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Abstract Techniques of medical image processing and analysis play a crucial

role in many clinical scenarios, including in diagnosis and treatment planning.

However, immense quantities of data and high complexity of the algorithms often

used are computationally demanding. As a result, there now exists a wide range

of techniques of medical image processing and analysis that require the
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application of high-performance computing solutions in order to reduce the

required run-time. The main purpose of this review is to provide a comprehensive

reference source of techniques of medical image processing and analysis that

have been accelerated by high-performance computing solutions. With this in

mind, the articles available in the Scopus and Web of Science electronic

repositories were searched. Subsequently, the most relevant articles found were

individually analyzed in order to identify: a) the metrics used to evaluate

computing performance, b) the high-performance computing solution used, c) the

parallel design adopted, and d) the task of medical image processing and analysis

involved. Hence, the techniques of medical image processing and analysis found

were identified, reviewed and discussed, particularly in terms of computational

performance. Consequently, the techniques reviewed herein present the progress

made so far in reducing the computational run-time involved, and the difficulties

and challenges that remain to be overcome.

Keywords Medical Imaging · Image Segmentation · Image Registration · Image

Reconstruction

1 Introduction

Throughout the history of computer systems, the evolution of processors and

increases in computing speed have been closely related. Traditionally, the

integrated circuit industry has fitted ever more transistors into a single chip

thereby achieving high performance [45]. However, this approach is limited by

physical restrictions of silicon, mainly excessive energy consumption and

overheating of processors [90].
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In recent years, advances in this area have taken a different direction, leading

to modern processor architecture used for a) multi-core CPUs (which contain

two or more processing cores) and b) the General Purpose Computing on

Graphics Processing Units (GPGPU), which is defined in this review as

“many-core architecture”. Both many- and multi-core architectures exploit

parallelism features that offer performance gains and faster computing [90].

The demand for high-performance computing has generally been addressed

with costly computational systems. However, in view of the popularity of

Graphics Processing Units (GPUs) and the adoption of parallel programming

methods, a number of research areas can advance significantly without the need

for major investment in computational systems. Examples of these areas include:

scientific simulation [19], life sciences [91], statistical modeling [91], emerging

data-intensive applications [91], electronic design automation [91], ray tracing

and rendering [96], computer vision [23], signal processing [91, 23], and medical

image processing and analysis [15, 29, 88].

The area of medical image processing and analysis has contributed to

significant medical advances [81, 88, 23, 101, 83, 7, 50] by integrating systems

and techniques that support more efficient clinical diagnosis. These systems and

techniques are based on images acquired by different imaging modalities such as,

Endoscopy [52], X-Ray [88], Microscopy [68, 47], Computed Tomography

(CT) [57, 26], Optical Coherence Tomography (OCT) [67], Magnetic Resonance

(MR) [15, 2], Functional Magnetic Resonance (fMR) [97, 3], Magnetic

Resonance Elastography (MRE) [20], Positron Emission Tomography
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(PET) [17, 42, 43], Single Photon Emission Computed Tomography

(SPECT) [28], and 3D Ultrasound Computer Tomography (USCT) [7].

Medical imaging assists physicians in extracting information for the purposes

of diagnosing diseases, surgical intervention, treatment and follow-up of

diseases, as well as in designing better rehabilitation plans [37, 95, 97, 29]. Such

extraction of relevant clinical information is a complex task requiring advanced

computational systems able to process and obtain image-based features

accurately and consistently within the shortest possible run-time. As a result, a

new research area has emerged that combines computational techniques used for

medical image processing and analysis [81, 88, 23] and high-performance

computing solutions [101, 83, 7, 50]. These two components can be briefly

described as follows:

– Medical Image Processing and Analysis - Typically, the researchers of this

are attempt to find solutions that start by improving the quality of the input

images, and then apply operations on the enhanced images in order to identify

and extract meaningful clinical information from them [81, 88, 23]. In this

context, the term “medical image processing and analysis” is used throughout

the present review.

– High-Performance Computing - The main goal of this area is to optimize

computational methods to achieve greater robustness, effectiveness,

efficiency, and faster execution. To accomplish these objectives, parallel

computing techniques are usually exploited to use the maximum available

performance in the computational architecture adopted [101, 83, 7, 50].
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The number of researchers combining techniques of medical image

processing and analysis and of high-performance computing has increased

considerably in recent years; consequently, this article aims to present an updated

systematic literature review of this area. The scientific articles selected for this

review provide valuable information for researchers in the two fields identified;

specifically, the articles address methods, techniques, imaging modalities,

metrics of computational performance, and the most frequently used computing

architectures. The contributions made by each selected article are therefore, set

out and the remaining research gaps are identified; this will be of significant

value to those who intend to develop, evaluate and compare algorithms used in

medical image processing and analysis accelerated by high-performance

computing architectures.

The term “performance” is sometimes ambiguous; hence, in this article,

“performance” refers to the efficiency of computing systems when executing

algorithms, including the factors of throughput, latency, and availability. The

methodology employed to select, identify, and validate the articles considered is

presented in Section 2; the main findings extracted from the articles analyzed are

summarized in Section 2.1; the contributions found in the selected articles and

the gaps identified are presented and discussed in Section 3; finally, concluding

remarks are presented in Section 4.

2 Systematic Literature Review

This section describes the protocol used to locate, gather, and appraise the state

of the art under study. The first issue that was examined was the range of high-
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performance computing platforms and methods that have been used to speed up

techniques of medical image processing and analysis. In addition, the following

complementary questions were considered:

1. Which imaging modality was involved?

2. Which task of medical image processing and analysis was addressed?

3. Which human organ or tissue was analyzed?

4. What computational architecture was adopted and/or developed?

5. Which high-performance computing technique was adopted and/or

developed?

6. Is the approach adopted and/or developed able to achieve real-time?

The criteria defined for the selection of articles were as follows:

1. Domain

(a) Medical image processing and analysis; and

(b) High-performance computing.

2. Methods

(a) Techniques of medical image processing and analysis accelerated by high-

performance computing solutions.

3. Measures

(a) Techniques of medical image processing and analysis; and

(b) Performance in run-time.

After defining the selection criteria, the next step involved defining the

exclusion criteria, which were as follows:

1. Duplicated references; i.e., the same article retrieved from the different

electronic repositories searched;
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2. Less than four pages;

3. No description available on the technique of medical image processing and

analysis;

4. No information available on the metric used to assess computing performance;

5. None of the research questions under consideration (numbered 1 to 5) are

addressed.

Before initiating the article-gathering process, the language of the articles, the

research domains, and the electronic repositories to be considered were defined.

We decided to only review articles written in English, the dominant language used

in the scientific domains of computer science and engineering. The repositories

selected for searching were: Scopus 1 and Web of Science 2.

The systematic review was carried out from March 2016 to August 2016, and

updated in March 2017. Table 1 presents the search terms used when querying

each repository and the total number of articles retrieved.

1 http://www.scopus.com - Science Direct
2 http://apps.webofknowledge.com - Web of Science Core Collection

http://www.scopus.com
http://apps.webofknowledge.com
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Table 1 Total number of articles retrieved from each electronic repository.

Repositories Queries Performed No. of

Articles

Scopus

TITLE-ABS-KEY ( ( “medical image”

OR “medical imaging” ) AND ( “high

performance computing” OR “parallel

programming” OR “parallel computing" OR

“real-time processing") ) AND ( LIMIT-TO

( DOCTYPE , “cp” ) OR LIMIT-TO (

DOCTYPE , “ar” ) )

421

Web of

Science
Filtering using the same queries searched

above

2, 158

Total 2,579

The search of the Web of Science repository was defined in order to locate

the articles related to each of the following queries: a) “medical image” OR

“medical imaging”, b) “high performance computing” OR “parallel computing”

OR “parallel programming” OR “real-time processing”. These queries were

combined using the AND logical operator in order to mimic the equivalent

searches in the other repository. “image processing” was not used in the search

because it could generalize the results too much; instead, the purpose of using

“medical image” and “medical imaging” was to gather all scientific articles

related to techniques of medical image processing and analysis.

After removing the 467 duplicate references, each of the remaining 2, 112

articles were then filtered according to the selection criteria, as shown in Table 2.

The selection criteria were applied systematically to the title, keywords, and

abstract of the articles in the electronic repositories searched, and this resulted in
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594 articles. The content of each abstract was initially analyzed with the aim of

identifying evidence of the use of high-performance computing architectures in

order to support the acceleration of techniques of medical image processing and

analysis.

Table 2 Total articles retrieved, duplicated and remaining after applying each criteria.

Repositories Retrieved Duplicated Selection

Criteria

Exclusion

Criteria

Scopus 421 17 288 32

Web of Science 2, 158 450 306 55

Total 2,579 467 594 87

Additionally, each article was classified according to three priority levels:

– Prio-1: Articles that are very relevant and suitable for the review such that

there was evidence of the (previously defined) article-extraction criteria in the

title, abstract, and even keyword fields ;

– Prio-2: Articles that are less important but still suitable;

– Prio-3: Articles that may be relevant to other related research, but are not main

sources of knowledge for this review.

The classification priorities of the articles selected from each repository are

indicated in Table 3. The values shown in this table indicate the suitability of each

repository relative to each classification priority previously enumerated.
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Table 3 Relevance of each repository used to retrieve articles related to techniques of medical

image processing and analysis combined with high-performance computing solutions.

Repository Prio-1 Prio-2 Prio-3

Scopus 71.64% 17.41% 10.95%

Web of Science 17.82% 5.63% 76.55%

2.1 Review of Selected Articles

In the evaluation stage, the sections of each article presenting the applicable

methodology, results, and conclusions were analyzed, in order to identify

important information that answers the research questions (1 to 5) defined in

Section 2.

