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Resumo

As ciências planetárias são um ramo da astrof́ısica que se têm desenvolvido rapidamente nas

últimas décadas. Missões robóticas visitaram todos os planetas do sistema solar, a maioria das

luas e alguns dos corpos sub-planetários. A quantidade de dados existentes para os caracterizar

é de especial importância se quisermos inferir as propriedades de outros sistemas planetários

que, até este momento, não nos são posśıveis de alcançar. Quando comparados com os corpos

do nosso sistema planetário, o desenvolvimento de novas ferramentas para identificar a plu-

ralidade dos mundos está a acontecer a um ritmo acelerado. Esta tarefa não se têm revelado

fácil! Existem limitações observacionais, os melhores dos nossos telecópios estão limitados a ob-

servações a partir do solo e os recursos no espaço são limitados e caros. Em particular a deteção

e caracterização das atmosferas dos exoplanetas requer espectroscopia de alta resolução e um

sinal suficientemente bem definido para se distinguir do rúıdo. Tendo estes fatores em conta,

é desenvolvida aqui uma nova técnica que permite, utilizando todos os dados já dispońıveis,

agregar observações e concluir se existe atmosfera no planeta. Partindo de um conjunto de pres-

supostos e dados de qualidade suficiente é posśıvel deduzir os perfis de temperatura, pressão

e densidade. Neste trabalho são descritos os prinćıpios do algoŕıtmo que, sabendo um deter-

minado número de parâmetros estelares e planetários, é usado para obter quantidades f́ısicas

caracteŕısticas das atmosferas dos exoplanetas.
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Abstract

The planetary science as an astrophysics branch has been in a fair development in the last

decades. Unmanned missions have visited all the planets of the solar system, most of the moons

and some of the minor planetary bodies. The amount of data we have to characterize them is

of the foremost importance if we want to infer about the properties of planetary systems, at

this moment, out of our reach. In comparison with the bodies of our planetary system, the

development of new techniques to identify the vast plurality of worlds arise at a fast pace. But

this is no easy task! We are limited by observational constrains, the best of our telescopes

are limited to ground observations and the resources at space are limited and expensive. In

particular, the detection and characterization of exoplanets atmospheres require high precision

spectroscopy and reasonably high signal-to-noise ratios. With this in mind, it is developed

here a new technique that allows, recurring to all the data available, combining observations

and deduce if a planet has atmosphere. Departing from a set of assumptions and with data

of enough quality, it is possible to deduce the temperature profiles, pressure or density. It is

described in this work a routine that is self contained and, known the sufficient number of

planetary and stellar parameters, used to obtain the relevant quantities characteristic of the

exoplanets atmospheres.
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List of Tables

3.1 Parameters set as known, therefore fixed, for the model used by CARM : the

Rossiter-McLaughlin effect reproduced by AROME and a Keplerian to represent

the reflex motion around the center of mass. The semi-major axis is represented

by a, in a approximated circular orbit, R∗ the host star radius, i the inclination, λ

the spin-orbit misalignment, V sin(i) the rotational velocity of the star projected

in the observation line of sight, β0 the CCF standard deviation for a non-rotating

star, σ0, z and P the orbital period. . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Parameters set as variable for each data set. The reflex motion velocity Vi is

fitted independently for each night. The planet radius, the Keplerian amplitude

and white noise parameters are common variables. . . . . . . . . . . . . . . . . . 40

xiii



Chapter 1.

Introduction

1.1 Historical background

Since the dawn of humanity Astronomy has been a fundamental tool. It took an important

role when the first humans became sedentary. The success of a given crop was highly dependent

on seeding epoch, so it became necessary a way to measure time. A proof of it can be found in

Stonehenge: at the first day of the summer solstice, the sun aligns in such a way its brightness

can be seen through the openings of the standing stones.

The systematization of Astronomy as a modern science only came when Humans started

to colonize new territory on Earth. Exploring uncharted places, it was necessary to develop

a new method to derive latitude and longitude. Tools like the Astrolabe and Quadrant were

used to measure the relative position of celestial bodies in the sky. By comparison it was then

possible to have an estimate of the relative position on the surface of the Earth. Most of this

concepts were refined and developed up to the modern era. The precise measurement of time

was replaced by more accurate methods, like the measurement of oscillations of Cesium in an

atomic clock. The position on the surface of the earth is now possible with unprecedented

precision, result of the GPS satellites. The navigation with star positioning is still used in

state of the art space probes, and it is a fundamental concept for space exploration of the Solar

System.

The same force that made us explore Earth and discover new places is now on the rise in the

Space Era. In the forthcoming decades there are plans to build moon bases and settle on Mars.

In a few centuries it can even be possible to make Mars more similar to Earth. In a distant

future the Solar System will be small and the desire expansion will thrive again.

1
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What about other stars, are there planets outside our neighborhood? This question was

unanswered and theme of debate since the ancient Greeks up to the end of the XX century.

The formation of the solar system has been debated at least for as long, with various concurring

hypothesis. The work of Immanuel Kant in his Allgemeine Naturgeschichte und Theorie des

Himmels suggested a modified nebular hypothesis in which planets were originated in a disk

as result of processes of accretion. In 1984 it was imaged the first protoplanetary disk around

the star β-Pictoris, after a detection on the Infrared in the previous year (A. Smith and J.

Terrile, 1985). Later, in 1992, the first planetary mass objects orbiting another star were found

orbiting around a Pulsar in Virgo constellation (Wolszczan and Frail, 1992).

In 1995 the first exoplanet around a main-sequence was identified (Mayor and Queloz, 1995).

With it a new class of exoplanets was brought to existence: Hot Jupiters. They are planets

with at least 10% of Jupiter’s mass, orbiting stars in a short period and at a short distance (<

0.1A.U.). The finding was made using the Radial- velocities technique, chapter 1.3.1. Five years

later it was observed the first planet transiting a star (Charbonneau et al., 2000). Subsequent

studies allowed, using other methods (chapter 2), the development of tools to characterize

exoplanetary atmospheres (Burrows, 2014).

In the present thesis we explore a new method to detect and characterize exoplanet atmo-

spheres using high resolution spectroscopy and the Rossiter McLaughlin effect. To put it in

context, we will start by presenting the basic principles of spectroscopy and photometry fol-

lowed by a characteristics summary of the of the HARPS spectrograph. It will be discussed

the principles of detection of exoplanets, with particular focus on radial velocities. The dif-

ferent methods which form the basis of exoplanets atmospheres characterization are reviewed

to introduce the method to be explored on chapter 4; finishing with the most relevant results

and conclusions. The RM effect is explored in different wavelengths, fitting the radial velocity

curves. The radius variation of the analyzed planet is recovered, as a atmospheric opacity mea-

surement at different wavelength bins. The chromatic approach allows to infer about mostly the

transmitted light in the atmosphere at visible wavelengths, dominated by Rayleigh scattering,

section 1.4.1.
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1.2 Principles of spectroscopy and photometry

1.2.1 Photometry

Photometry is the science which aggregates the techniques that allows us to measure precisely

the flux of a source and infer its properties as result. The total energy output (luminosity),

temperature and object size are some of the quantities and properties that can be obtained.

Frequently in the visible portion of the spectra, the fluxes are measured using magnitudes. For

two stars with flux F1 and F2, the magnitude difference can be computed by:

m1 −m2 = −2.5log

(
F1

F2

)
, (1.1)

where m1, m2 are magnitudes measured in some electromagnetic frequency band. Stars radiate

along all the electromagnetic spectra and can be characterized by their spectral energy distri-

bution (SED). Bolometric quantities are obtained if the power is integrated over the range of

frequencies or wavelengths. The observation on different regions of the electromagnetic spectra

require different detectors and telescopes, both on ground and space. Ground observations are

limited by atmospheric visibility, which is opaque to X and γ radiation, as well as some IR

bands due to the presence of water vapor.

A popular system of filters is the UBV , Fig.1.1, in the visible wavelength range. Measuring

the magnitude of a star with two different bands, it is obtained the color of that star:

B1 −B2 = mB1 −mB2 , (1.2)

where B1 and B2 are any two bands. This quantity gives the ratio between the integrated flux

in two different regions of SED.

FB1

FB2

= C10
B2−B1

2.5 , (1.3)

with C fixing the zero of the scale. By definition, the reference star Vega was set to have
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Figure 1.1: Stromgren UVBY filter transmission curves superimposed to a hot star
SED. This set in particular has the advantage to be useful to measure the interstellar
extinction.Copyright: Michael Richmond

(B − V ) = 0. A star with an higher effective temperature will have a negative (B − V )

color, and a cooler a positive value. High precision photometry is crucial to measure low

magnitude variations with time, like in the case of planets transiting their host star, chapter 2.

The reduction of photometric noise can be achieved by differential photometry, comparing the

magnitude of the target star to a reference one, equation (1.2). With CCDs the noise can be

further reduced. Simultaneously the flux of the background in the field can be compared with

multiple stars. Since they are measured with the same instruments, offsets can be avoided.

This method is able to achieve a precision . 1mmag
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1.2.2 Spectroscopy

The basic spectrograph is composed of a slit, fixed or variable in width, in order to select

the objects in the focal plane; a colimator to turn the diverging light rays into parallel ones; a

diperser and a detector. For a photon of wavelength λ, the angle of dispersion for the order of

dispersion maxima m, θm, at a θi angle of incidence on the plane is described by the grating

equation:

θm = arscsin
(
sin(θi)−

mλ

d

)
, (1.4)

where d is the distance between the rulings in the dispersion grating. The dependence of the

dispersion of the orders with the wavelength is found by differentiating (1.4) in order to the

wavelength.

dθm
dλ

=
m

dcos(θm)
. (1.5)

When in a Littrow configuration the angle of incidence is equal to the angle of dispersion:

dθm
dλ

=
2tan(θm)

λ
. (1.6)

In a conventional spectrograph low orders are used to avoid overlap of different wavelengths.

