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Abstract. We study the existence of limiting laws of rare events corresponding to the
entrance of the orbits on certain target sets in the phase space. The limiting laws are
obtained when the target sets shrink to a Cantor set of zero Lebesgue measure. We consider
both the presence and absence of clustering, which is detected by the Extremal Index, which
turns out to be very useful to identify the compatibility between the dynamics and the fractal
structure of the limiting Cantor set. The computation of the Extremal Index is connected
to the box dimension of the intersection between the Cantor set and its iterates.

1. Introduction

The study of rare events for dynamical systems has experienced a vast development in the
last two decades (see the book [24] and the review paper [34]) and motivated, in particular,
applications to climate dynamics (see for example [7,29,30,35]). The occurrence of rare events
is tied to the entrance of the orbit in a sensitive region of the phase space, with small measure,
which justifies the use of the word rare. There are two main approaches to the subject:
one is through the study of the distribution of the normalised elapsed time that the orbits
take to hit or return to such regions of the phase space, which we will refer to the study
of Hitting/Return Times Statistics (HTS/RTS), and the other is through the study of the
extremal behaviour (distribution of the maximum) of stochastic processes arising from the
system simply by evaluating a given observable ϕ through the orbits of the system.

The two approaches were proved to be equivalent [9, 16, 17], when the points where the ob-
servable function ϕ exceeds a high threshold correspond exactly to the sensitive region, which
is used for target set for the study of HTS/RTS. Then the underlying idea is that the stochas-
tic process showing no exceedances of a certain high threshold up to time n means that the
hitting/return time to the respective target set must be larger than n. The limiting laws are
obtained when the threshold increases to its maximum value, which means that the target sets
shrink to the maximal set,M, where the observable function ϕ achieves its global maximum
value.

In the existing literature regarding the study of rare events for dynamical systems (in both
approaches), most of the times, the set M is reduced to a single point. However, in a few
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papers,M has been chosen to be a finite set of points ( [3, 20]), a countable set ( [4]), a one
dimensional submanifold, such as the diagonal of product spaces ( [8, 14,23]), but has always
been taken with a regular geometric structure. The exception is the paper [26], which served as
motivation for the present work, where the authors consider the situation of fractal landscapes,
withM taken as a Cantor set. They conjectured that the same distributional limits observed
when M was a singular point should apply for such more intricate maximal sets. Their
contribution can be described, in their own words, as experimental mathematics: while the
definitions of the objects under examination, as well as the form of the conjectured limiting
laws, were complete and rigorous and, most of the times, the value of various constants involved
were obtained from explicit computations, they did not provide proofs of the conjectured
results, which were supported by numerical simulation studies. Their study also revealed the
importance played by the Minkowski dimension and Minkowski content in the choice of the
normalising sequences in order to recover the classical distributional limits.

The motivation to use maximal sets with a finer geometrical structure comes from the pos-
sibility of applications to real life situations when one has many variables and the sensitive
regions of the phase space are described as fractal landscapes. Cases such as mine swiping,
the movement of air masses, road traffic, network communications, structural safety, stock
market, where one is particularly worried with the occurrence of certain critical configurations
that correspond to sensitive regions with a complex structure, are very common in the real
world. Therefore, understanding the extremal dynamics of simpler lower dimensional models,
but which still capture the landscape fractal complexity of the critical regions, is of the utmost
importance.

Hence, in this work we assume that M is a Cantor set and prove that the conjectured limit
behaviour observed in [26] holds true for uniformly expanding dynamics. To our knowledge,
this is the first time that rare events limiting laws are proved analytically for a limiting
target set (or maximal set) M with a fractal geometry. Moreover, we study the possibility
of occurring clustering of extreme events for such maximal sets. We remark that, in all the
examples considered in [26], with fractal maximal sets with Hausdorff dimension strictly larger
than 0, clustering was not detected. Here, not only do we provide examples which show that
clustering can still occur in such situations, as we explain the mechanism responsible for the
appearance of clustering, by using tools from fractal geometry.

As shown in [3, 18], clustering of rare events is connected with the recurrence properties of
M by the system’s dynamics. Of course that, when M is reduced to a single point, then
clustering is related to the periodicity of that point. In fact, in [2, 15, 18, 19, 22], a dichotomy
was proved for uniformly and non-uniformly hyperbolic systems: either the single point ofM
is periodic and we have clustering, or is non-periodic and we have the absence of clustering.
WhenM has finitely many or countably many points, as shown in [3,4], then either the orbits
of those points collide withM creating clustering or they do not hitM and in that case, as
observed also in [20], there is no clustering. This explains the detection of clustering in the
last example of [26], whereM was a countable set of points.

The presence of clustering is detected by the Extremal Index (EI), which is a parameter that
takes values between 0 and 1 and appears as an exponent in the usual exponential limiting
law. When there is no clustering the EI is equal to 1, while the presence of clustering leads
to an EI less than 1. The more intense is the clustering the smaller is the EI.
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As seen in [3, 18], for a nice discrete time system T : X → X , when M is finite then an EI
less than 1 implies that the orbits of the points of M hit the maximal set itself, i.e., there
exists some q ∈ N such that T−q(M) ∩M 6= ∅. When dealing with an infinite but countable
extremal setM, typically, a fast recurrence fromM to itself produces an EI less than 1, as in
the finite case. Nevertheless, in some special cases like [4, Example 4.7], a very slow recurrence
of the orbits of the maximal points to M may turn the clustering negligible so that in the
limit the EI is still 1. We will see that whenM is uncountable the situation is more complex
and the value of the EI is linked to the finer geometrical properties ofM, namely, to its fractal
dimension and thickness.

We will see (Sections 3 and 6) that one may have a large and fast recurrence of the orbits of
the points ofM to itself, i.e., the set T−q(M) ∩M may be even infinite for small q, and yet
the EI is still 1. In the context of Theorems 3.2 and 3.3, the EI will only be less than 1 if one
of the intersections T−q(M) ∩M, for q ∈ N, is relevant in the sense that its box dimension
is equal to the box dimension of M, otherwise we will always get an EI equal to 1. Hence,
the EI indicates how the dynamics of T is or is not compatible with the geometric structure
ofM.

We will illustrate this behaviour analytically with simple models and dynamics, namely, in
Section 3, the maximal set M will be the ternary Cantor set and T will be a uniformly
expanding map of the form mx mod 1, with m ∈ N. This simplification allows to compute
concrete estimates for the box dimension of the intersections mentioned earlier and exact values
for the EI. In the case of presence of clustering created by a clear compatibility between the
dynamics and the self-similarity structure of the maximal set, we will consider more general
Cantor sets (see Section 4). We remark that although we work with simple models, they
capture the essence of the limiting behaviour of the statistics of rare events dynamics and, in
fact, we believe that the spirit of our findings should prevail in more irregular situations, as
the numerical simulation study performed in Section 6 suggests.

As seen in [25], the authors consideredM reduced to a single point chosen in the support of a
dynamical attractor and have shown that extremes can be thought of as geometric indicators
of the local properties of the attractor. Here,M is an intricate, much more general set, which
means that the extremes, instead of a local information provide a global one. In fact, we believe
that an interesting byproduct of our results is that the EI could be used as an indicator of the
compatibility of a certain dynamics with the geometric self-similarity structure ofM. Namely,
in the cases considered, we obtained that the EI is always 1, except for the cases when m = 3k

for some k ∈ N, which are precisely the maps that haveM as an invariant set.

The dimension of the intersection of fractal sets such as Cantor sets is an important problem
popularised by some of Furstenberg’s conjectures, which in particular state that “expansions
in multiplicatively independent bases (such as 2 and 3) should have no common structure”.
We refer to [36] and references therein. In order to illustrate the potential of the EI as an
indicator for the relevance of the intersection of fractal sets and the compatibility of a certain
dynamics with the self-similar structure of a Cantor set, we used an estimator of the EI,
introduced in [21], and carried out a numerical study in order to demonstrate its performance
by comparing with our theoretical estimates.

The paper is structured as follows. In Section 2, we introduce the framework regarding the
study of rare events for dynamical systems and state general results providing conditions in
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order to obtain the existence of limiting laws. In Section 3, we introduce the observables
maximised on Cantor sets (the ternary Cantor set, to be more precise), define the dynamical
models and state the main results of the paper. In Section 4, we state a general theorem es-
tablishing the existence of a limiting law, in the presence of clustering, for general dynamically
defined Cantor sets and compatible dynamics, which allows to prove one of the main theo-
rems stated in the previous section. In Section 5, we prove the other main theorem stated in
Section 3 regarding the existence of a limiting extreme value law, in the absence of clustering.
This is the more elaborate part and includes a brief review of several tools of fractal geometry.
In Section 6, we present a numerical simulation study to illustrate the suitability of the use of
the EI as an indicator of the compatibility between the dynamics and the geometrical fractal
structure of the maximal set.

2. Laws of extreme events

Consider a discrete dynamical system (X ,B, T, µ), where X is a compact set (an interval, in
our case), B is the respective Borel sigma algebra, T : X → X is a measurable map, and µ
is an invariant measure with respect to T . We will follow the Extreme Value approach and,
therefore, we consider an observable function ϕ : X → R+ ∪ {∞} and define the stochastic
process, (Xn)n∈N, in the following way,

Xn(x) = ϕ ◦ Tn(x). (2.1)

Note that the invariance of µ implies the stationarity of (Xn)n∈N. We are particularly inter-
ested in the extremal behaviour of such stochastic processes, which is tied to the recurrence
properties of the set of global maxima of ϕ, as was proved in [16, 17]. We denote this set of
global maximal points as M, i.e., we assume that there exists Z = maxx∈X ϕ(x), where we
allow Z = +∞, and

M = {x ∈ X : ϕ(x) = Z}.

In what follows, ζ will always denote a generic point ofM. In this paper, most of the times,
M = C, where C denotes the usual ternary Cantor set.

From the stochastic process (Xn)n∈N, we define the process of partial maxima (Mn)n∈N whose
limiting distribution we want to analyse:

Mn = max{X0, . . . , Xn−1}. (2.2)

In order to study the extremal behaviour of (Xn)n∈N, we consider the level sets {Xj > u}, i.e.,
the exceedances of a high threshold u, which correspond to the target sets in the HTS/RTS
approach, and try to obtain a limit for the probability of not observing any exceedance up
to a certain moment of time m, which depends on the level u. More precisely, we want to
estimate µ(Mm ≤ u) as u → Z or, in other words, when the target sets {Xj > u} shrink to
M. In order to obtain a non degenerate limit, the dependence of m on u must be well tuned.

When µ(Xj > u) as a function of u is not smooth, as happens here, this tuning must be
performed with some care and we will use the normalisation introduced in [17] to deal with
similar cases. Namely, we consider sequences (wn)n∈N and (un)n∈N such that

wnµ(X0 > un)→ τ as n→∞ for some τ ≥ 0. (2.3)
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Then our main goal is to find some non-degenerate distribution function H supported on R+

such that
lim
n→∞

µ(Mwn ≤ un)→ 1−H(τ).