In this review, a total of 594 articles were initially selected; however, 507

articles were then removed in accordance with the exclusion criteria, and the 87

remaining articles were analyzed in depth. The exclusion criteria were defined in

such a way as to answer the aforementioned, main research questions. Hence, it

was critical to identify in each article: the metric(s) used to evaluate

computational performance; the high-performance computing architecture and

parallel design involved; and the object(s), i.e., tissue(s) or organ(s), addressed by

the technique(s) of medical image processing and analysis. Therefore, during the

in-depth analysis of each article, critical information was collected to answer

each specific research question.

Table 2.1 presents in descending chronological order the most relevant

information extracted from the 87 articles analyzed, including the description of

the main high-performance computing methods applied to the acceleration of the
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techniques of medical image processing and analysis. The Speedup column

presents the computational performance results achieved by the authors in

respect of the methods studied. Here, speedups is defined as the ratio of the

execution time of serial and parallel implementations when both are applied on

the same dataset and running on the same computer.

One conclusion drawn from the articles found is that, in recent years, and

especially in the last decade, there has been considerable research into the use

of techniques of image processing and analysis accelerated by high-performance

computing solutions.

The first step in medical imaging consists of acquiring the data using a suitable

imaging device and then reconstructing the related images. After that, a number

of techniques of image processing and analysis can be applied, such as image

reconstruction, image filtering, image segmentation and image registration.
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Research
Impact

Factor

Imaging

Modality(ies)
Image Task(s)

Object(s)

Analyzed

Parallel

Architecture(s)

Parallel Programming

Model
Speedup

Miller and Butler, 1993 2.12 CT, SPECT reconstruction brain
Massively Parallel

Processor (MPP)
SIMD 64x

Kerr and Bartlett, 1995 0.90 CT, SPECT reconstruction cardiac MPP SIMD 139x

Higgins and Swift, 1997 0.30 CT reconstruction cardiac MPP SIMD 5x

Formiconi et al., 1997 0.45 CT, SPECT reconstruction brain MPP MIMD 135x

Christensen, 1998 1.57 CT registration craniofacial MPP and Cluster SIMD and MIMD 20x

Daggett and Greenshields, 1998 7.68 MRI classification
bladder and

urethra
Cluster SPMD 6x

Warfield et al., 1998 5.10 CT, MRI registration brain Cluster MIMD 15x

Saiviroonporn et al., 1998 2.10 CT, MRI segmentation

bones, aorta,

kidneys, skin,

brain

MPP SIMD
10x*

3

Yip et al., 1999 0.61 MRI reconstruction skull Cluster MIMD 500x

Rohlfing and Maurer, 2003 17.28
MRI,

Microscopy
registration

brain and

breast
MPP MIMD 50x

Wachowiak and Peters, 2004, 2006
1.15,

3.72
MRI registration

brain and

heart
Cluster MIMD 5x

Tirado-Ramos et al., 2004 1.84 MRI and CT reconstruction beast Cluster MIMD 3x

Doyley et al., 2004 1.84 MRE reconstruction beast Cluster MIMD 3x

Salomon et al., 2005 1.66 MRI registration brain Cluster MIMD 10x

Eidheim et al., 2005 0.91 ultrasound segmentation liver GPU SIMT 34x*

Crane et al., 2006 0.90 MRI reconstruction brain Cluster MIMD 3x

Deng et al., 2006 2.90 CT reconstruction
shepp-Logan

phantom
Cluster MIMD 32x

Dandekar and Shekhar, 2007 4.6 CT, PET registration abdominal FPGA SIMD 30x

Yeh and Fu, 2007 1.5 fMRI classification brain Cluster MIMD and SPMD 2x

Kalmoun et al., 2007 2.7 CT reconstruction heart Cluster MIMD 28x

Kumar et al., 2008 2.22 Microscopy reconstruction breast Cluster MIMD 2x

Samant et al., 2008 12.77 4DCT registration lung GPU SIMT 56x

Sehellmann et al., 2008 2.77 PET reconstruction lung GPU SIMT 7.5x

continued on next page
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– continued from previous page

Research
Impact

Factor

Imaging

Modality(ies)
Image Task(s)

Object(s)

Analyzed

Parallel

Architecture(s)

Parallel Programming

Model
Speedup

Melvin et al., 2008 0.66 CT reconstruction
shepp-Logan

phantom
multi-core SIMD 30x

Kegel et al., Kegel et al., 2009,

2011

3.62,

1.14
PET reconstruction rats multi-core SPMD 3x

Rehman et al., 2009 5.62 MRI registration brain GPU SIMT 965x

Rohrer and Gong, 2009 0.37 CT, MRI registration abdominal CBEA SIMD and MIMD 13x*

Zhuge et al., Zhuge et al., 2009,

2011
2, 3.33 CT, MRI segmentation head GPU SIMT 18x*

Moyano-Avila et al., 2009 0 X-Ray reconstruction vessels MPP MIMD 15x

Chung et al., 2010 1.57 microscopy reconstruction viruses GPU SIMT 16x

Shackleford et al., 2010 14 3D CT registration lung GPU SIMT 15x*

Shams et al., Shams et al., 2010,

2010
11 CT, MRI, PET registration brain GPU SIMT 50x*

Gabriel et al., 2010 2.57 FNAC segmentation thyroid
Cluster and multi-

core
MIMD and SIMD 11x

Lapeer et al., 2010 2.57 CT, MRI registration head GPU SIMT 10x

Zhu and Cochoff, 2010 1.42 CT, PET registration lung multi-core SPMD 2-10x

D’Amore et al., 2011 1 MRI segmentation skin multi-core SIMD 6x

Meng et al., 2011 4.5 CT reconstruction lung cloud computing MIMD 10x

Schmid et al., 2011 2.66 MRI segmentation bones GPU SIMT 70x

Schellmann et al., 2011 2.33 PET reconstruction mouse GPU SIMT 2x

Gao et al., 2011 1.16 MRI segmentation brain GPU SIMT 1440x*

Lee et al., 2012 7.8 MRI registration brain GPU SIMT 129x

Adeshina et al., 2012 1.66 MRA reconstruction brain GPU SIMT 3x

Murphy et al., 2012 22.4 MRI reconstruction torso GPU and multi-core SIMT and SIMD 40x

Zinterhof, 2012 0 CT classification kidney GPU SIMT 120x

Shi et al., 2012 0.40 CT, MRI
segmentation and

reconstruction

head, breast,

vessels
GPU and multi-core SIMT and SIMD 40x*

Rodrigues and Bernardes, 2012 2 OCT filtering retinal GPU SIMT 18x*

Domanski et al., 2013 1.25 CT reconstruction brain GPU and multi-core SIMT and SIMD 9x

Treibig et al., 2013 5.75 CT, X-ray reconstruction rabbit multi-core SIMD 6x

Gallea et al., 2013 1.28 CT, MRI registration brain GPU SIMT 100x

continued on next page
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– continued from previous page

Research
Impact

Factor

Imaging

Modality(ies)
Image Task(s)

Object(s)

Analyzed

Parallel

Architecture(s)

Parallel Programming

Model
Speedup

Saran et al., 2014 1.33 MRI segmentation breast GPU and multi-core SIMT and SIMD 35x

El-Moursy et al., 2014 0.66 3D MRI segmentation brain Cluster MIMD 2.6x

Balla-Arabé and Gao, 2014 1.33 MRI segmentation breast GPU SIMT 6x*

Eklund et al., 2014 9 fMRI

registration,

segmentation,

filtering

brain GPU SIMT
195-

525x

Barros et al., 2014 0 CT segmentation brain GPU SIMT 36x

Alvarado et al., 2014 2.33 CT, PET, MRI segmentation brain GPU and multi-core SIMT and SIMD 8

Birk et al., 2014 7 USCT reconstruction breast GPU and multi-core MIMD 25x*

Blas et al., 2014 2 CT reconstruction rats GPU and multi-core SIMT and SIMD 2x

Mafi and Sirouspour, 2014 3.33 MRI reconstruction stomach GPU SIMT 28x*

Meng, 2014 1.33 CT registration thorax GPU SIMT 255x

Wei et al., 2014 0.33 MRI reconstruction eye optics GPU SIMT 100x

Fan and Xie, 2015 0 CT reconstruction
shepp-Logan

phantom
GPU SIMT 20x

Serrano et al., 2015 0.5 CT reconstruction human body GPU and Cluster SIMT and MIMD 22x

Gates et al., 2015 8 CT segmentation brain GPU SIMT 43.5x

Akgun et al., 2015 1.50 fMRI segmentation brain GPU and multi-core SIMT and SIMD 157x

Tan et al., 2015 0 microscopy reconstruction virus
FPGA, GPU and

multi-core

SIMD, SIMT and

MIMD
14x

Mahmoudi and Manneback, 2015 1.50 X-ray and MRI segmentation vertebra
multi-core and

multi-GPU
SIMD and MIMD 98x*

Johnsen et al., 2015 7.50 MRI registration breast GPU SIMT 5x

Hamdaoui et al., 2015 0 MRI reconstruction brain FPGA SIMD 37x

Cai et al., 2015 2.50 MRI registration lung GPU and multi-core SIMT and SIMD 4x

Smistad et al., 2015 0
CT, 3D

ultrasound

filtering and

segmentation

bone

structure,

retina blood

vessels

GPU and multi-core SIMD and SIMT 20x

continued on next page
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– continued from previous page

Research
Impact

Factor

Imaging

Modality(ies)
Image Task(s)

Object(s)

Analyzed

Parallel

Architecture(s)