Echelle spectrographs, with the slits in a ”ladder” configuration (Fig.1.2.2), differently have

θm ≈ 2, low spectral range,δλ = λm − λm−1, and as consequence high order of dispersion.

To avoid the orders overlap are cross-dispersed introducing an échelle grating. The spectral

resolution R is a measurement of the ratio between the wavelength range and the minimum

distance of two well defined absorption lines. It can define the minimum distance from which

two spectral lines can be resolved:

R =
λ

∆λ
. (1.7)



FCUP 6
Detecting the atmosphere of exoplanets using high resolution spectroscopy

The spectral range is inversely proportional to the order number. The angular spread, δm:

δm =
λ2

2dsin(θm)
, (1.8)

with each échelle order covering a different range interval of the spectra.

Figure 1.2: Solar spectra captured by the Magellan Echellette (MagE) spectro-
graph. It operates with slit width from 0.5 to 5.0 arcsec, and has a resolution of
R = 4100 with the 1arcsec slit width. The order numbers and central wavelengths
are indicated. Credits: Marshall et al. (2008).
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Figure 1.3: Radial velocity drift in a time span of 3 hours. The simultaneous
calibration of fiber A and B, allows a radial velocity rms below 1m/s. The main
contribution for the noise at these levels is the thermal variations of the CCD sensor,
contributing with σRV,Thermal = 30cm/s. Credits: Rupprecht et al. (2004)

HARPS Spectrograph

The High-Accuracy Radial Velocity Planetary Searcher, HARPS, is an échelle type fiber-fed

spectrograph (Mayor et al., 2003). The light is injected through two fibers: one conducting

the target light, and the other with a calibration source (lamp or reference star). The light is

dispersed in 72 orders for each fiber, covering a wavelength range from 380nm to 690nm. The

fiber diameter, with an aperture of 1 arcsec in the sky, defines a slit width that produces a

resolution R = 115000. At the focal plane, one resolution element is sampled by 3.2 pixels. The

calibration fiber is fed with a Th-Ar lamp or with a Fabry-Pérot, in a vacuum that guarantees

drifts below 1m/s per day, Fig.1.3. The vessel that contains the spectrograph is maintained at

a constant temperature of 17oC, with a stability of the order 0.01oC
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Figure 1.4: Comparison of the number of exoplanets discovered by year with dif-
ferent techniques. The 1989 detection is yet to be confirmed as the first one, the
detected planet as a mass ∼ 11MJupiter and it is not ruled out as a brown dwarf.
Copyright: Michael Richmond

1.3 Methods of detection and characterization of exoplanets

The number of exoplanets discovered since the detection of 51 Pegasi around a solar type

star (Mayor and Queloz, 1995) has grown at a fast pace, mainly due to development of new

techniques and more sensitive instruments, Fig.1.4. This section will focus in particular on

two of them: radial velocities and transit photometry. In section 1.3.3 the basic principles of

other techniques will be referred, with special importance on Direct Imaging. Finally it will

be deduced the relation between the(Mayor and Queloz, 1995) radius of the planets and their

host stars both in the visible and IR.

1.3.1 Radial velocities

The presence of a planet orbiting a star generating a perturbation in radial velocity is created

by the movement of both bodies around the system center of mass (CM). The measurement is

made measuring the Doppler effect on the host spectral lines. The Keplerian orbit of a body

with semi-major axis , a, around the host star can be defined to have a semi-major axis a1

around the CM:

a =
MP

MP +M∗
=
MP

M
, (1.9)
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if M is the total mass of the system. The body has an elliptically shaped orbit around the CM,

which can be expressed in polar coordinates (1.10).

r1 = a1
1− e2

1 + ecos(f)
, (1.10)

where e is the orbital eccentricity and f the true anomaly, defined as the angle formed by the

periastron (closest approach point) and the orbital position from the center of mass reference

point. In rectangular coordinates with the referential origin in the CM and the x-axis direction

aligned with the periastron:

r̄1 =

r1cos(f)

r1sin(f)

 , (1.11)

˙̄r1 =

ṙ1cos(f)− r1ḟ sinf

r1ḟ cos(f) + ṙ1sinf

 . (1.12)

From equation (1.10) in polar coordinates, it is possible to rewrite the ˙̄r1:

˙̄r1 =
−h1sin(f)

M∗a1(1− e2)(cos(f) + e)
, (1.13)

introducing h1 as the angular momentum of the body M∗, which derivation follows from the

universal gravitational law:

h1 =

(
GM2

∗M
4
Pa(1− e)2

M3

) 1
2

, (1.14)

which plugged in into equation (1.13):

˙̄r1 =
GM2

P

Ma(1− e2)

 −sin(f)

cos(f) + e

 . (1.15)
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Figure 1.5: Diagram depicting the orbital plane characterized by quantities of
the reference plane. From the observer point of reference γ, the celestial body
describes an orbit with inclination measured from a reference plane. In the or-
bital plane, the argument of periapsis defines the between the line of nodes at
the ascending node to the periapsis. The true anomaly gives the angle from ω
to the current celestial body position. In the plane of reference, the angle between
the reference direction and and the lines of the nodes is given by the longitude
of the ascending node. By Lasunncty at the English Wikipedia, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=8971052

From an observational standing, the velocity vector is projected in the plane of the sky. To

better understand the geometry of the problem Fig.1.5 expresses the main orbital quantities

that describe the dynamics from an observer point of view. The vector of sight k̄, can be defined

in the three spatial directions by the following:

k̄ =


sin(ω)sin(i)

cos(ω)sin(i)

cos(i)

 . (1.16)
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The observed velocity results of the projection of ˙̄r1 into the observation vector k̄, given by the

dot product:

v = ˙̄r1.k̄ =

(
G

Ma(1− e2)

) 1
2

MP sin(i)(cos(ω + f) + ecos(ω)). (1.17)

The radial velocity semi-amplitude K is found by halving the difference between the maximum

and minimum values of v:

K =
|vmax − vmin|

2
=

(
G

Ma(1− e2)

) 1
2

MP sin(i), (1.18)

where MP sin(i) corresponds to the planet minimum mass. From radial velocities it is possible

to directly measure both the period T and K. The MP sin(i) is known if the stellar mass, when

M∗ � MP , is found by alternate methods, like spectral synthesis and asteroseismology. It is

worth to note that in general the inclination is not know with precision. This is not a major

problem since the inclination distribution of orbital planes is statistically favorable to edge-on

systems. If a Solar System analogue is observed in an edge-on configuration, the expected

semi-amplitude K⊕ = 9.0× 10−2 m/s and for Jupiter-Sun KX = 12.7 m/s. The detection of

rocky planets down to the mass of the Earth require a radial velocity precision below 1m/s.

The motion of the stars around the CM is measured by an observer as a change of a given

spectral line peak wavelength with time. A photon of wavelength λ0 emitted by a source moving

with a velocity component along the line of sight vector will be detected with a new wavelength

λ:

λ = λ0

1 +
(
k̄.v̄
c

)
1−

(
v
c

)2 , (1.19)

where v̄ = ˙̄r1 defined in equation (1.12). In general relativity, the curvature of a region of the

space-time is responsible to introduce a similar effect: the gravitational redshift. Assuming

a system observed from a zero potential frame, the intensity distribution is approximated by

Planck’s law. In a stellar spectra, the shift in the photospheric absorption lines can be measured
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simultaneously using the cross correlation function, CCF , between it and a rest frame analogue,

chapter 2. If the conditions of the problem are in the non-relativistic framework, which is

valid for radial velocity precision & 0.1m/s; equation (1.20) can be simplified:

k̄.v̄

c
=
λB − λ0

λ0

, (1.21)

where λ0 is the reference wavelength measured form the ICRS. The effective radial velocity

magnitude is frequently not known due to perturbing effects (Fischer et al., 2016). Gravitational

perturbations account for uncounted fields in the relativistic approach and stellar convective

dynamics introduce non homogeneous radial velocity variations with time, to name two of those

perturbations (Lindegren and Dravins, 2003).

Photon noise limit contribution

The RV measurements are limited by photon noise. Following the analysis developed by

Connes (1985), spectra can be used to estimate the uncertainty in radial velocity in single

pixels or in the entire spectra. Bouchy, Pepe, and Queloz (2001) summarize the basic principles

of the spectral lines contribution for this error. A reference spectra A0 at a reference radial

velocity is considered noise free. It is characterized by an intensity A0(i) and correspondent

wavelength λ(i) at the pixel i. The observed spectra A is considered a transformed version of

A0 by Doppler shift. If no other sources of noise are considered, both have the same intensity

level per pixel. For an high resolution spectra:

∂A0(i)

∂λ(i)
≈ A(i)− A0(i)

δλ(i)
. (1.22)

0The observation stations are actually not in a rest frame. The International Astronomical Union (IAU) defined the International

Reference System (ICRS) from which all the wavelengths are measured:

λ = λ0

1 +
(
k̄. ¯vobs
c

)
1−

(
Φobs
c2

)
− 1

2

(
v
c

)2
. (1.20)
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Taking the differential form of equation (1.21), where k̄.v̄ = V :

δV

c
=
δλ

λ
, (1.23)

together with (1.22), it is found a relation between the measured velocity at pixel i comparing

both spectra.

