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Abstract The World Health Organization estimated

that around 300 million people have asthma, and 210

million people are affected by Chronic Obstructive Pul-

monary Disease (COPD). Also, it is estimated that

the number of deaths from COPD increased 30% in

2015 and COPD will become the third major cause of

death worldwide by 2030. These statistics about lung

diseases get worse when one considers fibrosis, calci-

fications and other diseases. For the public health sys-

tem, the early and accurate diagnosis of any pulmonary

disease is mandatory for effective treatments and pre-

vention of further deaths. In this sense, this work con-

sists in using information from lung images to identify

and classify lung diseases. Two steps are required to

achieve these goals: automatically extraction of repre-

sentative image features of the lungs, and recognition

of the possible disease using a computational classifier.
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As to the first step, this work proposes an approach

that combines Spatial Interdependence Matrix (SIM)

and Visual Information Fidelity (VIF). Concerning the

second step, we propose to employ a Gaussian based

distance to be used together with the Optimum-Path

Forest (OPF) classifier to classify the lungs under study

as normal or with fibrosis, or even affected by COPD.

Moreover, to confirm the robustness of OPF in this clas-

sification problem, we also considered Support Vector

Machines and a Multilayer Perceptron Neural Network

for comparison purposes. Overall, the results confirmed

the good performance of the OPF configured with the

Gaussian distance when applied to SIM and VIF based

features. The performance scores achieved by the OPF

classifier were as follows: average accuracy of 98.2%, to-

tal processing time of 117 microseconds in a common
personal laptop, and F -score of 95.2% for the three clas-

sification classes. These results showed that OPF is a

very competitive classifier, and suitable to be used for

lung disease classification.

Keywords Medical Imaging · Optimum-Path Forest ·
Feature Extraction · Image Classification.

1 Introduction

Since its establishment in 1948, the World Health Or-

ganization (WHO) is responsible for ranking the most

dangerous diseases, which are led today by ischaemic

heart disease followed by cerebral vascular accidents,

usually known as strokes. Additionally, the large num-

ber of lung diseases that affect the worldwide popula-

tion has also been confirmed by WHO [1]. Therefore,

research in the field of Pulmonology has become of great

importance in public health, and it has been mainly fo-
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cused on asthma, bronchiectasis and Chronic Obstruc-

tive Pulmonary Disease (COPD) [2, 3].

WHO estimated around 300 million people suffer-

ing from asthma, being this disease in charge of around

250 thousand deaths per year worldwide [4]. In addi-

tion, WHO estimated that around 210 million people

are affected by COPD, which is responsible for about

3 million deaths in 2015 (5% of all worldwide deaths

in that year) [5]. Recent studies revealed that COPD is

mainly present in the 20-to-45-year-old age bracket, al-

though it is usually characterized as an over-50-year-old

disease. Accordingly, WHO estimated that the number

of deaths due to COPD increased 30% in 2015, being

such disease the third cause of mortality worldwide by

2030 [6].

Based on the aforementioned context, the early and

accurate diagnosis of pulmonary diseases is mandatory

for the public health systems in order to attain effec-

tive treatments and prevention of further deaths. From

a clinical viewpoint, aid diagnosis tools and systems are

of great importance for specialists to improve people

health. In this sense, this work uses information from

lung images to identify and classify lung diseases ac-

cording to two main steps: (i) extraction of lung image

features, and (ii) identification of lung diseases using a

machine learning classifier. As to the extraction of infor-

mation from the lungs under study, the Computed To-

mography (CT) imaging modality has been commonly

used in pulmonology for diagnostic purpose, since it en-

ables the analysis of the lungs and their internal struc-

tures with high quality and accuracy [7, 8, 9, 10]. How-

ever, for the effective pulmonary disease analysis and

diagnosis from CT images, it is usually necessary to

segment the regions of interest (ROIs), i.e., the lungs

in the input images, since these ROIs must include the

lung structures that are the object of study [11, 12, 8].

The segmentation step proposed in this work is based

on the Adaptive Crisp Active Contour Models (ACACM)

method, which uses an active contour model specially

designed for medical imaging that has outperformed

traditional image segmentation methods, such as Wa-

tershed, Region Growing, Mathematical Morphology,

as well as the well-known Active Contour algorithm

[8, 13]. Following the segmentation step, an automatic

procedure can be applied to detect diseases in lung

CT images in order to support radiologic diagnosis.

Some studies have yielded promising disease detection

results, as the one reported in [14], where texture de-

scriptors extracted from a Gray Level Co-occurrence

Matrix (GLCM) [15] are used to distinguish three dis-

ease patterns (nodule, emphysema and frosted glass)

relatively to the normal one. GLCM texture descrip-

tors are also employed in [16] to determine whether

lungs are healthy or not. Furthermore, some works have

been proposed to address the detection of certain spe-

cific lung diseases in images, such as nodules [17] and

emphysema [18, 8], just to name a few. Finally, Ra-

malho et al. [16] proposed a feature extraction method

based on a Spatial Interdependence Matrix (SIM) to

classify lung diseases. In this work, this approach is ex-

tended by combining Visual Information Fidelity (VIF)

[19] with attributes obtained from the SIM method.

