Towards General Cooperative Game Playing

Jodo Marinheiro! and Henrique Lopes Cardoso!:?
! DEI, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
2 LIACC - Laboratério de Inteligéncia Artificial e Ciéncia de Computadores, Porto,
Portugal
joca.mar2011@gmail.com, hlc@fe.up.pt

Abstract. Attempts to develop generic approaches to game playing
have been around for several years in the field of Artificial Intelligence.
However, games that involve explicit cooperation among otherwise com-
petitive players — cooperative negotiation games — have not been ad-
dressed by current approaches. Yet, such games provide a much richer
set of features, related with social aspects of interactions, which make
them appealing for envisioning real-world applications. This work pro-
poses a generic agent architecture — Alpha — to tackle cooperative nego-
tiation games, combining elements such as search strategies, negotiation,
opponent modeling and trust management. The architecture is then val-
idated in the context of two different games that fall in this category —
Diplomacy and Werewolves. Alpha agents are tested in several scenarios,
against other state-of-the-art agents. Besides highlighting the promising
performance of the agents, the role of each architectural component in
each game is assessed.

Keywords: Multi-Agent Systems, Cooperative Games, General Game
Playing, Negotiation, Strategy, Opponent Modeling

1 Introduction

From the beginning of Al research, games have been an important test-bed to
develop new and interesting strategies and models for a variety of applications.
While there has been extensive research using a number of different games, most
work in this area relates to specific individual games. As a consequence, agents
developed for one game are often difficult to adapt to other games due to the
use of game-specific heuristics and architectures. One field of research that has
attempted to mitigate this problem is that of general game playing [12,19].
General game playing agents provide useful insight into what are the essential
elements for Al to emulate human thought and adapt to new situations never
encountered before.

Most existing work in the field of game-playing agents relates to traditional
adversarial games like Chess [9] or Go [20], because of their simple rules and
large strategic depth. These kinds of games, while useful in many regards, do not
provide the best environment to allow modeling more complex and interesting
social interactions between players. One interesting category of games that allows

social interactions is that of cooperative negotiation games, where players are
encouraged to barter and create or break deals between themselves in order to
obtain the best results in the game.

Targeting general game playing Al for cooperative games would allow for
the development of increasingly interesting and complex agent capabilities and
features, enabling agents to not only adapt their playing strategies to different
games but also negotiate in a variety of different environments with different
protocols, goals and issues. In turn, this would allow to address increasingly
complex and interesting real-world scenarios, a concern that should always be
in place when doing research in games. To aspire such an aim, it is important to
first determine the essential elements that agents must have in order to be able
to play cooperative negotiation games effectively. Towards that direction, this
work attempts to identify some of these elements and propose a generic agent
architecture that tackles them and facilitates the development of agents with
such capabilities, able to play cooperative negotiation games.

The rest of this paper is structured as follows. Section 2 provides insight into
cooperative games, including their characteristics and challenges. In Section 3 we
revise some of the existing approaches to generic game playing and to coopera-
tive multi-agent games in particular. Section 4 introduces a general architecture
for cooperative negotiation games, including a description of each of its modules,
and a brief description of a general framework implementing the architecture.
Then, in Section 5, we describe implementations of the meta-model described
in Section 4, delivering some agents for two cooperative negotiation games. Sec-
tion 6 reports on experimental evaluation of the developed agents, which have
been tested against state-of-the-art agents, when available. Section 7 puts the
contributions of this paper in the perspective of a long-term goal of delivering
general cooperative game playing agents. Finally, in Section 8 conclusions are
drawn and avenues of future work are laid out.

2 Cooperative Multi-Agent Games

Traditionally in the field of game theory, a game is considered a cooperative
game [15] if players are able to form binding commitments with each other.
Games in which players cannot create binding agreements are then considered
non-cooperative games. It is usually assumed that communication between play-
ers is allowed in cooperative games but not in non-cooperative games.

For the purposes of this work however, we consider a somewhat more general
definition of cooperative games — games in which cooperation between players
is possible and encouraged but in which binding agreements are not necessarily
prevalent. More specifically, we will focus on cooperative negotiation games with
a miz of cooperation and competition. In this setting, negotiation is used to
establish cooperation in specific phases of an otherwise competitive game. Some
characteristics that are frequently present in these games are:

— Very large search spaces, which makes the application of traditional search
techniques impractical.

— Difficulty in evaluating moves and player positions due to the fact that eval-
uating such moves often depends on the social context of the game.

— The possibility of betrayals and desertions due to the existence of non-
binding agreements.

There are many kinds of cooperative negotiation games, such as Settlers of
Catan, Quo Vadis? or Genoa. In the context of this work, two very relevant co-
operative negotiation games are Diplomacy and Werewolves of Miller’s Hollow.

Diplomacy [3] is a strategy game for 7 players where each player takes control
of a nation and their armies and navies. By submitting orders to these units,
which are executed simultaneously with those of other nations, players attempt
to capture territories and hold supply centers in a map of Europe. The first
player to capture 18 or more supply centers wins the game. Players can also
issue orders to support the orders of other players in the game, and they are
encouraged to negotiate among each other in order to form alliances, support
each other and create joint plans. Because of this the game highly encourages
cooperation and players that are able to effectively negotiate are able to obtain
much better results in the game.

Werewolves of Miller’s Hollow [8] is a team-based game where two teams —
the villagers and the werewolves — attempt to eliminate each other. The twist
is that players on the villager team do not know who their allies are and who
the werewolves are, encouraging players to communicate, share information and
decide who to trust. The game is played in two phases: the day phase where play-
ers communicate freely, which ends with a vote to eliminate one player who the
remaining players think might be a werewolf, and the night phase where players
may not communicate but can choose to use some special abilities depending on
their role in the game.

Both Diplomacy and Werewolves of Miller’s Hollow are negotiation games
with a mix of cooperation and competition that allow players to communicate
among themselves in order to reach non-binding agreements, and use their ac-
tions to support or hinder each other. Both are deterministic and imperfect in-
formation games that work by phases. Despite these similarities, however, they
are games with very different features. While Diplomacy is for the most part a
zero-sum game, Werewolves of Miller’s Hollow is not, with several players often
losing or gaining utility with certain actions. While Diplomacy is a competitive
game by nature where each player is ultimately hoping to be the one to win
the game itself, which encourages eventual betrayal even among long time allies,
Werewolves of Miller’s Hollow is a cooperative game where players are divided
into teams and encouraged to cooperate among themselves — agents win or lose
the game as a group. The difference to a typical team based game is that in
Werewolves of Miller’s Hollow players do not have complete information about
who is on their team and who is on the opposing team, and must thus be cau-
tious about who they choose to trust. Table 1 summarizes a comparison of the
characteristics of Diplomacy and Werewolves of Miller’s Hollow.

Due to the characteristics of cooperative negotiation games, it is possible
to obtain much better results in these games if one is able to negotiate and

Table 1. Comparison between Diplomacy and Werewolves of Miller’s Hollow

Feature Diplomacy |Werewolves
Deterministic Yes Yes
Information Imperfect Imperfect
Zero-Sum Yes No
Non-binding agreements possible Yes Yes
Simultaneous moves Yes Yes
Communication Public & Private|Mostly public
Player victory Individual Team

coordinate with other players effectively. Unfortunately, while humans are very
good at negotiation and intuitively know who to trust, it is much harder for
a computer to do so. In order to develop effective and believable Als for this
sort of games, and cope with the large size of their search spaces, new strategies
that can effectively combine search strategies with negotiation and opponent
modeling need to be employed.

3 Related Work

There are relevant works both in the area of general game playing and coopera-
tive negotiation games. We here do not aim to provide an exhaustive list of game
playing agents, but instead to discuss some of the most important approaches
to general game playing and to cooperative negotiation games.

There have been several attempts to develop generic game playing agents
that are able to understand and play a variety of games. These systems usually
require a set of rules and constraints that formalize how the game is played,
usually defined in a specific game description language.

