2.11. As explained in [6] this is a slight abuse of notation, because although
the chains in (2) come equipped with a morphism to E• this morphism need not
be injective. However, it is shown in [6] that for stability parameters α satisfying
αr > · · · > α0 for any chain either the canonical map is injective, or there exists
a subchain of slope larger than the slope of the standard subchain (constructed
from the image of the canonical map). Thus semistable chains of degree (n, d) can
exist only if the slopes of the standard subchains satisfy inequality (2.1), i.e. are
bounded above by µα(n, d). And moreover if equality occurs, the corresponding
standard subchain defines an honest subchain of every semistable chain.

Remark 2.12. In the above we corrected a typo in [6, Proposition 4]: the given
condition on the ranks nk has to be the one dual to the standard subchains, as the
proof is given by duality. Fortunately this does not affect the rest of the arguments
in loc. cit. as the proofs again apply duality.

With this notation [6, Proposition 4] says that α-semistable chains can only exist
if none of the standard subchains (resp. quotient chains) has α−slope ≥ µα(n,d)

(resp. ≤ µα(n,d)). Let us list the explicit form of these necessary conditions :

• For all i such that ni = ni−1 we have

di ≤ di−1. (C0)

• For all 0 ≤ k < r we have
∑k

i=0

(

di + αini

)

∑k

i=0 ni

≤ µα(n, d). (C1)

• For all 0 ≤ k < j ≤ r such that nj < min{nk, . . . , nj−1} we have
∑

i 6∈[k,j]

(

di + αini

)

+ (j − k + 1)dj +
(
∑j

i=k αi

)

nj
∑

i 6∈[k,j] ni + (j − k + 1)nj

≤ µα(n, d) (C2)

• For all 0 ≤ k < j ≤ r such that nk < min{nk+1, . . . , nj} we have
∑j

i=k+1

(

di − dk + αi(ni − nk)
)

∑j

i=k+1(ni − nk)
≤ µα(n, d) (C3)

Remark 2.13. Note that since µα is linear in α, for fixed n, d the conditions (C1)-
(C3) define half-spaces in the space of stability parameters R

r+1.

Remark 2.14. We could have subsumed condition (C0) in condition (C2) by allowing
nj ≤ min{nk, . . . , nj−1}, but we want to stress that (C0) is independent of α.

Remark 2.15. Condition (C3) can equivalently be stated for the α-slope of the
standard quotient E

′′,[k,j] rather than for the corresponding subchain. It becomes
the following: For all 0 ≤ k < j ≤ r such that nk < min{nk+1, . . . , nj} we have

∑

i 6∈[k,j](di + αini) + (j − k + 1)dk +
∑j

i=k αink
∑

i 6∈[k,j] ni + (j − k + 1)nk

≥ µα(n, d). (C3’)
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Remark 2.16. For triples the above conditions reproduce the conditions:

αmin =
d0
n0

−
d1
n1

≤ α ≤ αmax =
(

1 +
n0 + n1

|n0 − n1|

)(d0
n0

−
d1
n1

)

,

with αmax = ∞ if n0 = n1.

3. Sufficiency of the conditions for α > αHiggs

Definition 3.1.

(1) For given n, d satisfying condition (C0) we define the convex stability region:

Stabilityd
n := {α ∈ R

r|α > αHiggs and α satisfies conditions (C1),(C2),(C3)}.

(2) The parameter α ∈ Stabilityd
n is called a critical value if there exists n′, d′

with n′ < n such that µα(n′, d′) = µα(n, d) but µβ(n′, d′) 6= µα(n, d) for
some β ∈ Rr. If this happens, the condition µα(n′, d′) = µα(n, d) cuts out a
hyperplane called a wall in the space of stability parameters.

We can now state our first result:

Theorem 3.2. Assume that g ≥ 1 and let n ∈ Nr+1, d ∈ Zr+1 and α ∈ Rr
>αHiggs

.

Then the stack Chaind,α−ss
n is irreducible and non-empty if and only if n, d satisfy

condition (C0) and α ∈ Stabilityd
n.