In the classification step, we focused our study

on a recent classifier known as Optimum Path For-

est (OPF) [20, 21, 22], which has gained increas-

ing attention in the last years because it presents

interesting characteristics: (i) it is free of hard-to-

calibrate control parameters; (ii) it does not assume

any shape/separability of the feature space; (iii) it runs

the training phase usually much faster than other tech-

niques; and (iv) it can make decisions based on global

criteria. Moreover, the OPF classifier does not inter-

pret the classification task as a hyperplane optimiza-

tion problem, but as the computation of optimum paths

from key patterns (known as prototypes) to the re-

maining nodes. As such, each prototype becomes a root

from its optimum-path tree, and then each node is clas-

sified according to its strongest connected prototype.

This process defines a discrete optimal partition (in-

fluence region) of the feature space. Therefore, due its

efficiency and effectiveness, combined with its param-

eter independence and robustness to highly non-linear

datasets, the OPF classifier can be very effective in the

automated classification of CT based images of lungs

as being healthy or affected by diseases like COPD or

fibrosis.

OPF has been used in different application domains,

such as Biomedical engineering, for example, for the

classification of electroencephalography (EEG) [23] and

electrocardiography (ECG) [24] signals, classification

of human intestinal parasites [25], and classification of

brain tissue in Magnetic Resonance images [26], with

very promising performances [27, 28, 29, 30, 31, 32, 33],

mainly with respect to its computational efficiency. As

to the classification rates, OPF has also obtained no-

table results, being in many cases at least as good as

the ones obtained by some traditional classifiers, such

as Support Vector Machines (SVMs), Bayesian classi-

fiers, Artificial Neural Networks (ANNs) and k-nearest

neighbors (k-NNs) [34, 35, 36, 37, 38, 39, 29, 40, 41, 42,

43, 27, 28, 31, 30, 32, 25, 26, 33, 23, 44].

In previous works [45, 46, 47, 48, 9, 49, 13, 50], the

authors have evaluated the potential of different seg-

mentation approaches in order to tackle the automatic

detection of lung nodules in images [51]. Overall, the re-

sults achieved shown that the studied techniques were
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competitive in terms of accuracy and processing time.

However, the choice of the feature extractor is a re-

ally critical decision in order to efficient results can be

achieved. Additionally, our previous works let us con-

clude that the automated classification using machine

learning techniques, especially using the Optimum Path

Forest classifier [40, 34, 35, 37, 38, 39, 41, 42, 43], is a

very promising tool in medical assisted diagnosis.

However, despite the number of current applications

based on the OPF classifier, we have not observed any

work related to pulmonary disease identification so far.

This article also addresses the detection of fibrosis and

emphysema diseases, which are the COPD main com-

ponents, based on a new feature extraction method

(SIM). A classification experiment was also performed

to compare the performance achieved from the SIM and

GLCM texture based descriptors. The VIF index [19]

was also investigated, since it performs similarly to SIM

based based descriptors. In fact, both approaches are

based on the analysis of a reference image. As a final

contribution of this article, we considered to employ a

Gaussian based distance to weight OPF edges, since the

original approach uses the Euclidean distance [52]. For

evaluation purpose, the computational cost (processing

time), accuracy rate (success rate), positive predictive

value (precision), sensitivity (recall) and F -measure were

used to calculate the similarity among the patterns un-

der classification [44], as well as to assess the features

extracted from the lung-segmented CT images.

The remainder of this article is organized as follows.

Sections 2 and 3 present the methodology and a theoret-

ical background about the OPF classifier, respectively.

Section 4 discusses the experimental results, and Sec-

tion 5 states the main conclusions and possible future

works.

2 Methodology

2.1 Dataset

The images included in the used experimental dataset

were acquired using the following CT systems: Toshiba

Aquilion (TA), GE Medical system LightSpeed16 (GEMSL)

and Phillips Brilliance 10 (PB). All images have a res-

olution of 512 x 512 pixels, a bit depth of 16 bits, and

were obtained in partnership with the Walter Cant́ıdio

Hospital of the Federal University of Ceará in Brazil [2,

3]. This research was approved and evaluated by the Re-

search Ethics Committee - COMEPE (Protocol number

35/06), and complied with the requirements of Reso-

lution number 196/96 of the National Health Council

concerning the research in human beings [2, 3].

The CT lung images were acquired on apex, hilum

and on the base of the axial plane, according to the fol-

lowing conditions: each slice has 1.5 mm of thickness,

the field of view was 312 mm, the electrical tension in

the tube was 120 kV, and the electric current was 200

mA; lung window adjustment: the level and width were

-600 and 1600 HU, respectively; the dimension of the

reconstructed window was 512 × 512 pixels, and the

voxels have dimensions of 0.585× 0.585× 1.5 mm, be-

ing quantified in 16 bits. In this study, we used 36 CT

images: 12 from healthy volunteers, 12 from patients

with fibrosis, and 12 from patients with COPD, result-

ing in 72 lungs, since each image contained two lungs.

Concerning these lungs, 27 were healthy, 21 affected by

fibrosis and 24 had COPD.

Rebouças Filho et al. [8] employed the ACACM seg-

mentation method to detect the inner region of the

lungs in CT images, being the segmented regions used

to obtain the attributes employed in the classification

of the lungs under study. The ACACM method was

adopted here because it provides accurate segmenta-

tion results; indeed, it outperformed other segmenta-

tion methods available in the literature based on region

growing, watershed, mathematical morphology and tra-

ditional active contour techniques [53, 54], both in terms

of processing time and accuracy. This method is based

on an Active Contour Model, and encompasses com-

putational intelligence techniques with prior knowledge

about the lung anatomy [55, 8, 56, 57]. Figure 1 depicts

examples of lung segmentation results in thorax CT im-

ages acquired from patients with COPD and fibrosis, as

well as from a healthy volunteer.