Zillions of Games is a system developed by Mallet and Leffer [4], where
programmers can define a wide variety of two dimensional abstract board games
using rule files written in a proprietary language (ZRF files). The platform can
then read these files and generate the game as well as intelligent general Als that
can play it. While the system is limited in the rules and layouts of the games
it can generate (and its Al lacks advanced features such as negotiation or trust
reasoning capabilities), it is nevertheless an interesting example of a general Al
that is adaptable enough to play in a variety of different environments.

One of the most well known projects in this field is Stanford University’s
General Game Playing (GGP) project [12,19]. This project provides a frame-
work upon which developers can create general game playing agents to play
a variety of games, as well as the tools to describe those games. Games are
described in a description language called GDL, which is then interpreted by
the agents developed using the GGP framework. While GGP is mostly focused
towards traditional board games a similar project by the University of Essex,
the General Video Game AI (GVGATI), is more focused towards computer video
games [17]. Similarly to GGP it provides a game description language, VGDL,

and a framework upon which agents can be built, that are able to interpret and
play any video game described using that language.

An approach to handle a particular family of imperfect information games
is the Poker Game Description Language (PGDL) [5], focused in Poker and its
many variants. PGDL is a language that allows users to define any Poker variant.
Additionally, the PokerLang [18] high-level language facilitates the specification
of agent strategies and tactics for specifying Poker playing agents.

Finally, more recently, Google’s DeepMind project aims to apply deep learn-
ing techniques to a variety of scenarios, including games. Using neural networks,
agents have been created that are able to effectively play games which contain
extremely large search spaces, such as Go [20]. This deep learning approach can
be applied to a variety of games and scenarios as long as one has access to quality
training data with which to train the agent.

In the area of cooperative negotiation games there have also been several
agents developed that provide an interesting starting point. Most of the work
in this area is focused on the classic game of Diplomacy. Unfortunately, while
there exist many agents for Diplomacy, no existing approaches have been found
for the game of Werewolves of Miller’s Hollow.

DumbBot is one of the simplest existing Diplomacy playing agents and was
developed by Norman [16]. This bot has no negotiation capabilities and uses a
simple heuristic to decide its actions by preferring to choose moves that weaken
its strongest opponents. DumbBot assigns a value to each territory that depends
on who controls it and what units are around it, and then it assigns actions to
every unit depending on those score values. While the method used is very simple,
DumbBot obtains fairly good results and is frequently used as a benchmark for
other Diplomacy agents.

One of the most important and influential negotiating agents is the Israeli
Diplomat. The architecture of the Israeli Diplomat was designed to be a general
negotiation architecture to be applied in a variety of situations. This architec-
ture was used to create a Diplomacy playing agent [13]. The Israeli Diplomat
tries to mimic the structure of a war-time nation. It consists of several compo-
nents working together to choose the best course of action. These components
are the Prime Minister, the Ministry of Defense, the Foreign Office, the Mili-
tary Headquarters, Intelligence and the Strategies Finder. The diplomat keeps
a knowledge-base of the relations it believes each nation has with each other as
well as any agreements it has, its intention to keep them and its trust that others
will keep them. This knowledge-base is updated by the different modules as the
game progresses, and affects every decision that the diplomat takes.

Another interesting approach is that of D-Brane [6], an agent developed by
de Jonge that makes use of the NB? algorithm [7] as well as a complex strategical
module to find the best sets of moves to negotiate and play. NB? is based on the
branch-and-bound search algorithm and mixes negotiation with search, so that
the former can direct the latter. It was designed to be used in environments where
the search space is too large for traditional search techniques to be employed,
and where better solutions often require cooperation among several agents. D-

Brane uses a basic form of opponent modeling by using the utility values of deals
previously proposed and accepted by its opponents as a way to direct the search
for better solutions; however, it does not make an attempt to explicitly predict
an opponent’s goals or strategies. Another aspect that this agent lacks is the
ability to negotiate coalitions with other agents as well as joint moves for future
phases of the game, having no negotiation strategy for these kinds of deals.

DipBlue [10] is another negotiating agent for Diplomacy, inspired by the
Israeli Diplomat architecture. DipBlue is split into several modules called Ad-
visers, that together decide the actions the agent takes. Each adviser receives the
evaluated move scores from previous advisers and alters them according to its
role. The base adviser is inspired by DumbBot and uses the same scoring heuris-
tic. This score is then changed by other advisers to promote support actions for
the units, promote actions that keep agreements with its allies and encourage
the agent to attack players that it distrusts. In order to model the trust value
of each player, DipBlue keeps a trust matrix that is updated as the game is
played [11]. If a player performs hostile actions against DipBlue, such as attack-
ing it or breaking an agreement, its trust value diminishes. If a player performs
friendly actions, or refrains from doing hostile actions, its trust value increases.
DipBlue is more likely to accept agreements and help players with which it has
a high trust value, and attack players with a low trust value. DipBlue does not
have full negotiation capabilities, lacking the ability to ask and give information
or threaten players.

Concerning other cooperative negotiation games, perhaps one of the more
interesting approaches is the work by Afiouni and @vrelid [1] that builds upon the
opponent modeling techniques described by Krimpen et al. In their work, they
propose a negotiating agent that uses weighted constraints to evaluate offers. By
watching the variation in issues in offers proposed by its opponents, this agent
can add or remove constraints from its opponent model, or alter their weights. It
then proposes new offers by solving a prioritized constraint satisfaction problem.

4 A General Architecture for Cooperative Negotiation
Games

A general architecture for cooperative negotiation games is needed to address
the goal of obtaining general cooperative game playing. With this in mind, in
this section we describe the Alpha architecture (first introduced in [14]) and its
modules. This architecture enables approaching several of the challenges present
in cooperative negotiation games, and facilitates the development of agents to
play these games effectively.

4.1 The Alpha Architecture

In order to address the development of agents for cooperative negotiation games,
we need to take into consideration several complex issues, such as negotiation
abilities, opponent modeling and trust relationships. Making the architecture

generic and game-independent will ensure its applicability in a wide range of co-
operative negotiation games. As such, no assumptions should be made regarding
the usage of specific negotiation protocols or strategies, and the formalization
of goals and search strategies should also be game-agnostic. The Alpha archi-
tecture is modular and based on the architectures of Israeli Diplomat [13] and
DipBlue [11]. Figure 1 shows a simplified overview of the Alpha architecture.

Intelligence
Office
_______ Other Players -

President Opponent Models

Information and Trust Levels
President

ladne Raas Trust

Mew Deals Knowledge Base Levels

)] Deal utility
General Personality Traits

Communication]

President Information Suggested President
& Possible Moves Moves Information
| v A J
- _|Negotiation| Foreign Dealutiy Strategy
Protocol Office Office
L

Fig. 1. High-level diagram of the Alpha architecture and its modules.

The architecture has a structure similar to the Israeli Diplomat, with four
independent modules:

— The President coordinates the interactions between all modules and is re-
sponsible for the final decisions regarding game play.

— The Strategy Office is in charge of suggesting good strategies to the Pres-
ident.

— The Foreign Office deals with negotiation with other players in the game.

— The Intelligence Office makes predictions regarding what opponents are
likely to do in the game.

This structure allows the architecture to have a clean separation between dif-
ferent independent modules that deal with different issues: negotiation, opponent
modeling, strategic/tactical evaluation of the game, which are then combined
with high-level agent personality and overall strategy. The idea is to enable and
facilitate compositionality when building agents with specific characteristics, by
combining these modules in different ways.

The President. The agent’s central module is the President (PR), which holds
its personality characteristics. This module coordinates interaction with the
other modules, defining the overall high-level strategy of the agent through the
definition of its goals. The PR is in charge of selecting and executing the agent’s

moves in the game. Figure 2 shows a simplified overview of the components of
the PR module.

President
Knowledge Base
Trust
Level
Goals Accepted Opponent evels
Deals Goals : "
Disposition
Towards
Pending Oppo.nelnt BRESISLE Personality
Game State Negotiation ;
Deals Traits
Strategy

Fig. 2. High-level diagram of the President’s components.

The PR keeps a knowledge-base including information about the game en-
vironment and its opponents. This knowledge-base is used and modified by
the remaining three modules, allowing the PR to make decisions with up-to-
date information regarding the environment. The information contained in the
knowledge-base is the following:

— The current state of the game.