Proof. Since we know that the conditions are necessary we only have to show that
the conditions are also sufficient. We will argue by induction on r and |n| =

∑r

i=0 ni.
For r = 0 the conditions are empty and the stack of semi stable bundles of rank

n0 and degree d0 is known to be irreducible and nonempty for g > 0.
For r > 0 we proceed as in the proof of [9, Proposition 3.8], i.e., the basic strategy

will be to vary the stability parameter α in order to reduce to the case that α lies
on a boundary of Stabilityd

n. In this case any semistable chain E• will contain a
standard subchain of the same slope so it is properly semistable and this will allow
us to conclude by induction, because of the following lemma:

Lemma 3.3. Let n ∈ Nr+1, d ∈ Zr+1 be such that they satisfy condition (C0)
and suppose that α ∈ Stabilityd

n lies on a wall defined by equality in one of the

conditions (C1),(C2),(C3). Let n′, d′ (resp. n′′, d′′) denote the numerical invariants
of the standard subchain (resp. the standard quotient chain) defining the wall and
set (n′′, d′′) := (n, d) − (n′, d′) (resp.(n′, d′) := (n, d) − (n′′, d′′)).

Then (n′, d′) and (n′′, d′′) satisfy (C0) and moreover:

α ∈ Stabilityd′

n′ and α ∈ Stabilityd′′

n′′ .

Remark 3.4. In case of triples, i.e., for r = 1 this lemma is easy to see, because in
this case the only standard subchains are 0 → E0 and E1 → E1 (if n1 < n0) and

the standard quotient is E0 → E0 (if n0 < n1). In all of these cases Stability
d′

n′ and

Stability
d′′

n′′ are only defined by condition (C0), which is then trivially verified.

Proof of Lemma 3.3: This is an elementary verification: Condition (C0) is easily
seen for the standard subchains and quotient chains, because the ranks and degrees
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of the bundles are a subset of those of the original chain and also for a quotient by
a standard subchain the ranks n′′

i are either 0 or, we have

(n′′
j , d

′′
j ), (n

′′
j+1, d

′′
j+1) = ((nj − ni, d

′′
j − di), (n

′′
j+1 − ni, d

′′
j+1 − di)).

Let us abbreviate for 0 ≤ k ≤ l ≤ r

n[k,l] := (0, . . . , 0, nk, . . . , nl, 0, . . . 0).

Suppose that α lies on a wall defined by (C1), i.e.

µα(n[0,k], d[0,k]) = µα(n, d).

for some k.
Thus we also have µα(n[k+1,r], d[k+1,r]) = µα(n, d).

Then (C1) for (n′, d′) = (n[0,k], d[0,k]) is implied by (C1) for n, d and the above

equality. Similarly if the condition failed for n′′, d′′ for some k′′, i.e.,

µα(n[k+1,k′′,], d[k+1,k′′]) > µα(n, d)

then since the slope of a sum is a convex combination of the slope of the summands
we also have that

µα(n[0,k′′,], d[0,k′′]) > µα(n, d),

contradicting (C1) for n, d.
The same argument shows that (C2) is preserved for (n′, d′) = (n[0,k], d[0,k]), be-

cause the union of a subchain of type 2 of invariants (n[0,k], d[0,k]) with (n[k+1,r], d[k+1,r])
will define a subchain of type 2 of (n, d) and the same applies to the standard quo-
tients of type (3). The same argument gives the result for (n′′, d′′) = (n[k+1,r], d[k+1,r]).

Next suppose that α lies on a wall defined by (C2) for some k < j. Let us denote

by (n′, d′) =: (n[j,k], d[j,k]) the corresponding numerical invariants.
A standard subchain of type 2 of a chain with invariants (n′, d′) is also a subchain

of the same type for (n, d). Similarly, the union of a subchain of type 2 of (n′′, d′′)
with (n′, d′) is also a standard subchain of type 2 of (n, d), so (C2) will again be
satisfied.

Given a standard subchain of type 1 of (n′, d′) for some index k′ is handled by
the same argument if k′ 6∈ [j, k]. Suppose that k′ ∈ [j, k]. By assumption we then

know µ(n[j,k′], d[j,k
′]) ≤ µα(n, d). But this implies that

µα(n[j,k′] − n[j,k], d[j,k
′]d[j,k]) ≥ µα(n, d) .