2.2 Feature extraction

The first feature extraction method employed in this

work was the GLCM matrix suggested in [15] and often

adopted in problems related to texture analysis [58, 59].

Figure 2 illustrates a three-dimensional distribution of

the samples achieved by the GLCM built upon the ex-

perimental image dataset used in this work. This repre-

sentation was built considering the best set of features

by means of the Principal Component Analysis (PCA)

technique.

The second feature extraction method, namely the

Spatial Interdependence Matrix, uses co-occurrence

statistics to analyze the structural information based

on the way the Human Visual System interprets scenes.

Therefore, this method is commonly used to assess im-

age structural degradation. Moreover, it performs quite

similarly to the VIF index [19], which assesses differ-

ences between an image and its degraded version.



4 Pedro P. Rebouças Filho et al.

(a) (b) (c)

Fig. 1: Examples of segmentation results for thorax CT images with: a) COPD, b) fibrosis and c) healthy lungs [16].

Fig. 2: Three-dimensional distribution concerning three

classes by applying PCA on the GLCM built from the

image dataset under study.

Let us consider an image I and its degraded im-

age J as a set of gray levels in domain D ⊂ Z2 ∈
{0, 1, 2, ..., N}, where N is the total number of gray

levels. One can arrange the transitions among the in-

tensities of the pixels that are spatially related in both

images into an (N×N) matrix whose elements Mij are

defined as follows:

Mij = |{(i, j) : i = j, i = I (p) , j = J (p)}| ∀pεD, (1)

which is basically the number of times the intensities

i = I(p) and j = J(p) of pixels p from images I and J

verify some spatial constraint.

Three structural attributes obtained using the SIM

technique are commonly used to assess the degraded im-

age J relatively to the original one I: correlation (Cor),

inverse difference moment (Idm) and chi-square (Chi)

[16]. These attributes represent the level of degradation

from three different perspectives: structural similarity,

structural degradation and structural independence, re-

spectively.

In order to calculate the structural attributes Cor,

Idm and Chi, a symmetric version of matrix M : MS =(
M +MT

)
/2 is used. Then, a normalization procedure

is applied to MS , such that
∑
MS = 1, in order to

obtain the weight of each transition-pair as an approxi-

mation of probabilities. Afterwards, the three structural

attributes are computed as follows:

Cor =

N−1∑
i,j=0

(i− µi)(j − µj)Mij√
ρ2i ρ

2
j

ε[−1, 1], (2)

Idm =

N−1∑
i,j=0

Mij

1 + |i− j|
ε[0, 1], (3)

Chi =

N−1∑
i,j=0

(Oi − Ei)
2

Ei
ε[0, 1], (4)

where µi and µj stand for the average values of line i

and column j of matrix MS , and ρi and ρj are the stan-

dard deviation of each line i and column j of the same

matrix; Oi refers to the observed weights in the main

diagonal (i = j) of MS , and Ei refers to the expected

weights in the main diagonal of MS .

The SIM technique provides a visual pattern useful

to interpret the degraded image. When the image struc-

tures are not degraded, the weights are well distributed

closely to the diagonal of the matrix. Otherwise, differ-

ent patterns appear according to the structural degra-

dation. Therefore, the SIM pattern of a healthy lung is

quite different from a fibrosis one. The structures of a

healthy lung are small, sparse and have high contrast.

However, the fibrosis structures are spread through the

lung region.
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The degradation model used in this work relies

on the knowledge that CT imaging systems usually

blur the lung structures. Thus, the input images were

smoothed by convolving them with a (3 × 3) Gaus-

sian kernel with zero mean and unitary standard de-

viation. Our experiments have shown that this convo-

lution mask is sufficient to smooth small structures, and

has low impact on the overall computational cost. The

number of gray-levels N was set to 64 in the computa-

tion of the SIM descriptor, which ensures the successful

detection of structural changes and good numerical es-

timations for the co-occurrence frequencies.

2.3 Lung disease classification

Usually, COPD images present low-medium intensity

and large structures. On the other hand, pulmonary-

fibrosis (PF) lung images present particular texture,

and therefore are more susceptible to structural changes

caused by blurring effects. In fact, the Idm and Chi at-

tributes can easily detect this structural degradation.

On the other hand, the fibrosis structures are largely

distributed in the lungs and present relative larger di-

mensions in comparison to protruding structures like

blood vessels. More importantly, the Cor attribute value

exceeds the Idm and Chi ones for degraded structures

in fibrosis images. Regarding healthy lung (HL) images,

usually they are more uniform than PF and COPD im-

ages. Nevertheless, HL images present some prominent

vessels degraded by the smoothing filter. In general, the

SIM attributes for HL are lower than the ones calcu-

lated for PF and COPD images.

The proposed lung disease descriptor is a set of three

attributes in a vector A = {Cor, Idm, 1 − Chi} ex-

tracted from the SIM features computed from the 72

lung images under study. Further, the dataset of de-

scriptors consists of 27 vector samples of healthy lungs,

24 of COPD and 21 of pulmonary fibrosis, respectively.

Experts on pulmonary diseases provided the gold stan-

dard (GS) reference labels that were used to train-

ing and validate the artificial classifiers. Figure 3 il-

lustrates the projection of both sets of descriptors in

the bi-dimensional space using an U-Matrix projection

[60]. This n-dimensional visualization tool reveals the

discriminant power of the descriptors under analysis

through a distance map that indicates how close is an

entity to its neighbors that belong to the same class.