Parallel Programming

Model
Speedup

Gulo et al., 2016 3 Ultrasound filtering stomach GPU SIMT 10x

Nguyena et al., 2016 4.50 MRI filtering brain
GPU, Cluster, and

multi-core

SIMT, MIMD and

SIMD
510x

Koestler et al., 2016 3.50 X-ray reconstruction head GPU SIMT 1.6x

Hu et al., 2016 1 CT reconstruction thorax GPU SIMT 202x

Du et al., 2016 0 CT, MRI registration brain, lung GPU SIMT 17x

Ellingwood et al., 2016 1 CT registration lung GPU SIMT 112x

Heras et al., 2016 2 MRI,CT segmentation brain GPU SIMT 6x

Chen et al., 2016 7 Ultrasound reconstruction forearm GPU SIMT 60x

Aitali et al., 2016 2 MRI segmentation skin GPU SIMT 52x

Riegler et al., 2016 4 endoscopy classification gastrointestinal multi-core and GPU SIMD and SIMT 10x

Pang et al., 2016 7 ultrasound segmentation breast GPU SIMT 16x

Wang et al., Sabne et al., 2016,

2017
4, 2 CT reconstruction lungs GPU SIMT 4x

Jaros et al., 2017 2 CT segmentation heart and liver GPU SIMT 44x

Table 4 Summary of the studies found related to techniques of medical image processing and

analysis supported by high-performance computing solutions. (The Impact Factor column was

calculated using the ratio of the number of Google citations of the article and the number of

years since its publication.)

2.1.1 Image Reconstruction

Image reconstruction is the process used to generate 2D/3D images of an object

from the data, i.e. signals, acquired by an imaging device. In the data acquisition

stage, the imaging device is responsible for converting the

anatomical/physiological information into digital signals. However, digital

signals are easily corrupted by noise introduced by the electronic/mechanical

components of the imaging device [87]. Dominant physical effects such as

resolution, attenuation and scatter, are spatially variant, and in the cases of
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attenuation and scatter, may also differ according to the type of object, i.e.

tissues, under study. In addition, a number of noise source displacements occur

when acquiring MRE images. Lengthy extended movements produce common

ambiguity errors, which, for example, result in weak estimates in regions with

low signal noise rate. Susceptible effects generate inconsistencies during the

estimation stage, and result in erroneous estimate displacements. In general, all

the image reconstruction approaches demand high computational costs, and

require large memory capacity; for example, in MRI, SPECT and CT cases,

where large datasets are used to reconstruct complex 3D images.

The article of Miller and Butler [57] considers the implementation of the

Maximum A Posteriori (MAP) and Maximum Likelihood (ML) methods in a

system that creates a complete 3D reconstruction from CT images and is

accelerated by massively parallel processors. The iterative

Expectation-Maximization (EM) algorithm, which is applied in order to generate

ML and MAP estimates for SPECT image acquisitions, is considered highly

complex in terms of computation [57]. Their parallel system was implemented on

a massively parallel computer (DECmpp-SX 128x128 processor) and designed

according to the Single Instruction, Multiple Data Stream (SIMD) parallel

programming model. Although the implementation did not indicate a linear

scalability, the speedup achieved was 64x, relative to an optimal programmed

implementation to be executed in a Reduced Instruction Set Computing (RISC)

architecture (64x64 processor). Formiconi et al. [28] also presented a parallel

implementation of the EM algorithm; however, their approach was combined

with ML estimates and applied in order to reconstruct images from SPECT data.
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The authors designed their implementation on the basis of a Multiple Instruction,

Multiple Data Stream (MIMD) parallel programming model, and used a World

Wide Web (WWW) interface. A massively parallel computer, Cray T3D, was

used to calculate their computational solution remotely.

Massively parallel computers were adopted by Kerr and Bartlett [44] as

described in another article. The authors examined the simulation and rapid

training of a very large Artificial Neural Network that reconstructs and

compresses SPECT images. In this study, when comparing the performances

obtained by CPU- and Parallel-based implementations, a speedup of 139x was

achieved. The authors designed the suggested algorithm on the basis of the SIMD

model.

Another research study that developed a parallel computer architecture was

presented in the Higgins and Swift [37]’s article. These authors defined a

“meta-computer” as a combination of communication devices and a

heterogeneous processing architecture. Their goal was implement a new parallel

architecture using the parallel computer MasPar in order to manage multiple

workstation interactions and process 3D medical images as fast as possible. The

parallel architecture used in the experiments included typical tasks of medical

image processing and analysis: image pre-processing, morphological and

topological image operations, image segmentation, image manipulation, image

measurement and the input and output of images. The approach of the authors

resulted in a performance 5x faster than the equivalent algorithm implemented

using a sequential fashion programming model.
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Doyley et al. [20] proposed in their article a parallel approach to obtain partial

volume reconstructions from 3D high-resolution data. The authors combined the

Finite Element Method (FEM) and the Newton-Raphson iterative scheme in this

approach, which was implemented using Message Passing Interface (MPI) and

executed on a PC-cluster. In the experiments, the authors adopted an optimized

sequential approach in contrast to a parallel-based one. The parallel version

improved the in/out storage disk operations and achieved a linear speedup.

Kumar et al. [47] developed a middleware system based on a PC-cluster

architecture, the purpose of which was to support the execution of a set of

techniques of image processing and analysis. These techniques were divided into

two main stages: preprocessing and analysis. These tasks resulted in

preprocessed data that could be queried and analyzed using the techniques of

image analysis. The authors combined data and task parallelism models in order

to achieve better scalability; moreover, they implemented the tasks of image

processing and analysis by changing the number of processors in the PC-cluster;

in the experiments performed, a 2x speedup was obtained with the best cluster

configuration found.

In the approach of Kegel et al. [42, 43], the Threading Building Blocks

(TBB) library and the OpenMP application programming interface were adopted

and compared in order to evaluate programming effort, programming style and

abstraction, and runtime performance. The authors presented several

implementations for systems that support shared- and distributed-memory of the

List Mode Ordered Subset Expectation Maximization (LM OSEM) algorithm,

resulting in reducing of the processing time spent on reconstruction of PET
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images. LS OSEM is a computationally intensive block-iterative algorithm for

3D image reconstruction. The authors concluded that the TBB library is much

easier to implement than OpenMP, especially when starting a new

implementation to exploit parallelism; however, they did not analyze the exact

influence of the grain, the block size or the scheduling strategy for different

amounts of input data on the program performance.

The approach presented by Murphy et al. [59] consists of an optimized

iterative method, self-consistent parallel imaging (SPIRiT), combined with

compressed sensing for image reconstruction. This approach allows

auto-calibrating parallel imaging4 reconstructions with clinically-feasible

run-times. The purpose was to achieve real-time performance via a hybrid

implementation using both multi-GPU and multi-core CPUs as parallel execution

platforms. Two data parallelism models, SIMD and SIMT, were exploited and

optimized through Streaming SIMD Extensions (SSE) and Compute Unified

Device Architecture (CUDA) instructions, respectively. Parallel GPU and CPU

implementation achieved the speedup of 40x when comparing with the runtime

of a sequential C++ implementation using high-performance libraries and

compiled with full compiler optimization.

Domanski et al. [19] developed a Cluster Web Services (CWS) framework

capable of taking advantage of massively parallel technologies composed of a

PC-cluster 5 and GPUs 6. This framework facilitated communication between the

client and server through the Internet in order to balance and distribute the

4 Parallel imaging is a well-established acceleration technique based on the spatial sensitivity
of array receivers [59].

5 32 Intel Xeon CPU cores
6 6 NVIDIA cards with Tesla GPU
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computational load. Although the framework was able to solve a wide range of

scientific problems, its main application was the full reconstruction of CT

images. The parallel programming languages adopted were Open Computing

Language (OpenCL) and MPI, for the GPU architecture and the PC-cluster,

respectively.

Treibig et al. [88] presented an approach to the achievement of optimal

performance according to the processor specifications and different optimization

levels. The authors presented a number of low-level optimizations and algorithms

for a back-projection reconstruction strategy from CT data, running on

multi-core processors. The implementation was based on SSE and Advanced

Vector Extensions (AVX) instructions. The result of this approach was a speedup

of up to 6x; however, the authors considered that further studied were needed a)

to improve the implementation performance using distributed memory, b) to

optimize and analyze the AVX kernel update, and also c) to include the new

AVX2 operations collector.

Blas et al. [9] described the performance optimization process of a modular

application based on a GPU architecture using the Feldkamp, Davis and Kress

(FDK) reconstruction algorithm. However, even though the authors performed

most parallelization procedures using the SIMT model, the projection

decomposition step was performed using the SIMD model and the Open

Multi-Processing (OpenMP) language. The experiments were conducted with

different multi-GPU configurations and code optimization levels, and a speedup

of up to 2x was achieved relative to the implementations discussed in their own

literature review. Meng et al. [54] accelerated the FDK algorithm using
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MapReduce in a cloud computing environment. Map functions were used to filter

and back-project subsets of projections, and Reduce function to aggregate those

partial back-projections into the whole volume. The findings of this approach

was the reconstruction time achieved, whose correlation with the number of

nodes employed was roughly linear. Experiments showed a speedup of 10x using

200 nodes for all cases, when compared to the same code executed on a single

machine.

Birk et al. [7, 8] adopted multi-GPU and multi-core as a parallel architecture in

order to accelerate 3D reconstructions based on ray casting from ultrasound data.

Their approach was extended to identify the ideal number of GPUs required to

reconstruct high-resolution image volumes, especially when the processing load

had substantially greater DRAM capacity than the CPU system. However, the

approach was not able to display in real-time the high-resolution images at the pre-

visualization stage. The experiments took into consideration the implementation

of the optimized method for both architectures: multi-core and multi-GPU. The

authors emphasized that they combined SIMT and SIMD parallel programming

models.