Since we know that µα(n[0,k′], d[0,k′]) ≤ µ(n, d) we must also have

µα(n′
[0,k′], d

′
[0,k′]) ≤ µ(n, d) .

For the quotient n′′, d′′ the argument is easier, since the union of a subchain of
type 1 with n′, d′ would be another standard subchain of type 2 of n, d.

The argument for standard quotients is of type 3 is analogous.
Finally, the case of α lying on a wall defined by (C3) is dual to the above. �

Let us now finish the proof of Theorem 3.2.
Case 1 (Chains of constant rank): In case n = (n, . . . , n) is constant only condi-

tion (C1) appears. If α does not lie on the boundary of Stabilityd
n we can apply [9,

Lemma 3.4 and Proposition 3.8 (1)] to find that Chaind,α−ss
n is irreducible and that
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it is non-empty if and only if Chaind,α∞−ss
n is non-empty for any α∞ in Stabilityd

n

satisfying α∞,i − α∞,i−1 > di−1 − di.
In this case any α∞-unstable chain E ′

• contains a maximal destabilizing subchain
E ′
• which is again of constant rank by [5, Proposition 6.9]. Since

µα∞
(E ′

•) =
∑ 1

r + 1
(µ(E ′

i) + α∞,i)

and the same holds for µα∞
(E•) we see that for at least one i the subsheaf E ′

i ⊂ Ei
must be destabilizing.

The stack Chaind,inj
n of those chains for which all maps Ei → Ei−1 are injective

is smooth and irreducible and the forgetful map to any of the Bundi
n is a smooth

fibration. Thus there is an open dense subset of chains such that all of the Ei are
semistable. Therefore we have shown that in this case Chaind,α∞−ss

n is not empty.
If α lies on a wall defined by condition (C1), say for the integer k, we can argue

by induction on r: In this case any α semistable chain has the subchain E ′
• =

(0 → · · · → Ek → · · · → E0) with µα(E ′
•) = µα(n, d) and this subchain is again

α-semistable.
Consider the canonical map

π : Chaind,α−ss
n → Chain

(0,...,0,dk,...,d0),α−ss
(0,...,0,n,...,n) ×Chain

(dr ,...,dk+1,0,...,0),α−ss

(n,...,n,0,...,0)

By induction we know that the factors of the product are non-empty and irre-
ducible and moreover for any pair of chains (E ′

•, E
′′
• ) in this product we have that

Ext2(E ′′
• , E

′
•) = 0

by [5, Lemma 4.5]. Thus the map π is a generalized vector bundle and therefore
Chaind,α−ss

n is irreducible and non-empty also in this case. This proves the theorem
for chains of constant rank.

Case 2 (Chains of non-constant rank)
We may now assume that the rank n is not constant. Again, if α lies in the

interior of Stabilityd
n we argue again as in [9, Proposition 3.8]:

In this case we can find a piecewise linear path γ inside of the convex region such
that γ(0) = α and α′ = γ(1) lies on a single wall defined by one of the inequalities.

By [9, Lemma 3.4] this reduces the claim to proving that Chaind,α′−ss
n is non empty

and irreducible if α′ lies on a wall defined by one of the conditions (C1),(C2),(C3).
Thus we may assume that α = α′ lies on at least one of the walls. If it lies

on several of the walls choose one of these. For any α-semistable chain E• the
corresponding standard subchain E ′

• (or standard quotient chain) will actually be a
subchain of the same α-slope. Taking the associated grade chain we get a morphism

π : Chaind,α−ss
n → Chaind′,α−ss

n′ ×Chaind−d′,α−ss
n−n′ .

Note that since α > αHiggs it follows (see [5, Lemma 4.6]) that Ext2(E ′′
• , E

′
•) = 0

for all (E ′
•, E

′′
• ) ∈ Chaind′,α−ss

n′ ×Chaind−d′,α−ss
n−n′ and hence π is a generalized vector

bundle. Therefore, again we can conclude by induction because from Lemma 3.3
we know that α′ also satisfies the inequalities for (n′, d′) and (n′′, d′′). �
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4. Irreducibility of moduli spaces of semistable chains (non-coprime
case)

Theorem 4.1. Assume g > 1. Let n ∈ N
r+1, d ∈ Z

r+1 and α = αHiggs. Then the

coarse moduli space Md
n of Chaind,αHiggs−ss

n is irreducible and non-empty if and only

if n, d satisfies condition (C0) and αHiggs ∈ Stability
d

n.