The color intensity in Figures 3a, 3b and 3c, is pro-

portional to the distance, i.e., the darker the color, the

closer the entity is to the neighbors in the same class.

Figures 3d, 3e and 3f illustrate these U-Matrices us-

ing color labelling for the data samples. Two classes

are well discriminated when there is a well-delimited

light region among them. Therefore, this map provides

a visual interpretation of the spatial arrangement of the

samples in clusters of similar meaning. One can observe

that the SIM U-Matrix presents the best discrimina-

tion due to the presence of three well-defined regions,

one for each class. The GLCM U-Matrix presents more

than three regions, which means there are samples asso-

ciated, i.e., belonging to different classes. On the other

hand, the VIF U-Matrix presents only two well-defined

regions, being not so useful to discriminate the three

classes involved. From the images, one can observe that

both GLCM and VIF descriptors performed poorly in

the present context. However, it is noteworthy the tex-

ture descriptors were able to provide a good discrimi-

nation of the COPD cases [16].

Figure 4 displays a diagram that highlights the

boundaries found among classes in the segmented lung

images and their associated SIM. The matrices exhibit

a particular pattern for each lung image, as well as sim-

ilarities among samples that belong to the same class.

The largest dispersion around the diagonal indicates

that high contrasted structures are degraded, as hap-

pened in the COPD images. The matrices show a sim-

ilar pattern region with a “V” shape in the HL im-

ages, indicating the imaged lungs present high contrast

among adjacent structures [16].
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(a) (b) (c)

(d) (e) (f)

Fig. 3: (a-c) U-Matrices for the SIM, GLCM and VIF descriptors used in lung disease discrimination; (d-f) the

colors identify the HL (red), PF (yellow), and COPD (blue) classes [16].

Fig. 4: Lung images associated to the boundaries of the

classes under study. The colors in the U-Matrix identify

the HL (red), PF (yellow) and COPD (blue) classes [16].

3 Optimum-path Forest classifier

The OPF classifier works by modeling the problem of

pattern recognition as a graph partition in a given fea-

ture space. The nodes are represented by feature vec-

tors and the edges connect all pairs of them, defining

a full connectedness graph. This kind of representa-

tion is straightforward, given that the graph does not

need to be explicitly represented, allowing the saving of

memory. The partition of the graph is carried out by a

competition process between key samples (prototypes),

which defines optimum paths to the remaining nodes of

the graph. Each prototype sample defines its optimum-

path tree (OPT), and the collection of all OPTs defines

an optimum-path forest, which gives the name to the

classifier [61].

Let Z = Z1 ∪ Z2 be a dataset labeled with a func-

tion λ, in which Z1 and Z2 are, respectively, a training

set and a test set such that Z1 is used to train the clas-

sifier and Z2 is used to assess its accuracy. Also, let’s

S ⊆ Z1 be a set of prototype samples. Essentially, the

OPF classifier creates a discrete optimal partition of

the feature space such that any sample s ∈ Z2 can be

classified according to this partition. The found parti-

tion is the OPF computed in <n by the image foresting

transform (IFT) algorithm [62].

The OPF algorithm may be used based with any

smooth path-cost function that can group samples with

similar properties [62]. In this work, we considered the
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path-cost function fmax, which is computed as follows:

fmax(〈s〉) =

{
0 if s ∈ S,

+∞ otherwise,

fmax(π · 〈s, t〉) = max{fmax(π), d(s, t)}, (5)

in which d(s, t) means the distance between samples s

and t, and a path π is defined as a sequence of adja-

cent samples. Notice that 〈s〉 stands for a trivial path

rooted at sample s, and 〈s, t〉 denotes the arc between

the adjacent nodes s and t.

Therefore, one has that fmax(π) computes the max-

imum distance between adjacent samples in π, when π

is not a trivial path. The OPF algorithm assigns one

optimum path P ∗(s) from S to every sample s ∈ Z1,

establishing an optimum path forest P (a function with

no cycles that assigns to each s ∈ Z1\S its predeces-

sor P (s) in P ∗(s) or a marker nil when s ∈ S). Let’s

R(s) ∈ S be the root of P ∗(s) that can be reached

from P (s). Then, OPF computes for each s ∈ Z1, the

cost C(s) of P ∗(s), the label L(s) = λ(R(s)), and the

predecessor P (s).

The OPF classifier is composed of two distinct

phases: (i) training and (ii) classification. The former

step consists, essentially, in finding the prototypes and

computing the optimum-path forest, which is the union

of all OPTs rooted at each prototype. After that, a

sample is taken from the test sample, connected to all

samples of the OPF generated in the training phase and

then it is found which node offered the optimum path

to it. Notice that this test sample is not permanently

added to the training set, i.e., it is used only once. The

next sections describe in details this procedure.

One can say that S∗ is an optimum set of proto-

types when the OPF algorithm minimizes the classifi-

cation errors for every s ∈ Z1. S∗ can be found based on

the theoretical relation between the minimum-spanning

tree (MST) and the optimum-path tree for fmax [63].

The training essentially consists in finding S∗ and an

OPF classifier rooted at S∗.

