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A B S T R A C T

Model developments to assess different air pollution exposures within cities are still a key challenge in en-
vironmental epidemiology. Background air pollution is a long-term resident and low-level concentration pol-
lution difficult to quantify, and to which population is chronically exposed. In this study, hourly time series of
four key air pollutants were analysed using Hidden Markov Models to estimate the exposure to background
pollution in Madrid, from 2001 to 2017. Using these estimates, its spatial distribution was later analysed after
combining the interpolation results of ordinary kriging and inverse distance weighting. The ratio of ambient to
background pollution differs according to the pollutant studied but is estimated to be on average about six to
one. This methodology is proposed not only to describe the temporal and spatial variability of this complex
exposure, but also to be used as input in new modelling approaches of air pollution in urban areas.

1. Introduction

Air pollution is a major environmental concern in urban areas
worldwide, with significant impacts on societal health and economy
(WHO, 2016). There is a growing evidence of mortality and morbidity
effects related to long-term exposure to ambient air pollution (Cheng
et al., 2017; Lao et al., 2018; Lee, Kim, & Lee, 2014; Weinmayer et al.,
2015). Moreover, health outcomes have been seen at very low levels of
exposure (Lepeule et al., 2014), and it is unclear whether a threshold
concentration exists below which no effects on health are likely. The
association among low and long-term air pollution with human health
outcomes has not been firmly established and additional insights are
needed to collectively strengthening epidemiological evidences. Iden-
tify exposures that contribute to health outcomes and construction of
exposure summary measures are questions of interest in environmental
epidemiology (Weisskopf, Seals, & Webster, 2018), and represent the
main motivation of this work.

Background concentration has been defined as the concentration
that is not affected by local sources of pollution (Menichini, Iacovella,
Monfredini, & Turrio-Baldassarri, 2007; WHO, 1980). In urban areas,
the background concentration levels are typically measured at air

pollution monitoring sites far from local sources of pollution (back-
ground sites), and these concentrations are considered be the sum of
contributions from regional and urban background emissions (Gao
et al., 2018). Typically, these background levels are studied: (i) to better
understand the contributions of local sources to total pollutant con-
centrations; and (ii) to allow the assessment of new pollutant sources
that are introduced into the area of study and their impact on local air
quality. In this work, this definition of background concentration is
extended and it is considered to be influenced by local contributions
(e.g., traffic hot-spots). Thus, it is possible to assess a more realistic
long-term air pollution exposure of low concentration to which the
population is chronically exposed. The importance of its study resides
in representing at study areas a range of minimum and stable con-
centrations of ambient air pollution, which is permanently resident in
the long run.

Opportunities for exploring novel exposures parameters that have
been previously difficult to quantify is a key challenge in environmental
epidemiology (Tonne et al., 2017). This study aims to provide a reliable
estimate of background (low) and long-term air pollution focusing on
intra-urban scales, and therefore, to contribute with new input in-
formation to epidemiological studies regarding the association of air
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pollution with human health effects in cities. Specific objectives are: (i)
to characterize quantitatively the background air pollution (NO2, O3,
PM10 and SO2) at temporal and spatial scales in Madrid urban area
during the period from 2001 to 2017; and (ii) to standardize a robust
methodology to estimate a chronic exposure measurement to these air
pollutants (or others) and possibly extended to other types of pollution
(e.g., noise or odour pollution).

2. Data and methods

2.1. Area of study

Madrid is the third most populous city in the European Union after
London and Berlin and the largest city of Spain, with an estimated
population of 3.1 million people in the city and 7.3 including the me-
tropolitan area (INE, 2017; Madrid City Council, 2017). Madrid's
economy is based on the service, construction and industry sectors. Its
location in the centre of the country also makes Madrid the main
transport knot within the Iberian Peninsula (Cuevas et al., 2014) with
road traffic the main source of PM10 and NO2 emissions (Montero &
Fernández-Avilés, 2018). Quantitatively, 48% of PM10 has been proved
to be contributed by vehicle emissions (Salvador, Artíñano, Alonso,
Querol, & Alastuey, 2004), and NO2 and CO are related to traffic in
more than 80% (Monzón & Guerrero, 2004). The SO2 levels, mainly
produced by energy production and distribution activities, and to a
lesser extent by the commercial, institutional and households sector,
have experienced a decreasing due both to the reduction of residential
coal burning and the use of gasoline vehicles, but also by the im-
plementation of particles filters in diesel engines (Salvador, Artíñano,
Viana, Alastuey, & Querol, 2012). As in many urban environments, O3