Note that in contrast to the previous section we only prove the result for the
coarse moduli space.

Proof. As before we will prove the statement by induction on r and |n|. For r = 0
the claim follows from the irreducibility of the stack of semistable bundles.

If αHiggs lies on one of the walls defined by (C1),(C2),(C3) then by Remark 2.11
any semistable chain will contain a standard subchain of the same slope, say of rank
n′, d′. This defines a surjective morphism

p : Chaind,αHiggs−ss
n → Chain

d′,αHiggs−ss

n′ ×Chain
d−d′,αHiggs−ss

n−n′

and all its fibers consist of bundles in the same S-equivalence class. Thus in this
case we can conclude by induction.

If αHiggs does not lie on any wall then αHiggs−semistability is equivalent to α-
stability for α in some neighborhood of αHiggs, so that by Theorem 3.2 we already
know that the stack of semistable chains is irreducible and therefore the same holds
for its coarse moduli space.

Finally suppose that αHiggs lies on some other wall in the space of stability param-
eters. Choose a short line segment [α−, α+] through α such that α is the only critical
value in the line and such that α+ ∈ Stabilityd

n. Let us denote by Chaind,α+,HN−t
n

the Harder–Narasimhan stratum of type t in the moduli stack of chains.
Then we know that

Chaind,αHiggs−ss
n = Chaind,α+−ss

n ∪
⋃

t∈I

Chaind,α+,HN−t
n

where I is the set of types of Harder–Narasimhan-filtrations for α+ such that the
α-slopes of the graded quotients are all equal to µα(n, d).

Also recall that Harder–Narasimhan-strata have a partial ordering defined by

t′ < t⇔ Chaind,α+,HN−t
n ∩ Chaind,α+,HN−t′

n 6= ∅ and t 6= t′.

In this situation it seems difficult to argue by dimension reasons as in [9, Sec-
tion 3], because the stacks may now be singular. However, we claim that any
α-semistable chain is S-equivalent to a chain in Chaind,α+−ss

n . This will imply that
the morphism

Chaind,α+−ss
n →Md

n

is surjective and since Chaind,α+−ss
n is irreducible by Theorem 3.2 we can then con-

clude the same for Md
n .

Suppose then that E• ∈ Chaind,α+,HN−t
n ⊂ Chaind,αHiggs−ss

n . Let

0 = F0 ⊂ F1
• ⊂ · · · ⊂ Fk

• = E•
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be the α+-Harder–Narasimhan-filtration and E i
• := F i

•/F
i−1
• the subquotients. Then

E is S-equivalent to ⊕E i
•. Consider the stack of extensions in the opposite direction

Ext(E1
• , . . . , E

k
• ) = 〈(Gk

• ⊂ · · · ⊂ G1
• , ψi : G

i
•/G

i+1
•

∼= Ei)〉.

Any such extension can be degenerated into the split extension. It is therefore α-
semistable and can moreover only lie in Harder–Narasimhan-strata of type t′ with
t′ ≥ t. Finally if such an extension lies in the same Harder–Narasimhan-stratum
as E• then the extension must be a split extension. (This is by induction, e.g. the
maximal destabilizing F ′

• → G1
• satisfies that the composition F ′

• → G1
• → G1

•/G
2
• is

an isomorphism, because the kernel has slope ≥ µα+(F ′
•) and G2

• has a filtration by
bundles of smaller slope, so the kernel must be 0.)

We are therefore reduced to show that there exists a non-trivial extension, because
this would imply that E• is S-equivalent to a chain contained in a less unstable
Harder–Narasimhan-stratum and by induction this implies that E• is S-equivalent
to a α+-semistable chain.