δV (i)

c
=

A(i)− A0(i)

λ(i)(∂A0(i)/∂λ(i))
. (1.24)

An optimum weight W (i) can be constructed considering that the noise from A is photon noise,

as result of detector induced noise σD:

W (i) =
λ(i)2(∂A0(i)/∂λ(i))2

A0(i) + σ2
D

. (1.25)

The contribution for the measured velocity of the full spectra is recovered summing over all

pixels in range:

δV

c
=

∑
(A(i)− A0(i))

√
W (i)

A0(i)+σ2
D∑

W (i)
. (1.26)

The optimum weight is inversely proportional to the square of the error of the velocity dispersion

at each pixel. The uncertainty in the velocity for the complete spectrum,white-light , δVRMS

is computed summing the inverse square root of the weights:

δVRMS

c
=

1√∑
W (i)

. (1.27)

The estimation of the error can be generalized for wavelength bins, particularly useful to a

chromatic analysis. The average velocity error, δVRMS, is computed similarly to the total error,

summing for each slice k of the spectra:

δVRMS =
1√∑

1
δVRMS(k)

. (1.28)
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1.3.2 Transit photometry

A transit occurs when, from an observer point of view, a planet traverses the disk of a star.

It can be observed in the solar system when there are the right geometrical conditions between

an interior planet relative to an exterior one. Transits of Mercury and Venus can be seen

from Earth. If the observed planet and star are closely aligned, the observed flux of the host

star decreases by a fraction that depends on the radius ratio (RP ,R∗) and orbital radius, r.

In the approximation where r � max{RP ,R∗}, the flux decreases by a quantity (Seager and

Mallén-Ornelas, 2003):

∆F =

(
RP

R∗

)2

(1.29)

For a planet with RP ≈ R⊕ orbiting a star with R∗ ≈ R� the variation of flux is ∆F ≈ 10−4.

The probability of a random planet to transit depends on the system components radius,

semi-major axis a and orbital eccentricity:

P =

(
RP +R∗

a

)(
1

1− e2

)
. (1.30)

The transit method relies mostly on multi-targeted surveys to detect new planets. The ground

observations are mostly limited by atmospheric instability, with a current detectability thresh-

old of ∆F ≈ 10−3 (Wheatley et al., 2018). With this range we are capable to detect gas giants

and characterize them in association with spectroscopic techniques. The orbital surveys are

mostly limited by the aperture of the instrument, in a compromise between number of stars

observed and precision. The search for longer period planets requires the observation of a fixed

area of the sky, making it more limited than ground based observations. Placed well above

the atmosphere, it is capable of detecting planets with ∆F . 10−4 in the range of Earth-like

planets, as it is the case of Kepler space telescope (Koch et al., 2010). The transit light curves

are a source to infer about not only the radius ratio (1.29) but also the period.
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Figure 1.6: Variation of the observed flux of a star along the transit. At ingress and
egress the shape of the light curve is defined by the amount of planetary area covering
the stellar disk with time. Limb darkening of the stellar surface is responsible for
the smoothing of the transition from the in transit to the out of transit light curve
phase. Adapted from Leger et al. (2009), depicting the fit (black solid line) to the
transit light curve of CoRot− 7b.

If the star radius is known , for i = 90� and b = 0; the transit time duration ∆T can be

estimated by (1.31) (Seager and Mallén-Ornelas, 2003).

∆T = 13

(
M∗
M�

)(
R∗
R�

)(
a

1A.U.

)1/2

(1.31)

1.3.3 Other methods

Astrometry

In comparison with radial velocities, that measure the motion of the star in the line of sight

of an observer, the Astrometric method relies on the precise measurement of the position of a

star hosting a planet, in the reference plane. The dynamical gravitational interaction between

the masses of a Star-Planet system happens around their barycenter. Astrometry measures the

associated motion projected in the sky plane:

α =
MP

M∗ +MP

a, (1.32)
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where M∗ and MP are the masses of the star and planet and a the semi-major axis of a simplified

circular planetary orbit. The motion of the stars are often explored in the context of distance

measurements using the parallax. The former equation can the be modified to express its

angular nature using the Parsec definition,

α =

(
MP

M∗

)(
a

1AU

)(
1pc

d

)
arcsec, (1.33)

in the approximation M∗ � MP . The distance to the star is given by d. From observation

of equation (1.33), α increases with the distance to the star and it is larger to higher planet-

star mass ratios and shorter distances. This technique is more sensitive to high mass planets

with long orbital periods at nearby stars. For a Sun-Earth analogue at a distance of 10pc it

is expected an astrometric signature α ≈ 0.3µas. Measurements below 1µas threshold are

up to date challenging both from ground and space. There are several sources of noise. The

atmospheric turbulence diffraction can, for example, introduce an uncertainty from 0.3 − 1

arcsec, well above the threshold of most targets of interest (Perryman, 2011).

Timing

The dynamics of a system around a common center of mass can be measured from many

ways. If the star of a system has periodic features in time, it is possible to infer the mass

of the planet measuring time variations along an orbit as perturbations of the ideal orbit.

Pulsars are among the ideal candidates to apply this technique. They are a class of neutron

stars: the degenerate remains of a main-sequence star with a mass from 8M� up to 20− 25M�

(Kippenhahn and Weigert (1990)). The mechanisms and structure of the stars determine in part

their final evolution. The final mass of a neutron star doesn’t change very much, compared

what it would be if it had a helium core. In a wide range of initial mass distributions, the

presence of a CO core makes the output mass range be bounded to the interval of [1, 3]M�. An

intense magnetic field is capable of creating jets of particles from the poles by the syncrotron

radiation mechanism. The period and axis of rotation determines if it can be detected and

what is the frequency. The conservation of angular momentum guarantees the stability of the

rotation period and, as consequence, of the measured signal.
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A planet orbiting a pulsar creates a observed amplitude variation in the period described by

equation (1.34) (Perryman (2011)):

τp =
asin(i)MP

cM∗
, (1.34)

where i is the angle of projection in the line-of sight and c the velocity of light. Assuming

a planet like the Earth in the best case scenario, orbiting at 1A.U. a pulsar with common

mass of M∗ = 1.35M� in line of sight at an angle i = 90◦; it is measured τp ≈ 1ms. The

precision and detection of the orbiting planet depends on the ratio between the times, and it is

fundamentally limited by the Nyquist criterion. As τp is directly proportional to the orbiting

mass, it is possible to detect lower mass bodies in the fastest pulsars.

Microlensing

Einstein’s description of gravity predicted that a massive body should distort the space-time

and as a consequence the light traveling nearby. The degree of curvature depends on the mass

Figure 1.7: Daily-averaged arrival time residuals for PSR B1257 + 12 observed at
430 MHz with the Arecibo radio telescope. The top panel fits a model assuming
the pulsar has no planetary companion. The middle panel uses a model using a 3
Keplerian fit assuming the same number of planetary mass objects.At the bottom it
is presented the residuals after inclusion of the interactions between planets. Credits:
Konacki and Wolszczan (2003)
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of the body that acts as a lens. In the event of an alignment, the foreground object can be

amplified and focused if the relative distance between the source, lens and observer is correct.

Microlensing is particular lensing phenomena where the source is not completely resolved. It

is characterized by the mass of the lens, with masses typically stellar . As a star system crosses

a distant source, the light is deflected by an angle α. If it is assumed circular symmetry the

general relativity deflection is given by:

α(r) =
4GM(r)

c2r
=

2RS(r)

r
, (1.35)

where α(r), M(r) are the defection angle and mass up to the radius r and RS Schwarzschild

radius. This phenomena is dynamical in nature, the magnification and deflection is not constant

with the time of observation or the angular distance. For a given lens, the planetary signature is

seen as an increase in the observed flux. The star it orbits acts as a primary lens, and a second

bump (Fig.1.8) indicates the presence of another mass that can be measured applying equation

(1.35). Microlensing is highly sensitive to planets in Earth-to-Jupiter-like orbits with semi-

major axes in the range 1–5AU (Beaulieu et al. (2006)).The use of this method is constrained

by the unpredictability of lensing effects, as it can’t be applied systematically in a field of the

sky.
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Figure 1.8: Observed light curve of the OGLE-2005-BLG-390 microlensing event
and best fit model plotted as a function of time. The data set is composed of 650
data points from PLANET Danish (ESO La Silla, red points), PLANET Perth (blue),
PLANET Canopus (Hobart, cyan), RoboNet Faulkes North (Hawaii, green), OGLE
(Las Campanas, black), MOA (Mt John Observatory, brown). Credits: Beaulieu
et al. (2006)

Direct imaging

Taking a direct image of an exoplanet relies on the techniques that both increase the contrast

between the planet and star as well as measuring small angular regions. An exoplanet system

is mostly dominated by the bolometric flux of the host star. Planets can have two major

contributions for the observed flux: light produced by itself with origin in internal mechanisms

and reflected radiation from the host star. At optical wavelengths, most of the light we see

is stellar reflected light. At infra-red, however, it is possible to detect the emmited light

from a planet. Assuming a black body approximation, a body at a temperature T has a

spectral radiance distribution given by Planck’s law (1.36). Following Seager, Dotson, and

Institute (2010):

Iλ(T ) =
2hc2

λ5(e
hc

λkBT − 1)
, (1.36)

where h is Planck’s constant. To estimate the contrast it is used the photon density per solid
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angle ṅ(T ), dividing equation (1.36) by the energy of a photon with frequency ν:

ṅν(T ) =
Iν(T )

hν
; ṅλ(T ) =

Iλ(T )λ

hc
. (1.37)

If a star is at a distance d from an observer, it covers a projected solid angle in the sky:

Ω = π

(
r

d

)2

. (1.38)

The flux of photons received, Ṅ , can be obtained multiplying each of the equations on (1.37)

by the solid angle:

Ṅλ,ν = ṅλ,νΩ, (1.39)

from where follows the contrast, C, as the ratio between the observed photon flux of the planet

and the star (1.40).