— The moves played during the course of the game by each player.

— The agent’s current goals and their importance in the game.

— The lists of confirmed, completed and proposed deals by the agent and other
players over the course of the game.

— The player’s current disposition towards other players, such as who are its
allies and enemies.

— The opponent models for each other player.

— The general trustworthiness levels of each player.

— The trustworthiness levels of each deal.

Since the different modules share and use a lot of the same information,
one design concern was simplifying the sharing and exchange of information
among the different modules, which lead to the decision to include this central
knowledge-base in the PR module, which is easily accessible to all other modules.
This also allows for the President to override decisions taken by its subordinate
modules, such as which deals are confirmed.

Additionally, the PR includes a set of personality traits that can be defined
depending on the game being played. These govern the general strategy of the

PR, such as how aggressive it is, how trusting of other players it is or how prone
to taking risks it is. Finally, the PR also keeps lists of moves and deals suggested
by the other modules, which the PR can then choose to execute depending on
several factors.

When defining the PR module, the developer must define what constitutes
a deal, a move and a goal, as these are game-specific concepts. Different games
have very different possibilities for what moves and deals a player can make.
Instances of these notions specify the game-specific elements that are stored in
the knowledge-base and used by all modules.

One important role of the President is deciding what overall goals the agent
is striving for and what relative importance to attribute to each goal. This infor-
mation is passed on to other modules, which take it into consideration in their
reasoning processes. This approach allows the PR to dictate the overall strategy
it wants to follow to its subordinate modules, allowing them to focus on the in-
dividual details of what actions are more likely to be effective in attaining these
goals. Different PR modules allow the developer to customize the agent’s general
strategy and personality, allowing for different player archetypes.

The Strategy Office. A strategical assessment of the game is conducted by
the Strategy Office (SO), which has the responsibility of suggesting appropriate
moves to the PR. The SO contains most of the game-specific heuristics, and
evaluates the utility of possible moves and deals. For this reason, the SO is
highly dependent and adapted to the specific game being played. It also defines
the search strategy used to explore the space of possible moves.

The SO is conceptually split into two parts: the search strategy and the eval-
uation method. The search strategy is used for exploring the space of possible
moves, while the evaluation method is used to assess the utility of moves and
deals. While the search strategy can, in principle, be applied to different envi-
ronments with a low amount of effort, tactical evaluation is, in general, entirely
dependent on the game being played, as it relies on specific knowledge about the
game’s rules.

In order to find the best moves, the SO has access to the PR’s knowledge-base,
which includes information that is relevant to evaluate the utility of different
moves and deals. The PR requests move suggestions to the SO, which replies
with moves that are then stored in the PR’s internal list.

Changing the SO amounts to choosing among different search strategies and
heuristics for the game, which can have a major impact on a player’s effectiveness.

The PR and SO modules were conceived because of a design concern with
separating the long term “macro” strategy and the short term “micro” strategy.
This separation, in the form of the PR and SO (and also the FO when it concerns
negotiation), is useful since it allows for the agent to tackle complex problems
more easily, by dividing them into smaller problems. The SO and FO only need
to worry about a small subset of the overall game at a time, which simplifies
the development of these agents, while also allowing the agent to be formulated

through long term plans without having to concern itself directly with more
minor details of how to execute them via the PR.

The Foreign Office. The purpose of the Foreign Office (FO) is to manage any
interaction with other players and negotiating deals and coalitions in a way that
best allows the PR to execute the moves it is considering. By sending a list of
moves, the PR requests the FO to find supporting deals through negotiation with
other players. Also using any other information available in the PR’s knowledge-
base, the FO autonomously communicates with other players and decides what
deals to propose, reject and accept. When a deal is proposed, confirmed or com-
pleted the FO informs the PR so that these deals are appropriately stored in its
knowledge-base.

The FO includes a Negotiation Strategy that determines what deals are pro-
posed and accepted and what concessions the agent is willing to make. This
module also defines the negotiation protocol used by the agent when communi-
cating with other players. The decision of what protocol to use is often dependent
on the game being played or even the specific development framework on top of
which the agent is being implemented.

By changing the FO, a developer can customize the negotiation capabilities
of the agent, allowing the use of different negotiation and concession strategies.
Omitting this module altogether leads to having an agent with no negotiation
capabilities.

Having all negotiation handled by the FO and all actions performed by the
PR allows the architecture to be cleaner, by compartmentalizing all platform
specific code for interacting with the game environment and other agents in
these two modules. It also more easily allows the agent to concurrently nego-
tiate agreements with its peers, while simultaneously considering and possibly
executing other incompatible moves and deals.

The Intelligence Office. Collecting information about and building models of
opponents is an important aspect of games, and particularly in those involving
social interactions. The purpose of the Intelligence Office (I0) is to address these
needs by calculating trust values and building opponent models for the different
players in the game.

The 10 is divided into two parts: the opponent modeling function and the
trust reasoning function. The opponent modeling function outputs the predicted
goals and their relative importance for each opponent, to be updated in the PR’s
knowledge-base. How this is done is often specific to each game, since the goals
themselves as well as the actions and deals being analyzed are also game-specific.
Similarly, the trust reasoning function outputs trustworthiness values both for
each opponent as well as for each individual deal, depending on how likely they
are to be kept.

Configuring the IO can allow the developer to customize the opponent mod-
eling and trust reasoning strategies, or lack thereof, of an agent. This module

is especially useful in conjunction with the FO, since negotiations are likely to
benefit from a good opponent model and accurate trust reasoning.

The design decision of separating opponent modeling and trust reasoning
in the IO is related to the fact that while both subjects deal with predicting
what actions an opponent will do, they are independent of each other. For ex-
ample, one can define an agent with no trust reasoning capabilities if this agent
is not expected to negotiate, since trust reasoning is especially important for
negotiation, while still using opponent modeling. Opponent modeling is useful
regardless of whether negotiation is possible, since predicting what goals enemy
players might have can have an impact on the tactics and strategy of the SO
and PR.

4.2 The Alpha Framework

In order to facilitate the application of the Alpha architecture, a simple Java
framework was developed, composed of several abstract classes representing each
of the described modules and their behavior. These classes define what each
module should do as well as the data that they can access and how this data is
updated and communicated to and by each of the modules. Each module is de-
fined in its own class and implements a specific interface available to every other
module. In addition, there are several data classes that contain data relative to
the game being played and the agent itself, such as the knowledge-base or the
agent’s personality traits.

In order to implement an agent using the Alpha framework, a developer has
to implement the abstract classes of the modules he wishes to use. When imple-
menting the modules, the developer must implement their abstract methods in
order to define the domain-specific negotiation strategies, protocols, heuristics,
models and message handling. In the PR, the developer defines the high-level
strategy for the agent, such as how it decides which goals are more important and
what disposition it has towards other players. Optionally, the developer can also
specify actions for the agent to take before and after playing, such as initializing
or cleaning up data. In the SO, the developer implements utility functions for
moves and deals, as well as the search strategy used to find and suggest moves to
the PR. In the FO, the negotiation protocol and strategies are implemented as
well as how the agent sends and receives domain-specific negotiation messages.
Finally, in the IO there are functions where the developer may implement trust
reasoning and opponent modeling strategies.

Data produced by the different modules is automatically updated and made
available to the relevant modules. To make use of such data (e.g. use opponent
goal predictions, calculated by the IO, in order to enhance negotiations in the
FO), a developer has access to it in the PR’s knowledge-base.

The developer must also implement data classes with domain-specific defini-
tions of moves, deals, goals and opponents. Having all of this set up, the different
modules can be attached to the PR and the agent be made to play the game.

This framework is publicly available at: hitps://github.com/jocamar/Alpha-
Architecture.

5 Building Agents with the Alpha Architecture

We here describe our experience on making use of the Alpha architecture, by
implementing two agents for two very different cooperative negotiation games:
Diplomacy and Werewolves of Miller’s Hollow. These agents, developed for such
different games, can be seen as proof of concept to test the Alpha architecture
in distinct scenarios, each with its own challenges.