By computing a MST in the complete graph (Z1, A),

a connected acyclic graph whose nodes are all sam-

ples of Z1 and the arcs are undirected and weighted

by the distances d between adjacent samples is estab-

lished. The spanning tree is optimum since the sum of

its arc weights is minimum in comparison to any other

spanning tree in the complete graph. In the MST, ev-

ery pair of samples is connected by a single path that

is optimum according to fmax. That is, the minimum-

spanning tree contains one optimum-path tree for any

selected root node. The optimum prototypes are the

closest elements of the MST with different labels in Z1

(i.e., elements that fall in the frontier of the classes). Al-

gorithm 1 resumes the training procedure for the OPF

classifier.

Algorithm 1 – OPF Training Algorithm

Input: A λ-labeled training set Z1 and a pair (v, d)
for feature vector and distance computation.

Output: Optimum-path forest P , cost map C, label
map L, and ordered set Z′

1.
Auxiliary: Priority queue Q, set S of prototypes, and

cost variable cst.

1. Set Z′
1 ← ∅ and compute by MST the prototype set S ⊂ Z1.

2. For each s ∈ Z1\S, set C(s)← +∞.
3. For each s ∈ S, do
4. C(s)← 0, P (s)← nil, L(s)← λ(s), insert s
5. into Q.
6. While Q is not empty, do
7. Remove from Q the sample s such that C(s) is
8. minimum.
9. Insert s in Z′

1.
10. For each t ∈ Z1 such that C(t) > C(s), do
11. Compute cst← max{C(s), d(s, t)}.
12. If cst < C(t), then
13. If C(t) 6= +∞, then remove t from Q.
14. P (t)← s, L(t)← L(s), C(t)← cst.
15. Insert t into Q.
16. Return the classifier [P,C,L, Z′

1].

The OPF time complexity for training is θ(|Z1|2),

due to the main (Lines 5-13) and inner loops (Lines

8-13) in Algorithm 1, that are executed θ(|Z1|) times

each.

3.1 Classification

For any sample t ∈ Z2, it is assumed that all arcs are

connecting t with samples s ∈ Z1. Considering all pos-

sible paths from S∗ to t, is is found the optimum path

P ∗(t) from S∗ and t is labeled with the class λ(R(t)) of

its most strongly connected prototype R(t) ∈ S∗. This

path can be incrementally identified by computing the

optimum cost C(t) as:

C(t) = min{max{C(s), d(s, t)}}, ∀s ∈ Z1. (6)

Now, let’s the node s∗ ∈ Z1 be the one that satisfies

Equation 6 (i.e., the predecessor P (t) in the optimum

path P ∗(t)). Given that L(s∗) = λ(R(t)), the classifier

simply establishes L(s∗) as the class of t. An error oc-

curs when L(s∗) 6= λ(t). Algorithm 2 resumes the OPF

classification process.

Algorithm 2 – OPF Classification Algorithm

Input: Classifier [P,C,L, Z′
1], evaluation set Z2, and

the pair (v, d) for feature vector and distance
computation.

Output: Label L′ and predecessor P ′ maps defined
for Z2.

Auxiliary: Cost variables tmp and mincost.
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Fig. 5: (i) Training set modeled as a complete graph; (ii) computation of a minimum spanning tree over the training

set; (iii) optimum-path forest found over the training set (prototypes are highlighted); (iv) classification process

of a “green” sample; and (v) a test sample is finally classified.

1. For each t ∈ Z2, do
2. i← 1, mincost← max{C(ki), d(ki, t)}.
3. L′(t)← L1(ki) and P ′(t)← ki.
4. While i < |Z′

1| and mincost > C(ki+1), do
5. Compute tmp← max{C(ki+1, d(ki+1, t)}.
6. If tmp < mincost, then
7. mincost← tmp.
8. L′(t)← L(ki+1) and P ′(t)← ki+1.
9. i← i+ 1.
10. Return [L′, P ′].

In Algorithm 2, the main loop (Lines 1 − 9) per-

forms the classification of all nodes in Z2. The inner

loop (Lines 4 − 9) visits each node ki+1 ∈ Z ′1, i =

1, 2, . . . , |Z ′1| − 1 until an optimum path πki+1
· 〈ki+1, t〉

is established, Fig. 5.

3.1.1 OPF with Gaussian distance

The OPF algorithm estimates prototypes by calculating

the path-cost function fmax, as given by Equation 5.

The OPF library available freely, which is known as

LibOPF1, implements seven approaches to calculate the

distance d(s, t) between nodes s and t [20, 21].

In this work, we considered a distance between nodes

s and t that is based on the Gaussian probability den-

sity function dGaussian(s, t) [64]:

dGaussian (s, t) = 1− exp
(
−‖s− t‖

2σ2

)
, (7)

where σ is a parameter that controls the smoothness of

the Gaussian function, and ‖s− t‖ stands for the Eu-

clidean distance between nodes s and t. Figure 6 depicts

the relationship between the Euclidean and the Gaus-

sian distance with σ equal to 1, 0.5 and 0.25 concerning

two distinct nodes.

In Figure 6, one can observe the smaller is the σ

value, the more peaked is the Gaussian distance and

closer the two nodes are, and that larger σ values cor-

respond to smoother decision boundaries. Then, σ de-

fines the fmax calculated in Equation 5 not only by

the distance between nodes s and t, but by taking into

1 http://www.ic.unicamp.br/~afalcao/libopf/LibOPF.

tar.gz

http://www.ic.unicamp.br/~afalcao/libopf/LibOPF.tar.gz
http://www.ic.unicamp.br/~afalcao/libopf/LibOPF.tar.gz
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Fig. 6: Examples of the Gaussian distance with σ equal

to 1, 0.5 and 0.25.

account the value of the Gaussian distance calculated

in Equation 7. As such, close nodes tend to be expo-

nentially more important than the ones farthest away,

which may accelerate the learning of OPF and increases

its accuracy rate.