In [17] this type of distributional limit was called cylinder Extreme Value Law (EVL). When
M is a finite or countable set of points and T is either a uniformly expanding map or admits
an hyperbolic first return time induced map, then, as seen for example in [2–4, 18–20,22], we
have that

lim
n→∞

µ(Mwn ≤ un)→ e−θτ , (2.4)

where 0 ≤ θ ≤ 1. When such a limit exists, then θ is called the Extremal Index. The EI is
associated to the recurrence properties ofM. In fact, whenM is reduced to a single point, as
seen in [2,18,19,22], a full dichotomy holds: eitherM = {ζ} is non-recurrent, which translates
to ζ being non-periodic, and then there is no clustering of exceedances and θ = 1, orM = {ζ}
is recurrent, i.e., ζ is a periodic point, which is responsible for the appearance of clustering and
an EI less than 1 (if the map is differentiable along the orbit of ζ and the invariant measure
is absolutely continuous w.r.t. Lebesgue measure, we have θ = 1

|DT p(ζ)|).

2.1. Existence of limiting laws. The main purpose of this subsection is to provide general
conditions which allow us to prove the existence of a limiting law as stated in (2.4). Let
(un)n∈N and (wn)n∈N be as in (2.3). Consider a sequence (qn)n∈N such that

lim
n→∞

qn =∞ and lim
n→∞

qn
wn

= 0. (2.5)

Let T−i denote the i-th preimage by the map T . Fixing u ∈ R and q ∈ N, we define the
following events,

U(u) := {X0 > u},

Aq(u) := U(u) ∩
q⋂
i=1

T−i(U(u)c) = {X0 > u,X1 ≤ u, . . . ,Xq ≤ u}. (2.6)

While the event U(u) corresponds to the occurrence of an exceedance, the event Aq(u) cor-
responds to the occurrence of an exceedance which terminates a cluster of exceedances, i.e.,
if T−j(Aq(u)) occurs, then the next exceedance after the one observed at time j must belong
to a new and different cluster of exceedances. In particular, q can be though as the maximal
waiting time between two exceedences within the same cluster.

Let B ∈ B be an event. For s, ` ∈ N, we define,

Ws,`(B) =

s+`−1⋂
i=s

T−i(Bc).

Observe that W0,n(U(un)) = {Mn ≤ un}. For each n ∈ N, set Un := U(un), Aqn,n := Aqn(un)
and

θn :=
µ (Aqn,n)

µ(Un)
. (2.7)

We will see that θn provides a good estimate for the EI. In fact, the EI, θ, will be such that

θ = lim
n→∞

θn. (2.8)

We will refer to (2.8) as O’Brien’s formula to compute the EI (see [32]).
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We start by stating a condition that requires some sort of asymptotic independence of events
when the time gap between them increases.

Condition (Дqn(un, wn)). We say that Дqn(un, wn) holds for the stochastic process (Xn)n∈N
if for every `, t, n ∈ N

|µ (Aqn,n ∩Wt,` (Aqn,n))− µ (Aqn,n)µ (W0,` (Aqn,n))| ≤ γ(n, t), (2.9)

where γ(n, t) is decreasing in t for each n and there exists a sequence (tn)n∈N such that
tn = o(wn) and wnγ(n, tn)→ 0 when n→∞.

The next condition forbids the concentration of clusters of exceedances. Consider the sequence
(tn)n∈N given by condition Дqn(un, wn) and let (kn)n∈N be another sequence of integers such
that

kn →∞ and kntn = o(wn). (2.10)

Condition (Д′qn(un, wn)). We say that Д′qn(un, wn) holds for the sequence (Xn)n∈N if there
exists a sequence (kn)n∈N satisfying (2.10) such that

lim
n→∞

wn

bwn/knc−1∑
j=qn+1

µ
(
Aqn,n ∩ T−j (Aqn,n)

)
= 0. (2.11)

We can now state a general result establishing the existence of a limiting extreme value law.

Theorem 2.1. Let (Xn)n∈N be a stochastic process constructed as in (2.1). Consider the
sequences (un)n∈N and (wn)n∈N satisfying (2.3) for some τ ≥ 0. Assume that conditions
Дqn(un, wn) and Д′qn(un, wn) hold for some qn ∈ N0 satisfying (2.5). Moreover, assume that
the sequence (θn)n∈N defined in (2.7) converges to some 0 ≤ θ ≤ 1, i.e., θ = limn→∞ θn. Then,

lim
n→+∞

µ(Mwn ≤ un) = e−θτ .

The proof of this theorem follows from an easy adjustment of the proof of [24, Corollary 4.1.7].

2.2. Applications to systems with loss of memory. One of the main advantages of the
previous conditions when compared with the usual ones from the classical Extreme Value
Theory is that Дqn(un, wn) is easily checked for systems with nice decay of correlations, while
the classical conditions of the kind, similar to Leadbetter’s D(un) condition, require a uniform
mixing which is very difficult to verify even for hyperbolic systems.

Definition 2.2 (Decay of correlations). Let C1, C2 denote Banach spaces of real valued mea-
surable functions defined on X . We denote the correlation of non-zero functions φ ∈ C1 and
ψ ∈ C2 with respect to a measure µ as

Corµ(φ, ψ, n) :=
1

‖φ‖C1‖ψ‖C2

∣∣∣∣∫ φ (ψ ◦ Tn) dµ−
∫
φ dµ

∫
ψ dµ

∣∣∣∣ .
We say that the dynamical sytem (X ,B, T, µ) has decay of correlations, with respect to the
measure µ, for observables in C1 against observables in C2 if there exists a rate function
ρ : N→ R, with

lim
n→∞

ρ(n) = 0,

such that, for every φ ∈ C1 and every ψ ∈ C2, we have

Corµ(φ, ψ, n) ≤ ρ(n).
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The systems we will work with have decay of correlations of functions of Bounded Variation,
which we define below, against observables in L1(µ).

Definition 2.3. Given a potential ψ : I → R on an interval I, the variation of ψ is defined
as

Var(ψ) := sup

{
n−1∑
i=0

|ψ(xi+1)− ψ(xi)|

}
,

where the supremum is taken over all finite ordered sequences (xi)
n
i=0 ⊂ I.

We use the norm ‖ψ‖BV = sup |ψ|+ Var(ψ), which makes the space of functions of Bounded
Variation, BV := {ψ : I → R : ‖ψ‖BV <∞}, into a Banach space.

We will see that conditions Дqn(un, wn) and Д′qn(un, wn) follow from the above mentioned
type of decay of correlations of the underlying dynamical system.

Theorem 2.4. Let (X ,B, T, µ) be a dynamical system and consider an observable ϕ achieving
a global maximum on a set M. Let (Xn)n∈N be the stochastic process given by (2.1) and
consider (un)n∈N, (wn)n∈N and (qn)n∈N as sequences such that (2.3) and (2.5) hold. If the
system has decay of correlations of observables in C1 against observables in L1(µ) and if

(1) lim
n→∞

‖1Aqn,n‖C1wnρ(tn) = 0, for some sequence (tn)n∈N such that tn = o(wn)

(2) lim
n→∞

‖1Un‖C1
∞∑
j=qn

ρ(j) = 0

and if the sequence (θn)n∈N defined in (2.7) converges to some 0 ≤ θ ≤ 1, then conditions
Дqn(un, wn) and Д′qn(un, wn) are satisfied and

lim
n→∞

µ(Mwn ≤ un) = e−θτ .

Remark 2.5. Note that under the assumption of summable decay of correlations against L1

then hypothesis (1) implies Дqn(un, wn), while hypothesis (2) implies Д′qn(un, wn).

Proof. By Theorem 2.1, we only need to check that the stochastic process (Xn)n∈N satisfies
conditions Дqn(un, wn) and Д′qn(un, wn).
Consider φ = 1Aqn,n and ψ = 1Wt,`(Aqn,n) in Definition 2.2. Then, there exists C > 0, such
that, for any positive numbers ` and t, we have

|µ(Aqn,n ∩Wt,`(Aqn,n))− µ(Aqn,n)µ(W0,`(Aqn,n))|

=

∣∣∣∣∫
X
1Aqn,n · (1W0,`(Aqn,n) ◦ T

t)dµ−
∫
X
1Aqn,ndµ

∫
X
1W0,`(Aqn,n)dµ

∣∣∣∣
≤ C‖1Aqn,n‖C1ρ(t).

Condition Дqn(un, wn) follows if there exists a sequence (tn)n∈N such that tn = o(wn) and
lim
n→∞

‖1Aqn,n‖C1wnρtn = 0, which is the content of hypothesis (1).

In order to prove (2.11), we start by observing that

wn

bwn/knc∑
j=qn+1

µ
(
Aqn,n ∩ T−j(Aqn,n)

)
≤ wn

bwn/knc∑
j=qn+1

µ
(
Un ∩ T−j(Un)

)
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Then, we take φ = ψ = 1Un , in Definition 2.2, to obtain that

µ
(
Un ∩ T−j(Un)

)
=

∫
X
φ · (φ ◦ T j)dµ ≤ (µ(Un))2 + ‖1Un‖C1 µ (Un) ρ(j).

Let tn be as above and take (kn)n∈N as in (2.10). Recalling that limn→∞wnµ(Un) = τ , it
follows that

wn

bwn/knc∑
j=qn+1

µ
(
Un ∩ T−j(Un)

)
≤ wn

⌊
wn
kn

⌋
µ (Un)2 + wn ‖1Un‖C1 µ (Un)

bwn/knc∑
j=qn+1

ρj

≤ w2
nµ(Un)2

kn
+ wn ‖1Un‖C1 µ (Un)

∞∑
j=qn

ρ(j)

≤ τ2

kn
+ τ ‖1Un‖C1

∞∑
j=qn

ρ(j) −−−→
n→∞

0,

by choice of kn and hypothesis (2). �

3. Observables with fractal maximal sets

Let C denote the ternary Cantor set. In order to construct C, we start by removing the middle
third of the interval C0 := [0, 1] and define in this way the first approximation C1. Then, we
start an iterative process where we build Cn by removing the middle third of each connected
component of Cn−1, as represented in Figure 1. Repeating this process indefinitely, we obtain
the set C = ∩n≥1Cn.

[0, 1]

C1

C2

C3

Figure 1. The construction of the ternary Cantor set.

We define the observable to be the Cantor ladder function also used in [26] as a prototype
fractal landscape. Namely, for each n ∈ N, let Bn := Cn−1 \ Cn so that B1 =

(
1
3 ,

2
3

)
, B2 =(

1
9 ,

2
9

)
∪
(
7
9 ,

8
9

)
, . . ., i.e., the sets Bn correspond to the gaps of the Cantor set formed at the

n-th step of its construction. Now consider the observable

ϕ(x) =

{
n, if x ∈ Bn, n = 1, 2, 3 . . .
∞, otherwise. (3.1)
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0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

6

7

Figure 2. The Cantor ladder function.

Remark 3.1. Note that if x ∈ C then x 6∈ Bn for all n ∈ N, which implies that ϕ(x) =∞. If
x /∈ C then x ∈ Bn for some n ∈ N and therefore, in this case, we have thatM = C.

In this section, we will consider dynamical systems given by:

T : [0, 1] −→ [0, 1]

x 7−−−→m · x mod 1, (3.2)

where m ∈ N. These are full branched uniformly expanding maps, which preserve Lebesgue
measure (that we shall denote by µ) and have exponential decay of correlations of BV observ-
ables against L1(µ) (this follows from [6, Corollary 8.3.1] or [1, Corollary H], for example).