The existence of a non-trivial extension follows from [1, Proposition 4.5] and [9,
Section 3]. Let us recall this in the special case we need. Given chains E ′

•, E
′′
• we

will denote

Hom•(E ′′
• , E

′
•) := [⊕Hom(E ′′

i , E
′
i)

b
−→ ⊕Hom(E ′′

i , E
′
i−1)]

the complex of sheaves that computes the RHom in the category of chains. The
differential b is the sum of the commutators defined by the chain maps. We will
abbreviate

χ(E ′′
• , E

′
•) := χ(H∗(C,Hom•(E ′′

• , E
′
•)))

Theorem 4.2 ([1, Proposition 4.5]). Let E ′
•, E

′′
• be αHiggs-semistable chains with

µαHiggs
(E ′

•) = µαHiggs
(E ′′

• ). Then we have

χ(E ′′
• , E

′
•) ≤ 0

and = holds if and only if the differential b of the complex is an isomorphism.

Remark 4.3. For the case r = 1 this result already appears in [4, Proposition 4.7]

This version stated in the given reference states a slightly weaker result, which
however implies the above: As remarked in [9, Corollary 3.5], we have replaced the
condition of b not being generically an isomorphism by b not being an isomorphism,
because if b is generically an isomorphism then the complex is quasi-isomorphic to
a complex that is a concentrated in degree 1 and is a torsion sheaf in this degree.
In this case the Euler characteristic is also < 0.

Moreover one can also replace the condition that the chains are polystable by
the condition that they are semistable, because for chains that are extensions of
polystable chains the corresponding Hom complexes also admit a filtration with
graded quotients equal to the ones of the polystable chains and χ is additive with
respect to these filtrations.

Thus we can conclude that Ext1Chain(E1
• , . . . , E

k
• ) 6= (0) unless for all i < j the

complex Hom•(E i
•, E

j
•) ∼ 0 (i.e. is quasi-isomorphic to 0). This implies that

Hom•(E1
• ,⊕j>1E

j
•) ∼ 0. Now if the sets

supp(rk1) := {i| rk(E1
i ) 6= 0} and supp(rk2,...k) := {i| rk(⊕j>1E

j
i ) 6= 0}

are strings of consecutive integers we can conclude from [9, Corollary 3.7] that the
numerical invariants of ⊕j>1E j

• are the invariants of a standard subchain of E•. Since
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we already excluded the case that αHiggs lies on the corresponding wall this cannot
happen.

Finally if the sets supp(rk1), supp(rk2,...k) are not connected strings of integers,
then the corresponding chains will be sums of chains supported in different inter-
vals we will write this type of summands as E1

• = E1′
• ∪ E1′′

• . By semistability each
of the summands is semistable of the same slope and there are no extensions be-
tween the summands. Thus if Hom•(E1

• ,⊕j>1E j
•) ∼ 0 and E1

• = E1′
• ∪ E1′′

• then
also Hom•(E1′

• , E
1′′
• ⊕j>1 E j

•) ∼ 0 and similarly for E1′′
• ⊕j>1. After reordering the

summands we can therefore apply the corollary and find a standard subchain that
gives a subchain of the same slope and we again find a contradiction. �

4.1. Triples: the case r = 1. In view of our main application, we briefly describe
the special case r = 1, in which the chains are of the form E1 → E0. In this case the
conditions (C1)-(C3) reduce to the inequality in Remark 2.16, αHiggs = 2g− 2, and
Theorem 4.1 becomes the statement that

Theorem 4.4. Assume g > 1. Let n ∈ N2, d ∈ Z2 and α = 2g−2. Then the coarse
moduli space Md

n of Chaind,α2g−2−ss
n is irreducible and non-empty if and only if n, d

satisfies condition (C0) and αmin ≤ 2g − 2 ≤ αmax where αmin and αmax are as in
Remark 2.16.

In a similar way to Theorem 4.1, Theorem 4.4 can be proved by treating separately
three different possibilities for the location of 2g − 2 in the interval [αmin, αmax]:

• If 2g − 2 = αmin then a triple E1
φ1
−→ E0 is 2g − 2-semistable if and only if

E0 and E1 are semistable bundles and φ1 = 0. The moduli space Md
n is thus

the product of two non-empty irreducible moduli spaces.
• If 2g−2 = αmax then Theorem 7.7 and 8.15 in [4] show that Md

n is non-empty
and irreducible.

