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Abstract 

The appearance of bone metastasis in patients with breast or prostate 
cancer makes the skeleton the organ most affected by metastatic cancer. It 
is estimated that these two cancers lead in 80% of the cases to the appearance 
of bone metastasis, which is considered the main cause of death. 99mTc-
methylene diphosphonate (99mTc-MDP) bone scintigraphy is the most 
commonly used radionuclide imaging technique for the detection and 
prognosis of bone carcinoma. With this work, it was intended to develop a 
new computational solution to extract from 99mTc-MDP bone scintigraphy 
images quantitative measurements of the affected regions in relation to the 
non-pathological regions. Hence, the uptake indexes computed from a new 
imaging exam are compared with the indexes computed from a previous 
exam of the same patient. Using active shape models, it is possible to 
segment the regions of the skeleton more prone to be affected by the bone 
carcinoma. On the other hand, the metastasis are segmented using the region 
growing algorithm. Then, the uptake rate is calculated from the relation 
between the maximum intensity pixel of the metastatic region in relation to 
the maximum intensity pixel of the skeletal region where the metastasis was 
located. We evaluated the developed solution using scintigraphic images of 
15 patients (7 females and 8 males) with bone carcinoma in two distinct time 
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exams. The bone scans were obtained approximately 3 hours after the 
injection of 740MBq of 99mTc-MDP. The obtained indexes were compared 
against the evaluations in the clinical reports of the patients. It was possible 
to verify that the indexes obtained are according to the clinical evaluations 
of the 30 exams analyzed. However, there were 2 cases where the clinical 
evaluation was unclear as to the progression or regression of the disease, and 
when comparing the indexes, it is suggested the progression of the disease 
in one case and the regression in the other one. Based on the obtained results, 
it is possible to conclude that the computed indexes allow a quantitative 
analysis to evaluate the response to the prescribed therapy. Thus, the 
developed solution is promising to be used as tool to help the technicians at 
the time of clinical evaluation. 
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1. Introduction 
The skeleton is the organ most affected by metastatic cancer, with a higher 
prevalence for prostate and breast cancer. These two cancers cause in 80% 
of the cases, the appearance of bone metastases, which is considered the 
main cause of death. In many cases the metastatic lesions are multifocal, 
which means that they are located throughout the skeleton with greater 
incidence in the axial skeleton [1]. 

The skeleton is constantly remodeling due to the coordinated 
activity of osteoclasts and osteoblasts. In normal bone there is a balanced 
sequence: first, the osteoclasts absorb the bone and then the osteoblasts form 
bone in the same place. In cases of metastatic cancer, malignant cells secrete 
factors that affect this balance leading to osteoblastic stimulation [2]. 

Premature detection of metastases can prevent complications, 
control the stage of disease, and help determine the treatment to follow, 
which may result in a higher probability of survival and improvements in 
quality of life. 

Bone scintigraphy with 99mTc methylene diphosphonate (MDP) is 
currently the most commonly used imaging technique in Nuclear Medicine 
to determine the extent of these lesions in the skeleton, as it provides a two-
dimensional (2D) image of the skeleton showing regions with higher uptake 
(hotspots) [3]. In addition, it has good sensitivity and has been considered 
as the first alternative imaging method capable of diagnosing asymptomatic 
bone metastases, since it is readily available and provides a complete 
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skeletal view at reasonable time and cost [4]. Modern bone scan techniques 
can detect an increase in bone mineral turnover as small as 10% in regions 
that are only a few millimeters in size. In contrast, a relatively large volume 
of bone (1 cm3) must demineralize by about 50% before the change can be 
detected by radiographs. It is not surprising then, that in regard to prostate 
cancer, the bone scan is often used to stage patients and monitor the course 
of bone involvement. However, the interpretation of these exams has 
significant limitations: The evaluation of the exam is not yet standardized 
making the interpretations subjective and dependent on the experience of 
the technician. In numerous situations, these evaluations are described in 
vague terms as the presence or absence of tumor propagation in the skeleton. 
Therefore, a quantitative analysis of the images under study is necessary to 
reduce the variability of the observer in order to determine the extent of the 
lesions in the bone and to identify post-treatment changes that are clinically 
relevant. 