In [26, Section 3], the authors considered the same observable ϕ defined in (3.1) and the
dynamics generated by an asymmetric tent map, which is also a full branched uniformly
hyperbolic map, and conjectured the existence of a limiting extreme value law with an EI
equal to 1, which was supported by the numerical simulations performed. We prove that
when the dynamics considered is not compatible with the self-similar structure of the maximal
set (which happens here when m 6= 3k for all k ∈ N) then indeed the conjectured extreme
limiting behaviour applies. To our knowledge, these are the first rigorously proved results for
observables with fractal maximal sets.

Theorem 3.2. Let (Xn)n∈N be the stochastic process given by (2.1) for a dynamical system
T defined in (3.2), with N 3 m 6= 3k for all k ∈ N. Consider a sequence of thresholds
(un)n∈N such that un = n and a sequence of times (wn)n∈N such that wn = bτ (3/2)nc. Then,
condition (2.3) holds and moreover

lim
n→∞

µ(Mwn ≤ n) = e−τ .

The numerical simulations performed in [26, Section 3] also showed that, interestingly, the
same limiting laws seem to apply when the dynamics is replaced by that of irrational rotations.
The fact that these ergodic maps are not mixing and yet the agreement was still good, lead
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the authors of [26] to conjecture that the role of the fast decay of correlations in assuring
the validity of conditions such as Д and Д′ was played, in this situation, by the complexity
of the observable function. We also remark that, in all numerical studies performed in [26]
with observables maximised on fractal sets (with strictly positive Hausdorff dimension), the
observed EI was always 1. In our results we use heavily the excellent mixing properties of all
the systems considered. However, not only we provide examples where the EI is strictly less
than 1, as we explain how the EI is related with the compatibility between the dynamics and
the fractal structure of the maximal set.

Theorem 3.3. Let (Xn)n∈N be the stochastic process given by (2.1) for a dynamical system
T defined in (3.2), with m = 3k for some k ∈ N. Consider a sequence of thresholds (un)n∈N

such that un = n + k − 1 and a sequence of times (wn)n∈N such that wn =
⌊
τ (3/2)n+k−1

⌋
.

Then, condition (2.3) holds and moreover

lim
n→∞

µ(Mwn ≤ n) = e
−
(
1− 2k

3k

)
τ
.

In fact, in Section 4, we prove Theorem 3.3 as a corollary of Theorem 4.2 which applies to
more general Cantor sets. We note that, in the context of both Theorems 3.3 and 4.2, the
compatibility between the dynamics and the maximal set becomes obvious when we observe
that T (M) =M, which means that T preserves the structure of the Cantor sets, which play
the role of a periodic point in the context of whenM is reduced to a single point. The proof
will follow more or less the same strategy used in [18] and generalised later in [3, 4], which
basically exploits the periodicity of the maximal set in order to be able to compute the EI
from the O’Brien’s formula (2.8) and then verify the conditions Дqn(un, wn) and Д′qn(un, wn)
that were designed to be easily checked from the excellent mixing properties of the system.

When m 6= 3k for all k ∈ N, although T j(M) 6= M for all j ∈ N, one can easily check
that, most of the times, we have that T−j(M) ∩ M 6= ∅ and this was enough to create
clustering whenM was a finite or countable set (see [3, 4]). However, here, the maximal set
has a much more complex structure and one needs to evaluate how relevant the intersections
T−j(M) ∩M 6= ∅ are when compared withM itself, which translates to how compatible the
dynamics of T is with the fractal structure of M. We will see that since C has a thickness
not less than 1 (i.e., the extractions in the construction of the Cantor set are relatively not
too large), then the relevance of the intersection (or the compatibility between T and M)
can be measured by the box dimension of the intersection T−j(M) ∩ M, when compared
with the box dimension of M itself. We will show that the box dimension of T−j(M) ∩M
is strictly less than that of M (Proposition 5.8), which means that the possible clustering
created by the fact that T−j(M) ∩M 6= ∅ is negligible and, in the limit, the EI is still 1.
The computation of the EI is much more subtle and we need results from fractal geometry in
order to compute the dimension of such intersections and then we need to study its impact on
O’Brien’s formula (2.8), for which we will perform a finer analysis, where we use of the notion
of thickness of dynamically defined Cantor sets introduced by Newhouse in [31]. This will be
done in Section 5.
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4. The appearance of clustering with fractal landscapes

When the dynamics is compatible with the self-similar structure of the fractal maximal set, we
observe the appearance of clustering and a limiting law with a non-trivial EI. In this context,
we consider more general fractal sets. Namely, we will consider Cantor sets generated by an
Iterated Function System (IFS) satisfying some regular conditions. These Cantor sets can
also be identified as the survivor sets for some conveniently chosen dynamical systems, which
will also provide a common ground to assess the compatibility of the self-similarity structure
with the original dynamics. We will start by providing a description of these more general
dynamically defined Cantor sets. Then, we establish the existence of a limiting law with a
non-trivial EI when the dynamics is compatible with the system generating the Cantor set
and, finally, we apply it to the usual ternary Cantor set.

4.1. Dynamically defined Cantor sets. We start with a description of a class of more
general Cantor sets.

Let r ∈ N and I = {f1, . . . , fs} be a regular finite family of normalised contractions defined
on [0, 1], i.e., each fi : [0, 1]→ [0, 1] is a C1 diffeomorphism such that

|fi(x)− fi(y)| ≤ λi|x− y|, for some λi < 1

and the sets Ji = fi([0, 1]), for i = 1, . . . , s, are pairwise disjoint. I is in particular an Iterated
Function System (IFS). An atractor for I is the only compact subset, Λ, of [0, 1], such that
Λ = ∪si=1fi(Λ). For such an IFS there exists a unique attractor Λ, whose Hausdorff and
box dimensions (see Definitions 5.1 and 5.2 below) are both equal to d, where

∑s
i=1 λ

d
i = 1.

See [13, Chapter 9] for proofs and more details on the subject. The attractor Λ can be seen as
a dynamically defined Cantor set, i.e., Λ can be identified as the survivor set of the dynamical
system G : R→ R defined by

G(x) =

{
f−1i (x), if x ∈ Ji
2, otherwise .

Namely,
Λ = {x ∈ [0, 1] : Gn(x) ∈ [0, 1], for all n ∈ N}.

Let Λ0 = [0, 1] and for all n ∈ N set

Λn = G−1(Λn−1) = {x ∈ [0, 1] : T j(x) ∈ [0, 1], for all j = 1, . . . , n}.

Remark 4.1. Note that Λ = ∩n≥0Λn and, for all j ∈ N, we have G−j(Λn) = Λn+j because if
G(x) /∈ [0, 1] then Gj(x) /∈ [0, 1] for all j ∈ N.

4.2. Laws of rare events for systems compatible with dynamically defined Cantor
sets. We adapt the definition of the observable function ϕ : [0, 1] → R so that, in this case,
the maximal set is Λ. Namely, we set

ϕ(x) =

{
n, if x ∈ Λn \ Λn+1, n = 1, 2, 3 . . .
∞, if x ∈ Λ

Now we define a dynamical system which is compatible with the dynamics that generated Λ,
namely, we define F : [0, 1] → [0, 1] by F (x) = G(x) for all x ∈ ∪si=1Ji and if I denotes a
connected component of [0, 1]\∪si=1Ji then, on I, we define F as a linear map so that F maps
I onto [0, 1]. Note that F is a piecewise uniformly expanding map and therefore admits an
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invariant absolutely continuous probability measure µ. Moreover, from [6, Corollary 8.3.1], it
follows that F has exponential decay of correlations of BV observables against L1, i.e., for all
φ ∈ BV and ψ ∈ L1(µ), there exist C > 0 and 0 < r < 1 such that

Corµ(φ, ψ, n) ≤ Crn. (4.1)

Theorem 4.2. Let (Xn)n∈N be the stochastic process given by (2.1) for the dynamical system
T = F k, for some k ∈ N, where F and the observable ϕ are as defined just above. Consider
a sequence of thresholds (un)n∈N such that un = n+ k − 1, a sequence of times (wn)n∈N such
that wn =

⌊
τ(µ(Λn+k−1))

−1⌋.
Assume that there exist a sequence (tn)n∈N, with tn = o(wn), and a sequence (qn)n∈N, as in
(2.5), such that: limn→∞

∥∥1Aqn,n∥∥BV wnrtn = 0 and limn→∞ ‖1Un‖BV rqn = 0.

Assume moreover that there exists 0 ≤ θ ≤ 1 such that

θ = lim
n→∞

µ(Λn+k−1 \ Λn+2k−1)

µ(Λn+k−1)
.

Then,

lim
n→∞

µ(Mwn ≤ n) = e−θτ .

Proof. We start by noting that for the sequence of thresholds un = n + k − 1, we have
Un = Λn+k−1 and then the definition of wn makes condition (2.3) trivially satisfied.

Next, we observe that the compatibility between F and G allows for a simple characterisation
of the sets Aqn,n. We claim that

Aqn,n = Λn+k−1 \ Λn+2k−1.

To check this claim we start by proving that for all j ≤ n/k, we have

T−j(Λn) ∩ Λn = Λn+kj .

Clearly, Λn+kj ⊂ T−j(Λn) ∩ Λn. For the other inclusion, consider that x ∈ T−j(Λn) ∩ Λn.
Since x ∈ Λn, then Gi(x) ∈ [0, 1] for all i = 1, . . . , n and since j ≤ n/k then T j(x) = F jk(x) =
Gjk(x) ∈ [0, 1]. Since x ∈ T−j(Λn), then Gjk(x) ∈ Λn, which means that Gi(x) ∈ [0, 1] for all
i = 1, . . . , n+ jk and therefore x ∈ Λn+kj . Now, observing that Λcn ⊂ Λcn+1 for all n ∈ N and
recalling the definition of Aqn,n we obtain:

Aqn,n =

qn⋂
i=1

T−i(Λcn+k−1) ∩ Λn+k−1 = Λcn+2k−1 ∩ Λn+k−1 = Λn+k−1 \ Λn+2k−1.

The fact that F has decay of correlations of BV against L1 as expressed in (4.1) together
with the assumptions limn→∞

∥∥1Aqn,n∥∥BV wnrtn = 0 and limn→∞ ‖1Un‖BV rqn = 0 guarantee
that conditions (1) and (2) from Theorem 2.4 hold. Moreover, the assumption on θ gives that
θn = µ(Aqn,n)/µ(Un) −−−→

n→∞
θ. Consequently, the result follows from direct application of

Theorem 2.4. �
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4.3. Application to the ternary Cantor set. We apply Theorem 4.2 to the ternary Cantor
and prove Theorem 3.3.

Proof of Theorem 3.3. We start by checking the hypothesis of Theorem 4.2 and then verify
the formula provided for the Extremal Index θ. In this case, the IFS is given by f1(x) = 1/3x
and f2(x) = 1/3x+ 2/3, the map F is given by F (x) = 3x mod 1, the cantor set Λ = C and
Λn = Cn. The invariant measure µ is Lebesgue measure and the rate of decay of correlations
expressed in (4.1) is such that r = 1/3. We set qn = b(n + k − 1)/kc and observe that
Un = Cn+k−1 and Aqn,n = Cn+k−1\Cn+2k−1. Since Cn ⊂ Cn−1, for all n ∈ N, and µ(Cn) = (23)n,

then wn =
⌊
τ (3/2)n+k−1

⌋
, qn = o(wn) and we obtain:

µ(Aqn,n) =

(
2

3

)n+k−1
−
(

2

3

)n+2k−1
=

(
1− 2k

3k

)(
2

3

)n+k−1
and, moreover,

‖1Un‖BV ≤ 2n+k+1, ‖1Aqn,n‖BV ≤ 2n+2k + 1 ≤ 2n+2k+1.