• If αmin < 2g − 2 < αmax, regardless whether 2g − 2 is itself a critical value,
we can pick ǫ > 0 such that α+ = 2g−2+ ǫ is generic with no critical values
between 2g − 2 and α+. We consider the map

Chaind,α+−ss
n → Md

n . (4.1)

Our goal is to show that this map is surjective since then the fact that
Chaind,α+−ss

n is non-empty and irreducible will imply that the same is true

for Md
n . We thus consider a triple, say T , representing a point [T ] ∈ Md

n

and suppose that it is not α+-semistable. Then T has a maximally α+-
destabilizing sub-triple T ′ ⊂ T ; indeed T ′ is the first term in the Harder–
Narasimhan filtration for T . Assuming that there are non-trivial extensions
in which T/T ′ is a sub-triple and T ′ the quotient, we can replace T by one

such extension, say T̃ . It will follow by construction that T̃ is α-semistable
and represents the same point as T in Md

n . Moreover, if T̃ is not α+-
semistable then it lies in a “less unstable” Harder–Narasimhan-stratum than
T . After a finite number of iterations this process produces a representative
for [T ] which is α+-semistable, thus completing the argument. The proof
thus hinges on the existences of the requisite non-trivial extensions, i.e. on
the non-vanishing of Ext1(T ′, T/T ′). This is guaranteed by the r = 1 version
of Theorem 4.2, i.e. [4, Proposition 4.7].
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5. Connectedness of the moduli space of U(p, q)-Higgs bundles

The irreducibility result of the previous section allows us to finally settle the
connectedness of the moduli space of U(p, q)-Higgs bundles, completing the results
of [3] and [4].

Let us start by recalling the setup. A U(p, q)-Higgs bundle is a collection

(V,W, β : W → V ⊗ Ω, γ : V → W ⊗ Ω),

where V,W are vector bundles on C with rank(V) = p, rank(W) = q.

We will denote by a = deg(V) and b = deg(W ) and denote by Higgsa,b
U(p,q) the

stack of U(p, q)-Higgs bundles. Any U(p, q)-Higgs bundle defines a Higgs bundle
E := V ⊕W and this induces a notion of semistability for U(p, q)-Higgs bundles.

We will denote by Higgsa,b,ss
U(p,q) ⊆ Higgsa,b

U(p,q) the open substack of semistable Higgs

bundles and by Ma,b

U(p,q) the corresponding coarse moduli space.

By duality we know that

Higgsa,b
U(p,q)

∼= Higgs−a,−b

U(p,q)

and this isomorphism preserves semistability. We may therefore always assume that
µ(V) ≥ µ(W).

Let us recall the analytic argument relating these spaces to moduli spaces of
triples. Hitchin showed that there is a proper map (see [3, Section 4] for details for
the case of U(p, q))-Higgs bundles):

f : Ma,b

U(p,q) → R,

(V,W, β, γ) 7→ ‖β‖2 + ‖γ‖2.

Here the norms are L2-norms, taken with respect to hermitian metrics on V and W
satisfying Hitchin’s equations.

Let N a,b

U(p,q) ⊂ Ma,b

U(p,q) be the subspace of local minima of f . Then [3, Theorem

4.6] identifies N a,b

U(p,q) as the subspace of (V,W, β, γ) with β = 0. In turn, there is

an isomorphism

N a,b

U(p,q)

≃
−→Md,αHiggs

n ,

(V,W, 0, γ) 7→ (V
γ
−→ W ⊗ Ω)

where d = (d0, d1) = (b + 2g − 2, a), n = (n0, n1) = (q, p) and αHiggs = 2g − 2. In
other words, Md,α

n is the moduli space of 2g − 2-semistable triples.
As f is proper, we know that connectedness of the subspace of local minima

N a,b

U(p,q) implies connectedness of Ma,b

U(p,q) (see [3, Proposition 4.2]). The results in

[3]) showed only that the restriction of N a,b

U(p,q) to the stable locus in Ma,b

U(p,q) is

connected. This is sufficient to prove the connectedness of Ma,b;stable
U(p,q) (the closure of

the stable locus) but leaves open the possibility of additional connected components
in which all points are strictly polystable. Now, as a consequence of Theorem 4.1
we can rule out this possibility and conclude:

Theorem 5.1. The moduli space Ma,b

U(p,q) is connected.