4 Results and Discussion

In this section, we present the results related to the

computational cost and classification accuracy. A per-

sonal laptop with an Intel Core i5 at 1.4 GHz, 4 GB of

RAM and running MAC OS X 10.9.5 was used in all

experiments. The classification accuracy was considered

as the number of correctly classified samples divided by

the total number of samples involved.

The results obtained by the OPF classifier were com-

pared against the ones obtained by a Multi-Layer Per-

ceptron Neural Network (MLP) [65, 66, 67, 36] and

Support Vector Machines [68, 69, 70]. Notice all classi-

fiers were implemented in C++. In regard to the SVM

based classifier, the Linear, Polynomial, RBF (Radial

Basis Function) and Sigmoid kernels were adopted. For

the MLP classifier, two topologies were established: one

with 3 neurons in the hidden layer, and a second one

with 10 neurons in the same layer. Notice that the

adopted SVM implementation performs automatically

the search for the optimal parameters during the train-

ing step.

Firstly, it is necessary to find the σ value that fits

better to solve Equation 7, as well as to improve the per-

formance of the OPF classifier. Thus, Table 1 indicates

the classification accuracy, F -score and training and

testing times obtained by the proposed approach (i.e.,

SIM+VIF attributes) with the OPF classifier based on

the Gaussian distance with σ values varying from 0.1

to 0.9. From Table 1, one can realize that the value of

σ that led to the best results in terms of accuracy, F -

score and computational times was 0.9. Therefore, such

value was used in the further experiments and analysis.

Tables 2 and 3 present the average and standard de-

viation values as to accuracy (Acc), sensitivity (Se) and

positive predictive value (PPV) obtained by the OPF,

SVM and MLP classifiers considering the features ex-

tracted by the GLCM and SIM methods, respectively.

The well-known holdout method was used in the ex-

periments, with 50% of the samples used for training

purpose, and the remainder ones employed to test the

classifiers over 10 runnings.

From the results presented in Tables 2 and 3, one

can realize the best classification accuracy from the fea-

tures extracted by the GLCM method was obtained by

the OPF classifier using the Euclidean distance (96%),

followed by SVM with linear kernel. Next, the OPF

classifier with Chi-Squared measure obtained the sec-

ond best results (89.33%). Using the GLCM based fea-

tures, the proposed Gaussian distance considering the

OPF classifier led to an accuracy of 82.67%. These re-

sults are similar to the ones obtained in [16], which are

based on Extreme Learning Machine (ELM) techniques

applied on SIM based features.

Table 4 indicates the average and standard devia-

tion values as to accuracy (Acc), sensitivity (Se), pos-

itive predictive value (PPV) and F-measure (Fm) ob-

tained by OPF, SVM and MLP based classifiers con-

sidering SIM+VIF based features. From the results pre-

sented in Table 4, one can confirm that the best classi-

fication accuracy achieved from the features extracted

using the SIM method plus the ones extracted with the

VIF method was obtained by the OPF classifier using

the proposed Gaussian distance (i.e., 98.2%). This accu-

racy rate was also obtained by the SVM classifier using

the RBF kernel. Comparing the data in Tables 2 and 4,

it can be noticed that a gain of accuracy was achieved

when the features extracted by the VIF method were

also used.

For a complete analysis of the results, non-parametric

tests of the variance of the accuracy results of each

classifier together with the feature extractors were per-

formed using Friedman’s test. This statistical test is

used to compare data samples when the same subject

is evaluated more than once [71]; it is commonly con-

sidered an extension of the Wilcoxon test when it is

necessary to use three or more experimental conditions

[72]. Table 5 shows the statistical test values for the

best results obtained using the features extracted using

the GLCM and SIM methods when used independently

and combined against the ones obtained using the pro-

posed approach, i.e., the SIM+VIF features and OPF

with the Gaussian distance. In this table, the training,
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Table 1: Accuracy (Acc), sensitivity (Se), training and testing times obtained from SIM plus VIF attributes using

the OPF classifier based on the Gaussian distance with different σ values.

σ Acc (%) Se (%) Training Time (µs) Testing Time (µs)

0.10 55.56±0.87 33.33±0.92 85±42 42±3
0.20 57.78±1.01 36.67±0.98 86±39 43±2
0.30 68.89±0.91 56.00±1.05 90±40 42±3
0.40 70.67±1.18 66.67±1.10 91±41 41±1
0.50 95.56±0.71 93.33±0.81 85±35 43±2
0.60 95.56±0.55 93.33±0.58 86±37 40±3
0.70 96.89±0.42 95.33±0.64 83±42 38±2
0.80 97.78±0.53 96.67±0.53 81±38 38±1
0.90 98.02±0.46 97.78±0.41 80±36 37±2

Table 2: Accuracy (Acc), sensitivity (Se) and positive predictive value (PPV) obtained by the OPF, SVM and

MLP based classifiers from the features extracted by the GLCM method.