Let tn = n2 and note that clearly tn = o(wn). Since r = 1/3, then

lim
n→∞

∥∥1Aqn,n∥∥BV wnrtn ≤ lim
n→∞

⌊
τ (3/2)n+k−1

⌋
2n+2k+1rn

2

≤ 2 lim
n→∞

2k−1τ3n+k−1
(

1/3k
)n2

+ 2n+2k
(

1/3k
)n2

= 0.

Moreover, there exists some constant, C ′ > 0, such that

lim
n→∞

‖1Un‖BV r
qn = lim

n→∞
2n+k+1rqn ≤ lim

n→∞
2n+k+1(1/3k)n/k+1−1/k ≤ C ′ lim

n→∞
(2/3)n = 0.

Finally, we use O’Brien’s formula to compute the EI:

lim
n→∞

θn = lim
n→∞

µ(Aqn,n)

µ(Un)
= lim

n→∞

(
1− 2k

3k

) (
2
3

)n+k−1(
2
3

)n+k−1 =

(
1− 2k

3k

)
=: θ.

As a consequence of Theorem 4.2, we obtain limn→∞ µ(Mwn ≤ n) = e
−
(
1− 2k

3k

)
τ
. �

5. The absence of clustering for fractal maximal sets

As we mentioned earlier, when there is no compatibility between the dynamics and the self
similarity structure of the fractal maximal set, then no clustering of rare events is expected.
This compatibility is related to the significance of the intersections between the maximal set
and its iterates. The significance will be measured by the box dimension of those intersections
and therefore we start in Section 5.1 by recalling some techniques that we will use in order to
estimate the dimension of the referred intersections, which will be carried out in Section 5.2.
Then, in Section 5.3, we translate the significance of the intersection expressed in terms of
box-dimension into the relevance of the measure of Aqn,n when compared with the measure
of Un. This will be done using the notion of thickness used by Newhouse in [31]. Finally, in
Section 5.4, we prove conditions Д and Д′, in order to conclude the proof of Theorem 3.2.
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5.1. Preliminaries and notions from Fractal Geometry. One of the main difficulties
to prove the existence of extreme value laws for stochastic processes arising from observables
maximised on Cantor sets is to calculate the EI θ based on O’Brien’s formula. In the next
sections, we will present a technique to calculate the EI based on the box dimension of the
sets T−j(C) ∩ C. To do this, we will need a construction given in [28], where the author uses
Digraph Iterated Function Systems, introduced in [27], in order to describe the intersection
of fractal sets. Then, we will combine a result from [27] to estimate the Hausdorff dimension
of such intersections with a result from [10], which relates the respective Hausdorff and box
dimensions, so that we obtain an estimate for the box dimension of the intersections T−j(C)∩C,
which we will, ultimately, use later to compute the EI.

We start by recalling some notions of Fractal Geometry (referring to the book [13] for further
details) and, in particular, the concept of Digraph Iterated Function System used by McClure
to describe the intersection of fractal sets in [28].

Definition 5.1 (Box Dimension). Let F be a subset of Rd, then, the box dimension of F is
defined as

dimB(F ) = lim
ε→0

logNε(F )

− log ε
, (5.1)

where Nε(F ) denotes the smallest number of balls of radius ε that cover F , whenever the
limit exists. The upper and lower box dimension are defined by taking the lim sup and lim inf,
respectively, in the previous limit.

Definition 5.2 (Hausdorff Dimension). Let F be a subset of Rd and {Fi}i∈N be a countable
collection of sets, with diameter at most δ, that cover F . For α ≥ 0, we define the α -
dimensional Hausdorff measure of F as

Hα(U) = lim
δ→0

inf

{ ∞∑
i=1

|Fi|α : where {Fi} is a δ − cover of F

}
.

The Hausdorff dimension of F is defined as

dimH(F ) = inf{α : Hα(F ) = 0} = sup{α : Hα(F ) =∞}.

Both definitions of dimension are finitely stable, i.e., if {F1, . . . , Fn} is a finite collection of
subsets of Rd, then

dimB

(
n⋃
i=1

Fi

)
= max

i
dimB(Fi) and dimH

(
n⋃
i=1

Fi

)
= max

i
dimH(Fi).

Remark 5.3. We note that the box dimension of the ternary Cantor set is dimH(C) =
dimB(C) = log 2/ log 3. Moreover, since C can be generated from an Iterated Function System
(IFS), which satisfies the so called open set condition, then the box dimension of C coincides
with its Hausdorff dimension. We defer to [13] for definitions and proofs of these statements.

The notion of Digraph Iterated Function Systems (Digraph IFS) generalizes the most common
setup of IFS. We follow closely the notation and presentation in [28].

Definition 5.4 (Digraph IFS). A Digraph IFS consists of a digraph G where the set of vertices
is denoted by V and the set of edges is denoted by E. To each of the vertices, we associate a
metric space Xv. Furthermore, to each of the edges between two vertices u and v, denoted by
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e ∈ Euv, we associate a similarity fe : Xv → Xu with ratio re. For every path α in the graph
G, we form the function fα by composing the functions fe along the path in reverse order.
The ratio rα of fα is just the product of the ratios of the composed functions. If every rα is
less than one, then, there exists a set, W , which is a union of compact sets Wv, one for every
vertex, such that for every u ∈ V ,

Wu =
⋃
v∈V

⋃
e∈Euv

fe(Wv). (5.2)

This invariant set, W , is called the attractor of the Digraph IFS. The existence of this set W
is guaranteed if the similarities fe have ratios smaller than one (see [12]).

It is possible to represent a Digraph IFS in matrix notation. For that purpose, we construct a
Digraph IFS matrix, M∗, with entries indexed by (u, v) ∈ V ×V . The value of each entry will
be the set of edges that link one vertex to another. To a Digraph IFS, G, we also associate a
Digraph IFS substitution matrix, M , which is just the adjacency matrix of digraph G.

If E is an attractor of a standard IFS and g is a bijection, then E ∩ g(E) can be represented
as an attractor of a Digraph IFS. Namely,

Theorem 5.5 (Theorem 1 of [28]). Let E be an attractor of an IFS, {fi}mi=1, such that all
functions fi are bijective contractions. Assume that there exists a finite set of bijections,
S, such that, for all g ∈ S satisfying E ∩ g(E) 6= ∅ and for all i, j = 1, . . . ,m satisfying
E ∩ f−1i gfj(E) 6= ∅, then f−1i gfj ∈ S. Under this condition the list of sets {E ∩ g(E) : g ∈ S}
forms the attractor of a Digraph IFS.

In order to construct the Digraph IFS whose attractor is E ∩ g(E), it is necessary to use an
iterative process to find the set of functions S. We start with a set S0 = {g}, then we define
the set

Sk+1 = Sk ∪
{
f−1i hfj : h ∈ Sk and i, j = 1, . . . ,m

}
.

To fulfil the hypotheses of Theorem 5.5, in each step, we select only those functions, h, such
that E∩h(E) 6= ∅. We continue the procedure until no new function is found. The functions in
S will work as the vertices of the Digraph IFS while the edges will be labelled by the functions
fi. So, each row and line of the matrixM∗ have an associated function that belongs to the set
S. Each entry of this matrix can be represented by a pair of functions (g, h) ∈ S × S. Each
of the entries (g, h) will be a finite set of functions

{f1, f2, . . . , fk} ,

whose cardinality is the number of directed edges from g to h, where a function fi belongs to
this set if and only if

h = f−1i gfj ,

for some j.

The substitution matrix, M , of the Digraph IFS, will be the matrix M∗ but with each entry
replaced by the cardinality of the corresponding set.

Definition 5.6 (Open Set Condition). A Digraph IFS satisfies the open set condition if and
only if there exists open sets Ωv ∈ Xv, such that, for every u, v ∈ V and e ∈ Euv,

fe(Ωv) ⊆ Ωu
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and for all u, v, v′ ∈ V , e ∈ Euv and e′ ∈ Euv with e′ 6= e,

fe(Ωv) ∩ fe′(Ωv′) = ∅.

From [27], one has that the Hausdorff dimension of the attractorW of a Digraph IFS satisfying
the open set condition (which, by [10], under certain conditions that are verified in our setting,
is equal to its box dimension) can be written in terms of the spectral radius of M and the
common ratios of the similarities of the Digraph IFS. For this reason, we recall here the
definition and some useful properties of the spectral radius of a matrix. Let A ∈Mn(C) be a
complex matrix. The spectral radius of A is defined as

ρ(A) = max {|λ| : λ is an eigenvalue of A} .
The Euclidean norm of a complex matrix A ∈Mn(C) is defined as

‖A‖2 = sup
x 6=0

‖Ax‖2
‖x‖2

,

where ‖x‖2 is the usual Euclidean vector norm. This norm is multiplicative (in some literature
also called consistent or sub-multiplicative) in the sense that satisfies ‖AB‖2 ≤ ‖A‖2 ‖B‖2 for
arbitrary matrices A and B. Moreover, we have (see [11], for example):

ρ(A) ≤ ‖A‖2 . (5.3)

Assume that A is a nonnegative matrix, i.e., every entry is either positive or 0. If B is a
principal submatrix of A, then the spectral radius of B satisfies (see [5], for example):

ρ(B) ≤ ρ(A). (5.4)

We end this subsection by stating an inequality that will become very useful later in the
estimation of the spectral radius of the adjacency matrix that we will construct.

Proposition 5.7. Let a, b by any positive real numbers and consider ε > 0. Then,

2ab ≤ a2

ε
+ εb2.

5.2. Intersection of Fractal Sets. We will now apply the procedure described in Section 5.1
(see [28, Section 2.2] for further details) to estimate the box dimension of the set T−q(C) ∩ C.
Namely, our main goal is to show:

Proposition 5.8. Let T = mx mod 1, where N 3 m 6= 3k for any k ∈ N. Then, for all
q ∈ N, we have:

dimH(T−q(C) ∩ C) = dimB(T−q(C) ∩ C) ≤ 1

2
.

The rest of this subsection is dedicated to the proof of Proposition 5.8. We start by noting
that, for any q integer,

T q(x) = mqx mod 1.

Therefore, the set T−q(C) is a union of sets formed by taking the preimage of C by each one of
the branches of T q. This implies that the functions g of interest to us to start the algorithm
described in Theorem 5.5 are of the form

g =
1

mq
x+ bg, (5.5)
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where bg is of the form k/(mq) with k an integer less than mq. The algorithm leads to the
construction of mq sets of functions, which we denote by Skq for k ∈ {0, . . . ,mq−1}, depending
on the constant term of the function g that initiates the algorithm. Each of the sets Skq yields
a substitution matrix, Mk

q , associated with the respective Digraph IFS.

Define the functions fi = x/3 + bi, where bi is either 0 or 2/3. This set of functions forms an
IFS whose attractor is the ternary Cantor set C.
For a given q and k, the functions h = f−1i gfj that belong to the set Skq , are of the form,

f−1i gfj =
1

mq
x+ 3

(
1

mq
bj + bg − bi

)
,

where g already belongs to the set in question. Hence, for h to belong to Skq , it is necessary
that its constant term satisfies

3

(
1

mq
bj + bg − bi

)
∈
{
−1

mq
, 0,

1

mq
,

2

mq
, . . . , 1

}
. (5.6)

Therefore, all the functions in Skq are of the form,
1

mq
x+

s

mq
,

where s ∈ {−1, 0, . . . ,mq}.