Cλ,ν =
ṄP
λ,ν

Ṅ∗λ,ν
. (1.40)

The low contrast values limit how small and close to the star it is possible to direct image with

current technology. With coronography the ratio is increased obscuring the central star. The

same principle is present when there is a total eclipse of the Sun. As the moon completely

covers the solar disk, it is possible to observe prominences that have much lower brightness

than the solar disk.

For an observer, the measured reflected brightness changes the orbital position and surface
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or atmospheric properties. It is possible to define the phase angle α as the angle between the

observer, star and planet along the orbit. If α = 0 there is an alignment and the planet is

behind the star, at α = π
2

the planet is seen at its maximum elongation. The characterization

of the reflective properties of the surface are expressed by the geometric albedo,Ag:

Ag =
FP
F∗

(
a

RP

)2

, (1.41)

where FP and F∗ are the observed fluxes of the planet and star, respectively. If the thermal

emission ( self-luminosity) of the planet is relevant it can be corrected by subtracting that

contribution from the total observed albedo, Aobs. Assuming a planet emitting as a black body:

Ag = Aobs −
π
∫ λf
λi
Iλ(Teq)dλ

F

(
a

R∗

)2

, (1.42)

with Iλ is computed at the equilibrium temperature. The planet contrast is expressed as a

function of the albedo, orbital plane angle function (φ(α)) and ratio between the orbital and

planetary radius, CP .

CP = Agφ(α)

(
RP

a

)2

. (1.43)

Models require a definition of light reflection properties in a spherical surface. Using a

Lambert sphere, all the incident light at the surface is reflected in equal amounts in all directions.

If the observation is made at an angle θ from a given point of the surface, the intensity decreases

proportionally to the cos(θ). It follows that φ(α = 0) = 1 corresponds the planet behind the

star and φ(α = π) = 0 to the planet in front of the star, Fig.1.9. If we apply the previous

equations to Earth, in the visible C⊕vis ≈ 10−10.

To characterize a planet in the Infra-Red (IR) it is useful to define the Bond Albedo. This
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Figure 1.9: An observer at a distance d of a system measures a maximum angular
separation θ at maximum elongation a(1 + e) if the system is edge-on. The phase
angle α varies from 0 if it in front of the star (3) to 1 if it is behind (1). Positions
(2) and (4) have the same phase angle, then equal values of α.

quantity expresses the ratio between the emitted and incident bolometric flux. Assuming that

the host star emits like a black body, the total luminosity (L) is given by the Stephan-Boltzmann

law:

L = 4πR2
∗σT

4
∗ , (1.44)

with σ = 5.670× 10−8 Wm−2K−4, and T∗ the effective temperature of the star. At the moment

radiation leaves the star, the radiation is distributed in a spherical surface that increases with

the distance to the star. For a circular orbit, the incident luminosity on the planet, Lin:

Lin = L

(
R∗
a

)2(
1− ABond

4f

)
. (1.45)

The quantity ABond is the bond albedo and f is a function expresses the redistribution of the

energy of the planet caused by its rotation. If the planet is tidally locked only half the planet

is irradiated f = 0.5; if it is a rapid rotator all the surface is irradiated when integrated in time

and f = 1. The equilibrium temperature is the expected temperature for a planet that had
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time to cool down since its formation. If the only contribution is the radiation from the star:

Teq =

(
1− ABond

4f

) 1
4
(
R∗
a

) 1
2

T∗. (1.46)

For the Earth Teq = 254K, which differs from the mean temperature measured at the surface.

This is consequence of the presence of greenhouse gases in the atmosphere. Finally, assuming

both planet and star as perfect radiating bodies:

CIR(λ) =
Iλ(T

P
eq)R

2
P

Iλ(T∗)R2
∗
. (1.47)

For the Earth C⊕IR = 8.2× 10−8. The direct imaging, when technically possible, gives infor-

mation about the planet atmosphere structure when combined with wavelength filters. This is

a valuable tool, in conjunction with spectroscopy, to detect chemical signatures and possibly

bio-markers.

1.4 Characterization of exoplanets atmospheres

The first detection both from absorption features of a transiting exoplanet (Charbonneau et

al., 2002) and thermal emission (Charbonneau, 2005) made the debut of the following planetary

atmospheres detection and characterization. Detect and characterize exoplanetary atmospheres

requires state of the art instruments, high signal-to-noise ratios and dedicated instruments.

1.4.1 Transmission spectroscopy

In an appropriate geometrical configuration, 1.3.2, if a planet crosses the host star disk and

its atmosphere will filter the background radiation. The observed transmission spectra will be

modulated by its composition, and it will have a different opacity dependence with wavelength.

The observed variation of the planet radius as function of wavelength allows the reconstruction

of the transmission spectra (Charbonneau et al., 2002).

Lets consider an ideal exoplanet atmosphere in hydrostatic equilibrium. Pressure (P ), density
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Figure 1.10: Modeled absorption spectra of Earth’s atmosphere, covering a spectral
range from 1150 to 10000 Å . The presence of molecular oxygen ,ozone, water
between others have characteristic response curves with the wavelength. Betremieux
and Kaltenegger (2013)

(ρ) and gravity (g) are constant with time. The pressure exerted by a layer in the subsequent

one, depends on its surface area and weight. In parallel layers configuration, the equilibrium is

expressed by:

dP

dz
= −ρg. (1.48)

Approximating the layers composition by an ideal gas with mean density ρ, its variation with

height is recovered for a slab of temperature T and mean molecular mass m:

ρ ∝ e
−zgm
kBT . (1.49)

The mean molecular mass and temperature are not in general constant with the height, but

the previous equations expresses an exponential dependence with z. The observed atmospheric

opacity, τλ, derived in Ehrenreich et al. (2006), can be computed by the sum of the opacities
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of the species existent in the atmosphere:

τλ =
∑
x

τλ,x, (1.50)

where τλ,x corresponds to the opacity wavelength function for the specie x. Along the line of

sight, the amount of atmosphere that filters the background stellar radiation changes with the

distance to the planetary surface, h. Defining an impact parameter b:

τλ,x(b) = 2

∫ +∞

0

Aλ,xρx(h)dl, (1.51)

integrating for all possible values of altitude. Aλ,x is the absorption coefficient of specie x for

the wavelength λ. Defining the height as z = h+RP and rewriting the previous integral, from

the surface impact parameter b to the boundary of the atmosphere bmax:

τλ,x(b) = 2

∫ bmax

b

Aλ,xρx(z −RP )
zdz√
z2 − b2

(1.52)

The first identification of a species in an exoplanetary atmosphere was of a sodium doublet at

5890 Å (Charbonneau et al., 2002); and later potassium in hot Jupiter’s (e.g. Sing et al. (2011)).

The water molecule is by far the most commonly observed molecule, mostly because of its

particular imprint in the spectra (e.g. Swain et al. (2008),Deming et al. (2013) , Fraine et al.

(2014) ). For an atmosphere where the most significant contribution comes from scattering,

the cross section σ dependence with the wavelength follows:

σ = σ0

(
λ

λ0

)α

, (1.53)

with α = −4 for Rayleigh scattering. Lecavelier Des Etangs et al. (2008) finds an expression

that describes the slope of the planet radius with the logarithm of the wavelength and relates

it with the temperature:

dRp

dln(λ)
=
kBα

µg
T. (1.54)
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1.4.2 Emission and reflection

Phase Curves

The brightness of a planet changes with its orbital position and albedo, depending of the

relative phase measurement. The observed albedo, equation (1.42), is a measure of the reflected

portion of the radiation from the star and the self emission of the planet. Phase curves allow

the quantification of the ratio between both sources. At IR the major contribution for the

planetary source is its self emission, while at blue Rayleigh scattering takes an important

role (Madhusudhan et al., 2014). The expected depth of the occultation, δocul, at this longer

wavelength is, without loss of generality:

δocul =

(
RP

R∗

)2(
TP
T∗

)
. (1.55)

For a old enough planet TP should express the equilibrium temperature, as defined on section

1.3.3.4. Non-homogeneous reflection or emission can be recovered. It was detected hot spots, for

example, in tidally locked hot Jupiter’s like HD189733b (Knutson et al., 2007), the chemical

composition or presence of clouds (Placek, Angerhausen, and Knuth, 2017) using chromatic

curves.
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Figure 1.11: Phase curves of WASP − 43b at 3.6 and 4.5 µm. The black solid
and dashed lines represent the best fit curve, while the dots the observations with
the respective error bars. The deep at 1.0 orbital phase corresponds to a transit.
The data is normalized by the flux at the time of occultation at phase 0.5 and 1.5 .
Credits: Stevenson et al. (2017).

High-dispersion spectroscopy

During the orbital motion around a star, the radial velocity component of the planet in the

line of sight of the observer changes. The contrast and angular distance between planet and star

are usually not enough to measure directly this effect. The cross-correlation function is used

in conjunction with the template of the species being probed. A signal of a species presence

is manifested as characteristic velocity phase curve and a maximum of the cross correlation.