To improve the monitoring of the treatment of bone lesions, some 
authors have developed scoring metrics for more objective methods of 
assessing extent of bone metastasis, such as counting the number of lesions 
in the total skeleton, assessing the regional distribution of the metastasis or 
indexes that measures the tumor burden as a percentage of the total skeletal 
mass (Bone Scan Index) [5]. Therefore, the aim of the present study was to 
develop a semi-automatic method for the segmentation, i.e. identification, 
of regions of interest in 99mTc-MDP scintigraphy images of the skeletal 
system. The segmented regions allow the posterior assessment of the 
intensity of the hotspots under study and, therefore, the uptake index 
calculation.  

 
2. Materials and Methods 
 

Bone Scintigraphy 
The bone scans used to evaluate the developed solution were obtained 

approximately 3 hours after an intravenous (IV) injection of 740 MBq of 
99mTc MDP. Whole-body images with anterior and posterior views were 
acquired according to a matrix size of 256x1024 pixels and using a gamma 
camera equipped with low-energy all-purpose collimators (Discovery NM 
360, GE Healthcare). The energy discrimination was provided by a 20% 
window centred on the 140 keV of 99mTc. 
 

Training Images Group 
A training group of images was randomly chosen to build the Point 

Distribution Models [6], [7], [8], [9], used in the image segmentation step. 
The used group consisted of 10 images of patients who had undergone 
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whole-body bone scintigraphy at Lenitudes Medical Center & Research, in 
Portugal.  

 
Evaluation Images Group 
The evaluation group consists of images acquired from 15 patients (8 

males and 7 females), 7 of whom had prostate cancer, the other 7 have breast 
cancer and one case of lung cancer. All these patients perform whole body 
bone scintigraphy at Lenitudes Medical Center & Research every three 
months to evaluate the treatment response.  
 

Bone Scintigraphy Image Processing 
The diagram of the developed solution is depicted in Figure 1. The 

proposed solution has three main stages: image pre-processing, image 
segmentation and uptake index computation. The image pre-processing 
stage is adopted to minimize the noisy artifacts and enhance the contrast of 
the input bone scintigraphy images [10]. Image segmentation is one of the 
most common steps in image processing and analysis area, which intends to 
identify features of interested in input images [11], [12], [13]. Therefore, the 
enhanced images are submitted to the segmentation stage in order to identify 
the regions of the skeleton; namely, the skull, spine, thorax, clavicle, femur, 
humerus, pelvis, scapula and sternum, Figure 2. 

After the segmentation of the regions under analysis, it is necessary 
to segment the existent metastasis, commonly known as hotspots. Then, 
each uptake index assessment consists in computing the ratio between the 
value of the pixel with the highest intensity of the corresponding hotspot and 
the pixel with the highest intensity of the region where the hotspot is located 
without considering its region.  
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Figure 1: Diagram of the proposed solution. 
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Figure 2: Example of a point distribution model built to segment whole body bone 

scintigraphy images: On the left, example of a training image; On the centre, 
landmark points used to build the model (117 points manually defined); On the 

right, automatically segmented whole body scintigraphy image. 

In the pre-processing step, an adaptive histogram equalization 
algorithm [14] is applied to enhance the contrast of the dark regions of the 
input images. In this step, it is also employed the anisotropic diffusion 
algorithm, first introduced by [15], which is a process that creates a space-
scale system where an image leads to a parameterized family of images 
increasingly blurred based on a diffusion process [10]. This technique had 
become a useful tool to smooth image noise, detect image edges, segment 
images and highlight them; particularly, anisotropic diffusion can smooth 
an input image while preserving the boundaries of the regions and the small 
structures present in the image [16]. 

As already mentioned, in the segmentation step, the Point Distribution 
Models (PDMs) proposed by Cootes and Taylor [6], [7], [8] are used. PDMs 
have been used in statistical modeling of objects to describe, i.e. learning, 
their shapes from a set of training images. Thus, the built model describes 
the mean shape of the modeled object together with admissible variations in 
relation to the same mean shape [9]. PDMs emerged as a way of 
representing a set of forms of an object through the use of a flexible model 
of the position of certain landmarks located in image examples. These 
landmark points should reflect important characteristics of the shape of the 
object to be modeled, and must be selected in a similar way in all training 
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images. In practice, this selection step is time-consuming and some 
automatic and semi-automatic methods have been proposed to define the 
landmark points to use in the PDMs building process [9]. 