For better understanding, we divide the characterization of the matricesMk
q into the following

smaller results.

Lemma 5.9. Let q ∈ N0 and k ∈ {0, . . . ,mq − 1}, then, every entry of the matrix Mk
q is

either 0 or 1.

Proof. Fix q, k and let g be a function in Skq . As seen in (5.6), any other function h that
belongs to the set Skq must be equal to

h =
1

mq
x+ bh,

where bh is of the form s/(mq) with s ∈ {−1, . . . ,mq}. To prove the Lemma, we will need to
address two different cases, each with two different possibilities:

• If h = f−11 gf2 then h 6= f−12 gf1,

• If h = f−11 gf2 then h 6= f−12 gf2,

• If h = f−11 gf1 then h 6= f−12 gf1,

• If h = f−11 gf1 then h 6= f−12 gf2.

For the first case, assume that h = f−11 gf2 and h = f−12 gf1. Then, we would obtain

1

mq
x+ 3

(
1

mq
b1 + bg − b2

)
=

1

mq
x+ 3

(
1

mq
b2 + bg − b1

)
.

Since b1 = 0 and b2 = 2/3, we are led to −1 = 1
mq , which is an absurd.
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Consider that h = f−11 gf2 and h = f−12 gf2. Then,

1

mq
x+ 3

(
1

mq
b1 + bg − b2

)
=

1

mq
x+ 3

(
1

mq
b2 + bg − b2

)
,

and 2/mq = 0, which is an absurd.

Consider that h = f−11 gf1 and h = f−12 gf1. Then,

1

mq
x+ 3

(
1

mq
b1 + bg − b1

)
=

1

mq
x+ 3

(
1

mq
b2 + bg − b1

)
,

and 2/mq = 0 which is, again, an absurd.

For last case, assume that h = f−11 gf1 and h = f−12 gf2 and observe that

1

mq
x+ 3

(
1

mq
b1 + bg − b1

)
=

1

mq
x+ 3

(
1

mq
b2 + bg − b2

)
implies 1 = 1/mq, which is an absurd and the Lemma is proved. �

Lemma 5.10. Let q ∈ N0 and k ∈ {0, . . . ,mq − 1}, then the sum of the elements of each row
of the matrix Mk

q is at most 2.

Proof. Consider a function g in Skq . As seen before, any other function h ∈ Skq must be of the
form

h =
1

mq
x+ bh,

where bh = s/(mq) with s ∈ {−1, . . . ,mq}. According to the possible values of bi and bj there
are four different possibilities for the line of Mk

q indexed by g to have entries equal to 1. We
will prove that these cases form two disjoint groups of two elements, which will prove the
claim of the Lemma.

Assume that bi = 0 and bj = 0 and that h = f−1i gfj belongs to Skq . By (5.6), the constant
term of h satisfies

3bg ∈
{
−1

mq
, 0,

1

mq
,

2

mq
, . . . , 1

}
. (5.7)

By contradiction, assume that h∗ = f−1i gfj belongs to Skq with bi = 2/3 and bj = 0. Again,
by (5.6), the constant term of h∗ satifies

3bg − 2 ∈
{
−1

mq
, 0,

1

mq
,

2

mq
, . . . , 1

}
. (5.8)

Since 2 is larger than the length of the interval
[−1
mq , 1

]
, for any m considered, then the two

conditions, (5.7) and (5.8), cannot be simultaneously fulfilled for any bg and the two cases are
therefore necessarily disjoint. Now, assume that bi = 0 and bj = 2/3 and that h = f−1i gfj
belongs to Skq .
By (5.6), we obtain that the constant term of h satisfies

2

mq
+ 3bg ∈

{
−1

mq
, 0,

1

mq
,

2

mq
, . . . , 1

}
. (5.9)



RARE EVENTS FOR CANTOR TARGET SETS 19

Assume further that h∗ = f−1i gfj belongs to Skq with bi = 2/3 and bj = 2/3. Again, by (5.6),
the constant term of h∗ satisfies

2

mq
+ 3bg − 2 ∈

{
−1

mq
, 0,

1

mq
,

2

mq
, . . . , 1

}
. (5.10)

Since 2 is larger than the length of the interval
[−1
mq , 1

]
, for any possible m, then the two

conditions, (5.9) and (5.10), cannot be simultaneously fulfilled for any bg and the two cases
are, again, disjoint and the Lemma is proved. �

Lemmas 5.9 and 5.10 allow us to caracterize the substitution matrices Mk
q . Each matrix Mk

q

is a (0, 1)-matrix, whose spectral radius is less or equal to 2. We will show that, in fact, the
spectral radius is strictly less than 2. In order to do that, we will consider a matrix N q. This
matrix will correspond to the substitution matrix of the Digraph IFS, D, whose nodes are all
possible functions of the form

1

mq
x+

s

mq
,

where s ∈ {−1, . . . ,mq}. The Digraph IFS, D, has an edge from a node g to a node h if

h = f−1i gfj , (5.11)

which implies that the entry (g, h) of the matrix N q will be different from zero.

Note that, due to relation (5.11), then, relation (5.6) holds for the constant term of h and
Lemmas 5.9 and 5.10 apply to the matrix N q without any change in the respective proof. So,
N q is a (0, 1)-matrix whose row entries sum at most 2.

Furthermore, under these assumptions, the matrices Mk
q are principal submatrices of N q,

which means that if we are able to bound the spectral radius of N q away from 2, uniformly
on q, then, by (5.4), the same will apply to Mk

q .

In what follows, we will use the notation a ≡ b mod p, to express the fact that a and b are
congruent modulo p.

Lemma 5.11. Assume that m in the definition of T , in (3.2), is such that m is not divisible
by 3, i.e., m 6≡ 0 mod 3. Then, the matrix N q has a spectral radius less or equal to

√
3, i.e.,

ρ(N q) ≤
√

3.

Proof. Let g be a function of the form
1

mq
x+

s

mq
,

for s ∈ {−1, . . . ,mq}. If the entry, (g, h), of N q is different from zero, then h = f−1i gfj and
relation (5.6) holds, which means that the constant term of h satisfies

3

(
1

mq
bj + bg − bi

)
∈
{
−1

mq
, 0,

1

mq
,

2

mq
, . . . , 1

}
.

Depending on the value of bi and bj , we have four different cases.

If bj = 0 and bi = 2/3, then, the constant term of h satisfies

3s− 2mq

mq
∈
{
−1

mq
, 0,

1

mq
,

2

mq
, . . . , 1

}
.



20 A. C. M. FREITAS, J. M. FREITAS, F.B. RODRIGUES, AND J.V. SOARES

If bj = 0 and bi = 0, then, the constant term of h satisfies

3s

mq
∈
{
−1

mq
, 0,

1

mq
,

2

mq
, . . . , 1

}
.

If bj = 2/3 and bi = 0, then, the constant term of h satisfies

3s+ 2

mq
∈
{
−1

mq
, 0,

1

mq
,

2

mq
, . . . , 1

}
.

If bj = 2/3 and bi = 2/3, then, the constant term of h satisfies

3s− 2mq + 2

mq
∈
{
−1

mq
, 0,

1

mq
,

2

mq
, . . . , 1

}
.

Up to this point, every entry of the matrix is indexed by functions of the form 1
mq x+ s

mq , with
s ∈ {−1, . . . ,mq}. Hence, we can associate to the entry of the matrix (g, h) the index (s, s∗),
where s and s∗ are the numerators of the constant terms of g and h, respectively. An entry
(s, s∗) of N q is nonzero if and only if s is such that one the above cases is verified.

If the first case occurs, then 3s − 2mq ∈ {−1, . . . ,mq}. Hence, if N q
ss∗ 6= 0, we have that

s∗ = 3s − 2mq. If the second case occurs, then 3s ∈ {−1, . . . ,mq} and if N q
ss∗ 6= 0 then

s∗ = 3s. For the third case, we need 3s+ 2 to belong to the set {−1, . . . ,mq} and if N q
ss∗ 6= 0

then s∗ = 3s+ 2. If the last case is verified, then 3s− 2mq + 2 belongs to {−1, . . . ,mq} and
if N q

ss∗ 6= 0 then s∗ = s− 2mq + 2.

Changing the indices for the more usual set {1, . . . ,mq + 2}, we obtain that N q can be
characterized by 

N q
i,3i−2 = 1 if i, 3i− 2 ∈ {1, . . . ,mq + 2}

N q
i,3i−4 = 1 if i, 3i− 4 ∈ {1, . . . ,mq + 2}

N q
i,3i−2mq−4 = 1 if i, 3i− 2mq − 4 ∈ {1, . . . ,mq + 2}

N q
i,3i−2mq−2 = 1 if i, 3i− 2mq − 2 ∈ {1, . . . ,mq + 2}

N q
i,j = 0 otherwise.

(5.12)

For a more visual representation of N q, we may write:

N q =



1 0 0 . . . . . . . . . . . . 0 0 0 0
0 1 0 1 0 . . . . . . . . . 0 0 0
0 0 0 0 1 0 1 0 . . . 0 0
0 0 0 0 0 0 0 1 0 1 . . .
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 . . . 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 . . . 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

. . . 1 0 1 0 0 0 0 0 0 0
0 0 . . . 0 1 0 1 0 0 0 0
0 0 0 . . . . . . . . . 0 1 0 1 0
0 0 0 0 . . . . . . . . . . . . 0 0 1



. (5.13)
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The shape of the matrix N q will depend on how many sequences of (1, 0, 1) will fit in mq + 1
columns. Since m is not divisible by 3, by Fermat’s Little Theorem, we have m2 ≡ 1 mod 3.
Let q = 2k, for some k ∈ N, then

m2k + 1 ≡ 2 mod 3.

If q = 2k + 1, for some k ∈ N, then we have m2k+1 + 1 ≡ m+ 1 mod 3. Hence, in this case

m2k+1 + 1 ≡ 0 mod 3 or m2k+1 + 1 ≡ 2 mod 3,

depending on whether m ≡ 2 mod 3 or m ≡ 1 mod 3, respectively.

This means that we have two different cases to address either mq+1 ≡ 0 mod 3 or mq+1 ≡ 2
mod 3.

Let q be such that mq + 1 ≡ 2 mod 3. Denote by x = (x1, x2, . . . , xmq+2) a vector in
Rmq+2. Note that there is no i such that N q

i,3i−2 = 1 and N q
i,3i−2mq−2 = 1, in conjunction, or

N q
i,3i−2 = 1 and N q

i,3i−2mq−4 = 1, together. Similarly, there is also no i such that N q
i,3i−4 = 1

and N q
i,3i−2mq−4 = 1, together, or N q

i,3i−4 = 1 and N q
i,3i−2mq−2 = 1. Hence, we can write

N qx =



x1
x2 + x4
. . .

x2+3α + x4+3α

xmq+1

0
. . .
0
x2

xmq−1−3β + xmq+1−3β
. . .

xmq−1 + xmq+1

xmq+2



,

where α, β are integers that satisfy 0 < α, β < (mq + 1)/3.

Consider the sets

A = {i ∈ N : i = 2 + 3α and 0 < α < (mq + 1)/3}

and
B = {i ∈ N : i = mq − 1− 3β and 0 < β < (mq + 1)/3} .