Assuming the individual lines of molecular bands are not blended in the stellar background

spectra, the necessary signal-to-noise ratio to have a detection (Snellen et al., 2015) is, in a first

order approximation:

S

N
= SP

√
Nlines

S∗ + σ2
Background + σ2

RON + σ2
Dark

, (1.56)

where SP and S∗ are the planetary and stellar signals, σBackground, σRON , σDark are the noise from

background, CCD readout and dark current. The detection of a molecular features increases

with the multiplicity of line it produces and can be measured simultaneously. The observed

albedo of a planet, equation (1.42), main contribution in the optical is from the reflected light.
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Figure 1.12: Detection of a CO signature for the planet HD209458. It is shown
the cross-correlation between 56 lines of a CO template and the spectra obtained by
the Very Large Telescope. The signal appears with a velocity equal to the sum of the
host-star systemic and the observatory relative velocities, ≈ 26Kms−1. Credits:Brogi
et al. (2016)

At this wavelength range the contrast between the planet and star is not optimal for de-

tection, 1.3.3.4. The use of a CCF with a binary mask, makes it possible to construct an

average spectral line with an increased signal-to-noise ratio, when compared with single line

profiles (Martins et al. (2013)). Using this technique, Martins et al. (2015) was able to detect

the reflected light from 51Pegb, and infer its mass and orbital inclination.



Chapter 2.

Using the Rossiter-McLaughlin effect to

characterize atmospheres

The Rossiter-McLaughlin effect, RM , is an apparent anomaly in the measured radial velocity

time-series of a star. As a planet transits, the stellar disk behind the planet is blocked. In a

rotating star, the fraction of the surface rotating towards the observer has an intrinsic blueshift

that is canceled by the radial velocity of the fraction rotating away. A transiting planet creates

an unbalance in the total radial velocity that is summed to the proper motion of the star. The

fraction and shape of the anomaly depends on the geometry of the system and physical prop-

erties, namely but not limited to, stellar spectral type, effective temperature, macroturbulence

and radius.

Figure 2.1: Depiction of the Doppler effect due to stellar rotation. As the stellar
surface rotates about the axis, the radial component of velocity in the line of sight
of the observer is perceived by a change in frequency in the observed light.

29
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2.1 Rossiter-McLaughlin effect

The limb darkening is a radial effect produced by the observation of layers of different tem-

peratures in line of sight. Approaching the stellar limb, the optical thickness increases and

the main contribution for the observed flux comes from the cooler top layers. Starting with

uniform disk where the limb-darkening contribution can be neglected, the disk is defined by an

uniform intensity I0 defined within the stellar radius. The intensity varies with the position of

the planet at each point (x, y) of the surface:

I(x, y) =


I0, if (x,y) ∈ D

0, otherwise

(2.1)

with the domain D that satisfies the condition: x2 + y2 ≤ R2
∗ ∧ (x − xP )2 + (y − yP )2 ≥ R2

P ;

and (xP , yP ) the center coordinates of the planet. The function I(x, y) changes in time, as the

planet orbits around the star. For a full phase, when the disk of the planet is completely inside

the stellar disk, the effective allowed values of planet coordinates are:

(x2
P + y2

P ) ≤ (R∗ −RP )2. (2.2)

The integration over the full transit expresses the radial velocity anomaly inside the disk (Ohta,

Taruya, and Suto, 2005):

∆v∗ = Ω∗xP (t)sin(I∗)
( γ2

1− γ2

)
, γ =

RP

R∗
, (2.3)

where ∆v∗, Ω∗, I∗ represents the variation in linear velocity, the angular velocity and the

inclination of the star. In the discussed conditions, the RM curve is defined mostly by the

position of the planet. During ingress and egress the area covered by the occultator changes in

time with the planet position. At this moments, the position of the planet satisfies R∗−RP <√
x2
P + y2

P < R∗ + RP and (2.3) is multiplied by a term that expresses the distance between

the center coordinates of the planet and the intersection of the planet and the disk. The limb-

darkening can be introduced like a correction in the equation (2.3). Adopting a linear model,
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the intensity of the disk changes with the position of the planet. The intensity function (2.1)

is modified in order to compensate this effect, introducing a limb-darkening coefficient, ε and a

angular parameter that expresses the radial symmetry µ:

I(x, y) =


I0[1− ε(1− µ)], if (x,y) ∈ D

0, otherwise

(2.4)

with µ =
√

1− x2+y2

R2
∗

.

(a) (b)
Figure 2.2: The Rossiter-McLaughlin anomaly for diverse stellar rotational veloc-
ities, V sin(i), and spin-orbit misalignment values. The planet is assumed to orbit
the star with an elliptical orbit with eccentricity of 0.1. In panel 2.2a there is no
limb-darkening effect considered. In panel 2.2b it is considered a linear law with co-
efficient ε = 0.64. The main observed effect is a decrease in amplitude and smoothing
of the radial velocity curves both at the ingress and egress. Credits: Ohta, Taruya,
and Suto (2005).

2.1.1 AROME

The measurement of the Doppler shift of a spectra can be made using two main methods.

The iodine cell technique (ICT ) fits an observed spectrum A with a reference shifted one A0

(Butler et al., 1996). The CCF technique uses a cross correlation function between A and

A0 and a Gaussian fit to estimate the radial velocities (Baranne et al., 1996). The work of

Boué, G. et al. (2013), which models the RM effect, lead to the implementation of the software

AROME for both techniques, deducing also an analytic expression for the velocity using the
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CCF technique, from now on CCFT . In the line of sight of an observer, the average measured

velocity, v, is proportional to the average velocity of the star surface blocked by the planets,

vP ; and the fraction of light blocked in the path f :

v =
f

f − 1
vP . (2.5)

The previous expression is exact but biased by stellar rotation. Hirano et al. (2009) derived an

expression assuming Gaussian line profiles for both rotating and non-rotating stars, departing

from the ICT reduction principles . The velocity that maximizes the cross-correlation function

is obtained in a similar way the χ2 of the iodine cell technique fit is minimized.

vICT = −

(
2β2
∗

β2
∗ + β2

P

) 3
2

fvP exp

(
1− v2

P

2(β2
∗ + β2

P )

)
, (2.6)

where vP is the planet velocity transiting the disk and βP , β∗ are the Gaussian profiles standard

deviations if defined as follows:

Gσ =
1√
2πσ

e
−v2

2σ2 ; (2.7)

corresponding to a normalized Gaussian of dispersion σ.Defining F∗(v),FP (v− vP ) and Ftransit

as the line profiles of the star, planet with a velocity centered at v = vP and transit integrated

over the stellar surface; it can be constructed a general formulation for the CCFT velocity:

vCCFT =
−4σ0

√
π

a0

f [(vGσ0) ∗ FP ](vP ), (2.8)

which expresses a Gaussian fit of the planetary signal in a first order approximation. The

constants a0 and σ0 represent the best CCF fit line profile outside transit parameters. Assuming

now a more restrictive scenario, where the planet line profile is Gaussian, FP = GβP , the

previous equation is written as:

vCCFT = − 1

a0

(
2σ2

0

σ2
0 + β2

P

) 3
2

fvP exp

(
1− v2

P

2(σ2
0 + β2

P )

)
, (2.9)
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expression that exactly matches vICT if a0 = 1 and σ0 = β∗ corresponds the stellar Gaussian

dispersion profile. The planet dispersion parameter βP has the contribution of the non-rotating

line width combined to a correction for the rotational broadening. The perturbation term

vanishes in a first order approximation, and the second orders ones express the rotational

contribution. The shape of the curves, in special during the ingress and egress, are affected by

the limb darkening and second derivatives as result. Furthermore, when entering and leaving

the stellar disk, the geometry is not circular and the variation of the area is relevant for the

output shape curve.

2.1.2 CARM-ChromAtic Rossiter–Mclaughlin

CARM is an implementation in Python in order to generalize and automate the numerical

estimate of the radius of a planet and retrieve the transmission spectra from ground based

telescopes. During a transit, the radial velocity variation is imprinted in the stellar spectra.

The change depends on the area of planet passing in front of it. If the planet has an important

atmosphere, whose composition allows interactions with the background stellar light, there

will be a change in the measurement of the planet radius with the wavelength. At visible

wavelengths, the main contribution comes from Rayleigh Scattering. Raw spectral data is

calibrated and the CCFs extracted by the ESO Pipeline. The CCFs are the numerical result

of the cross correlation between the calibrated data and a stellar mask with the approximated

target spectral type. The radial velocities are obtained by the sum of the CCFs of each spectral

order into a master CCF. The resulting output is adjusted by an unidimensional Gaussian

function, in which the extracted radial velocity corresponds to the mean.

The depth and width of each CCF is self-consistent with the expected weight to the output

radial velocity. The uncertainty is obtained considering both the photon noise contribution

using the calibrated spectra or a similar method using the slope of the resulting CCF. For the

chromatic analysis, the CCFs are summed in bins of spectral order, which corresponds directly

to wavelength intervals. It is executed a first fit to the white-light to estimate the parameters

that are wavelength independent.
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Figure 2.3: CCFs obtained after the ESO pipeline are summed into a master CCF
to each wavelength interval. The physical and chemical properties of the atmosphere
determine the apparent planetary radius measured by the observer. This method is
appropriate when a full direct spectra of the planet cant be directly obtained, giving
an estimate of the transmission spectra profile and its temperature.

Figure 2.4: The radial velocities obtained by the Gaussian fits, the respective un-
certainties and orbital phases jointly with a guess of the parameters, usually obtained
from previous works, as well as the number of Monte Carlo steps serve as input for
the Markov Chain Monte Carlo Algorithm.