is photochemically produced (secondary air pollutant) under specific
conditions or transported from other regions, presenting higher levels
at city outskirts (due to lower levels of nitrogen oxides). In particular in
Madrid, 65% of tropospheric O3 formation is accounted for traffic-re-
lated precursors (Valverde, Pay, & Baldasano, 2016). European Com-
mission limits (Directive 2008/50/EC) and WHO guidelines (WHO,
2005) values are currently being complied in Madrid concerning par-
ticulate matter, but not for NO2 (MAPAM, 2017) with high pollution
episodes recently studied (Borge et al., 2018). Although NO2 and PM10

ambient air concentrations have shown a clear decreasing trend during
the last years due to the emission reductions in the road traffic sector
(economic recession from 2008), use of adoptions of eco-friendly fuels
(Euro 4 and Euro 5 emission standards in vehicles) and emission control
policies, this urban area has experienced an increase of ambient air O3

levels (30–40%, Saiz-López et al., 2017), as well as in other European
cities. Unfortunately, air quality in Madrid is still an issue of remarkable
concern and therefore motivated to be the focus of this study.

2.2. Data

The air quality monitoring network (AQMN) of Madrid included 24
operating sites in 2017 and is managed by the Madrid City Council,
which ensures its correct maintenance and validation of monitored
data. These sites are classified according to their location (U-urban, S-
Suburban) and main pollution source (T-traffic, B-Background).
Location and typology of studied sites are provided in Supplementary
Material (SM. – 1). Analysed data in this study were hourly time series
(TS) for each year from 2001 to 2017, of NO2, O3, PM10 and SO2 ob-
tained from 38 monitoring stations (Fig. 1) when available.

Validated hourly data (in μg·m−3) were obtained from the Madrid
City Council's Open Data portal (https://datos.madrid.es). Every TS for
a given year and air pollutant was studied only if two criteria were met:
(i) at least 80% of hourly values were available during the year
(minimum of 7008 hourly values); and (ii) at least 11 months should
present the mentioned minimum monitoring efficiency (minimum of
576 hourly values). The length of the studied TS differentiated by

monitoring site, year and air pollutant is provided in SM.2.

2.3. Background pollution estimation

Air pollution levels at urban regions depend on the atmospheric
phenomena that occur at different spatial scales, from international
scales to street levels. Moreover, the choice of the model is dependent
on the purpose of the simulation (Borge et al., 2014). In this study, the
background air pollution concentration was estimated independently
on annual TS of NO2, O3, PM10 and SO2 pollutants at hourly resolution
and summarized as an annual average concentration, using Hidden
Markov Models (HMM). These models allow for estimating the back-
ground ambient pollution, which represents a long time exposure to air
pollution experienced by the population. The methodology for this es-
timation has been previously described by Gómez-Losada, Pires, and
Pino-Mejías (2016) and proved to be a convenient approach for that
purpose in Gómez-Losada, Pires, and Pino-Mejías (2018). In the interest
of space, the elements and a mathematical description of HMM are
provided in SM.3. This study represents an application of such metho-
dology to Madrid’ urban and metropolitan areas and succinctly ex-
plained next.

In this study, the goal of HMM is to obtain groups of hourly ob-
servations of air pollutants in each annual TS, forming different clus-
ters. These clusters group similar hourly concentration values, which
are simultaneously dissimilar to the rest of hourly concentrations
grouped in other clusters detected in TS. There are multiple techniques
to identify cluster in data. However, the main difference of HMM with
the rest of these techniques is that HMM is especially devoted to deal
with dependent (TS) data (Zucchini & MacDonald, 2009). Hence,
hourly TS observations forming clusters in each TS are assumed to re-
present profiles (regimes) of pollution. The more suitable number of
clusters detected in each TS is estimated according to the Bayesian in-
formation criteria (BIC) value. Each of these pollution profiles may be
summarized by its average value, which are calculated as the average
values of the hourly observations grouped within each cluster. There-
fore, the cluster with lowest average value can be assumed to represent
the annual background average concentration of the studied air pollu-
tant, and is the one of interest in this work. Likewise, without applying

Fig. 1. Studied air quality monitoring sites in Madrid, from 2001 to 2017.
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a clustering to the hourly TS observations, the annual average con-
centration of all the TS observations provides the average ambient
pollution. Fig. 2 illustrates the results (in red) after applying the HMM
methodology to TS data for estimating the background pollution.

The computational implementation of HMM was performed using
the depmixS4 package (Visser & Speekenbrink, 2010) in R software (R
Core Team, 2017) and an example script for HMM implementation is
provided in SM.4.