Wei et al. [96] presented a research that used a ray tracing technique to

simulate retinal image formations. This approach simulated realistic light

refraction through ocular structures in 3D using polygonal meshes and GPU

parallel computing.

Chen et al. [11] described a novel imaging system for real clinical

applications. The system could provide incremental volume reconstructions and

volume rendering; it could also generate high-quality 3D ultrasound strain
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images in near real-time due to a GPU-based implementation. The approach

achieved a 60x speedup compared to a CPU-based implementation. However, it

could not provide real-time imaging because the time spent on complex data

processing and data transfer was excessive.

2.1.2 Image Filtering

Rodrigues and Bernardes [67] improved the process of speckle noise reduction

for visual analysis of medical images like optical coherence tomography. The

authors proposed preserving edges and other relevant features through filter

expansion from 3D OCT images of the posterior segment of the human eye for

the adaptive complex-diffusion filter. Their implementation was divided into an

environment setup stage and four other stages that were called iteratively. CUDA

kernels were considered in parallel convolutions, parallel reductions, and

element-wise arithmetic operations over the inputs.

Nguyena et al. [61] presented a hybrid parallelization scheme with the aim of

accelerating the NL-Means filter algorithm. In their approach, the authors divided

the input 3D MRI volume into sub-volumes in order to reduce the search region

at the boundary zone. Then the image was divided into superimposed images and

the superposition of the search region radius. In the implementation stage, the

following parallel technologies were used: MPI, multi-threading on multi-core

machines and GPUs. Communication between each cluster node was enabled by

using MPI. The main contributions of the authors are an approach that requires

different modes of implementation and the possibility of using the MPI technology

alone or in conjunction with POSIX Threads (Pthreads) and GPUs. This latter
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approach reduced the computational time by a factor of approximately 510 when

applied to 3D medical data. On the other hand, high memory usage emerged as

a drawback of this approach, with up to three times more memory required than

with the original method.

Gulo et al. [34] described in their study how to use the high-performance

computing CUDA-based architecture as a computational infrastructure to

accelerate an algorithm for noise image removal. The parallel GPU-based

implementation developed was compared against the corresponding sequential

CPU-based implementation in several experiments. The parallelization of the

image smoothing method based on a variational model using CUDA architecture

reduced the runtime by up to 10 times in comparison with the CPU-based

implementation.

2.1.3 Image Segmentation

Image segmentation is one of the most important operations of the image

processing and analysis area, being responsible for identifying and delineating

objects of interest in input images. In general, tasks of 3D visualization,

interpolation, filtering, classification, and even registration depend heavily on the

image segmentation results in order to achieve optimum

performances [82, 101, 102]. There are several approaches of image

segmentation based on, for example, thresholding [5, 71], clustering [29] and

deformable models [72].

Daggett and Greenshields [15] designed a parallel algorithm using a

PC-cluster to segment MRI images by means of automatic image classification in
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order to reduce the inter-process communication overhead. This parallel

algorithm was based on the virtual shared memory technique, which enables

processes to communicate by directly sharing data as though it existed in a global

shared memory space. The main idea was to segment anatomical images in order

to obtain quantitative anatomical features and geometrically-shaped models of

the objects under study.

In the article of Yeh and Fu [97], an approach called Parallel Adaptive

Simulated Annealing was developed to assist computer-aided measurements for

identifying the associated activation regions of the brain through response

waveform of functional MR images. This approach was based on a

coarse-grained model performed on a cluster of four PCs, it was designed using

the MPI parallel programming language and the Single Program, Multiple Data

Stream (SPMD) data decomposition model. The purpose of this parallelism was

to reduce the computational time required by the minimization of the weighted

sum of the squared Euclidean distances between each input vector and the

prototypes. Additionally, it was able to automatically make clinical diagnoses of

schizophrenia and multiple sclerosis.

Gabriel et al. [29] suggested Gabor filtering for texture-based image

segmentation of thyroid cells. This approach was based on distributed memory

and exploited a PC-cluster and the current multi-core CPU architecture. The

authors combined several metrics to evaluate the performance of their approach;

they then used OpenMP and MPI to compare the speedup, communication

overhead, the different memory systems, and the different number of threads

used. The multi-core architecture achieved the highest speedups, which were up
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to 11x faster compared to the PC-cluster. Although the authors presumed that

their computational system would be able to make medical diagnoses, their

implementation did not have a module for image analysis, or even a tool for the

addition of an image set combined with the related diagnosis result.

Zhuge et al. [101, 102] developed a semi-automatic segmentation method

based on the Fuzzy Connected technique, which was implemented using a GPU

architecture. Moreover, they designed a robust and efficient parallel version of

Dijkstra’s algorithm in a SIMD model. This new approach took advantage of the

CUDA architecture, especially by supporting atomic read/write operations in the

GPU global memory.

Shi et al. [83] proposed an automatic image segmentation method for medical

images based on a Pulse Coupling Neural Network combined with the 2D Tsallis

entropy. Stronger adaptability, high image segmentation precision, and adequate

image reconstruction from CT and MR data were the main advantages of this

approach. The achievement with this GPU-based approach was the rendering of

3D volume images in real-time using ray tracing implemented using a SIMT

model.

In the approach by Saran et al. [74], the rigid registration of magnetic

resonance venography (MRV) images and magnetic resonance angiography

(MRA) images based in mutual information is performed to increase the

accuracy of vessels segmentation in MRI images. The unfavorable effects of

Rician noise and RF inhomogeneity in the MRI, MRA, and MRV images during

the vessels segmentation are removed by applying a subtraction schemam where
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the cost function and the choice of the minimization method are executed

simultaneously using multi-core and GPU.

Balla-Arabé and Gao [5] presented a new level set method (LSM) for image

segmentation. The authors designed a selective entropy-based energy functional

method, robust against noise, and new selective entropy external forces for the

Lattice Boltzmann method (LBM). The LSM and LBM were combined and

implemented on GPUs. However, LBM requires significant memory and the

approach did not achieve volume image segmentation in real-time. Hence, the

authors identified a need for future studies to extend their approach to a GPU

cluster environment.

Aitali et al. [2] exploited the performance of GPU to accelerate a Bias Field

Correction Fuzzy C-Means algorithm used for segmenting MR images. This

approach was applied to correct the in-homogeneity intensity and segment the

input images simultaneously. However, the expensive computation required by

the algorithm demanded optimization strategies in order to reduce the run-time;

hence, the authors adopted the SIMD architecture to model their approach. The

GPU implementation achieved about 52x speedup relative to the CPU

implementation, and consisted of a novel SIMD architecture for bias field

estimation and image segmentation.

Heras et al. [36] used GPU features to accelerate the Fast Two-Cycle method,

which is a level set-based segmentation method. In their approach, they aimed to

divide the active domain into fixed-size tiles and therefore, intensively use shared

memory space, resulting in a low latency close to that of the register space.

Although the authors did not use real images, they measured the performance of
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their approach using a set of realistic MRI data volumes produced by an MRI

simulator. The volumes produced by this simulator are available to be

downloaded at the BrainWeb Simulated Brain Database7 and they have been

broadly used in other published articles. In the experiments, the GPU approach

achieved about 6x speedup relative to the CPU implementation.

2.1.4 Image Registration

Image registration is a computational task that establishes a common geometric

reference frame across two or more image datasets; it is required, for example, in

the comparison or fusion of image data obtained at different times or using

different imaging modalities or devices [68, 65]. Intensity-based registration

techniques are accurate, efficient, and robust; in addition, they depend on the

interpolation scheme, search space, a similarity metric and an optimization

approach [92]. Consequently, these techniques are based on geometric

transformations [12], optimization algorithms [92] and measures of

similarity [17, 26].

The Mutual Information-based (MI-based) deformable registration algorithm

was considered promising by Dandekar and Shekhar [17], mainly because it was

able to correct the misalignment of tissue in CT slice images. The authors

demonstrated a registration accuracy comparable to one achieved by a group of

clinical experts [17, 95]. Computationally, MI-based registration is extremely

intensive, and so requires several thousand of iterations, with the precise number

depending on the degree of the initial misalignment, the transformation

complexity, the image content, and the optimization algorithm used to maximize

7 BrainWeb Simulated Brain Database - http://www.bic.mni.mcgill.ca/brainweb

http://www.bic.mni.mcgill.ca/brainweb
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the MI function. In order to reduce the run-time on the order of minutes or

seconds, and thereby become suitable for clinical routine use, MI-based

algorithms have been accelerated in parallel architectures such as

clusters [12, 30], GPU [81, 55, 30], multi-core Cell Broadband Engine

Architecture (CBEA) [69], and Field-Programmable Gate Array (FPGA) [17].

Christensen [12] developed a 3D linear elastic transformation model using an

SGI Challenge parallel computer in order to generate global non-rigid

deformations of template image volumes. This approach was optimized to

maximize the ratio of computation to the parallelization overhead. In this

research, parallel overhead consisted of the run-times for creating processes,

starting and ending parallel regions, and running extra code required for

parallelization. The authors performed experiments using implementations

optimized for MasPar (SIMD) and Challenge (Multiple Instruction, Multiple

Data (MIMD)) parallel architectures. The MIMD parallel programming model

achieved speeds of up to 20x greater than the SIMD model.