The parameters estimate that best model the input data, taking in account the uncertainties, is

found with a Markov Chain Monte Carlo (henceforth MCMC ) algorithm: emcee. As inputs,

it is defined both the guess for the model parameters, the priors type and the interval in which
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they are defined. Lets consider an arbitrary data set D = [X, Y ], with X = [x1, x2, ..., xN ]

and Y = [y1, y2, ..., yN ] with uncertainties σY = [σ1, σ2, ..., σN ]. For a model f(X, θ), where

θ = θ1, θ2, θk corresponds to the set of model parameters, the probability of representing the

data can be found with Bayes theorem:

P (f |D, I) =
P (D|f, I)P (f |I)

P (D|I)
. (2.10)

Given a set of assumptions, represented by I, about the physics of the model; P (D|f, I) rep-

resents the posterior probability, P (f |I) the prior probability of the model and P (D|I) is a

normalization factor that ensures that the probability density function is normalized to unity.

The set of assumptions I define in general the range of values allowed for the set of parameters,

evaluated both by physical arguments or values found in previous works. In the context of

MCMC the absolute value of the probability is not needed, the normalization factor is the

same for any given set. The previous equation can be expanded to a more useful form:

P (f |D, I) ∝ P (D|f, I)
k∏
i=1

P (D|θi). (2.11)

The prior probability of each parameter can be both informative or not. If an estimate of the

value θi = θ
′ ± ∆θ

′
is known, a useful probability distribution in a unidimensional Gaussian

G(θ
′
, α∆θ

′
), where α is a constant that constrains the width of the probability distribution.

Otherwise it can be used a Uniform or Jeffrey’s prior in the range allowed by the set of model

assumptions. If it is supposed a value yi has a Gaussian error source with standard deviation

σN , the posterior probability can be approximated by:

P (yi|f, I) =
1√
2σi

exp
−(yi − f(xi, θ))

2

2σ2
i

. (2.12)

For the data set D, P (D|f, I) corresponds to the product of the individual data points. The

probability for a large number of elements in D is a very small value. To overcome potential

numerical errors the probabilities are usually expressed in term of the logarithm:

log(P (D|f, I)) ∝ −
N∑
i=1

(yi − f(xi, θ))
2

s2
i

+ ln(2πs2
i ), (2.13)
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where s2
i = σ2

i +σ2
w is the standard deviation of each yi data point underestimated by a fraction

of the model, white noise related sigmaw. The Uniform and Gaussian priors can be written as:

ln(U(x, xi, xf )) =


0, if x ∈ [xi, xf ]

−∞, otherwise

(2.14)

ln(G(x, µ, σ)) = −(x− µ)2

2σ2
− 1

2
log(2π)− 2log(σ). (2.15)

The MCMC algorithm is initialized with a set of chains, constructed with a random Gaussian

distribution of values around the unknown parameters. Each chain is evaluated and the value

of log(P (f |D, I)) is computed in parallel. The Monte-Carlo scheme then allows a given step for

each unknown, exploring the phase space of parameters and finding both the set that maximizes

the probability and the set that is an average of the posterior distribution of each one. The

run of a instance of CARM results in a fits file containing the following data and keywords:

• parmax : set of parameters that maximize the joint posterior probability distribution of

D;

• chains : matrix in which each line contains the accepted values of the Monte-Carlo algo-

rithm;

• meanpar : set of parameters that average the joint posterior distribution of D;

• lnprob: natural logarithm of the likelihood of the chosen model representing that data,

same as P (D|f, I);

• jointdata: arrays containing the orbital phase, radial velocity and uncertainty of the full

data set;

• samplerchain: condensed 1D arrays containing all the information in chains ;

• maxpar : set of parameters that maximize the joint posterior probability for the joint set

of data.
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The extraction of the results is made independently with read.py. The White and Chromatic

analysis are identified by fits keywords in each extension in order to obtain a sequential reading

of the output.
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Chapter 3.

Results

HD189733b is a well studied planet, it has been observed in photometric transits (Beaulieu

et al., 2008), the phase curves were obtained (Knutson et al., 2012), it was detected Rayleigh

scattering and signatures of dust combining ground based and Hubble-Spitzer orbital observa-

tions (Pont et al., 2013). As a way of validation the CARM algorithm was applied for the same

data and similar set of model parameters described in Di Gloria, Snellen, and Albrecht (2015).

In this work it is analyzed three in-transit observations acquired using the High Resolution

échelle spectrograph mounted on the 3.6m telescope at the ESO observatory of La Silla, in

Chile. The three sets were obtained under the program 079.C − 0828, from which it was used

the observation from the nights of 29th August, 20th July 2007 and 8th September 2006. The

parameters presented on table 3.1 were fixed and the ones on the 3.2 were let free.

Parameter Value Units Source

a 0.03120 A.U. Triaud et al. (2009)

R∗ 0.766 R� Triaud et al. (2009)

i 85.508 Degrees Triaud et al. (2009)

λ −0.85 Degrees Triaud et al. (2009)

V sin(i) 3.10 Kms−1 Triaud et al. (2009)

β0 1.3 Kms−1 Di Gloria, Snellen, and Albrecht (2015)

σ0 3.3 Kms−1 Di Gloria, Snellen, and Albrecht (2015)

z 4.0 Kms−1 Di Gloria, Snellen, and Albrecht (2015)

P 2.218573 Days Triaud et al. (2009)

Table 3.1: Parameters set as known, therefore fixed, for the model used by CARM :
the Rossiter-McLaughlin effect reproduced by AROME and a Keplerian to represent
the reflex motion around the center of mass. The semi-major axis is represented by
a, in a approximated circular orbit, R∗ the host star radius, i the inclination, λ the
spin-orbit misalignment, V sin(i) the rotational velocity of the star projected in the
observation line of sight, β0 the CCF standard deviation for a non-rotating star, σ0,
z and P the orbital period.
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Parameter Guess Prior Type Prior parameters Units

Vi −1.8 Uniform Ui = −1.08, Uf = 2.52 Kms−1

RP 0.1585 Gaussian µ = 0.1585, σ = 0.03 R∗

K 0.20 Uniform Ui = 0.0, Uf = 0.4 Kms−1

log(σW ) −16 Uniform Ui = −16, Uf = −1 −−−

Table 3.2: Parameters set as variable for each data set. The reflex motion velocity
Vi is fitted independently for each night. The planet radius, the Keplerian amplitude
and white noise parameters are common variables.
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Figure 3.1: Fit that maximizes the probability for the joint data for all orders and
nights. From the original data it was subtracted the Keplerian contribution for each
set, resulting uniquely on the Rossiter-McLaughlin velocity anomaly.

In particular the reflex motion of the star around the star-planet barycenter is removed inde-

pendently to each night, as it is calibration and time dependent. The amplitude and planet

radius are assumed wavelength dependent, the same for each observation campaign, and let free

to adjust the RM effect. The cross correlation functions for each night where obtained using a

K0 spectral template, matching closely the spectral type of the star. For the white-light the

radial velocity obtained, after the data was combined, presents a distinct and well defined RM

anomaly, Fig.3.1.



FCUP 41
Detecting the atmosphere of exoplanets using high resolution spectroscopy

V1 = 1.897+0.001
0.001

1.9
09

1.9
08

1.9
07

1.9
06

1.9
05

V2

V2 = 1.907+0.001
0.001

1.8
85

6
1.8

84
8

1.8
84

0
1.8

83
2

V3

V3 = 1.884+0.000
0.000

0.1
55

0
0.1

57
5

0.1
60

0
0.1

62
5

0.1
65

0

Rp
/R

*

Rp/R* = 0.161+0.001
0.001

0.2
08

0.2
04

0.2
00

0.1
96

K

K = 0.200+0.002
0.002

0.0
00

15
0.0

00
00

0.0
00

15
0.0

00
30

0.0
00

45

dT
0

dT0 = 0.000+0.000
0.000

1.8
99

1.8
98

1.8
97

1.8
96

V1

6.9
0

6.7
5

6.6
0

6.4
5

6.3
0

lo
gf

1.9
09

1.9
08

1.9
07

1.9
06

1.9
05

V2
1.8

85
6

1.8
84

8
1.8

84
0

1.8
83

2

V3
0.1

55
0

0.1
57

5
0.1

60
0

0.1
62

5
0.1

65
0

Rp/R*
0.2

08
0.2

04
0.2

00
0.1

96

K
0.0

00
15

0.0
00

00

0.0
00

15

0.0
00

30

0.0
00

45

dT0

6.9
0

6.7
5

6.6
0

6.4
5

6.3
0

logf

Fitted RM for White-light

logf = 6.603+0.077
0.076

Figure 3.2: White-light corner plot obtained from the sum of the CCFs for each
order (equivalent to the last order of HARPS). The values estimated for the param-
eters have ≈ 68% confidence interval around the mean. V 1, V 2 and V 3 expresses
the velocity shift around the center of mass of the system for the different data sets,
dT0 the shift of mid-transit phase accounting for errors in the period determination
and logf the uncorrelated white noise contribution for the data.

To estimate the parameters that best fit the data, the limb darkening coefficients where es-

timated for both white light and chromatic bins with the LDTK package (Parviainen and

Aigrain, 2015). It is obtained a radius estimate of RP/R∗ = 0.161 ± 0.003, in line with the

results obtained by Pont et al. (2013) and Di Gloria, Snellen, and Albrecht (2015). The spectral

response is obtained, as described in chapter 4, fitting the chosen wavelength bins and obtaining

the estimated radius. In Fig.3.3 the fits are presented at left after the reflex motion subtraction

and at right the correspondent residuals.
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Figure 3.3: Fitted joint data after the removal of the reflex motion with the set
of parameters that maximize the probability for the different chromatic wavelength
bins. The residuals are obtained after the subtraction of the Rossiter-McLaughlin
effect.