In the process of building a PDM, the shape of the object to be modeled 
must be defined in a set of training images through a set of landmark points 
[8]. Once the points are selected, the coordinates of all n points that describe 
the i shape of the object are concatenated in vector 𝑥": 
 
𝑥" = (𝑥"%, 𝑥"', 𝑥"(, … 𝑥"*, 𝑦"%, 𝑦"' … , 𝑦"*)-     

  (1) 
 
where i = 1, ..., N, with N representing the number of shapes in the set of 
training images and n the number of landmark points. Then, all the training 
shapes must be aligned in the same set of coordinates. After the alignment 
of the training shapes, it is possible to find the mean of the shapes and the 
variability presented in the training images. The modes of variation 
characterize the ways according to the landmarks of the built model tend to 
move, and can be obtained through a principal component analysis (PCA) 
to the derivations of the mean [9]. Thus, it is possible to rewrite each 
coordinates vector as: 
 
𝑥 = �̅�+𝑃1𝑏1      

  (2) 
 
where x represents the number of points of the resultant shape of the 
modeled object, (𝑥3, 𝑦) is the position of landmark point k, �̅� is the mean 
position of the landmark points, 𝑃1 = (𝑝1%	𝑝1' 	…	𝑝16)	is the matrix of the 
first t modes of variation, 𝑝1" correspond to the most significant eigenvectors 
in a PCA of the position variables, and 𝑏1 = (𝑏1%	𝑏1' 	…	𝑏16)-	is a vector of 
weights for each variation mode of the shape. Each eigenvector describes 
how each landmark point moves on the training image set. Equation (2) 
represents the PDM of an object and can be used to generate new forms of 
the same.  

Considering the existence of a trained model, i.e. a PDM, the 
corresponding Active Shape Model (ASM) [8] can be used to find, i.e. to 
segment, the modeled object in a new image. Starting with an approximate 
position of the object to be segmented, the ASM based segmentation applies 
an iterative optimization method to move each PDM landmark point to a 
better position. The decision making to find the best position is based on 
finding the best combination of a local model along the normal boundary 
profile of the object in the image to be segmented [9]. 
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Uptake Index Determination 
In order to segment the metastasis, it was used the region growing 

algorithm [12], [13], that allows the user to select a seed point and, from this 
seed point, i.e. seed pixel, the region to be segment starts growing by 
attaching neighbor pixels that have similar properties.  

The next step consists in calculating the uptake index based on the 
following steps (Figure 3): 

• For each segmented metastasis: 
a. Compute the tumor involvement based on the intensity 

of the image pixels, Figure 3: in the anatomical region 
where the tumor is located, identify the pixel with the 
highest intensity of the region (R) that does not belong 
to the tumor region (M); identify the highest intensity 
pixel in the tumor region; calculate the ratio between 
the two intensities previously found; 

b. Add the computed result of the tumor involvement to 
the exam uptake index. 

 

 

Figure 3: Example of the regions used to determine the uptake index. 
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3. Results 
 
Segmentation 

The proposed computational solution was used on bone scintigraphy 
images, and each segmented region was compared against the corresponding 
manually segmented region. The Dice coefficient, Hausdorff distance and 
centroid distance were used to validate the computational segmentations. 
Examples of segmentations obtained by the proposed solution along with 
the corresponding manual segmentations are shown in Figure 4. 

The computational segmentations obtained for the skull, thorax, pelvis 
and thigh were then evaluated. The range of the centroid distance obtained 
for the skull was 4.49±2.48, for the thorax was 4.78±2.71, 3.44±1.62 for the 
pelvis and 10.91±6.59 for the thigh. On the other hand, for the Dice 
Coefficient, the obtained range for the skull was 0.89±0.024, 0.89±0.038 for 
the thorax, 0.91±0.021 for the pelvis and 0.67±0.073 for the thigh. Finally, 
the range of the Hausdorff Distance obtained for the skull was 3.24±0.53, 
5.41 ±0.56 for the thorax, 5.64 ±0.72 for the pelvis and 3.98 ±0.48 for the 
thigh.  
 

 
Figure 6: Examples of segmentation obtained by the proposed solution for the 

skull (I) and of the femur (II): a) Training images; b) segmentations obtained by 
the proposed solution; c) segmentations manually delineated. 

 
Uptake Index 

The uptake indexes were computed based on the approach 
previously described. For each patient, it was studied the last two exams, 
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and the obtained indexes were compared with evaluations presented in the 
clinical reports. 