5.1 AlphaDip

AlphaDip is a Diplomacy playing agent heavily based on D-Brane [6], using a
modified version of its strategic module as well as the NB? algorithm to search
for the best moves. It has a few key improvements compared with D-Brane, the
most notable ones being an improved strategic module, a defined strategy for
negotiating coalitions and some ability to predict opponent goals and trustwor-
thiness. A high-level diagram showing how the Alpha architecture was applied
when building AlphaDip is shown in Figure 3.

AlphaDip Intelligence Office

Opponent Trust
Modeling Reasoning
Algorithm Algorithm
President Opponent Models
Knowledge Base and Trust Levels
Deals Proposed, Accepted
&nd Confirned AlphaDip President
President Knowledge Base i . Extra Order
& Best suggested Move Knowledge Basa Trust Levels Finder
Tqugges.ted Moves Suggested President
with Joint Orders Backup Move Knowledge Base
L. AlphaDip Strategy Office
AIphaD\p FOreigﬂ Office Joint Orders & Alliance
Restrictions
L Deal utiity Tactician NB2 Search
Communication Megotiator Algorithm Algorithm
»
I Language Battleplan list & Utility

Fig. 3. AlphaDip’s architecture.

The President. As detailed previously, the agent’s PR is in charge of dealing
with the high-level strategy for the agent and holds a variety of information such
as player goals, moves to execute and trust levels. In order to discuss AlphaDip’s

implementation it is necessary to understand how these concepts are represented
by the PR, and consequently, understood by the remaining modules.

In the context of AlphaDip, a move is a set of orders, one for each unit the
player controls. In Diplomacy, winning the game amounts to having the goal of
capturing as many supply centers as possible — this translates into modeling a
player’s goals as how much they want to control each supply center in the current
game stage. We model this as positive or null real numbers, where 0 means no
intention to control a supply center, 1 means neutral intention to control a supply
center and greater values mean greater intentions of controlling a supply center.
On the other hand, trust values for players stored by the PR are positive real
numbers that are inversely proportional to the trustworthiness of these players:
0 represents full trust in a player, 1 represents neutral trust and greater values
indicate lower levels of trust in a player.

The PR’s main role is coordinating the remaining modules and executing
moves. To fulfill this role, the PR first asks the SO for a fall-back move When a
round starts: this is a move that is expected to work even without any supporting
deals from other players nor any kind of negotiation, and will be used by the
PR in case all negotiations fail, or in the absence of a FO. Afterwards, the
PR periodically asks the SO, who continually searches for the best moves, for
suggested moves to consider. As these moves are discovered by the SO, the PR
forwards the last, and currently best known, move on to the FO to negotiate
for any required deals. After a certain time has elapsed, if all of the prerequisite
deals have been confirmed by the FO the PR selects the last move suggested by
the SO. Otherwise it falls back onto the fallback move calculated at the start.

The Strategy Office. AlphaDip’s SO tries to find moves that maximize the
number of controlled supply centers, and is based on D-Brane’s strategic module
and the NB? algorithm. The objective of the game is to take control of as many
supply centers as possible. As such, one way of determining the utility for a move
is simply the number of supply centers that are ensured to be controlled by a
player when it plays that move. This is how D-Brane calculates the utility of a
move. AlphaDip calculates utility in a similar way, but introduces trust reasoning
and the prediction of opponent goals in order to attempt to obtain a more
accurate value than D-Brane. While D-Brane attributes the same score of 1 to
every supply center, AlphaDip uses its goals to influence the value of each supply
center. Additionally, if a move requires supporting orders from other players to
succeed, their trust values are taken into account when determining the utility
of the move. Using these computations, the SO suggests moves that are likely to
be easy for the FO to obtain any necessary supporting move commitments from
other players. Equation 1 shows how the SO determines the utility U,(m) of a
move m for player p, where n is the total number of supply centers. Function
I, returns 1 if the supply center ¢ is sure to be controlled after move m and 0
if not. Function g, is the goal value that player p has or is assumed to have for
each supply center. Finally, ¢, is the average trust that player p has on all other
players involved in the move or 1 if no other players are involved.

5 Ini) % gy (i)
Uy(m) = =4 (1)

In order to find the best moves in a given round, the SO is divided into two
components: the Tactician and the Searcher. The Tactician attempts to find the
best set of orders taking into account certain constraints such as any existing
order commitments. It then calculates the utility of the move as described above.
The Tactician uses a similar method to D-Brane’s strategic module [6]. This
method, exemplified in Algorithm 1, splits the current round into several smaller
battles for individual supply centers. For a given set of orders that attempt to
capture a supply center — a battle-plan — it is simple to calculate whether the
supply center will be captured. We do this by comparing it with every possible
enemy battle-plan for that supply center (lines 9 and 11 in Algorithm 1). If a
battle-plan ensures the capture or defense of a supply center, we say that it is
an invincible battle-plan. We can also determine pairs of invincible battle-plans,
that is, two battle-plans that if executed simultaneously guarantee that at least
one of them succeeds (lines 16-19). After the Tactician has found the existing
invincible battle-plans and pairs of battle-plans, an And-Or search is employed
to find the largest set of compatible invincible battle-plans or invincible pairs,
that are also compatible with any existing order commitments (line 25).

The Searcher uses the NB? algorithm to look for joint moves with other
players that can maximize the utility for all players involved. Each node in the
search tree is a joint battle-plan with one or more opponents that attempts
to capture a supply center or help another player capture it. The path from a
node in the tree to the root of the tree contains a set of commitments that the
Tactician will attempt to solve for in order to find the best possible compatible
orders for the remaining units and the subsequent utility value for that node. If an
acceptable move is found, these commitments would then have to be negotiated
by the FO with any other involved players, for the move to be able to be executed.
By looking for joint moves, the SO can find strategies and moves that would not
be possible if a player was acting completely independently.

Because the SO uses the trust values and predicted opponent goals when
calculating the utility of a node, the search of the NB3 algorithm will be directed
towards nodes with joint moves with players in whom AlphaDip trusts, and who
are more likely to accept the conditions of the joint commitments.

The Foreign Office. Since, in order to be successfully executed, the moves
suggested by the SO may include order commitments with other players, the PR
passes the current best move it is considering on to the FO for it to negotiate any
required support agreements. AlphaDip’s FO performs two types of negotiation:
coalition establishment with other players and order commitments for the current
round. This is an improvement over D-Brane, which did not have a strategy
for the establishment of coalitions, instead assuming that all D-Branes simply

Algorithm 1 Tactician Algorithm

1: playerAndOpponentBattleplans <+ calculateBattleplans(gameState, player, allies)
2: playerAgreements < getAgreementsFromPR()

3: for all bp € playerAndOpponentBattleplans do

if lisCompatible(bp,playerAgreements) then

5 Remove bp from player AndOpponentBattleplans
6 end if

7: end for
8

9

=

: playerPlans <+ getPlayerPlans(player AndOpponentBattleplans)

: opponentPlans < getOpponentPlans(player AndOpponentBattleplans)
10: for all bp € playerPlans do
11: if 'hasDefeatingPlans(bp, opponentBattleplans) then

12: Add bp to invinciblePlans

13: else

14: defeatingPlans +— getDefeatingPlans(bp, opponentBattleplans)

15: for all bp2 € playerPlans do

16: if isCompatible(bp,bp2) then

17: defeatingPlans2 «— getDefeatingPlans(bp2, opponentBattleplans)
18: if 'hasLegalCombinationOfPlans(defeatingPlans,defeatingPlans2) then
19: Add bp and bp2 as a new pair to invinciblePairs

20: end if

21: end if

22: end for

23: end if

24: end for

25: bestBattleplans < getBestCombAndOrSearch(invinciblePlans,invinciblePairs)
26: return bestBattleplans

formed a coalition against all other players in the game. Currently, AlphaDip is
not able to negotiate move commitments for the following rounds as that would
increase the complexity of the agent tremendously.