When compared with Di Gloria, Snellen, and Albrecht (2015), the residuals are less prone

to present visible structure, at least relevant when compared with the error bars. This can

indicate, in principle, the method adopted here fits better the observed data. The results can

have at least two explanations: the effect subtraction is better because the template mask

closely matches the spectral type of the star and/or the simultaneous fitting of the parameters

yields a result with a higher confidence level.
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Figure 3.4: Comparison of the radii obtained with this code (blue) compared with
the distribution obtained by Di Gloria, Snellen, and Albrecht (2015) using a similar
procedure and STIS Pont et al. (2013) transmission spectra in similar wavelength
bins.

The obtained slope the transmission spectra closely matches the results obtained before within

a 2σ confidence level. Employing expression (1.54), it is found a mean temperature of 2650±

1400K, agreeing again with the two sources cited before.



Chapter 4.

Conclusions

The Chromatic Rossiter-McLaughlin method was implemented and automated, resulting in

CARM. The algorithm was applied to HARPS in-transit archival data and the transmission

spectrum of HD189733b was retrieved. The procedure was validated comparing to both Di Glo-

ria, Snellen, and Albrecht (2015), whose procedure was replicated with adaptations in this work,

and the resulting transmission spectrum from space based observatories (Pont et al., 2013). The

radius ratio wavelength relation is highly correlated to the width of the non-rotating star and

the projected velocity, V sin(i). Radial velocity alone is insufficient to constrain both param-

eters, and therefore obtain precise ratios from the curves. A combination of RV and transit

photometry has proved to be useful to constrain in a Bayesian fashion different system param-

eters, increasing furthermore the uncertainty in their determination (Triaud et al., 2009). The

slope otherwise is conserved, resulting on a temperature estimate of 2650± 1400K, in line with

the results of Di Gloria, Snellen, and Albrecht (2015). This technique can prove to be of special

importance when combined with higher resolution spectrographs like ESPRESSO. With the

increased signal-to-noise ratio, the division of the wavelength intervals can be made smaller

conserving uncertainties comparable to the ones obtained in this work. On another hand, with

the same intervals, the uncertainty on the radius will be smaller and the slope will be better

determined, resulting on a better estimate of the temperature. With more precise data, the

temperature/pressure profile with the atmosphere height can possibly be recovered. Moreover

it will be possible to precisely measure the effect on fainter objects, increasing the number of

atmospheres detected and characterized. Such work will be crucial to constrain the number

of hypothesis of planetary formation and the nature of the relation of star-planet interactions

along their development.
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Boué, G. et al. (2013). “New analytical expressions of the Rossiter-McLaughlin effect adapted to

different observation techniques”. In: A&A 550, A53. doi: 10.1051/0004-6361/201220146.

url: https://doi.org/10.1051/0004-6361/201220146.

Brogi, M. et al. (2016). “Rotation and Winds of Exoplanet HD 189733 b Measured with High-

dispersion Transmission Spectroscopy”. In: The Astrophysical Journal 817(2), 106, p. 106.

doi: 10.3847/0004-637X/817/2/106. arXiv: 1512.05175 [astro-ph.EP].

Burrows, A. S. (2014). “Highlights in the study of exoplanet atmospheres”. In: nat 513(7518),

pp. 345–352. doi: 10.1038/nature13782. arXiv: 1409.7320 [astro-ph.EP].

47

https://doi.org/10.1126/science.226.4681.1421
https://doi.org/10.1086/527045
https://arxiv.org/abs/0711.2142
https://doi.org/10.1038/nature04441
https://doi.org/10.1088/2041-8205/772/2/L31
https://doi.org/10.1051/0004-6361:20010730
https://doi.org/10.1051/0004-6361:20010730
https://doi.org/10.1051/0004-6361/201220146
https://doi.org/10.1051/0004-6361/201220146
https://doi.org/10.3847/0004-637X/817/2/106
https://arxiv.org/abs/1512.05175
https://doi.org/10.1038/nature13782
https://arxiv.org/abs/1409.7320


FCUP 48
Detecting the atmosphere of exoplanets using high resolution spectroscopy

Butler, R. P. et al. (1996). “Attaining Doppler Precision of 3 M s-1”. In: pasp 108, p. 500. doi:

10.1086/133755.

Charbonneau, D. et al. (Mar. 2002). “Detection of an Extrasolar Planet Atmosphere”. In: The

Astrophysical Journal 568, pp. 377–384. doi: 10.1086/338770. eprint: astro-ph/0111544.

Charbonneau, D. et al. (2000). “Detection of Planetary Transits Across a Sun-like Star”. In: The

Astrophysical Journal 529(1), pp. L45–L48. doi: 10.1086/312457. arXiv: astro-ph/9911436

[astro-ph].

Charbonneau, D. et al. (2005). “Detection of thermal emission from an extrasolar planet”.

In: Astrophys. J. 626, pp. 523–529. doi: 10 . 1086 / 429991. arXiv: astro - ph / 0503457

[astro-ph].

Connes, P. (Mar. 1985). “Absolute astronomical accelerometry”. In: APSS 110, pp. 211–255.

doi: 10.1007/BF00653671.

Deming, D. et al. (2013). “Infrared Transmission Spectroscopy of the Exoplanets HD 209458b

and XO-1b Using the Wide Field Camera-3 on the Hubble Space Telescope”. In: The Astro-

physical Journal 774(2), 95, p. 95. doi: 10.1088/0004-637X/774/2/95. arXiv: 1302.1141

[astro-ph.EP].

Di Gloria, E., I. A. G. Snellen, and S. Albrecht (Aug. 2015). “Using the chromatic Rossiter-

McLaughlin effect to probe the broadband signature in the optical transmission spectrum

of HD 189733b”. In: Astronomy & Astrophysics 580, A84, A84. doi: 10.1051/0004-6361/

201526218. arXiv: 1507.08070 [astro-ph.EP].

Ehrenreich, D. et al. (2006). “The transmission spectrum of earth-size transiting planets”.

In: Astron. Astrophys. 448, p. 379. doi: 10.1051/0004-6361:20053861. arXiv: astro-

ph/0510215 [astro-ph].

Fischer, D. A. et al. (June 2016). “State of the Field: Extreme Precision Radial Velocities”. In:

Publications of the Astronomical Society of the Pacific 128(6), p. 066001. doi: 10.1088/1538-

3873/128/964/066001. arXiv: 1602.07939 [astro-ph.IM].

Fraine, J. et al. (2014). “Water vapour absorption in the clear atmosphere of a Neptune-sized

exoplanet”. In: Nature 513(7519), pp. 526–529. doi: 10.1038/nature13785. arXiv: 1409.

8349 [astro-ph.EP].

https://doi.org/10.1086/133755
https://doi.org/10.1086/338770
astro-ph/0111544
https://doi.org/10.1086/312457
https://arxiv.org/abs/astro-ph/9911436
https://arxiv.org/abs/astro-ph/9911436
https://doi.org/10.1086/429991
https://arxiv.org/abs/astro-ph/0503457
https://arxiv.org/abs/astro-ph/0503457
https://doi.org/10.1007/BF00653671
https://doi.org/10.1088/0004-637X/774/2/95
https://arxiv.org/abs/1302.1141
https://arxiv.org/abs/1302.1141
https://doi.org/10.1051/0004-6361/201526218
https://doi.org/10.1051/0004-6361/201526218
https://arxiv.org/abs/1507.08070
https://doi.org/10.1051/0004-6361:20053861
https://arxiv.org/abs/astro-ph/0510215
https://arxiv.org/abs/astro-ph/0510215
https://doi.org/10.1088/1538-3873/128/964/066001
https://doi.org/10.1088/1538-3873/128/964/066001
https://arxiv.org/abs/1602.07939
https://doi.org/10.1038/nature13785
https://arxiv.org/abs/1409.8349
https://arxiv.org/abs/1409.8349


FCUP 49
Detecting the atmosphere of exoplanets using high resolution spectroscopy

Hirano, T. et al. (Oct. 13, 2009). “Analytic Description of the Rossiter-McLaughlin Effect for

Transiting Exoplanets: Cross-Correlation Method and Comparison with Simulated Data”. In:

Astrophys.J.709:458-469,2010. doi: 10.1088/0004-637X/709/1/458. arXiv: 0910.2365v2

[astro-ph.EP].

Kippenhahn, R. and A. Weigert (1990). Stellar Structure and Evolution. Springer, p. 192.

Knutson, H. A. et al. (July 2012). “3.6 and 4.5 µm Phase Curves and Evidence for Non-

equilibrium Chemistry in the Atmosphere of Extrasolar Planet HD 189733b”. In: The As-

trophysical Journal 754, 22, p. 22. doi: 10.1088/0004-637X/754/1/22. arXiv: 1206.6887

[astro-ph.EP].

Knutson, H. A. et al. (2007). “A map of the day-night contrast of the extrasolar planet HD

189733b”. In: Nature 447(7141), pp. 183–186. doi: 10.1038/nature05782. arXiv: 0705.0993

[astro-ph].

Koch, D. G. et al. (2010). “Kepler Mission Design, Realized Photometric Performance, and

Early Science”. In: The Astrophysical Journal 713(2), pp. L79–L86. doi: 10.1088/2041-

8205/713/2/L79. arXiv: 1001.0268 [astro-ph.EP].

Konacki, M. and A. Wolszczan (May 2003). “Masses and Orbital Inclinations of Planets in the

PSR B1257+12 System”. In: The Astrophysical Journal 591. doi: 10.1086/377093.

Lecavelier Des Etangs, A. et al. (2008). “Rayleigh scattering in the transit spectrum of HD

189733b”. In: Astronomy & Astrophysics 481(2), pp. L83–L86. doi: 10.1051/0004-6361:

200809388. arXiv: 0802.3228 [astro-ph].