Warfield et al. [95] presented a new registration algorithm that identifies

features in image scans which need to be aligned and find the transform that

minimizes the mismatch of corresponding tissue labels. This approach was

implemented on a parallel platform in order to conform to a clinically acceptable

timeframe. The authors adopted a multi-core PC-cluster and the MPI language as

the high-performance computational infrastructure to perform the experiments;

their approach was designed based on the MIMD-based parallel programming

model.
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Rohlfing and Maurer [68] solved problems related to the high computational

efforts that are commonly incurred when non-rigid image registration techniques

are used. The authors took advantage of shared-memory multiprocessor

computer architectures as well as data and task partition parallel programming

models. Non-rigid image registration techniques demand lengthy execution times

because of the input images are usually large and because the adopted

transformation model adopted requires substantially more time to compute and

evaluate the similarity measure used. The experiments were performed on an SGI

Origin 3800 massively parallel computer, and all the results were compared using

different degrees of parallelism (2, 16, 32, and 48 threads); the performance

achieved showed a reduced linear execution time.

Salomon et al. [72] presented a parallel implementation of a deformable

image registration approach based on the multi-resolution technique. In this

study, the authors designed their implementation by applying the MIMD parallel

programming model and the OpenMP parallel programming language. However,

the SIMD parallel programming model can be considered most suitable when a

large number of processors are used. This parallel approach achieved a speedup

of up to 10x when applied to the registration of 3D MR images.

Wachowiak and Peters [92] developed two methods - DIviding RECTangles

(DIRECT) and Multi-Directional Search (MDS) - that were used to optimize a

similarity metric, which is an essential component of intensity-based medical

image registration algorithms. The DIRECT method was employed as a global

technique for linearly bounded problems, and was followed by local refinements

attained with the MDS method. This approach was implemented and optimized
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for execution in shared memory systems. With the use of 8 or 12 CPUs on a

PC-cluster, the results demonstrated efficiency gains, yielding a speedup of up to

5x.

Rehman et al. [65] employed GPU architecture to achieve high performance

using the multi-resolution approach that is typically applied in non-rigid 3D

image registration. In this article, the authors developed a parallel approach of

non-rigid registration by regarding it as an Optimal Mass Transport problem. The

experiments showed a speedup improvement in the parallel architecture of up to

965x relative to the CPU-based implementation.

Rohrer and Gong [69] and Shams et al. [81] enabled different

high-performance computing architectures to achieve real-time image

registration. Rohrer and Gong [69] combined mutual information and

multi-resolution techniques, and implemented them on a heterogeneous

multi-core architecture called CBEA. The implementation of this approach on a

GPU architecture Shams et al. [81, 80] made an innovative contribution to the

computing of MI by computing joint histograms. On the basis of this approach,

the registration of 3D CT, PET and MR images was achieved in real-time.

Assuming relatively small non-linear displacements and deformations in the

registration of CT and MRI data related to the head, Lapeer et al. [48] presented a

point-based registration method. This new method was developed in order to

speed up a non-linear multi-modal registration algorithm on a GPU architecture.

The approach integrated the Radial Basis Function (RBF) as a smooth function

and sought to mimic the interacting deformation of biological tissues. The
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performance tests demonstrated that the GPU-based implementation yielded a

run-time 10x faster than that of the CPU-based implementation.

Zhu and Cochoff [99] demonstrated how to use parallel programming

patterns aiming to obtain better performance in applications relating to image

visualization, registration, and fusion. The parallel programming pattern used

depends on the architecture adopted. Thus, it can involve data parallelism, task

parallelism, coordination based on events, data sharing, asynchronous calls, and

fork/join. Using multi-core and Symmetric Multiprocessor (SMP) architectures,

the speed was up to 10x faster relative to a CPU architecture. In addition, the

parallel implementation confirmed the presence of the important features of

portability and flexibility.

Mafi and Sirouspour [50] developed a GPU-based computational platform for

real-time analysis of soft object deformation. This GPU-based computing scheme

solved a large system of linear equations, and updates the non-linear FEM matrices

in real-time. However, this approach can be extended to even further optimize all

computations related to single- and double-precision operations. In addition, it

can enable multiple GPU-based computing, deformation analysis with multiple

contact points, and auto-adaptive mesh refinement in order to improve analysis

accuracy.

Ellingwood et al. [26] presented a novel computation- and memory-efficient

Diffeomorphic Multi-Level B-Spline Transform Composite method on GPU for

the performance of nonrigid mass-preserving registration of CT volumetric

images. The authors adopted the Sum of Squared Tissue Volume Difference

(SSTVD) as the similarity criterion to preserve the lung tissue mass; hence,
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SSTVD was used for computing the tissue volume. A cubic B-Spline-based

Free-Form Deformation (FFD) transformation model was employed for

capturing the nonrigid deformation of objects such as human lungs. The

experiments used lung CT images, which indicated a speedup of 112 times

relative to the single-threaded CPU version, and of 11 times compared to the

12-threaded version when considering the average time per iteration using the

GPU implementation. The authors compared the following types of algorithms:

single-threaded CPU-based, multi-threaded GPU-based, and GPU-based.

3 Discussion

The deployment of high-performance computing techniques has greatly

contributed to reducing the processing time of techniques used for medical image

processing and analysis, making them suitable for routine clinical use. Briefly,

these techniques were used in order to exploit all the computational power

commonly available in modern high-computing architectures such as multi-core,

GPU and PC-cluster.

Following the recent advances in

GPU [65, 101, 102, 81, 80, 48, 67, 50, 55, 96],

multi-core [29, 99, 59, 83, 19, 88, 7, 8, 9, 3, 26] and FPGA [17, 85, 56, 89, 62]

architectures, researchers have confirmed a trend towards lower computational

costs without any consequential reduction in terms of the accuracy of the

techniques of image processing and analysis. Hence, Murphy et al. [59], Shi

et al. [83], Domanski et al. [19], Saran et al. [74], Alvarado et al. [4], Birk et al.

[7, 8], Serrano et al. [78] designed their models using parallel programming in
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GPU and multi-core; on the other hand, Blas et al. [9], Tan et al.

[85], Mahmoudi and Manneback [51], Cai et al. [10], Nguyen et al. [60], Riegler

et al. [66] have demonstrated an approach which is more focused on

load-balancing techniques, multi-GPU, GPU, and multi-core architectures.

Therefore, there is an increasing number of methodologies that achieve high

performance levels and that combine parallel programming methods and

high-performance computing architectures; furthermore, the run-time and energy

consumption required by these methodologies are decreasing considerably.

The articles evaluated in this review provide an overview on techniques of

medical image processing and analysis accelerated by high-performance

computing solutions. Figure 1 shows that the majority of the selected articles

were published in the last decade, and that the last five years have seen

remarkable progress thanks to multi-core processors and GPU architecture [23].

It is important to highlight that this review covers papers published up to March

2017.

Fig. 1 Distribution of selected articles related to techniques of medical image processing and
analysis accelerated by high-performance computing solutions published in recent years.
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Although the articles listed in Table 2.1 report on highly positive speedup

findings, it is important to analyze these results carefully. The majority of the

selected articles indicated speedup as the main metric used to evaluate the

performance gain. Almost half of the articles compared sequential and parallel

implementations, as can be seen in Rohlfing and Maurer [68], Dandekar and

Shekhar [17], Yeh and Fu [97], Rehman et al. [65], Rohrer and Gong [69], Zhuge

et al. [100], Shams et al. [81, 80], Gabriel et al. [29], Lapeer et al. [48], Zhu and

Cochoff [99], Murphy et al. [59], Shi et al. [83], Birk et al. [7, 8], Blas et al.

[9], Mafi and Sirouspour [50], Meng [55]. One of the greatest challenges in this

sort of comparison is to describe how well sequential implementation was

optimized, and more particularly: 1) whether the SSE instruction set was used; 2)

whether the code was compiled in 32 or 64 bits; and 3) whether 32- or 64-bit

floating point operations were used. This sort of optimization is critical when

comparing implementations that use multi-core, GPU or cluster architectures.

Usually, it is necessary to rewrite code in order to improve application

performance and so exploit the benefit of parallelization. As a result, it is good

practice to divide an application into smaller tasks that can be executed in

parallel [33]. However, during task deconstruction, the communication process

and the general coordination of processing jobs among the processors used need

to be taken into account.

When adopting a parallel programming design, two main features must be

taken into account: 1) the parallel architecture and 2) the type of processor

communication [63]. The high computational costs of data access and task

performance are dependent on the computational resources available to the
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computing system. Hence, parallel design should make use of data

decomposition and allocate available memory efficiently.

Most of the analyzed articles focused on the parallelizing of techniques of

medical image reconstruction and registration. PC-clusters are the parallel

infrastructure most often adopted by researchers [15, 95, 71, 20, 72, 97, 47],

FPGA [17, 85, 56, 89, 62], in addition to the most recent GPU-based

technologies [65, 101, 102, 81, 80, 48, 5, 50, 55, 96] and

multi-core [29, 99, 59, 83, 19, 88, 7, 8, 9, 3, 26] architectures. Moreover, it is

clear that the research topic discussed in this review is recent and promising, as

confirmed by the remarkable increase in the number of related scientific articles

published in the last decade. In summary, the reviewed articles demonstrated a

reduction in the run-time, including in real-time, which is ideal for routine

medical applications. However, just a few of the selected articles focused on

speeding up techniques of medical image segmentation, which suggests a

potential topic for further research.

This article presents a concise and up-to-date review of techniques of medical

image processing and analysis that have been implemented based on

high-performance computing solutions. As a result, related researchers can

identify: a) the GPUs as computing systems, b) the SIMD as the main parallel

programming model, that have been most widely used to deal with the typical

demands of techniques of medical image processing and analysis. The most used

computing systems is presented in Figure 2. In particular, this review also reveals

that data-parallel computations with high arithmetic intensity is well-suited to

SIMD parallelization then it is well-suited to computation on GPUs. This is
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because the execution model of GPUs is based on SIMD parallel programming

model, which allows multiple processing elements to perform the same operation

on multiple data, concurrently.