The strategy employed to negotiate coalitions is similar to DipBlue’s [11].
At the start of the game, AlphaDip proposes a peace agreement to every other
player in the game. After that, during the rest of the game the FO attempts to
propose alliances against the stronger player in the game with which it is not
in peace with. If a player’s trust value rises above a certain threshold (meaning
the player is less trusted) the peace with that player is broken. Conversely, if the
trust value drops below a certain level (meaning the player is trusted) AlphaDip
proposes peace to this player. Additionally, if the game has 4 or less players
remaining, AlphaDip immediately breaks any alliances it has with a player if
that player controls 14 or more supply centers. This is so that AlphaDip does
not let a player get too close to winning in the final stages of the game.

The FO also attempts to negotiate joint order commitments for the current
round. The PR periodically asks the FO to negotiate deals concerning the moves
being currently considered. The FO compares the utility of the suggested moves
with the utility of each of the proposals it received: the FO either accepts the

best proposal received if it has more utility, or proposes any necessary joint order
commitments required by the moves proposed by the PR.

In case the FO receives a proposal that is compatible with any deals it has
already accepted, the FO asks the SO to calculate the utility of that deal, and
informs the PR so that it stores the deal in the proposed deals list. The reason it
does not choose to immediately accept or reject the proposal, as explained in [6],
is so that the SO is given some time to continue searching and looking for any
possibly better options for other joint moves, before the agent commits to the
proposed orders. By committing to an offer and adding it to the PR’s confirmed
deals list, the search performed by the SO is automatically constrained to only
look for moves that satisfy the conditions in the accepted deals.

The Intelligence Office. AlphaDip may use the 10 to calculate trust values
for players and predict their current goals in the game. In order to update the
trust values, the IO uses a strategy similar to DipBlue [10], where trust in players
increases steadily over the course of the game if no aggressive actions are taken by
these players, and decreases when aggressive actions are taken. The magnitude of
these updates is dependent on current trust values associated with the players, as
well as whether AlphaDip considers himself to be at peace or at war with them.
This way, if a player is highly trusted or in peace with AlphaDip, any aggressive
actions it takes will have a bigger impact on that player’s trust. On the other
hand, if a player is not trusted or is at war with AlphaDip, any aggressive
actions it takes have a smaller impact on that player’s trust, since AlphaDip
already expects that player to take aggressive actions.

The IO also attempts to predict its opponents’ goals, that is, which supply
centers it believes each player wants to control more, using a simple strategy
exemplified in Algorithm 2. Each time a player takes an offensive action against
a certain supply center, the IO increases the likelihood that that player wants
to control that supply center (line 9 in Algorithm 2). If a player takes no offen-
sive actions against a supply center, or takes actions that would help another
player capture that supply center (such as support orders), the IO decreases
the likelihood that the player wants to control that supply center (lines 5 and
12). Similarly to trust value updates, the magnitude of such increases and de-
creases are influenced by the current values for each supply center. This way, if a
player is already expected to want control of a certain supply center, any actions
it takes have a small impact on the value for that supply center desire. On the
other hand, if a player suddenly makes a move on a supply center that AlphaDip
believed that player was not interested in, the value for that supply center will
be affected more significantly — this can be seen as an ability of AlphaDip in
detecting changes in opponents’ goals.

5.2 DipBlue

In addition to AlphaDip, we have made a reimplementation of DipBlue in light
of the Alpha architecture (see Figure 4). In order to do this we split the DipBlue

Algorithm 2 AlphaDip I0 Goal Prediction Algorithm

1: playerOpponents < getOpponentsFromPR()

2: opponentGoals < getOpponentGoalsFromPR/()
3: for all op € playerOpponents do

4: for all g € opponentGoals[op] do

5: g < g x0.99

6: actionsSupportingGoal + getActionsSupportingGoal(op,g)
7: actionsAgainstGoal <+ getActionsAgainstGoal(op,g)

8: for all o € ordersAndDealsSupportingGoal do

9: g« g+ %

10: end for

11: for all o € ordersAndDealsAgainstGoal do

12: g <4+ gx0.95

13: end for

14: end for
15: end for
16: return opponentGoals

architecture into SO, FO and I0. Our version of DipBlue works exactly the same
as the original DipBlue described in [11].

DipBlue’s advisers are part of the SO, and are used to calculate the utility
value for possible moves in the same way as originally. Unlike with AlphaDip, in
DipBlue each move is a single order for a unit, and each order has a utility value
assigned by the advisers. After finding the best orders, the SO suggests them to
the PR, who asks the FO to negotiate any deals it thinks are necessary. The FO
implements DipBlue’s negotiation strategy, requesting supports from its allies
for any moves that could use them and negotiating alliances and peace deals.

The execution of DipBlue’s moves is not dependent on the success of nego-
tiations with other players, though any supports may increase the likeliness of
those moves. As a result, the PR will always execute moves suggested by the
SO, regardless of the result of any negotiations the FO attempts.

The IO updates opponent trust values in the same way the original DipBlue
does. Unlike AlphaDip, DipBlue’s 10 does not predict opponent goals.

5.3 AlphaWolf

Werewolves of Miller’s Hollow was also chosen to draw an implementation of
the Alpha architecture. As far as we know, no frameworks are available to de-
velop agents for this game. We have implemented a game server using the Jade
multi-agent framework?, for which we implemented an agent to play the game —
AlphaWolf.

In order to simplify the implementation, and because certain roles are more
suited to be played physically with humans, we use a simplified version of the
game with a subset of the original player roles and abilities. In our version of the

3 http://jade.tilab.com

Intelligence Office

Trust
Reasoning

Opponent
Modeling

President

Trust PR
Knowledge Base Levels [

fmm e d i o

General Personality Traits Id- ----- -

A

A,
Strategy Office

[
Negotiation Foreign

Protocol i v Strategic Game
roraco Office Evaluation "Searcn
A A
: N e, ;
i DipBlue i
N ! B
Negotiator Adviser
Agreement Word Map Fortune Team
Executor Keeper Tactician Teller Builder
DumbBot

Fig. 4. Mapping DipBlue to the Alpha architecture.

game, there are 4 possible roles for the players: werewolves, villagers, seers and
doctors. Werewolves have the goal of killing every other non-werewolf player in
the game while every other player has the goal of killing the werewolves. The
werewolves, seers and doctors each have a special ability that they can secretly
perform during the night phase of the game. Werewolves can collectively vote
on an enemy player to kill during the night. The seers can choose any player
to investigate during the night, learning its secret role. Finally, doctors are able
to choose a player, who if attacked by the werewolves during the night will be
healed and remain in the game, informing the doctor that this happened.

The President. AlphaWolf’s PR works as described in Section 4. At the start
of each phase of the game it requests the IO to update opponent trust values and
predicted goals. In the context of this game, a player’s goal is tied to its role and
as such predicting a player’s goal means predicting the likeliness that a player
has a certain role. In the PR’s knowledge-base, this means that a probability is
associated with each player-role pair. Role probabilities for a given player add
up to 100%, so that if a certain role has a 100% probability, the PR knows
that player’s role and, consequently, its goal. A player’s trust is represented by a
positive or null real number, where 1 means neutral trustworthiness, 0 means no
trustworthiness and values above 1 mean progressively higher trustworthiness.

The PR requests the SO to suggest a good move. The notion of move depends
on the current phase of the game, but it always involves choosing a player to
either vote out of the game or as a target for the player’s ability during the
night phase. After a player is suggested by the SO, and depending on whether
the current phase of the game allows negotiation between the players, the PR
may ask the FO to attempt to negotiate with the other players for joint votes
against some player, or requests for investigation or healing. When the FO has
finished negotiating, the PR decides to either vote or target a certain player for
its special action. If no deal has been reached, the player is randomly chosen from
the list of players suggested by the SO, with players with higher utility being
more likely to be picked; otherwise, if a deal has been reached for a specific
player, the PR will take the action it agreed to on the deal.