GLCM

Method PPV(%) Se(%) Acc(%)

OPF-Euclidean 97.00±0.05 94.00±0.05 96.00±0.03
OPF-Squared Chi-Sq. 92.00±0.03 84.00±0.04 89.33±0.03
OPF-Manhattan 90.00±0.05 80.00±0.05 86.67±0.03
OPF-Canberra 90.00±0.04 80.00±0.05 86.67±0.00
OPF-Gaussian 87.00±0.04 74.00±0.05 82.67±0.03
OPF-Chi-Square 72.00±0.07 44.00±0.04 62.67±0.03
OPF-BrayCurtis 62.00±0.07 24.00±0.07 49.33±0.04
SVM-Linear 95.95±0.04 91.89±0.04 94.59±0.02
SVM-RBF 95.54±0.87 91.08±1.73 94.05±1.15
SVM-Poly 94.86±1.99 89.73±3.97 93.15±2.65
SVM-Sigmoid 67.30±4.86 34.59±9.73 56.40±6.49
MLP 4/3/3 91.49±11.18 82.97±22.35 88.65±14.90
MLP 4/10/3 90.95±8.86 81.89±17.72 87.93±11.82

Table 3: Accuracy (Acc), sensitivity (Se) and positive predictive value (PPV) obtained by the OPF, SVM and

MLP based classifiers from the features extracted by SIM method.

SIM

Method PPV(%) Se(%) Acc(%)

OPF-Gaussian 98.00±0.04 96.00±0.04 97.53±0.05
OPF-Euclidean 98.00±0.00 96.00±0.00 97.33±0.05
OPF-Squared Chi-Sq. 97.00±0.05 94.00±0.04 96.00±0.05
OPF-Manhattan 94.00±0.05 88.00±0.05 92.00±0.05
OPF-Canberra 96.00±0.04 92.00±0.05 94.67±0.04
OPF-Chi-Square 75.00±0.06 50.00±0.06 66.67±0.06
OPF-BrayCurtis 71.00±0.06 42.00±0.06 61.33±0.06
SVM-Poly 98.11±1.73 96.22±3.46 97.48±2.31
SVM-Linear 97.30±0.55 94.59±0.32 96.40±0.32
SVM-RBF 97.30±0.07 94.59±0.07 96.40±0.06
SVM-Sigmoid 68.92±0.05 37.84±0.05 58.56±0.05
MLP 3/10/3 91.08±15.35 82.16±30.70 88.11±20.47
MLP 3/3/3 87.16±15.98 74.32±31.96 82.88±21.31

test and total times are also indicated additionally to

the average classification accuracy.

The Friedman test is useful to prove the null hypoth-

esis (H0). Table 5 indicates the Friedman test results for

the best classifier in combination with the features ex-

tractors in evaluation. The used confidence interval was

equal to 0.001, which represents the probability that

H0 is incorrect, or the accuracy arrangement between

features extractor methods/classifiers are not equiva-

lent. Equivalence (�) among the results shows how effi-

cient is the proposed approach when compared against

other extractors already established in the literature.

Superiority (4) or inferiority (5) mean that the pro-

posed approach presents effectiveness higher or lower
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Table 4: Accuracy (Acc), sensitivity (Se) and positive predictive value (PPV) obtained by the OPF, SVM and

MLP based classifiers from the features extracted by the SIM method plus the ones extracted by the VIF method.

SIM+VIF

Method PPV (%) Se (%) Acc (%)

OPF-Gaussian 97.60±0.04 95.20±0.08 98.20±0.05
OPF-Euclidean 97.01±0.01 94.00±0.02 96.00±0.01
OPF-Squared Chi-Sq. 97.00±0.03 94.00±0.03 96.00±0.02
OPF-Manhattan 97.00±0.02 94.00±0.01 96.00±0.01
OPF-Canberra 97.00±0.02 94.00±0.02 96.00±0.01
OPF-Chi-Square 80.00±0.07 60.00±0.08 73.33±0.07
OPF-BrayCurtis 70.00±0.15 40.00±0.18 60.00±0.17
SVM-Poly 97.70±0.87 95.41±1.73 96.94±1.15
SVM-Linear 97.84±1.62 95.68±3.24 97.12±2.16
SVM-RBF 98.65±0.08 97.30±0.08 98.20±0.07
SVM-Sigmoid 68.92±0.11 37.84±0.12 58.56±0.09
MLP 4/10/3 91.35±12.58 82.70±25.16 88.47±16.77
MLP 4/3/3 87.57±12.90 75.14±25.80 83.42±17.20

Table 5: Results of the Friedman’s test on the Acc values achieved by the classifiers in combination with the

results obtained in the classification of the experimental image dataset used by the classifiers under comparison

(� - Equivalence, 4 - Superiority, 5 - Inferiority.)

Method Acc (%) Statistical test Training time (µs) Testing time (µs) Total time (µs)

GLCM

OPF-Euclidean 96.00±0.03 4 82±63 124±19 206±42
SVM-Linear 94.59±0.02 4 7389±1320 4024±697 11413±1050
MLP 4/3/3 88.65±14.90 4 53336±38700 1±1 53337±38799

SIM

OPF-Gaussian 97.53±0.05 4 86±42 37±1 123±43
SVM-Poly 97.48±2.31 4 200294±32606 444±481 200738±33485
MLP 4/10/3 88.11±20.47 4 89800±27442 1±1 89801±27441

SIM+VIF

OPF-Gaussian 98.20±0.05 - 80±36 37±2 117±39
SVM-RBF 98.20±0.07 � 15085±3268 3552±5402 18637±8670
MLP 4/10/3 88.47±16.77 4 77983±30314 1±1 77984±30315

than the method in comparison, respectively. From the

data presented in Table 5, one can realize that the pro-

posed approach based on SIM+VIF features combined

with OPF and the Gaussian distance performs simi-

larly to the SVM classifier with RBF kernel applied on

SIM+VIF features, but is higher than the other ap-

proaches based on GLCM and SIM features. Also, the

fastest classifier to train was the OPF classifier with

Gaussian distance, the fastest to test was the MLP clas-

sifier, and the one that takes the lowest total time was

the OPF classifier with Gaussian distance. Compared

against the SVM-RBF classifier, the proposed approach

had lower training and test times, thus presenting it-

self as the most efficient solution among the ones under

comparison.