Remark 5.2. As is common in this circle of problems, one could replace the analytic
argument above by the result that the C∗ on Ma,b

U(p,q) has proper fixed point sets.
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Remark 5.3. Our results imply that there are no components of the moduli space
consisting entirely of strictly semistable U(p, q)-Higgs bundles, except in the case
of rigidity when p 6= q and the Toledo invariant is maximal (cf. [3]). For such a
component, the representations in the corresponding components of the character
variety all factor through a proper subgroup of U(p, q) and thus do not have Zariski
dense image. This would have been surprising in view of results of Kim and Pansu
[11] on the deformability of surface group representations into representations with
Zariski dense image (except in the aforementioned case and an analogous one for
the group SO∗(4m + 2)). The Kim–Pansu results apply to representations into all
real forms of SL(n,C),O(n,C) or Sp(2n,C) but hold only for curves of high genus
compared to the dimension of the target group. They thus do not entirely rule out
the possibility of such anomalous components for surface group representations of
low genus curves. Our results show that if such components exist then, at least
in the case of SU(p, q) representations, the explanation is not related to a lack of
stable points in the corresponding components of the Higgs bundle moduli space.

6. Application to the irreducible components of the global
nilpotent cone

As noted in the introduction, knowledge about moduli spaces of chains is known
to imply results on the irreducible components of the 0-fiber of Hitchin’s fibration.
Let us recall this relation. As in [9] we denote by Higgsd,ssn the moduli stack of
semistable Higgs bundles of rank n and degree d on C, i.e., the stack of pairs (E , θ)
where E is a vector bundle of rank n and degree d and θ : E → E ⊗Ω a morphism of
OC-modules. The coarse moduli space of semistable Higgs bundles will be denoted
Md

Dol,n and h : Md
Dol,n → A = ⊕H0(C,Ωi) is the Hitchin fibration.

The fiber h−1(0) is called global nilpotent cone. We already recalled that the
fixed points for the action of C∗ on Md

Dol,n are moduli spaces of chains. We denote

by Fn,d ⊂ h−1(0) the corresponding subsets of the moduli of Higgs bundles of the
form E = ⊕Ei, θ = ⊕θi, where θi : Ei → Ei−1 ⊗ Ω as in Remark 2.9. Finally we
denote by F−

n,d the subschemes of those points (E , θ) for which limt→∞(E , tθ) ∈ Fn,d.

As h−1(0) is projective these strata define a decomposition h−1(0) = ∪F−
n,d.

If (n, d) are coprime this is the Bia lynicki-Birula decomposition and therefore all
of the strata F−

n,d are smooth and known to be of dimension n2(g − 1) + 1. Their

closures are thus the irreducible components [8, Proposition 9.1].
For general (n, d) the strata F−

n,d can be singular, so we have to argue more

carefully. By [12] and [7], the fibers of h when considered in Higgsd,ssn are of pure
dimension n2(g − 1) + 1. This implies that the irreducible components in h−1(0)
cannot have larger dimension and since dimension is upper semicontinuous they
also have to be of pure dimension n2(g − 1) + 1.

By [9, Proposition 2.6] the strata F−
n,d have a partial ordering. Namely defining

wt(n, d) := −2
∑

i<j(j− i)ninj(
dj
nj

− di
ni

). we know that for any (n, d) the subvariety

⋃

(m,e)
wt(m,e)≥wt(d,n)

F−
m,e
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is closed. Moreover, by [9, Corollary 2.13] this is also a union of irreducible com-
ponents of h−1(0). Therefore for each (n, d) such that Fn,d 6= ∅ the closure of F−

n,d

constitutes at least one irreducible component of h−1(0).

Corollary 6.1. For g > 1 and any (n, d) ∈ N×Z there are irreducible components
of h−1(0) contained in the closure of F−

n,d if and only if the corresponding numer-

ical invariants of chains satisfy the conditions (C0),(C1),(C2),(C3). If (n, d) are
coprime, the F−

n,d are irreducible.
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[5] O. Garćıa-Prada, J. Heinloth, A. Schmitt, On the motives of moduli of chains and Higgs
bundles, J. Eur. Math. Soc. 16 (2014), no. 12, 2617–2668.
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