The Strategy Office. AlphaWolf’s SO implements a simple strategy to suggest
potential players to either attempt to eliminate or protect, depending on the
current phase of the game and the player’s role and goals. This is done by
assigning each player a threat score, which is a measure of what roles and goals
the player believes an opponent has (as calculated by the I0) and how dangerous
these roles are to the player. In general, if a player is on the werewolf faction,
roles that have the ability to gather more information or use abilities that hinder
werewolves actions will have a higher threat level to the player. In the same way,
if a player is on the villager faction, roles that have the ability to gather more
information or hinder the werewolves are less likely to kill the player, and thus
are less threatening. Depending on the current phase of the game and whether
the actions available to the player will hinder an opponent (such as voting to kill
it) or help another player (such as healing it), either this threat score is used as
the utility for the move or its inverse is used, respectively. Equation 2 shows how
the threat value T}, of player p is calculated, where n is the number of different
possible roles a player can have, B; is the base threat value for role ¢ and C; is
the current estimated likelihood that player p has role i.

Bi X Oz
T, = =5— (2)
> Bi
i=1

(2

The SO also has the purpose of calculating the utility of deal proposals. This
utility is based on the previously mentioned threat value of the proposer of the
deal, the threat value of the player whom the deal concerns, what type of action
the deal is proposing and the trust of the player in the proposer of the deal.
This calculation is described in Algorithm 3. The type of action proposed and
the threat values for the proposer and the player affected by the proposal are
used to calculate two values — one for the proposer and one for the target of
the proposed action — representing how much the player is willing to help the
proposer and hurt the target. These two values are then multiplied together with
the trust on the proposer, representing how much the player trusts the proposer
to abide by the deal and not take any actions against him, to reach the final
utility value for the deal (line 9).

Algorithm 3 AlphaWolf SO Deal Utility Calculation

: target < getTargetFromDeal()
proposer <— getProposerFromDeal()
proposerValue - getThreatValue(proposer)
if dealActionIsPositive() then
targetValue <
else
targetValue < getThreatValue(target)
end if
return targetVales x proposerValue x getTrustFromPR(proposer)

1
getThreatValue(target)

© 20 NS @ A »N e

The Foreign Office. In Werewolves of Miller’s Hollow, players can only com-
municate during certain phases of the game, namely the discussion phase and,
for werewolves, the night phase. As the game is very reliant on communication
between players, negotiation is very important in order to obtain effective play-
ers. Otherwise, players would not be able to coordinate their votes or use their
abilities during the night. This is the purpose of the FO.

AlphaWolf’s FO implements a simple negotiation strategy during the day
phase, where each player proposes a joint vote against another player who they
think is the most threatening, as well as other agreements such as investigation
or heal requests, depending on their levels of trust with other players. Players
then wait for agreement confirmations from their opponents, locking the agree-
ment in place if they receive a confirmation. In each negotiation round, players
compare the utility of the proposals they receive with their concession value,
which is based on their own proposal and decreases over time, and decide either
to continue waiting or accept another proposal, retracting their own.

In the case of the nightly negotiation phase for werewolves (where they co-
ordinate to choose a victim), the strategy employed by the FO can be even
simpler, since the werewolves have complete information about who the other
werewolves are and can thus assume that they are working towards the same

goals. In this case, consensus is reached by means of a sealed bid mechanism,
where each werewolf proposes one player to vote for as well as their preference
level for that player. After all werewolves have made their proposals, the bids are
counted and the player with the highest preference level among all werewolves
is selected, with every werewolf voting for it.

The Intelligence Office. AlphaWolf’s IO has the function of attempting to
predict a player’s goals and its trustworthiness. As mentioned previously, since
a player’s goals are tied to its role in the game, predicting its goals is a matter
of predicting its role. In order to predict an opponent’s role, the IO analyses the
proposals and votes of that player over the course of the game. The predicted
role probabilities for that opponent are thus a function of the threat values
of the players that opponent voted against (or proposed to vote against), and
the rounds in which that player took those actions. Algorithm 4 describes the
calculation for the prediction of opponent goals by the IO.

Algorithm 4 AlphaWolf 10 Role Prediction Calculation

: pastRounds <+ getPastRoundsFromPR/()
opponents < getOpponentsFromPR()
opponentGoals < getOpponentGoalsFromPR()
for all op € opponents do
for all round € pastRounds do
roundAgeFactor < getAgeFactor(round)
for all actions € getOpponentActions(op, round) do

target < getTarget(action)
— getThreatValue(target)
getAverageThreatValue()

scalingFactors < calculateRoleScalingFactors(voteDamage)
for all r € opponentGoals[op] do
r + rx scalingFactors[r]
end for
normalizeOpponentGoals(opponentGoals|op])
end for
16: end for
17: end for
18: return opponentGoals

© ® NP gk W

voteDamage

x roundAgeFactor

e e
G W N = O

The IO searches through each player’s past actions and for each vote or
proposal that player made it calculates a vote or proposal damage value (line 9
in Algorithm 4). This value indicates the likelihood that an action was taken with
the intent of damaging the player’s faction and is based on the threat values of
the players who are the targets of that opponent’s actions. A high threat value
for the target of the action indicates that the action was not very damaging to
AlphaWolf’s faction, and even may have been helpful, and a low threat value
indicates a damaging action, as that opponent was voting against players that
are considered likely to be allies.

For each action, its vote damage is then used to calculate a scaling factor
for each possible opponent role (line 10), which is finally used to scale the role
probabilities of each role proportionally (lines 11-12). Each role has a different
scaling factor because certain roles are more likely to have more information than
others: seers have a higher scaling factor than doctors, and doctors have a higher
scaling factor than villagers. In this way, if an opponent takes a damaging action,
the likelihood that it is a seer comparatively diminishes more than the likelihood
that it is a villager, since a seer would be less likely to commit damaging actions
against the villagers, having more information about the player roles. These
scaling factors are then multiplied with each current role probability, and the
values for the roles are then re-scaled back so that they total 100% (line 14).

To calculate trust values, the IO analyses the previous round and checks for
each opponent if it kept any agreements it accepted or if it voted against the
player. If an opponent broke an agreement or voted against the player, its trust
value is decreased by a certain amount, otherwise its trust value increases.

6 Experimental Validation and Evaluation

In order to validate our implementation of the Alpha-based agents described in
Section 5, we have setup a number of experimental scenarios. Besides illustrating
the correct functioning of the agents themselves, these scenarios also helped in
evaluating individual architecture components and, when available, enabled us
to compare the performance of the agents with other state-of-the-art players.

6.1 AlphaDip Validation Setup

We compared AlphaDip with three previously developed Diplomacy playing
agents: DumbBot, DipBlue and D-Brane. For that, we performed tests similar to
those reported in [10] and [6]. It should be noted that unlike the D-Brane tests
reported in [6], which assumed D-Branes always formed a coalition against every
other agent in the game, we allow our agents to negotiate at will, establishing
and breaking coalitions.

In each experimental setup, we tested AlphaDip using 3 distinct configura-
tions, in order to separately assess the impact of negotiation and opponent /trust
modeling in its performance: (i) using only the PR and SO, (ii) including the
FO, and (iii) using all four PR, SO, FO and IO.

For every configuration, in each experiment we played a number of games of
Diplomacy, stopping after 40 game phases. After the end of a game, we ordered
players by ranking, from 1st to 7th, and collected ranking results. Ranking is
determined by the number of supply centers a player controls at the end of the
game (in case it is still alive), or by the game phase in which the player was
eliminated. Players with more supply centers or eliminated at later phases have
a higher rank in the game and are thus considered better. For configurations
without the FO (and thus, with no negotiation capabilities) we played a total of
100 games. For configurations including the FO we set the negotiation deadline

Table 2. Average rank of 2 AlphaDip when playing with 5 DumbBot.

2xAlphaDip & 5xDumbBot
AlphaDip Config. Avg. Rank
PR + SO 2.35+0.15
PR + SO + FO 2.21£0.21
PR + SO + FO + 10(2.11 £0.19

at 15 seconds per round. Since these tests take considerably longer to execute,
we only played a total of 50 games per configuration.

All tests and experiments were performed using a laptop computer with 8GB
of RAM and an Intel Core i5-6440HQ mobile CPU clocked at 3.5GHz.