As to the patients with metastatic prostate cancer, there was a 
decrease in the uptake index from the first to the second study in all patients 
with the exception of patient # 3, where the uptake index increased, as can 
be seen in Figure 4. On the other hand, as to the patients of metastatic breast 
cancer, there was a decrease in the uptake index in the second study in 
patients # 1, # 2, # 4 and # 7 relatively to the first study. Contrary, in patients 
# 3, # 5 and # 6 the uptake index increased for the second study, Figure 5. 
Finally, the patient with lung cancer in the second study had no metastasis 
and an uptake index of 1.98 computed in the first study.  
 

 
Figure 4: Uptake index values computed for the prostate cancer patients from their 

last two studies. 

 

 
Figure 5: Uptake index values computed for the breast cancer patients from their 

last two studies. 
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4. Discussion 
Regarding the distances between the centroids found for the skull, thorax 
and pelvis, the mean of this metric ranged from 3 to 4 pixels, with a standard 
deviation around 2 pixels. Given that the size of the images under study was 
equal to 256x1024 pixels, the values found for this metric indicate a high 
similarity between the computed and manual segmentations. Regarding the 
Dice coefficient, values close to 1 (one) show that the segmentations under 
comparison are similar, whereas closer to 0 (zero) means that there is no 
similarity between the segmentations. The mean of this metric found for the 
skull, thorax and pelvis was 0.89 for the first two and 0.91 for the pelvis, 
which once again indicates that the segmentations under comparison were 
close. The Hausdorff distance, and the distance between centroids also 
shows that there is not a high degree of distinction between the 
segmentations. However, the comparison of the femoral segmentations 
showed more discrepant results. The distance between centroids was on 
average of 10 pixels with a standard deviation higher than the ones found in 
the previous cases, around 6 pixels. In terms of the Dice coefficient, the 
average of this metric was 0.67, considerably lower in comparison to the 
Dice coefficient found for the other cases. In fact, the segmentation of the 
femur obtained using the built Point Distribution Model generated the most 
distinct results. One way to solve this problem is to increase the number of 
training images. Another alternative would be increasing the number of 
landmark points distributed along the femur in the PDM building process; 
mainly, around the head of the femur, which is the less homogenous region 
to segment. 

In what concerns to the computed uptake indexes, the patients with 
prostate cancer had results that are in agreement with their qualitative 
evaluations. For example, in the cases where the study was described as 
“lower osteoblastic intensity”, it was possible to verify a decrease in the 
uptake indexes, which indicates a good response to the prescribed therapy. 
However, in the case of patient #3, it was possible to verify a rise in the 
levels of uptake index, and the description of this study was evaluated as a 
“mixed response”, this was due to the regression of some hotspots in the 
first examination and the appearance of new ones. However, when 
comparing the two studies through the uptake indexes, it was possible to 
verify the progression of the metastatic disease. To note, the case of patient 
#4 where the qualitative analysis was described as “overlapping hotspots in 
relation to the last study” and the indexes obtained showed a decrease from 
2.65 to 2.1 suggesting improvements in the hypercapitating hotspots, mainly 
in the left isquium. In the case of metastatic breast cancer patients, all results 
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are in agreement with the clinical evaluations. For the patient with 
carcinoma in the lung, it went from an index of 1.98 in the first study to an 
uptake index of 0 (zero), since there were no metastasis in the most recent 
study. 

 
5. Conclusion 
The challenges regarding the development of solutions for the fully 
automatic segmentation of the skeleton and metastasis in scintigraphy 
images remains a strong research topic. A semi-automatic solution for the 
segmentation of the regions of interest and the extraction of the information 
from these regions in 99mTc-MDP bone scintigraphy images was described. 
The developed solution proved to be effective in identifying the regions of 
interested in the input images. Although some difficulties have arisen in 
segmenting properly some regions, these difficulties can be overcome by 
increasing the number of the training images. 

The developed solution was applied to 30 whole body bone scans 
acquired from 15 patients. The computed uptake indexes were compared 
with the corresponding clinical evaluations, and a very promising matching 
was found. However, the proposed solution should be tested using more 
challenging cases in order to further evaluate and interpret critically the 
computed uptake indexes; mainly, to verify how they indicate properly the 
progression or regression of bone metastasis from 99mTc-MDP bone 
scintigraphy images. 
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