Then, ‖N qx‖2 can be written as

x21 + x22 +
∑
i∈A

(xi + xi+2)
2 +

∑
j∈B

(xj + xj+2)
2 + xmq+1 + xmq+2. (5.14)

For simplicity, let
A :=

∑
i∈A

(xi + xi+2)
2

and
B :=

∑
i∈B

(xj + xj+2)
2.
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Each coordinate of the vector x appears, at most, once in A and once in B. Let i∗ be such
that, xi∗ appears both in A and B and assume that i∗ ∈ A. Then i∗ = j + 2 for some j in B.
To prove this, we proceed by contradiction. Assume that i∗ = j for some j ∈ B. Then,

2 + 3α = mq − 1− 3β,

for some integers α, β. But, this implies that 3 divides m which is an absurd. With a similar
argument, we prove that, if i∗ = i+ 2, for some i ∈ A, then i∗ = j for some j ∈ B.
Now, let i∗ be such that xi∗ appears in A and in B and assume that i∗ ∈ A. Then i∗ = j+2 for
some j ∈ B. We will show that xi∗+2 does not appear more than once in (5.14). If xi∗+2 = x1
or xi∗+2 = x3, then i∗ + 2 = 1 or i∗ + 2 = 3 and i∗ cannot belong to A. On other hand, if
xi∗+2 = xmq+2 then

i∗ + 2 = mq + 2

and for some β ∈ N,
mq + 1− 3β = mq + 2

which implies that 3β = −1. This is an absurd. A similar argument can be made to show that
xi∗+2 6= xmq . To finish, assume that exists a j∗ ∈ B such that i∗ + 2 = j∗ or i∗ + 2 = j∗ + 2.
If i∗ + 2 = j∗, then there exist integers β and β∗ such that

mq + 1− 3β = mq − 1− 3β∗.

Hence, 2 = 3(β − β∗) which is also an absurd. If i∗ + 2 = j∗ + 2, then j∗ ∈ A. This is
impossible as proved earlier.

Similarly, if xi∗ appears in A and B and i∗ = i + 2, for some i ∈ A, then xi cannot appear
more than once in (5.14).

Using Proposition 5.7, we can write that, for any ε > 0,

(xi + xi+2)
2 ≤ (1 + ε)x2i + (1 + 1/ε)x2i+2.

As proved above and due to the matrix pattern, for xl to appear in the sum A and B then
l = i for some i ∈ A and l = j + 2 for some in j ∈ B. Hence, for all ε > 0,

‖N qx‖2 ≤ x21 + x22 +
∑
i∈A

(1 + ε)x2i + (1 + 1/ε)x2i+2+∑
i∈B

(1 + 1/ε)x2j + (1 + ε)x2j+2 + x2mq+1 + x2mq+2 (5.15)

and we can establish that there are coefficients cl such that

‖N qx‖2 ≤
mq+2∑
l=1

clx
2
l . (5.16)

So, choosing ε = 0.5 and if xl appears in both sums A and B, then cl = 2(1 + ε) = 3.
Furthermore, if xl∗ is another coordinate such that the term (xl + xl∗)

2 appears only in A or
in B, then cl∗ = (1 + 1/ε) ≤ 3, since xl∗ does not appear anywhere else in (5.15). On other
hand, if x1 appears either in A or B then c1 is equal to 1 + 1 + ε ≤ 3 and the same conclusion
holds for c2, cmq+1 or cmq+2. Hence, for every 1 ≤ l ≤ mq + 2, we have cl ≤ 3 and therefore

‖N qx‖2 ≤ 3

mq+2∑
l=1

x2l ≤ 3‖x‖2.
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Consequently, by (5.3),
ρ(N q) ≤

√
3.

If mq + 1 ≡ 0 mod 3, in a very similar way, we obtain

‖N qx‖2 = x21 +
∑
i∈A

(xi + xi+2)
2 +

∑
j∈B

(xj + xj+2)
2 + xmq+2.

Then using the inequality

‖N qx‖2 ≤ x21 +
∑
i∈A

(1 + 1/ε)x2i + (1 + ε)x2i+2 +
∑
j∈B

(1 + ε)xj + (1 + 1/ε)x2j+2 + xmq+2,

with ε = 0.5, the proof follows for all q. �

Remark 5.12. We point out that each of the Digraph IFS associated to the intersection
T−q(C) ∩ C satisfies the open set condition. Each digraph is composed of only two different
similarities, x/3 and x+ 2/3. Hence, choosing Ωv = (0, 1) for every v ∈ V , we can check that
the conditions in Definition 5.6 are easily satisfied.

Proof of Proposition 5.8. Recalling that the matrices Mk
q of each Digraph IFS associated to

the intersection T−q(C) ∩ C are principal submatrices of N q, then (5.4) implies that

ρ(Mk
q ) ≤ ρ(N q).

Hence, if m is not divisible by 3, Lemma 5.11 gives us ρ(Mk
q ) ≤

√
3. Consequently, noting

that each Digraph IFS associated with a matrix Mk
q satisfies the open set condition and is

composed of only two different similarities, x/3 and x + 2/3, both with ratio 1/3, we can
apply [27, Theorem 3 and 4] to estimate the Hausdorff dimension of T−q(C) ∩ C, namely,

dimH(T−q(C) ∩ C) ≤ log
√

3

− log 1/3
=

1

2
,

for all q ∈ N. Moreover, one can check that conditions of [10, Theorems 1.1 and 2.7] are
satisfied in our setting and therefore dimH(T−q(C)∩ C) = dimB(T−q(C)∩ C), which allows us
to obtain:

dimB(T−q(C) ∩ C) ≤ log
√

3

− log 1/3
=

1

2
<

log 2

log 3
= dimB(C). (5.17)

So far, m is not divisible by 3. Using the self-similarity of the Cantor set, C, it is possible to
extend our findings to the cases where m = 3kc, for some integers c, k > 1 such that c is not
divisible by 3. Figure 3 intends to illustrate our reasoning for the case where k = 1, c = 2 and
q = 1.

Consider the map T̃ (x) = cx mod 1. We claim that

dimB(T−q(C) ∩ C) = dimB(T̃−q(C) ∩ C).
Let gγ : R → R be given by g(x) = γx for all x ∈ R. The set T−q(C) ∩ C is obtained by
intersecting 3kqcq copies of the set g3−kqc−q(C) distributed side by side along the interval [0, 1],
with the set C.
Note that because of the self-similarity of C, the intersection of each of the 2kq connected com-
ponents of Ckq with C is a copy of g3−kq(C). Moreover, each of the 2kq connected components
of Ckq meets exactly cq of the copies of the set g3−kqc−q(C) that constitute T−q(C). Therefore,
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C1
10

T−1(C)
Copy of
g3−12−1(C)

Copy of
g3−1(T̃−q(C))

Figure 3. For c = 2 and k = 1 this figure illustrates the relation between
T̃−1(C) ∩ C and T−1(C) ∩ C.

the intersection of the set T−q(C) ∩ C with each of the 2kq connected components of Ckq is a
copy of g3−kq(T̃−q(C) ∩ C) and the claim follows. �

Remark 5.13. We note that when m = 3k, for some k ∈ N, one can check that the matrices
N q have a spectral radius equal to 2, which means that the box dimension of T−q(C) ∩ C is
equal to the box dimension of C. For example, if m = 3 and q = 1 then

N q =


1 0 0 0 0
0 1 0 1 0
0 0 0 0 1
0 1 0 1 0
0 0 0 0 1

 ,

which can be easily checked to have a spectral radius equal to 2. This is consistent with what
we proved in Theorem 3.3.

5.3. From dimension estimates to EI estimates. In this section we show how to make
use of the information regarding the irrelevance (in terms of box dimension) of the intersection
of C with its iterates, in order to compute the EI from O’Brien’s formula (2.8). Essentially, we
have to translate the difference between the box dimension of C and T−q(C)∩C to the difference
between the Lebesgue measure of the respective convex hull approximations of decreasing size.
In order to that we will use some ideas used by Newhouse, in [31], to study invariants of Cantor
sets, such as thickness, to prove the abundance of wild hyperbolic sets.

Again, let C denote the ternary Cantor set and Cn its n-th approximation consisting of 2n

disjoint intervals of length 3−n and let Cn denote the collection of intervals whose disjoint
union forms Cn. Note that Cn is a set while Cn is a collection of sets. Consider that T−q(Cn)
is the collection of all the connected components of T−q(Cn). We consider the set C ∩ T−q(C).
Note that Cn ∩ T−q(Cn) ↓ C ∩ T−q(C). We let A denote the closure of A, Å its interior and Ac
its complement. Define

N3−n = #{I ∈ Cn : I̊ ∩ (C ∩ T−q(C)) 6= ∅}, (5.18)

N∗3−n = #{I ∈ Cn : I̊ ∩ (Cn ∩ T−q(Cn)) 6= ∅}. (5.19)

Since C ∩ T−q(C) ⊂ Cn ∩ T−q(Cn), then N3−n ≤ N∗3−n . However, one can prove that:

Proposition 5.14. If n is sufficiently large so that 3−n ≤ m−q, we have N3−n = N∗3−n.
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In order to prove the proposition, we need the following result which follows from the thickness
property of the Cantor set C.

Definition 5.15. Let Λ be a Cantor set (not necessarily the Cantor set C but homeomorphic
to C). To define thickness, we consider the gaps of Λ: a gap of Λ is a connected component
of R \ Λ; a bounded gap is a bounded connected component of R \ Λ. Let U be any bounded
gap and u be a boundary point of U , so u ∈ Λ. Let B be a bridge of Λ at u, i.e. the maximal
interval in R such that

• u is a boundary point of B;
• B contains no point of a gap U ′ whose length |U ′| is at least the length of U .

The thickness of Λ at u is defined as ρ(Λ, u) = |B|/|U |. The thickness of Λ, denoted by ρ(Λ),
is the infimum over these ρ(Λ, u) for all boundary points u of bounded gaps.

Since in the construction of the particular ternary Cantor set C, the gaps created at the n− th
step have the exact same size as the connected components of Cn, then the thickness of C is
equal to 1. The next lemma resembles the Gap Lemma in [31, 33], which was stated for two
Cantor sets, Λ1,Λ2, such that ρ(Λ1) · ρ(Λ2) > 1, and whose conclusion was that either their
intersection is nonempty or one of them is contained inside a gap of the other. Since, here,
we need to consider two Cantor sets, both with thickness equal to 1, we prove the following
result which allows in particular to generalise the statement of the Gap Lemma. Note that if
the maximal setM was such that ρ(M) > 1 then we could skip this step.

Lemma 5.16. Let f, g : R→ R be two affine transformations such that f([0, 1])∩g([0, 1]) 6= ∅,
and let Λ1 = f(C) and Λ2 = g(C). Then, either Λ1∩Λ2 6= ∅ or one of them is contained inside
a gap of the other (i.e., f([0, 1]) is contained inside a gap of Λ2 or g([0, 1]) is contained inside
a gap of Λ1).