6.2 AlphaDip Results

Similar to experiments reported in Ferreira’s [10] and de Jonge’s [6] works, in
each experiment we had two instances of AlphaDip playing against 5 instances
of DumbBot. Combining the ranks of our AlphaDip agents, the best possible
average rank is 1.5, while the worst possible average rank is 6.5. We can compare
the average ranks of AlphaDip with the average ranks of DipBlue and D-Brane
reported in [10] and [6], respectively. The best rank achieved by DipBlue in the
tests performed by Ferreira is 3.57 [10], while the best rank obtained by D-Brane
in the tests performed by de Jonge is 2.35 [6].

Table 2 shows the average rank obtained by AlphaDip in each configuration
(standard deviation is also included). These results show that AlphaDip plays
significantly better than the DumbBot and DipBlue, even without negotiation,
opponent and trust modeling capabilities. However it also appears that the inclu-
sion of IO and FO only has a small effect on the performance of the agent. A t-test
performed on these results obtains a score of 0.554 when comparing the second
with the third configuration, and a value of 0.109 when comparing the first with
the third. This points towards statistically significant performance differences
between the base configuration (PR+SO) and the full one (PR+SO+FO+I0),
although further testing is required to confirm this hypothesis.

In order to test how well AlphaDip performs against other, more advanced,
agents we also performed an experiment including two AlphaDips and two D-
Branes (in this case without negotiation capabilities?), together with 3 Dumb-
Bots. The results of these tests are shown in Table 3. Similarly to the previous
experiment, these tests show that AlphaDip outperforms D-Brane, especially
when it can use the negotiation and opponent modeling capabilities provided by
the FO and 10. When playing only with the SO, AlphaDip performs only slightly
better than D-Brane. Because AlphaDip’s SO is based on D-Brane’s strategic
module, however, this difference is not statistically significant.

4 The public versions of D-Brane do not include negotiation capabilities (http://wuw.
iiia.csic.es/~davedejonge/bandana).

Table 3. Average ranks in games with 2 AlphaDip, 2 D-Brane and 3 DumbBot.

2xAlphaDip, 2xD-Brane & 3xDumbBot

AlphaDip Config. AlphaDips Avg. Rank|D-Branes Avg. Rank
PR + SO 2.84 £0.17 2.91£0.16
PR + SO + FO 2.37+£0.21 3.19+£0.24
PR + SO + FO + IO 2.29 £0.20 3.25£0.24

Table 4. Average ranks in games with 2 AlphaDip, 2 DipBlue and 3 DumbBot.

2xAlphaDip, 2xDipBlue & 3xDumbBot

AlphaDip Config. AlphaDips Avg. Rank|DipBlues Avg. Rank
PR + SO 2.38 £0.16 5.03 £0.20
PR + SO + FO 3.56 +0.26 3.44+0.32
PR + SO + FO + IO 2.31+0.22 4.73£0.29

In order to complement the previous experiments, we also tested AlphaDip in
an environment with a higher number of negotiating agents: 2 AlphaDips play
with 2 DipBlues and 3 DumbBots. The 2 DipBlues played with the standard
adviser configuration described in [10]. Results are shown in Table 4.

These results show that when AlphaDips are playing with a PR+SO config-
uration or with all modules running they get a similar average rank, between 2.3
and 2.4. A statistical t-test gives us a value of approximately 0.653, which shows
that the difference observed is not statistically significant. The inclusion of nego-
tiation and trust reasoning does not seem to significantly affect the performance
of AlphaDip in this experiment. On the down side, negotiation without oppo-
nent modeling seems to be counterproductive, as using the FO without the 10
(meaning that AlphaDip negotiates without making any attempt to predict op-
ponent goals or trustworthiness) brought the worst results in this experimental
setup — the average rank decreases to 3.56.

This lack of impact from negotiation resembles results obtained by de Jonge
in [6], where he points out that even though the NB? algorithm manages to find
good joint moves (when they exist), their impact in the overall result of the game
is negligible. Negotiating joint moves for only the current round is not enough to
significantly increase the performance of the players — in order to obtain better
results one would have to attempt to negotiate further rounds ahead as well.

Another interesting observation is that, while AlphaDips do obtain a small
increase in their average rank when all modules are running as compared to hav-
ing just PR4SO, DipBlues themselves also benefit from this setting: DipBlues
obtain a better average ranking of 4.73 when playing against AlphaDips with
all modules active, compared with an average ranking of 5.03 when playing with
AlphaDips incapable of negotiation. These observations were also corroborated
by de Jonge’s observations in [6], where he found that other agents could also
benefit from the deals discovered by agents running the NB? search algorithm.

Table 5. Win percentages and average number of remaining villagers for a team of 8
villagers playing against 2 werewolves.

Villagers Config. Win %|Avg. # Villagers
PR + SO 27% 3.56
PR + SO + FO 46% 3.20
PR + SO + FO + 10| 73% 4.88

6.3 AlphaWolf Validation Setup

Testing AlphaWolf is not as straightforward as testing AlphaDip, due to the lack
of agents developed for this game. Nevertheless, we conducted experiments that
allowed us to test the relative performance of our agent with different configu-
rations of active modules.

In order to test the impact of each module in the performance of the agent,
we opted to have AlphaWolf werewolf agents always playing with all modules
running, and changed only the configurations of AlphaWolf villager agents. This
way, we can easily see the effect each module has on the performance of villagers.
As before, We tested 3 different configurations for this agent: (i) using the PR
and the SO, (ii) including the FO, and (iii) using all four PR, SO, FO and IO.

In each test we had the agents play 100 games in a 10 player game where
2 of the players were werewolves, and the remaining 8 were from the villager
faction, with 1 seer, 1 doctor and the remaining 6 being standard villagers. This
ratio of werewolf to villager players was chosen because it is the recommended
ratio in the official Werewolves of Miller’s Hollow rules [8]. We recorded the win
percentage for the villagers over those games as well as the average number of
villager agents left alive at the end of the game when the villager faction won.

6.4 AlphaWolf Results

Unlike with Diplomacy, results for the AlphaWolf agents show that negotiation,
trust and opponent modeling are effective features, with a significant impact
on agent performance (see Table 5). With the inclusion of the FO and the IO,
performance steadily increases from a 27% to a 46% win ratio, and finally to a
73% win ratio with all modules active. The inclusion of the IO also significantly
increases the number of villagers remaining alive in games where this faction
wins. This indicates that, with the inclusion of trust and opponent modeling,
players are able to identify werewolves much earlier in the game, allowing for
quicker victories.

One possible explanation for the difference in the relative impact of negotia-
tion, trust and opponent modeling in the game of Werewolves of Miller’s Hollow
as compared with Diplomacy is that in the latter agents already implicitly have
an idea of their opponents’ goals. Since in Diplomacy the rules of the game en-
courage players to capture supply centers, one can assume that other players
will try to maximize their number of supply centers over the course of the game.
On the other hand, in Werewolves of Miller’s Hollow players have no way to

know, at the initial stage of the game, what their opponents will be trying to do.
This means that players have no way to predict an opponent’s utility function
at the start of the game, and must analyze its actions in order to predict the
opponent’s goal.

Negotiation may also have a greater impact in Werewolves of Miller’s Hollow
because each player only has a single vote to affect the round. Without coor-
dination and organizing joint votes, players have a hard time completing their
goals. In Diplomacy, players can have differing numbers of supply centers and
units, which allows certain players to affect the outcome of the rounds more than
others; this means that strong players can use their superior strength to obtain
their objectives even without negotiation.

7 Discussion

While there have been several attempts to develop general game playing Als, the
task has not proven to be easy, and the available proposals often come with sev-
eral important limitations. The path that has been taken throughout time is to
address successively more and more complex characteristics of the environment
faced by agents: from deterministic, sequential and perfect information games,
to stochastic and imperfect information games. The next frontier may well be
games demanding for social relationships, where negotiation and trust modeling
are essential components to establish cooperation, a need that is magnified in
the presence of simultaneous moves.

The low coverage of games that include this social element is one of the
biggest limitations of current approaches such as Zillions of Games [4] and the
General Game Playing project [19], which focus mostly on abstract board games
involving no or little cooperation. The Alpha architecture seeks to bridge the gap
between the current state-of-the-art and cooperative negotiation games.