The greatest programming efforts found in the selected articles are: a) the

learning curve required for programming parallel implementations, b) obtaining

a complete understanding of the advanced concepts related to memory hierarchy,

c) and the design of the shortest-possible, optimal data paths.

Usually, modifying the design of a sequential algorithm in order to make it

parallel requires changing the programming model, the programming language,

and the memory access strategy. Successful implementation of these changes will

also achieve maximum performance and a higher optimization level due to lower

throughput across different memory types.

Fig. 2 Main parallel programming models applied to accelerate tasks of medical image
processing and analysis.
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4 Conclusion

In this article, the main research articles relating to the combination of techniques

of medical image processing and analysis with different high-performance

computing solutions have been reviewed. The selected articles describe the use of

high-performance computing systems, including multi-core, GPU, FPGA and

PC-cluster, and their capacity to support tasks of medical image processing and

analysis.

This article reviewed a set of articles related to complex techniques of

medical image processing and analysis, and experiments performed using

high-performance computing systems. By combining parallel computer solutions

with algorithms of medical image processing and analysis, the scientific

community is able to make significant advances in the field of medicine,

especially by reducing the required run-time; this in turn enables solutions to be

implemented in routine clinical scenarios. Moreover, this article will be useful in

developing new research that evaluates and compares different algorithms of

medical image processing and analysis supported by high-performance

computing solutions.

GPUs are considered to be extremely fast processors, especially when used in

computational systems like multi-GPU. On the other hand, the use of multiple

GPUs has presented additional challenges; for instance, regarding the efficient

management of reading and/or writing data on the data store system,

time-consuming data transfers between the CPU and GPU, and load-balancing.

The main issue in shared memory systems is that data must be protected against

simultaneous access so that errors and data inconsistency can be avoided;
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additionally, the number of parallel tasks must be at least the same number of

processing units (cores), and each task must have enough memory for its

computing requirements.

5 Acknowledgments

The first author would like to thank the Universidade do Estado de Mato Grosso

(UNEMAT), in Brazil, and the National Scientific and Technological

Development Council (“Conselho Nacional de Desenvolvimento Científico e

Tecnológico” - CNPq), process 234306/2014-9, grant with reference

#2010/15691-0, for the support given.

The authors gratefully acknowledge the funding received from Project

NORTE-01-0145-FEDER-000022 - SciTech - Science and Technology for

Competitive and Sustainable Industries, co-financed by “Programa Operacional

Regional do Norte” (NORTE2020), through “Fundo Europeu de

Desenvolvimento Regional” (FEDER).

References

1. Adeshina AM, Hashim R, Khalid NEA, Abidin SZZ (2012) Locating

abnormalities in brain blood vessels using parallel computing architecture.

Interdisciplinary Sciences-Computational Life Sciences 4(3):161–172, DOI

10.1007/s12539-012-0132-y

2. Aitali N, Cherradi B, Abbassi AE, Bouattane O, Youssfi M (2016) Parallel

implementation of bias field correction fuzzy c-means algorithm for image



39

segmentation. International Journal of Advanced Computer Science and

Applications 7(3):375–383

3. Akgun D, Sakoglu U, Esquivel J, Adinoff B, Mete M (2015) GPU

accelerated dynamic functional connectivity analysis for functional MRI

data. Computerized Medical Imaging and Graphics 43:53 – 63, DOI http:

//dx.doi.org/10.1016/j.compmedimag.2015.02.009

4. Alvarado R, Tapia JJ, Rolon JC (2014) Medical image segmentation with

deformable models on graphics processing units. Journal of Supercomputing

68(1):339–364, DOI 10.1007/s11227-013-1042-4

5. Balla-Arabé S, Gao X (2014) Geometric active curve for selective entropy

optimization. Neurocomputing 139:65–76, DOI http://dx.doi.org/10.1016/j.

neucom.2013.09.058

6. Barros R, Van Geldermalsen S, Boers A, Belloum A, Marquering H,

Olabarriaga S (2014) Heterogeneous platform programming for high

performance medical imaging processing. Lecture Notes in Computer

Science 8374 LNCS:301–310, DOI 10.1007/978-3-642-54420-0_30

7. Birk M, Dapp R, Ruiter N, Becker J (2014) GPU-based iterative

transmission reconstruction in 3D ultrasound computer tomography. Journal

of Parallel and Distributed Computing 74(1):1730–1743, DOI http://dx.doi.

org/10.1016/j.jpdc.2013.09.007

8. Birk M, Zapf M, Balzer M, Ruiter N, Becker J (2014) A comprehensive

comparison of GPU- and FPGA-based acceleration of reflection image

reconstruction for 3D ultrasound computer tomography. Journal of Real-

Time Image Processing 9(1, SI):159–170, DOI 10.1007/s11554-012-0267-4



40

9. Blas JG, Abella M, Isaila F, Carretero J, Desco M (2014) Surfing the

optimization space of a multiple-GPU parallel implementation of a X-ray

tomography reconstruction algorithm. Journal of Systems and Software

95:166–175, DOI http://dx.doi.org/10.1016/j.jss.2014.03.083

10. Cai Y, Guo X, Zhong Z, Mao W (2015) Dynamic meshing for deformable

image registration. Computer-Aided Design 58(SI):141–150, DOI 10.1016/

j.cad.2014.08.009

11. Chen Z, Chen Y, Huang Q (2016) Development of a wireless and near

real-time 3D ultrasound strain imaging system. IEEE Transactions on

Biomedical Circuits and Systems 10(2):394–403, DOI 10.1109/TBCAS.

2015.2420117

12. Christensen GE (1998) MIMD vs. SIMD parallel processing: A case study

in 3D medical image registration. Parallel Computing 24:1369–1383, DOI

http://dx.doi.org/10.1016/S0167-8191(98)00062-3

13. Chung J, Sternberg P, Yang C (2010) High-performance three-dimensional

image reconstruction for molecular structure determination. International

Journal of High Performance Computing Applications 24(2):117–135, DOI

10.1177/1094342009106293

14. Crane J, Crawford F, Nelson S (2006) Grid enabled magnetic resonance

scanners for near real-time medical image processing. Journal of Parallel and

Distributed Computing 66(12):1524–1533, DOI 10.1016/j.jpdc.2006.03.009

15. Daggett T, Greenshields I (1998) A cluster computer system for the

analysis and classification of massively large biomedical image data.

Computers in Biology and Medicine 28(1):47–60, DOI http://dx.doi.org/10.



41

1016/S0010-4825(97)00032-2

16. D’Amore L, Casaburi D, Marcellino L, Murli A (2011) Numerical solution

of diffusion models in biomedical imaging on multicore processors.

International Journal of BioMedical Imaging 2011, DOI 10.1155/2011/

680765

17. Dandekar O, Shekhar R (2007) FPGA-accelerated deformable image

registration for improved target-delineation during CT-guided interventions.

IEEE Transactions on Biomedical Circuits and Systems 1(2):116–127, DOI

10.1109/TBCAS.2007.909023

18. Deng J, Yu H, Ni J, He T, Zhao S, Wang L, Wang G (2006) A

parallel implementation of the Katsevich algorithm for 3-D CT image

reconstruction. Journal of Supercomputing 38(1):35–47, DOI 10.1007/

s11227-006-6675-0

19. Domanski L, Bednarz T, Gureyev T, Murray L, Huang BE, Nesterets Y,

Thompson D, Jones E, Cavanagh C, Wang D, Vallotton P, Sun C, Khassapov

A, Stevenson A, Mayo S, Morell M, George AW, Taylor JA (2013)

Applications of heterogeneous computing in computational and simulation

science. International Journal of Computational Science and Engineering

8(3):240–252

20. Doyley M, Van Houten E, Weaver J, Poplack S, Duncan L, Kennedy

F, Paulsen K (2004) Shear modulus estimation using parallelized

partial volumetric reconstruction. IEEE Transactions on Medical Imaging

23(11):1404–1416, DOI 10.1109/TMI.2004.834624



42

21. Du X, Dang J, Wang Y, Wang S, Lei T (2016) A parallel nonrigid

registration algorithm based on b-spline for medical images. Computational

and Mathematical Methods in Medicine 2016, DOI 10.1155/2016/7419307

22. Eidheim O, Skjermo J, Aurdal L (2005) Real-time analysis of ultrasound

images using GPU. In: Lemke H, Inamura K, Doi K, Vannier M,

Farman A (eds) CARS 2005: Computer Assisted Radiology and Surgery,

International Congress Series, vol 1281, pp 284–289, DOI 10.1016/j.ics.

2005.03.187, 19th International Congress and Exhibition on Computer

Assisted Radiology and Surgery

23. Eklund A, Dufort P, Forsberg D, LaConte SM (2013) Medical image

processing on the GPU - past, present and future. Medical Image Analysis

17(8):1073–1094, DOI 10.1016/j.media.2013.05.008

24. Eklund A, Dufort P, Villani M, LaConte S (2014) BROCCOLI: Software

for fast fMRI analysis on many-core CPUs and GPUs. Frontiers in

Neuroinformatics 8, DOI 10.3389/fninf.2014.00024

25. El-Moursy AA, ElAzhary H, Younis A (2014) High-accuracy hierarchical

parallel technique for hidden markov model-based 3D magnetic resonance

image brain segmentation. Concurrency and Computation-Practice &

Experience 26(1):194–216, DOI 10.1002/cpe.2959

26. Ellingwood ND, Yin Y, Smith M, Lin CL (2016) Efficient methods for

implementation of multi-level nonrigid mass-preserving image registration

on GPUs and multi-threaded CPUs. Computer Methods and Programs in

Biomedicine 127:290 – 300, DOI http://dx.doi.org/10.1016/j.cmpb.2015.12.