Proof. Let us assume that neither Λ1 nor Λ2 are contained inside a gap of the other and
assume that Λ1 ∩ Λ2 = ∅, and derive a contradiction. Let us denote by G1 a gap of Λ1 and
G2 a gap of Λ2. We say that (G1, G2) form a gap pair if G2 contains exactly one boundary
point of G1, which also contains exactly one boundary point of G2. Recall that the boundary
points of G1 belong to Λ1, as the boundary points of G2 must belong to Λ2. Observe that
such a gap pair must always exist because f([0, 1]) ∩ g([0, 1]) 6= ∅ and otherwise the points of
Λ2 could never be removed from f([0, 1]) in order to have that Λ1 ∩ Λ2 = ∅ (having in mind
that neither f([0, 1]) nor g([0, 1]) are contained inside a gap o Λ2 and Λ1, respectively). Given
such a pair we build a sequence of gap pairs (G

(i)
1 , G

(i)
2 )i∈N such that either |G(i+1)

1 | < |G(i)
1 |

or |G(i+1)
2 | < |G(i)

2 |. Let
(
G

(i)
1 , G

(i)
2

)
be given. Let m, p ∈ N be the smallest integers such that

G
(i)
1 , G

(i)
2 appear as gaps of f(Cm), g(Cp), respectively. Let C`1, Cr1 and C`2, Cr2 be the intervals

of f(Cm), g(Cp), respectively, that appear to the left and right of the gaps G(i)
1 and G(i)

2 and
share the respective border points. Note that by construction we have that |C`1| = |Cr1 | = |G

(i)
1 |

and |G(i)
2 | = |C`2| = |Cr2 |. Therefore, we must have that the right endpoint of G(i)

2 belongs to
Cr1 or the left endpoint of G(i)

1 belongs to C`2, or both. Let us assume w.l.o.g. that the first
case happens and denote by T the right endpoint of G(i)

2 . Clearly, T ∈ Λ2 and, since we are
assuming that Λ1 ∩ Λ2 = ∅, we have T /∈ Λ1. Hence, T must fall into some gap of Λ1 inside
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Cr1 , which we will denote by G(i+1)
1 . Since |Cr1 | = |G(i)

1 |, it follows that |G(i+1)
1 | < |G(i)

1 |. In
this case, we set G(i+1)

2 = G
(i)
2 and define

(
G

(i+1)
1 , G

(i+1)
2

)
as the new gap pair. It follows

that limi→∞ |G(i)
1 | = 0 or limi→∞ |G(i)

2 | = 0, or both. Assume the first and let yi ∈ G(i)
1 and

y be an accumulation point of (yi)i∈N. Then y is also an accumulation point of the right
endpoints of G(i)

1 , which belong to Λ1, and of the left endpoints of G(i)
2 , which belong to Λ2

and, by definition of gap pair, are all inside G(i)
1 . But since Λ1 and Λ2 are compact sets, then

y ∈ Λ1 ∩ Λ2, which is a contradiction. �

Proof of Proposition 5.14. Observe that T−q(Cn) corresponds to mq copies of Cn contracted
by the factor m−q and placed side by side on [0, 1]. Let I ∈ Cn be an interval such that
I̊ ∩ (Cn ∩T−q(Cn)) 6= ∅. Let J ∈ T−q(Cn) be an interval of T−q(Cn) such that J ∩ I̊ 6= ∅. Note
that Λ1 := I ∩ C and Λ2 := J ∩ T−q(C) are copies of the original Cantor set, due to its self
similarity property. In fact, if we let f, g to be affine transformations such that f([0, 1]) = I
and g([0, 1]) = J , then I ∩ C = f(C) and J ∩ T−q(C) = g(C). Noting that |J | ≤ |I|, then if J
is not contained in any gap of Λ1, by Lemma 5.16, it follows that Λ1 ∩ Λ2 6= ∅ and therefore
I ∩ (C ∩ T−q(C)) 6= ∅. If J is contained in some gap of Λ1, we consider J1 to be the interval
of T−q(Cn−1) that contains J . If J1 is not contained entirely in the same gap in which J is
contained, then, since by the structure of the Cantor sets we must still have that |J1| ≤ |I|,
then by the argument above we are lead to the same conclusion that I ∩ (C ∩ T−q(C)) 6= ∅.
If J1 is still contained in the same gap of Λ1, we define J2 as the interval of T−q(Cn−2) that
contains J and so on, until, eventually, we find some k ≤ n so that Jk is not contained entirely
in the same gap in which J is contained and |Jk| ≤ |I|. This is guaranteed because the size of
the gap of Λ1 ⊂ I is smaller than 3−n ≤ |Jn|. �

Using the results above, we can proceed with the computation of the Extremal Index, θ.

Let Ñ3−n denote the minimum number of balls of radius 3−n to cover the set C ∩ T−q(C). By
definition of box dimension, we have that

lim
n→∞

log Ñ3−n

log 3n
≤ log

√
3

log 3
=

1

2
.

Hence, there exists an ε > 0 such that

γ :=
1

2
+ ε <

log 2

log 3
,

and, for n sufficiently large,
Ñ3−n < eγn log 3. (5.20)

Observe that 3Ñ3−n balls of radius 3−n are enough to cover the set Cn−1 ∩ T−q(Cn−1). Since
Cn ∩ T−q(Cn) ⊆ Cn−1 ∩ T−q(Cn−1), we have

Ñ3−n ≤ N3−n ≤ 3Ñ3−n .

Applying Proposition 5.14, we obtain that, for n sufficiently large (in particular, such that
3−n < m−q),

Ñ3−n ≤ N∗3−n ≤ 3Ñ3−n .

This implies that

µ(Cn ∩ T−q(Cn)) =
1

3n
N∗3−n ≤

3Ñ3−n

3n
.



RARE EVENTS FOR CANTOR TARGET SETS 27

Hence, by 5.20,

µ(Cn ∩ T−q(Cn)) ≤ 3eγn log 3

3n
. (5.21)

Recall that the sequence of thresholds (un)n∈N is such that un = n, which means that Un = Cn
and then O’Brien’s formula (2.8) gives:

lim
n→∞

1− θn = lim
n→∞

µ(Cn \ Aqn,n)

µ(Cn)
. (5.22)

The set Aqn,n depends on a sequence (qn)n∈N that we are going to choose in the following way:

qn :=

⌈
n

log 3

logm

⌉
. (5.23)

Note that qn = o(wn), as required, and, moreover, we have 3−n ≤ m−qn , for all n ∈ N, which
guarantees that we can apply Proposition 5.14 and estimate (5.21) holds, for all q ≤ qn. Then,
observing that Cn \ Aqn,n ⊆

⋃qn
i=1(Cn ∩ T−i(Cn)), we get

µ (Cn \ Aqn,n) = µ

 qn⋃
q=1

(Cn ∩ T−q(Cn))

 ≤ qn∑
q=1

µ(Cn ∩ T−q(Cn)) ≤ 3qn
eγn log 3

3n
.

Picking up on (5.22), we finally obtain

lim
n→∞

1− θn = lim
n→∞

µ(Cn \ Aqn,n)

µ(Cn)
≤ lim

n→∞
3qn

eγn log 3

3n

(23)n
≤ 3 lim

n→∞
qne

n(log 2−log 3) = 0.

Therefore, θ = 1.

5.4. Verification of conditions Дqn(un, wn) and Д′qn(un, wn). We recall that the system
([0, 1], T, µ) has exponential decay of correlations of BV observables against L1 observables,
i.e., , for all φ ∈ BV and ψ ∈ L1(µ), there exist C > 0 and r = 1

m such that

Corµ(φ, ψ, n) ≤ Crn.
The BV norm of 1Aqn,n is directly related with the number of connected components of Aqn,n,
which we need to control. In order to do that, we start by estimating, for each q = 1, . . . , qn,
the number of intervals of T−q(Ccn) that intersect a single connected component of Cn, which
we will denote by I.

Recall that our choice for qn made in (5.23) guarantees that |I| = 3−n ≤ m−q, for all q ≤ qn,
which means that the interval I from Cn can intersect at most 2 of the mq copies of Cn that
were contracted to fit on equally sized intervals of length m−q which form the set T−q(Cn). We
also note that Cn is built in a symmetrical way by choosing 2n intervals of equal length, 3−n,
which alternate with 2n−1 holes of different sizes. This means that the number of holes of Cn
is just about its number of connected components. In order to estimate the maximum number
of connected components of T−q(Cn) (with length m−q3−n), which intersect the interval I, we
define κ ∈ N such that

3κ−1m−q ≤ 1 ≤ 3κm−q,

i.e., we take κ =
⌈
q logmlog 3

⌉
. As represented by Figure 4, the structure of the Cantor set C

dictates that the maximum number of components of size m−q3−n of one of the mq copies of
Cn that compose T−q(Cn) and fit into the interval I is at most 2κ.
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I

i = 1

i = 2

i = 3 = κ

Figure 4. The impact of the structure of C on the maximum number of con-
nected components of T−q(Cn) that fit into each interval I.

As seen above, the number of holes of one of the mq copies of Cn (or connected components
of T−q(Ccn)) that fit into the interval I is bounded above also by 2κ. Since there are at most
2 of the mq copies of Cn that form T−q(Cn) which intersect I, then the maximum number of

connected components of T−q(Ccn) that intersect I is 2κ+1 = 2

⌈
q logm

log 3

⌉
+1.

Observing that the intersection of a collection of i subintervals of I with another collection
of j subintervals of I produces at most i+ j connected components, then Cn is formed by 2n

intervals like I. Having also in mind the choice of qn in (5.23), then the number of connected
components of Aqn,n = Cn ∩ T−1(Ccn) ∩ . . . ∩ T−qn(Ccn) is bounded above by

2n
qn∑
q=1

2

⌈
q logm

log 3

⌉
+1

= 2n+2
qn∑
q=1

2

⌊
q logm

log 3

⌋
≤ 2n+2

qn∑
q=1

m
q log 2
log 3 ≤ 2n+3m

qn
log 2
log 3

≤ 2n+3m
(n log 3

logm
+1) log 2

log 3 ≤ 8m4n.

This implies that

‖1Aqn,n ‖BV ≤ 16m 4n + 1 ≤ 32m 4n

Choosing, for example, tn = n2, then tn = o(wn) and

lim
n→∞

∥∥1Aqn,n∥∥BV wnrtn ≤ lim
n→∞

⌊
τ

(
3

2

)n⌋
32m 4nm−n

2
= 0

and condition Дqn(un, wn) holds.

Observe that the choice of qn implies that for q ≥ qn > n log 3
logm we have m−q < 3−n. Recall

that T−q(Cn) corresponds to mq copies of Cn contracted by the factor m−q and placed side
by side on [0, 1] and, since µ(T−q(Cn)) = µ(Cn) = (2/3)n, then each such copy has a measure
equal to m−qµ(Cn) = m−q(2/3)n. We point out that each of the 2n connected components of
Cn intersects at most

⌊
3−n

m−q

⌋
+ 2 intervals of size m−q. Hence,

µ(Cn ∩ T−q(Cn)) ≤ m−q
(

2

3

)n(⌊ 3−n

m−q

⌋
+ 2

)
2n ≤ m−q

(
2

3

)n( 3−n

m−q
+ 2

)
2n

≤
(

2

3

)2n

+ 2

(
2

3

)n
m−q2n ≤ 3

(
2

3

)2n

. (5.24)
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We choose kn = n. Note that kn −−−→
n→∞

∞ and kntn = n3 = o(wn). Now, observing that
Aqn,n ⊂ Cn, then (5.24) implies that:

wn

bwn/knc−1∑
j=qn+1

µ
(
Aqn,n ∩ T−j (Aqn,n)

)
≤ wn

bwn/knc−1∑
j=qn+1

µ
(
Cn ∩ T−j (Cn)

)
≤ wn

bwn/knc−1∑
j=qn+1

3

(
2

3

)2n

≤ 3
w2
n

kn

(
2

3

)2n

≤ 3

kn
τ2
(

3

2

)2n(2

3

)2n

=
3τ2

kn
−−−→
n→∞

0

and therefore Д′qn(un, wn) also holds. Since we have already proved that θ = 1, by Theo-
rem 2.1, we conclude the claim of Theorem 3.2, i.e.,

lim
n→∞

µ(Mwn ≤ n) = e−τ , (5.25)

when m ∈ N is not a power of 3.