From the results obtained, it is possible to conclude

that the best classification accuracy achieved from the

features extracted by the GLCM method was obtained

by the OPF classifier with Euclidean distance, which

had also the lowest training and total times. On the

other hand, the best classification accuracy obtained

from the features extracted by the SIM method was

achieved using the OPF classifier with the Gaussian dis-

tance. Additionally, this classifier had also in this case

the lowest training and total execution times. The OPF

classifier with the Gaussian distance achieved the best

classification accuracy achieved from the SIM+VIF fea-

tures, which was equal to 98.20%; in addition, this con-

figuration led to the lowest total time.

Another analysis that can be performed is based on

the confusion matrix presented in Table 6, which de-

picts the classes under study and the obtained classifi-

cation results according to the classifier and the feature

extraction method. Analyzing the data in Table 6, it

can be easily noticed the low accuracies obtained by the

MLP based classifier, which is indicated by many errors

verified in the confusion matrix. It can also be noted

that the OPF and SVM based classifiers successfully
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Table 6: Average confusion matrices for 10 runnings using the best classifiers under comparison applied on the

features extracted using the GLCM and SIM methods and their combination (VIF + SIM).

GLCM

True Class Classified as OPF-Euclidean SVM-Linear MLP 4/3/3

Normal 13 12 12.7

Normal Fibrosis 1 2 0.7

COPD 0 0 0.6

Normal 0.5 2 1.8

Fibrosis Fibrosis 10.5 9 8.3

COPD 0 0 0.9

Normal 0 0 1.1

COPD Fibrosis 0 0 1.2

COPD 12 12 9.7

SIM

True Class Classified as OPF-Gaussian SVM-Polynomial MLP 4/10/3

Normal 13.5 13.6 10.7

Normal Fibrosis 0.5 0.4 2.1

COPD 0 0 1.2

Normal 0 0.4 1.8

Fibrosis Fibrosis 11 10.6 8.8

COPD 0 0 0.4

Normal 0 0 1.1

COPD Fibrosis 0 0 0.7

COPD 12 12 10.2

SIM + VIF

True Class Classified as OPF-Gaussian SVM-RBF MLP 4/10/3

Normal 13.8 13.5 12

Normal Fibrosis 0.2 0.5 1.2

COPD 0 0 0.8

Normal 0 0.1 1.6

Fibrosis Fibrosis 11 10.9 7.6

COPD 0 0 1.8

Normal 0 0 3

COPD Fibrosis 0 0 2.2

COPD 12 12 9

classified the COPD class, as there is no error in their

classification results. The same did not occur for the

Fibrosis and Normal classes, as some errors occurred

with both classifiers.

Based on the experimental findings, it should be

stressed that the OPF classifier with the Gaussian dis-

tance achieved no error in the classification of the Fibro-

sis class, both from the SIM features and from the SIM

features plus the VIF features. It should also be noted

that the classifier that obtained fewer classification er-

rors as to the normal class was the OPF classifier with

the Euclidean distance when applied on the SIM+VIF

features.

5 Conclusion

In this article, an assessment of the OPF classifier per-

formance to handle the task of lung disease diagnosis

in CT images was presented. In this evaluation, three

feature extraction methods and seven distance metric

functions were employed and compared.

In particular, the OPF classifier configured with the

Gaussian distance achieved very satisfactory accuracy

levels, both when applied on the features extracted us-

ing the GLCM method and on the ones extracted using

the SIM method. It can also be noted an accuracy gain

of 2.2% relatively to the results presented in [16] using
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the same experimental image dataset. Among the ex-

traction methods, SIM led to higher accuracies, mainly

when associated with the VIF metric and the proposed

Gaussian distance with the OPF classifier.

Based on the results obtained from the experiments

conducted, one can conclude that as to the COPD class,

the OPF and SVM classifiers with the features extracted

using the SIM and VIF methods were the most promis-

ing ones, without classification errors. Relatively to the

Fibrosis class, the OPF classifier with the Gaussian dis-

tance had no classification errors from the features ex-

tracted using the SIM method, neither from the features

extracted using the SIM method plus the ones using the

VIF method.

Relatively to the other traditional supervised learn-

ing algorithms studied here, namely, SVM and MLP,

the OPF classifier confirmed its classification suitabil-

ity, which was assessed in terms of accuracy, precision,

recall and F -measure, as well as its superior computa-

tional efficiency, being therefore a very promising tool

to identify pulmonary diseases from CT images.
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da Silva Félix, José Sebastião De Abreu, and Vic-

tor Hugo C De Albuquerque. psnakes: A new ra-

dial active contour model and its application in the

segmentation of the left ventricle from echocardio-

graphic images. Computer methods and programs

in biomedicine, 116(3):260–273, 2014.

46. Pedro Pedrosa Rebouças Filho, Paulo César
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