018



43

27. Fan Z, Xie Y (2015) A block-wise approximate parallel implementation

for ART algorithm on CUDA-enabled GPU. Biomedical Materials and

Engineering 26(1):S1027–S1035, DOI 10.3233/BME-151398, international

Workshop on Biological Mechanics in Conjunction with the 4th

International Conference on Biomedical Engineering and Biotechnology

(ICBEB)

28. Formiconi A, Passeri A, Guelfi M, Masoni M, Pupi A, Meldolesi U, Malfetti

P, Calori L, Guidazzoli A (1997) World wide web interface for advanced

SPECT reconstruction algorithms implemented on a remote massively

parallel computer. International Journal of Medical Informatics 47:125–138,

DOI http://dx.doi.org/10.1016/S1386-5056(97)00089-0

29. Gabriel E, Venkatesan V, Shah S (2010) Towards high performance cell

segmentation in multispectral fine needle aspiration cytology of thyroid

lesions. Computer Methods and Programs in Biomedicine 98(3):231–240,

DOI http://dx.doi.org/10.1016/j.cmpb.2009.07.008

30. Gallea R, Ardizzone E, Pirrone R, Gambino O (2013) Three-dimensional

fuzzy kernel regression framework for registration of medical volume data.

Pattern Recognition 46(11):3000–3016, DOI 10.1016/j.patcog.2013.03.025

31. Gao Y, Yang J, Xu X, Shi F (2011) Efficient cellular automaton

segmentation supervised by pyramid on medical volumetric data and real

time implementation with graphics processing unit. Expert Systems with

Applications 38(6):6866–6871, DOI 10.1016/j.eswa.2010.12.049

32. Gates M, Heath MT, Lambros J (2015) High-performance hybrid CPU and

GPU parallel algorithm for digital volume correlation. International Journal



44

of High Performance Computing Applications 29(1, SI):92–106, DOI 10.

1177/1094342013518807

33. Gebali F (2011) Algorithms and Parallel Computing. John Wiley & Sons

34. Gulo CASJ, de Arruda HF, de Araujo AF, Sementille AC, Tavares JMRS

(2016) Efficient parallelization on gpu of an image smoothing method based

on a variational model. Journal of Real-Time Image Processing DOI 10.

1007/s11554-016-0623-x

35. Hamdaoui F, Sakly A, Mtibaa A (2015) FPGA implementation of particle

swarm optimization based on new fitness function for MRI images

segmentation. International Journal of Imaging Systems and Technology

25(2):139–147, DOI 10.1002/ima.22130

36. Heras JLRDB, Arguello F, Kainmueller D, Zachow S, Boo M (2016) GPU-

accelerated level-set segmentation. Journal of Real-Time Image Processing

12(1):15–29, DOI 10.1007/s11554-013-0378-6

37. Higgins WE, Swift RD (1997) Distributed system for processing 3D medical

images. Computers in Biology and Medicine 27(2):97–115, DOI http://dx.

doi.org/10.1016/S0010-4825(96)00042-X

38. Hu J, Zhao X, Zhang H (2016) A GPU-based multi-resolution approach

to iterative reconstruction algorithms in X-ray 3D dual spectral computed

tomography. Neurocomputing 215(SI):71–81, DOI 10.1016/j.neucom.2016.

01.115

39. Jaros M, Strakos P, Karasek T, Riha L, Vasatova A, Jarogova M, Kozubek

T (2017) Implementation of K-means segmentation algorithm on Intel Xeon

Phi and GPU: Application in medical imaging. Advances in Engineering



45

Software 103:21–28, DOI 10.1016/j.advengsoft.2016.05.008

40. Johnsen SF, Taylor ZA, Clarkson MJ, Hipwell J, Modat M, Eiben B, Han

L, Hu Y, Mertzanidou T, Hawkes DJ, Ourselin S (2015) NiftySim: A

GPU-based nonlinear finite element package for simulation of soft tissue

biomechanics. International Journal of Computer Assisted Radiology and

Surgery 10(7):1077–1095, DOI 10.1007/s11548-014-1118-5

41. Kalmoun EM, Kostler H, Rude U (2007) 3D optical flow computation using

a parallel variational multigrid scheme with application to cardiac C-arm

CT motion. Image and Vision Computing 25(9):1482–1494, DOI 10.1016/j.

imavis.2006.12.017

42. Kegel P, Schellmann M, Gorlatch S (2009) Using OpenMP vs.

threading building blocks for medical imaging on multi-cores. Lecture

Notes in Computer Science 5704 LNCS:654–665, DOI 10.1007/

978-3-642-03869-3_62

43. Kegel P, Schellmann M, Gorlatch S (2011) Comparing programming models

for medical imaging on multi-core systems. Concurrency and Computation-

Practice & Experience 23(10):1051–1065, DOI 10.1002/cpe.1671

44. Kerr JP, Bartlett EB (1995) Medical image-processing utilizing neural

networks trained on a massively-parallel computer. Computers in Biology

and Medicine 25(4):393–403, DOI 10.1016/0010-4825(95)00017-X

45. Kirk D, Hwu WM (2010) Programming Massively Parallel Processors: A

Hands-on Approach. Elsevier

46. Koestler H, Stuermer M, Pohl T (2016) Performance engineering to

achieve real-time high dynamic range imaging. Journal of Real-Time Image



46

Processing 11(1):127–139, DOI 10.1007/s11554-012-0312-3

47. Kumar V, Rutt B, Kurc T, Catalyurek U, Pan T, Chow S, Lamont

S, Martone M, Saltz J (2008) Large-scale biomedical image analysis

in Grid environments. IEEE Transactions on Information Technology in

Biomedicine 12(2):154–161, DOI 10.1109/TITB.2007.908466

48. Lapeer RJ, Shah SK, Rowland RS (2010) An optimised radial basis function

algorithm for fast non-rigid registration of medical images. Computers in

Biology and Medicine 40(1):1–7, DOI 10.1016/j.compbiomed.2009.10.002

49. Lee D, Dinov I, Dong B, Gutman B, Yanovsky I, Toga AW (2012) CUDA

optimization strategies for compute- and memory-bound neuroimaging

algorithms. Computer Methods and Programs in Biomedicine 106(3):175–

187, DOI 10.1016/j.cmpb.2010.10.013

50. Mafi R, Sirouspour S (2014) GPU-based acceleration of computations

in nonlinear finite element deformation analysis. International Journal for

Numerical Methods in Biomedical Engineering 30(3):365–381, DOI 10.

1002/cnm.2607

51. Mahmoudi S, Manneback P (2015) Multi-CPU/multi-GPU

based framework for multimedia processing. IFIP Advances in

Information and Communication Technology 456:54–65, DOI

10.1007/978-3-319-19578-0_5

52. Melo R, Falcao G, Barreto J (2016) Real-time HD image distortion

correction in heterogeneous parallel computing systems using efficient

memory access patterns. Journal of Real-Time Image Processing 11(1):83–

91, DOI 10.1007/s11554-012-0304-3



47

53. Melvin C, Xu M, Thulasiraman P (2008) HPC for iterative image

reconstruction in CT. vol 273, pp 61–68, DOI 10.1145/1370256.1370265

54. Meng B, Pratx G, Xing L (2011) Ultrafast and scalable cone-beam

CT reconstruction using MapReduce in a cloud computing environment.

Medical Physics 38(12):6603–6609, DOI 10.1118/1.3660200

55. Meng L (2014) Acceleration method of 3D medical images registration

based on compute unified device architecture. Bio-medical materials and

engineering 24(1):1109–1116, DOI 10.3233/BME-130910

56. Mertes J, Marranghello N, Pereira A (2013) Real-time module for digital

image processing developed on a FPGA. vol 12, pp 405–410, DOI 10.3182/

20130925-3-CZ-3023.00072

57. Miller M, Butler C (1993) 3D maximum a posteriori estimation for single

photon emission computed tomography on massively-parallel computers.

IEEE Transactions on Medical Imaging 12(3):560–565, DOI 10.1109/42.

241884

58. Moyano-Avila E, Orozco-Barbosa L, Quiles FJ (2009) Parallel algorithms

based on the temporal-window method for non-alternating 3D-WT over

angiographies using a multicomputer. Journal of Signal Processing Systems

for Signal Image and Video Technology 55(1-3):267–279, DOI 10.1007/

s11265-008-0188-4

59. Murphy M, Alley M, Demmel J, Keutzer K, Vasanawala S, Lustig M

(2012) Fast l1 -SPIRiT compressed sensing parallel imaging MRI: Scalable

parallel implementation and clinically feasible runtime. IEEE Transactions

on Medical Imaging 31(6):1250–1262, DOI 10.1109/TMI.2012.2188039



48

60. Nguyen TA, Nakib A, Nguyen HN (2016) Medical image denoising via

optimal implementation of non-local means on hybrid parallel architecture.

Computer Methods and Programs in Biomedicine 129:29–39, DOI 10.1016/

j.cmpb.2016.02.002

61. Nguyena TA, Nakib A, Nguyen HN (2016) Medical image denoising via

optimal implementation of non-local means on hybrid parallel architecture.

Computer Methods and Programs in Biomedicine 129:29 – 39, DOI http:

//dx.doi.org/10.1016/j.cmpb.2016.02.002

62. Nieto A, Brea V, Vilarino DL, Osorio RR (2011) Performance analysis

of massively parallel embedded hardware architectures for retinal image

processing. EURASIP Journal on Image and Video Processing DOI 10.