However, it is important to note that the Alpha architecture and framework
do not constitute in themselves a general game playing Al, as they do not offer
some essential capabilities that other general game playing Als possess. For
example, a way for the developed agents to abstractly understand the rules of the
different games is entirely missing (see [2] for a glimpse of the challenge). In order
to obtain a truly general game playing Al it is necessary for the developed agents
to be able to learn different rule sets for different games that the developers
might not even themselves know, for example by reading a description language
file (using formats such as [21] or [5]) that describes the rules for these games.

The proposed architecture is instead intended to serve as a strong framework,
upon which game-specific agents can be implemented, that identifies, organizes
and generalizes the use of a number of different capabilities required to do well
at negotiation games. By using the proposed architecture, developers can easily
implement agents that make use of a combination of search strategies with ne-
gotiation, opponent modeling and trust reasoning capabilities, in a general and
standardized way. This basis can be used in the future to develop a true general
game playing Al that is able to play a variety of cooperative negotiation games.

This can be done by adding some improvements over the current work, while
keeping the same role for each of the modules of the Alpha architecture.

8 Conclusions and Future Work

The objectives of this work were the study of what elements were necessary to
create effective agents that could play cooperative negotiation games, and to
develop a generic architecture including these elements, which could be used to
facilitate the development of effective agents for a wide variety of games.

We tested the proposed architecture by developing agents for two very dif-
ferent cooperative negotiation games, and believe that the proposed Alpha ar-
chitecture is generic enough to be applied to many other different games. The
two most relevant agents developed using the Alpha architecture and framework
were AlphaDip and AlphaWolf. AlphaDip is an agent with strategies inspired
by D-Brane and DipBlue, with the inclusion of opponent modeling to make
predictions about an opponent’s intention to capture certain supply centers, as
well as a negotiation strategy for the establishment of coalitions, which was not
present in D-Brane. AlphaWolf is a Werewolves of Miller’s Hollow agent that
also includes negotiation, trust and opponent modeling capabilities, allowing it
to predict its opponents’ roles and negotiate deals accordingly.

The results of the tests performed using these two agents show that AlphaDip
was in general superior to both DipBlue and D-Brane, obtaining better average
ranks in the games played. However, the inclusion of negotiation, trust reasoning
and opponent modeling capabilities did not have a very large impact on the
performance of the agent. On the other hand, results obtained for AlphaWolf
show that the inclusion of the Foreign Office and Intelligence Office had a larger
impact in the performance of the agent. This indicates that negotiation, trust
and opponent modeling are more important in Werewolves of Miller’s Hollow
than in the Diplomacy game.

We believe that these results are positive and the inclusion of negotiation,
trust reasoning and opponent modeling capabilities generally improved the per-
formance of the agents, though the impact was much greater for AlphaWolf than
for AlphaDip. We also believe that the developed architecture and framework are
a helpful contribution to the field by facilitating the development of agents with
these capabilities. However, while the developed architecture is very modular and
allows agents to be built upon it and make use of negotiation, trust and opponent
modeling, there is lots of room for improvement. The Alpha architecture allows
developers to define different negotiation strategies, trust reasoning and oppo-
nent modeling approaches, which may be tailored to a specific game. However,
this process can be made simpler with the inclusion of generic strategies (such
as D-Brane’s NB? algorithm) that can be applied equally to any environment.
The inclusion of a generic way to predict opponent goals and strategies, calculate
trust values and decide what deals to accept, based on the knowledge-base of the
President, would further simplify the process of developing an efficient agent.

The agents implemented during the course of this work, while generally effi-
cient, could also be improved. One major improvement to AlphaDip is to allow
the agent to search for and negotiate movement commitments for several rounds
ahead, instead of only the current round. As for AlphaWolf and the implemented
Werewolves of Miller’s Hollow server, one key improvement would be the capa-
bility for AlphaWolf to use strategies involving bluffing, by for example making
opponents believe it has a different role than its true role, a strategy human play-
ers frequently use. If correctly implemented, this ability could make AlphaWolf
much more effective, especially when playing with human opponents.

References

1. Einar Nour Aouni and Leif Julian @vrelid. Negotiation for Strategic Video Games.
Master thesis, Norwegian University of Science and Technology, 2013.

2. Edouard Bonnet and Abdallah Saffidine. On the Complexity of General Game

Playing, pages 90-104. Springer International Publishing, Cham, 2014.

Allan B. Calhamer. The Rules of Diplomacy. Avalon Hill, 4th edition, 2000.

4. Zillions Development Corporation. Zillions of Games. http://wuw.
zillions-of-games.com, 2016. Accessed: 2017-05-16.

5. Joao Correia. PGDL: Sistema para definicdo genérica de jogos de Poker. Master
thesis, Universidade do Porto, 2013.

6. Dave de Jonge. Negotiations over Large Agreement Spaces. PhD thesis, Universitat
Autonoma de Barcelona, 2015.

7. Dave de Jonge and Carles Sierra. Negotiation Based Branch & Bound and the
Negotiating Salesmen Problem. In Proceedings of the 14th International Confer-
ence of the Catalan Association for Artificial Intelligence, Lleida, Catalonia, Spain,
2011.

8. Philippe des Pallieres and Herv Marly. Werewolves of Miller’s Hollow: The Village.
Lui-méme, 2009.

9. Alexis Drogoul. When ants play chess (Or can strategies emerge from tactical
behaviours?). In Cristiano Castelfranchi and Jean-Pierre Miiller, editors, From
Reaction to Cognition: 5th European Workshop on Modelling Autonomous Agents
in a Multi-Agent World, MAAMAW ’98 Neuchatel, Switzerland, August 25-27,
1993 Selected Papers, pages 11-27. Springer, 1995.

10. André Ferreira. DipBlue: a diplomacy agent with strategic and trust reasoning.
Master thesis, Universidade do Porto, 2014.

11. André Ferreira, Henrique Lopes Cardoso, and Luis Paulo Reis. Strategic Negotia-
tion and Trust in Diplomacy — The DipBlue Approach. In Ngoc Thanh Nguyen,
Ryszard Kowalczyk, Béatrice Duval, Jaap van den Herik, Stephane Loiseau, and
Joaquim Filipe, editors, Transactions on Computational Collective Intelligence XX,
pages 179-200. Springer International Publishing, Cham, 2015.

12. Michael Genesereth, Nathaniel Love, and Barney Pell. General Game Playing:
Overview of the AAAI Competition. AI Magazine, 26(2):62-72, 2005.

13. Sarit Kraus, Ramat Gan, and Daniel Lehmann. Designing and Building a Negoti-
ating Automated Agent. Computational Intelligence, 11(972):132-171, 1995.

14. Joao Marinheiro and Henrique Lopes Cardoso. A Generic Agent Architecture for
Cooperative Multi-agent Games. In Proceedings of the 9th International Confer-
ence on Agents and Artificial Intelligence - Volume 1: ICAART,, pages 107-118,
2017.

w

15.

16.

17.

18.

19.

20.

21.

John Nash. Non-Cooperative Games. The Annals of Mathematics, 54(2):286-295,
September 1951.

David Norman. David’s Diplomacy Al Page. http://www.ellought.demon.co.
uk/dipai/. Accessed: 2017-05-16.

University of Essex. The GVG-AI Competition. http://www.gvgai.net. Accessed:
2017-05-16.

Luis Paulo Reis, Pedro Mendes, Luis Filipe Teéfilo, and Henrique Lopes Cardoso.
High-Level Language to Build Poker Agents, pages 643-654. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2013.

Sam Schreiber. GGP.org — General Game Playing. http://www.ggp.org. Accessed:
2017-05-16.

David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, loannis Antonoglou, Veda Panneer-
shelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalch-
brenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu,
Thore Graepel, and Demis Hassabis. Mastering the game of Go with deep neural
networks and tree search. Nature, 529:484-503, 2016.

Michael Thielscher. The General Game Playing Description Language is universal.
In Proceedings of the Twenty-Second International Joint Conference on Artificial
Intelligence (IJCAI-11), pages 1107-1112, 2011.