6. The Extremal Index as a geometric indicator of the compatibility
between a fractal set and a given dynamical system

In order to illustrate the viability of using the EI as an indicator between the compatibility
of the fractal structure of a set and a certain dynamics, we performed several numerical sim-
ulations using different dynamical systems and fractal sets. We began by testing numerically
the theoretical results stated in Section 3. Then, we kept the same maximal set and tested
several different uniformly expanding and non-uniformly expanding dynamical systems and
even irrational rotations. Finally, we considered a different maximal set, which consisted on
a dynamically defined Cantor set obtained from a quadratic map, and tested it against both
linear dynamics (which should be incompatible) and systems compatible with the one that
generated the Cantor set.

We remark that in some cases (such as with irrational rotations), the systems are outside the
scope of application of the theory considered earlier. In other cases, with some adjustments
to the arguments, one could actually check that conditions Д and Д′ hold.

We will use the EI estimator introduced by Hsing in [21]. Namely, we will consider:

θ̂n(u, q) =

∑n−1
i=0 1T−i(Aq(u))∑n−1
i=0 1T−i(U(u))

, (6.1)

where the sets U(u) and Aq(u) are defined in (2.6). The parameters u and q are tuning
parameters which determine the quality of the estimate. In principle, one should consider
high values of u so that the tail behaviour is captured by the quantities in θ̂n(u, q), but
if u is too high there may not be enough information to estimate accurately the EI. Since
when Д′q∗(un, wn) holds for some fixed q∗ ∈ N then Д′q(un, wn) holds for all q > q∗, then
the parameter q should not affect as much the quality of the estimator. We will test several
values of u and a few for q and then we analyse the data to identify regions of stability of the
estimator.
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Figure 5. On the y-axis, mean values of θ̂n(u, q) for each u of the x-axis, with
n = 50.000 and ` = 500. The full line corresponds to q = 1, the dashed line to
q = 5 and the dotted line to q = 10. The black horizontal line represents the
exact value of the EI given by Theorem 3.3. On the left, we have T (x) = 3x
mod 1 and, on the right, T (x) = 9x mod 1.

6.1. The ternary Cantor set and linear dynamics. We illustrate numerically the exis-
tence of an EI equal to 1 when m is not a power of 3, as stated in Theorem 3.2, and the
validity of the formula for the EI stated in Theorem 3.3, when m = 3k for some k ∈ N, in
which case the Cantor set is invariant by the dynamics.

The numerical simulations performed consisted in randomly generating ` uniformly distributed
points on [0, 1] (recall that Lebesgue measure is invariant for the linear maps considered in
Theorems 3.2 and 3.3) and, for each one, compute the first n iterates of the respective orbit
and evaluate the observable function ϕ, defined in (3.1), along each orbit. Then, for each the
` time series obtained as described above, we compute θ̂n(u, q), for several values of u and q,
which are adequately chosen for the range of u values.

We observe an excellent agreement between the theoretical value of θ and the observed esti-
mates of θ̂n(u, q), in the regions of stability which correspond to the values of u in [5, 15], in
the case m = 3, and [10, 15], in the case m = 9.

In the case m = 5, there is also an excellent agreement between the theoretical value θ = 1
and the observed estimates of θ̂n(u, q), in the regions of stability which correspond to higher
values of u, namely, for u ∈ [15, 28]. We note that the agreement improves considerably when
we increase the number iterations, n, which allows to have more information on the tails.

The simulations results show an excellent performance of the EI in order to distinguish between
the compatibility and incompatibility of the dynamics with the structure of the Cantor set.

In the previous cases, either T (C) = C or T (C) ∩ C is negligible. We consider a case where
we have a relevant intersection T (C) ∩ C, although T (C) 6= C. The idea is to consider a map
that maps the left side component of C onto C, while the right side component is sent to a
set with a negligible intersection with C. Let T : [0, 1] → [0, 1] be the linear map whose first
branch coincides with the first branch of 3x mod 1 and the others send each of the 5 equally
lengthed subintervals of [2/3, 1] onto [0, 1]. See Figure 7.
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Figure 6. On the y-axis, mean values of θ̂n(u, q) for each 5 ≤ u ≤ 20 of the
x-axis, with n = 50.000. The full line corresponds to q = 1, the dashed line
to q = 5 and the dotted line to q = 10. The black horizontal line represents
the exact value of the EI given by Theorem 3.2. The dynamics is T (x) = 5x
mod 1. On the left, n = 50.000 and ` = 500. On the right, n = 500.000 and
` = 100.
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Figure 7. Mixed linear map

Although this map was not considered in the previous sections, it is easy to adjust the ar-
guments to show that an EVL applies with an EI, which is the mean between 1/3 (the con-
tribution from the left side) and 1 (the contribution from the right side). Namely, using the
estimates in Section 5.3, one can show that limn→∞

µ(Aqn,n∩[2/3,1])
µ(Cn∩[2/3,1]) = 1 and, as in Section 4,

one can show that Aqn,n ∩ [0, 1/3] = (Cn \ Cn+1) ∩ [0, 1/3], which imply:

θ = lim
n→∞

µ(Aqn,n)

µ(Un)
= lim

n→∞

µ((Cn \ Cn+1) ∩ [0, 1/3]) + µ(Cn ∩ [2/3, 1])

µ(Cn)
=

1

2
· 1

3
+

1

2
· 1 =

2

3
.

(6.2)

As it can be seen in Figure 8, the numerical estimates for the EI point to the theoretical value
θ = 2/3 and the performance of the EI estimator improves when n is increased, as expected.

6.2. The ternary Cantor set, nonlinear dynamics and irrational rotations. We con-
sidered two different nonlinear dynamics and an ergodic rotation. The first is a uniformly
expanding map resemblant to the doubling map but in which the branches are convex curves.
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Figure 8. On the y-axis, mean values of θ̂n(u, q) for each u of the x-axis. The
full line corresponds to q = 1, the dashed line to q = 5 and the dotted line to
q = 10. The black horizontal line represents the exact value of the EI given
in (6.2). The dynamics is described in Figure 7. On the left, n = 50.000 and
` = 500. On the right, n = 500.000 and ` = 100.

Namely, we let

T : [0, 1] −→ [0, 1]

x 7−−−→
{

4
3x(x+ 1) 0 ≤ x < 1

2
4
3

(
x− 1

2

) (
x+ 1

2

)
1
2 ≤ x ≤ 1

(6.3)

This map does not seem to have any compatibility with the ternary Cantor set and in fact
the simulation results illustrate an EI estimate equal to 1, which is observed for high values
of u ≈ 20. (See top left panel in Figure 9). We note that, for this particular map, some
adjustments to the arguments presented in 5.4 would allow to check conditions Д(un, wn)
and Д′(un, wn). However, the box dimension estimates used in Section 5.2 cannot be easily
adapted and therefore we cannot state that the EI is indeed 1, despite the numerical evidence.

Then, we also considered the Gauss map, which is a non-uniformly expanding map, but still
with very good mixing properties.

T : [0, 1] −→ [0, 1]
x 7−−−→ 1

x −
⌊
1
x

⌋ (6.4)

We remark that for this map is not possible to adapt easily the arguments used in 5.4 in
order to check conditions Д(un, wn) and Д′(un, wn), since it has countably many branches,
which makes the estimates for the number of connected components of Aqn,n, obtained earlier,
useless. Nonetheless, the numerical simulations also reveal that, on the region of stability of
the estimator (for high values of u), one gets an EI equal to 1, which indicates that the
dynamics is incompatible with the structure of the ternary Cantor set C (See top right panel
in Figure 9).

Finally, we also considered an irrational rotation T : [0, 1] → [0, 1] given by T (x) = x + π
3

mod 1, as in [26], and, in coherence with the numerical simulations performed there, we
also obtain a numerical evidence that the EI is 1. We remark that irrational rotations are
completely outside the scope of application of the theoretical results obtained here, which
depend heavily on the exponential decay of correlations of the systems considered.
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Figure 9. On the y-axis, mean values of θ̂n(u, q) for each 5 ≤ u ≤ 20 of the
x-axis, with n = 50.000 and ` = 500. The full line corresponds to q = 1, the
dashed line to q = 5 and the dotted line to q = 10. The black horizontal line
represents the expected value for the EI. On the top left T is given by (6.3),
on the top right T is given by (6.4) and on the bottom T (x) = x+π/3 mod 1.

6.3. A different Cantor set. We also considered for a maximal set a dynamically defined
Cantor set as described in Section 4.1. Namely, in this case Λ is generated by the quadratic
dynamical system g : R→ R such that g(x) = 6x(1− x), i.e.,

Λ = {x ∈ [0, 1] : gn(x) ∈ [0, 1] for all n ∈ N}.

In this case we define the observable map

ϕ : [0, 1] −→ [0, 1]

x 7−−−→
{
n, if n = inf{j ∈ N : gj(x) /∈ [0, 1]}
∞, x ∈ Λ

. (6.5)

We studied numerically the behaviour of two systems. The first one is defined by

T : [0, 1] −→ [0, 1]

x 7−−−→


g(x) 0 ≤ x < 1

6

(
3−
√

3
)

x+ 1
6(
√
3−3)

1
6(
√
3−3)+ 1

6(3+
√
3)

1
6

(
3−
√

3
)
≤ x < 1

6

(
3 +
√

3
)

g(x) 1
6

(
3 +
√

3
)
≤ x < 1

, (6.6)

which is compatible with the structure of the Cantor set Λ since its left and right branches
coincide with the map g that generated Λ, just as F was compatible with G in Section 4.2.
The second is the linear system T : [0, 1] → [0, 1], where T (x) = 5x mod 1, which, a priori,
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Figure 10. On the y-axis, mean values of θ̂n(u, q) for each 5 ≤ u ≤ 20 of the
x-axis, with n = 50.000 and ` = 500. The full line corresponds to q = 1, the
dashed line to q = 5 and the dotted line to q = 10. On the left T is given by
(6.6) and on the right T is given by T (x) = 5x mod 1.

has no reason to be compatible with the geometric structure of Λ. Both these systems are full
branched Markov maps, which means that have decay of correlations against L1 observables.
We note that if we adapt the the arguments presented in Sections 4 and 5.4, one could check
that conditions Д(un, wn) and Д′(un, wn) hold for these systems and the observable ϕ defined
in (6.5). Hence, these examples fit the theory and we expect the existence of an EVL, but the
analytical computation of the EI is much more complicated and cannot be carried as for the
ternary Cantor set, in Sections 4 and 5.3.

As in the usual ternary Cantor set and the linear dynamics, the EI easily detects the com-
patibility between the dynamics and the fractal structure of Λ. In the first case, where T is
given by (6.6), the numerical simulations reveal an EI approximately equal to 0.61, which is
consistent with the expected connection between g and T , while in the second case, where
T (x) = 5x mod 1, we obtain an EI equal to 1 (see Figure 10).
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