1186/1687-5281-2011-10

63. Page D (2009) A Practical Introduction to Computer Architecture. Springer,

DOI 10.1007/978-1-84882-256-6

64. Pang WM, Choi KS, Qin J (2016) Fast gabor texture feature extraction

with separable filters using GPU. Journal of Real-Time Image Processing

12(1):5–13, DOI 10.1007/s11554-013-0373-y

65. Rehman T, Haber E, Pryor G, Melonakos J, Tannenbaum A (2009) 3D

nonrigid registration via optimal mass transport on the GPU. Medical Image

Analysis 13(6):931–940, DOI http://dx.doi.org/10.1016/j.media.2008.10.

008

66. Riegler M, Lux M, Griwodz C, Spampinato C, De Lange T, Eskeland S,

Pogorelov K, Tavanapong W, Schmidt P, Gurrin C, Johansen D, Johansen H,

Halvorsen P (2016) Multimedia and medicine: Teammates for better disease



49

detection and survival. Association for Computing Machinery, Inc, pp 968–

977, DOI 10.1145/2964284.2976760

67. Rodrigues P, Bernardes R (2012) 3-D adaptive nonlinear complex-diffusion

despeckling filter. IEEE Transactions on Medical Imaging 31(12):2205–

2212, DOI 10.1109/TMI.2012.2211609

68. Rohlfing T, Maurer J CR (2003) Nonrigid image registration in shared-

memory multiprocessor environments with application to brains, breasts,

and bees. IEEE Transactions on Information Technology in Biomedicine

7(1):16–25, DOI 10.1109/TITB.2003.808506

69. Rohrer J, Gong L (2009) Accelerating 3D nonrigid registration using the

cell broadband engine processor. IBM Journal of Research and Development

53(5), DOI 10.1147/JRD.2009.5429078

70. Sabne A, Wang X, Kisner S, Bouman C, Raghunathan A, Midkiff S (2017)

Model-based iterative CT image reconstruction on GPUs. Association for

Computing Machinery, pp 207–220, DOI 10.1145/3018743.3018765

71. Saiviroonporn P, Robatino A, Zahajszky J, Kikinis R, Jolesz F (1998)

Real-time interactive three-dimensional segmentation. Academic Radiology

5(1):49–56, DOI 10.1016/S1076-6332(98)80011-1

72. Salomon M, Heitz F, Perrin GR, Armspach JP (2005) A massively parallel

approach to deformable matching of 3D medical images via stochastic

differential equations. Parallel Computing 31(1):45–71, DOI http://dx.doi.

org/10.1016/j.parco.2004.12.003

73. Samant S, Xia J, Muyan-Oelik P, Owens J (2008) High performance

computing for deformable image registration: Towards a new paradigm in



50

adaptive radiotherapy. Medical Physics 35(8):3546–3553, DOI 10.1118/1.

2948318

74. Saran AN, Nar F, Saran M (2014) Vessel segmentation in MRI using a

variational image subtraction approach. Journal of Electrical Engineering

and Computer Sciences 22(2):499–516, DOI 10.3906/elk-1206-18

75. Schellmann M, Gorlatch S, Meilaender D, Koesters T, Schaefers K,

Wuebbeling F, Burger M (2011) Parallel medical image reconstruction: from

graphics processing units (GPU) to grids. Journal of Supercomputing 57(2,

SI):151–160, DOI 10.1007/s11227-010-0397-z

76. Schmid J, Guitian JAI, Gobbetti E, Magnenat-Thalmann N (2011) A

GPU framework for parallel segmentation of volumetric images using

discrete deformable models. Visual Computer 27(2, SI):85–95, DOI 10.

1007/s00371-010-0532-0

77. Sehellmann M, Vörding J, Gorlatch S, Meiländer D (2008) Cost-effective

medical image reconstruction: From clusters to graphics processing units.

pp 283–291, DOI 10.1145/1366230.1366278

78. Serrano E, Blas J, Carretero J (2015) A comparative study of an X-ray

tomography reconstruction algorithm in accelerated and cloud computing

systems. Concurrency Computation 27(18):5538–5556, DOI 10.1002/cpe.

3599

79. Shackleford JA, Kandasamy N, Sharp GC (2010) On developing b-spline

registration algorithms for multi-core processors. Physics in Medicine and

Biology 55(21):6329–6351, DOI 10.1088/0031-9155/55/21/001



51

80. Shams R, Sadeghi P, Kennedy R, Hartley R (2010) Parallel computation of

mutual information on the GPU with application to real-time registration

of 3D medical images. Computer Methods and Programs in Biomedicine

99(2):133–146, DOI 10.1016/j.cmpb.2009.11.004

81. Shams R, Sadeghi P, Kennedy R, Hartley R (2010) A survey of medical

image registration on multicore and the GPU. IEEE Signal Processing

Magazine 27(2):50–60, DOI 10.1109/MSP.2009.935387

82. Sharma R, Sharma A (2006) Segmentation methods in atherosclerosis

vascular imaging. Journal Informatica Medica Slovenica 11:52–69

83. Shi W, Li Y, Miao Y, Hu Y (2012) Research on the key technology of image

guided surgery. Przeglad Elektrotechniczny 88(3B):29–33

84. Smistad E, Bozorgi M, Lindseth F (2015) Fast: framework for heterogeneous

medical image computing and visualization. International Journal of

Computer Assisted Radiology and Surgery 10(11):1811–1822, DOI 10.

1007/s11548-015-1158-5

85. Tan G, Zhang C, Wang W, Zhang P (2015) SuperDragon: A heterogeneous

parallel system for accelerating 3D reconstruction of cryo-electron

microscopy images. ACM Transactions on Reconfigurable Technology and

Systems 8(4), DOI 10.1145/2740966

86. Tirado-Ramos A, Sloot P, Hoekstra A, Bubak M (2004) An integrative

approach to high-performance biomedical problem solving environments

on the grid. Parallel Computing 30(9-10):1037–1055, DOI 10.1016/j.parco.

2004.07.010



52

87. Toennies KD (2012) Digital Image Acquisition, Springer London, London,

pp 21–82. DOI 10.1007/978-1-4471-2751-2_2

88. Treibig J, Hager G, Hofmann HG, Hornegger J, Wellein G (2013)

Pushing the limits for medical image reconstruction on recent standard

multicore processors. International Journal of High Performance Computing

Applications 27(2):162–177, DOI 10.1177/1094342012442424

89. Ustun T, Iftimia N, Ferguson R, Hammer D (2008) Real-time processing for

fourier domain optical coherence tomography using a field programmable

gate array. Review of Scientific Instruments 79(11), DOI 10.1063/1.3005996

90. Vadja A (2011) Programming Many-Core Chips. Springer, DOI 10.1007/

978-1-4419-9739-5

91. mei W Hwu W (ed) (2012) GPU Computing GEMS - Emerald Edition.

Morgan Kaufmann

92. Wachowiak M, Peters T (2006) High-performance medical image

registration using new optimization techniques. IEEE Transactions on

Information Technology in Biomedicine 10(2):344–353, DOI 10.1109/

TITB.2006.864476

93. Wachowiak MP, Peters TM (2004) Parallel optimization approaches for

medical image registration, Lecture Notes in Computer Science, vol 3216,

pp 781–788

94. Wang X, Sabne A, Kisner S, Raghunathan A, Bouman C, Midkiff S

(2016) High performance model based image reconstruction. Association

for Computing Machinery, vol 12, DOI 10.1145/2851141.2851163



53

95. Warfield SK, Jolesz FA, Kikinis R (1998) A high performance computing

approach to the registration of medical imaging data. Parallel Computing

24:1345–1368, DOI http://dx.doi.org/10.1016/S0167-8191(98)00061-1

96. Wei Q, Patkar S, Pai DK (2014) Fast ray-tracing of human eye optics on

graphics processing units. Computer Methods and Programs in Biomedicine

114(3):302–314, DOI http://dx.doi.org/10.1016/j.cmpb.2014.02.003

97. Yeh JY, Fu J (2007) Parallel adaptive simulated annealing for computer-

aided measurement in functional MRI analysis. Expert Systems with

Applications 33(3):706–715, DOI http://dx.doi.org/10.1016/j.eswa.2006.06.

018

98. Yip H, Ahmad I, Pong T (1999) An efficient parallel algorithm

for computing the gaussian convolution of multi-dimensional

image data. Journal of Supercomputing 14(3):233–255, DOI

10.1023/A:1008137531862

99. Zhu YM, Cochoff SM (2010) Medical image viewing on multicore

platforms using parallel computing patterns. IT Professional 12(2):33–41,

DOI 10.1109/MITP.2010.62

100. Zhuge Y, Cao Y, Miller RW (2009) GPU accelerated fuzzy connected image

segmentation by using CUDA. IEEE Engineering in Medicine and Biology

Society pp 6341–4, DOI 10.1109/IEMBS.2009.5333158

101. Zhuge Y, Cao Y, Udupa JK, Miller RW (2011) Parallel fuzzy connected

image segmentation on GPU. Medical Physics 38(7):4365–4371, DOI 10.

1118/1.3599725



54

102. Zhuge Y, Ciesielski KC, Udupa JK, Miller RW (2013) GPU-based relative

fuzzy connectedness image segmentation. Medical Physics 40(1), DOI 10.

1118/1.4769418

103. Zinterhof P (2012) High-throughput-screening of medical image data

on heterogeneous clusters. Lecture Notes in Computer Science 7116

LNCS:368–377, DOI 10.1007/978-3-642-29843-1_42, cited By 0


	Introduction
	Systematic Literature Review
	Discussion
	Conclusion
	Acknowledgments