Leger, A et al. (Aug. 2009). “Transiting exoplanets from the CoRoT space mission”. In:

http://dx.doi.org/10.1051/0004-6361/200911933.

Lindegren, L. and D. Dravins (2003). “The fundamental definition of ”radial velocity””. In:

Astronomy & Astrophysics 401, pp. 1185–1201. doi: 10.1051/0004-6361:20030181. arXiv:

astro-ph/0302522 [astro-ph].

Madhusudhan, N. et al. (2014). “Exoplanetary Atmospheres”. In: Protostars and Planets VI.

Ed. by H. Beuther et al., p. 739. doi: 10.2458/azu_uapress_9780816531240-ch032. arXiv:

1402.1169 [astro-ph.EP].

https://doi.org/10.1088/0004-637X/709/1/458
https://arxiv.org/abs/0910.2365v2
https://arxiv.org/abs/0910.2365v2
https://doi.org/10.1088/0004-637X/754/1/22
https://arxiv.org/abs/1206.6887
https://arxiv.org/abs/1206.6887
https://doi.org/10.1038/nature05782
https://arxiv.org/abs/0705.0993
https://arxiv.org/abs/0705.0993
https://doi.org/10.1088/2041-8205/713/2/L79
https://doi.org/10.1088/2041-8205/713/2/L79
https://arxiv.org/abs/1001.0268
https://doi.org/10.1086/377093
https://doi.org/10.1051/0004-6361:200809388
https://doi.org/10.1051/0004-6361:200809388
https://arxiv.org/abs/0802.3228
https://doi.org/10.1051/0004-6361:20030181
https://arxiv.org/abs/astro-ph/0302522
https://doi.org/10.2458/azu_uapress_9780816531240-ch032
https://arxiv.org/abs/1402.1169


FCUP 50
Detecting the atmosphere of exoplanets using high resolution spectroscopy

Marshall, J. L. et al. (July 2008). “The MagE spectrograph”. In: Ground-based and Airborne

Instrumentation for Astronomy II. Vol. 7014. procspie, p. 701454. doi: 10.1117/12.789972.

arXiv: 0807.3774.

Martins, J. H. C. et al. (2013). “Spectroscopic direct detection of reflected light from extrasolar

planets”. In: Monthly Notices of the Royal Astronomical Society 436(2), pp. 1215–1224. doi:

10.1093/mnras/stt1642. arXiv: 1308.6516 [astro-ph.EP].

Martins, J. H. C. et al. (2015). “Evidence for a spectroscopic direct detection of reflected light

from 51 Pegasi b”. In: Astronomy & Astrophysics 576, A134, A134. doi: 10.1051/0004-

6361/201425298. arXiv: 1504.05962 [astro-ph.EP].

Mayor, M. and D. Queloz (1995). “A Jupiter - mass companion to a solar - type star.” In:

Nature 378, p. 355. doi: 10.1038/378355a0.

Mayor, M et al. (Jan. 2003). “Setting New Standards with HARPS”. In: The Messenger 114,

p. 20.

Ohta, Y., A. Taruya, and Y. Suto (Apr. 2005). “The Rossiter-McLaughlin Effect and Analytic

Radial Velocity Curves for Transiting Extrasolar Planetary Systems”. In: The Astrophysical

Journal 622, pp. 1118–1135. doi: 10.1086/428344. eprint: astro-ph/0410499.

Parviainen, H. and S. Aigrain (2015). “LDTK: Limb Darkening Toolkit”. In: Monthly Notices

of the Royal Astronomical Society 453(4), pp. 3821–3826. doi: 10.1093/mnras/stv1857.

arXiv: 1508.02634 [astro-ph.EP].

Perryman, M. (May 2011). The Exoplanet Handbook. Cambridge University Press.

Placek, B., D. Angerhausen, and K. H. Knuth (2017). “Analyzing Exoplanet Phase Curve In-

formation Content: Toward Optimized Observing Strategies”. In: The Astrophysical Journal

154(4), 154, p. 154. doi: 10.3847/1538-3881/aa880d. arXiv: 1708.07589 [astro-ph.IM].

Pont, F. et al. (July 2013). “The prevalence of dust on the exoplanet HD 189733b from Hub-

ble and Spitzer observations”. In: Monthly Notices of the Royal Astronomical Society 432,

pp. 2917–2944. doi: 10.1093/mnras/stt651. arXiv: 1210.4163 [astro-ph.EP].

Rupprecht, G et al. (Sept. 2004). “The exoplanet hunter HARPS: performance and first results”.

In: Ground-based Instrumentation for Astronomy. Edited by Alan F. M. Moorwood and Iye

Masanori. Proceedings of the SPIE 5492, p. 148. doi: 10.1117/12.551267.

https://doi.org/10.1117/12.789972
https://arxiv.org/abs/0807.3774
https://doi.org/10.1093/mnras/stt1642
https://arxiv.org/abs/1308.6516
https://doi.org/10.1051/0004-6361/201425298
https://doi.org/10.1051/0004-6361/201425298
https://arxiv.org/abs/1504.05962
https://doi.org/10.1038/378355a0
https://doi.org/10.1086/428344
astro-ph/0410499
https://doi.org/10.1093/mnras/stv1857
https://arxiv.org/abs/1508.02634
https://doi.org/10.3847/1538-3881/aa880d
https://arxiv.org/abs/1708.07589
https://doi.org/10.1093/mnras/stt651
https://arxiv.org/abs/1210.4163
https://doi.org/10.1117/12.551267


FCUP 51
Detecting the atmosphere of exoplanets using high resolution spectroscopy

Seager, S., R. Dotson, and L. Institute (2010). Exoplanets. Space Science Series. University

of Arizona Press. isbn: 9780816529452. url: https : / / books . google . pt / books ? id =

7dVOXyaP2MoC.

Seager, S. and G. Mallén-Ornelas (2003). “On the Unique Solution of Planet and Star Parame-

ters from an Extrasolar Planet Transit Light Curve”. In: Scientific Frontiers in Research on

Extrasolar Planets. Ed. by D. Deming and S. Seager. Vol. 294. Astronomical Society of the

Pacific Conference Series, pp. 419–422.

Sing, D. K. et al. (Mar. 2011). “Gran Telescopio Canarias OSIRIS transiting exoplanet atmo-

spheric survey: detection of potassium in XO-2b from narrowband spectrophotometry”. In:

Astronomy & Astrophysics 527, A73, A73. doi: 10.1051/0004-6361/201015579. arXiv:

1008.4795 [astro-ph.EP].

Snellen, I. et al. (2015). “Combining high-dispersion spectroscopy with high contrast imaging:

Probing rocky planets around our nearest neighbors”. In: Astronomy & Astrophysics 576,

A59, A59. doi: 10.1051/0004-6361/201425018. arXiv: 1503.01136 [astro-ph.EP].

Stevenson, K. B. et al. (2017). “Spitzer Phase Curve Constraints for WASP-43b at 3.6 and 4.5

µm”. In: The Astronomical Journal 153(2), 68, p. 68. doi: 10.3847/1538-3881/153/2/68.

arXiv: 1608.00056 [astro-ph.EP].

Swain, M. R. et al. (Feb. 2008). “The Mid-Infrared Spectrum of the Transiting Exoplanet HD

209458b”. In: The Astrophysical Journal 674, pp. 482–497. doi: 10.1086/523832. eprint:

astro-ph/0702593.

Triaud, A. H. M. J. et al. (Oct. 2009). “The Rossiter-McLaughlin effect of CoRoT-3b and

HD 189733b”. In: Astronomy & Astrophysics 506, pp. 377–384. doi: 10.1051/0004-6361/

200911897. arXiv: 0907.2956 [astro-ph.EP].

Wheatley, P. J. et al. (2018). “The Next Generation Transit Survey (NGTS)”. In: Monthly

Notices of the Royal Astronomical Society 475(4), pp. 4476–4493. doi: 10.1093/mnras/

stx2836. arXiv: 1710.11100 [astro-ph.EP].

Wolszczan, A. and D. A. Frail (Jan. 1992). “A planetary system around the millisecond pulsar

PSR1257 + 12”. In: Nature 355, pp. 145–147. doi: 10.1038/355145a0.

https://books.google.pt/books?id=7dVOXyaP2MoC
https://books.google.pt/books?id=7dVOXyaP2MoC
https://doi.org/10.1051/0004-6361/201015579
https://arxiv.org/abs/1008.4795
https://doi.org/10.1051/0004-6361/201425018
https://arxiv.org/abs/1503.01136
https://doi.org/10.3847/1538-3881/153/2/68
https://arxiv.org/abs/1608.00056
https://doi.org/10.1086/523832
astro-ph/0702593
https://doi.org/10.1051/0004-6361/200911897
https://doi.org/10.1051/0004-6361/200911897
https://arxiv.org/abs/0907.2956
https://doi.org/10.1093/mnras/stx2836
https://doi.org/10.1093/mnras/stx2836
https://arxiv.org/abs/1710.11100
https://doi.org/10.1038/355145a0


FCUP 52
Detecting the atmosphere of exoplanets using high resolution spectroscopy



Appendices

53





Chapter A.

Apendice

As result of the CARM routine applied to the archival HARPS data, it was obtained a set of

parameters for each wavelength bin. The corner plots for the chromatic intervals can be seen

in Fig.A.1 and A.2.
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Figure A.1: Corner plots with the joint posterior distribution of the fitted param-
eters for the wavelengths centered in the 3950Å and 4450Å
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Figure A.2: Continuation of A.1 for the wavelengths 4950Å, 5450Å, 5750Å, 6250Å
and 6750Å.
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