2.4. Spatial analysis of background air pollution

After applying independently HMM to each analysed TS (from every
available air pollutant, at monitoring sites and by years), the estimated
average background air pollution concentrations at sites were used to
map the geographical variation of background air pollution over
Madrid. According to Li and Heap (2014), spatial interpolation methods
fall into three categories: (i) non-geostatistical, (ii) geostatistical; and
(iii) combined methods of the previous ones. The selection of an ap-
propriate interpolation method for a given input data set is still a key
issue on which little guidance exists. In interpolation methods com-
monly used in environmental studies, important factors affecting the
quality of the estimates are the sampling density and the clustering and
spatial distribution of samples, with possible interaction among these
factors (Tadic, Ilic, & Biraud, 2015). Therefore, to minimize the lim-
itations of each interpolation method, combined methods have been
recently developed to produce the spatial estimates (Li & Heap, 2011;
Li, Heap, Potter, & Daniell, 2011). To that end, in this study, the spatial
distribution of the background air pollution was estimated after aver-
aging the estimates of one non-geostatistical (inverse distance
weighting –IDW-) and one geostatistical (ordinary kriging -OK-)
methods. These well-known methods are next briefly described. A de-
tailed comparison of IDW and OK methods can be found in Wong, Yuan,
and Perlin (2004) and other basic geostatistical documents.

IDW and OK are interpolation methods widely used to estimate
spatial distribution of air pollution and are representative of determi-
nistic and stochastic interpolation methods, respectively. In both, the
estimated air pollution concentration at unsampled locations are com-
puted as a weighted average, given the concentrations at a set of
neighbouring sampled values, and a weight assigned to each of the

neighbouring values, with all the weights summing to one. In IDW, the
weights are arbitrarily determined (deterministically) using a pre-
defined mathematical expression. In OK, they are obtained from the
sample data based on a variogram. A variogram expresses the degree of
similarity between two sampled observations separated by a given
distance (lag).

The interpolation weights in IDW are computed as a function of the
inverse distance between observed sample sites and the site at which
the prediction has to be made. IDW assumes that each measured point
has a local influence that diminishes with distance. The influence of the
distance can be controlled by an exponent (p) in such a way the lower
the exponent, the more uniformly all neighbour values are incorporated
into the interpolation. If p=0, the weights do not decrease with the
distance and the estimated values at unsampled locations are equal to
the mean of all the measured values; the value p=2 is typically set by
default in most applications, meaning that the importance of each
measured location in determining a predicted value diminishes as a
function of squared distance.

OK has been previously used with success to model both O3 and
PM10 at the local scale, and to model broader scale variations in the
background air pollution (Beelen et al., 2009). In particular, the OK is
applied when the level of a pollutant does not exhibit a marked drift
over the area under study (Jerret et al., 2005), as in the Madrid's case
(results not shown). In OK interpolation, the function determining the
weights is called a variogram model. This model is a function fitted to
the (empirical) variogram, which in turn describes the spatial auto-
correlation structure of the observed pattern. The choice of this model
may play a significant role in the resultant spatial estimations. A re-
markable difference between IDW and OK is that the first yields esti-
mates that are always within the range of the observed values at sam-
pled locations.

The computational implementation of the IDW and OK was per-
formed using the gstat package (Gräler, Pebesma, & Heuvelink, 2016)
from R software, after geo-referencing the monitoring sites in the
WGS84 coordinate reference system. To estimate the optimal value for
p in IDW, a cross-validation procedure was performed using values for p
from 1 to 5 to build models and tested on held-outs fractions of the data
(2:3 ratio for building IDW models with different p, and 1:3 for testing).
The best p value was selected according the lowest root mean squared

Fig. 2. Background analysis of NO2 at Plaza de
España monitoring station (urban traffic site), in
2017 (in μg·m−3). A. The hourly observations
grouped by HMM in the cluster with lowest average
concentration value represent the background pol-
lution and are red coloured. B. The same results are
represented as a histogram. To the histogram of TS
data (grey line) is superimposed its density (thick
black line) and the density of each cluster detected
by HMM (the density of the background -bg- regime
is shown in thick, red line). Box whiskers plots re-
present the range of concentration for each cluster
detected by HMM (background pollution in red). In
both figures, the arrows represented the average
value of the background (red arrow) and ambient
pollution (black arrow), respectively. (For inter-
pretation of the references to colour in this figure
legend, the reader is referred to the web version of
this article.)
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Fig. 3. Evolution of the average background (“Bg”, coloured box-whisker plots) and ambient (“Av”) pollutions, from 2001 to 2017, estimated for NO2, O3, PM10 and
SO2, at every monitoring site and for each year. Ambient pollution concentration is referred to the left axis and background pollution to the right one (in μg/m3).
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error obtained in the testing fractions. In OK, the optimal variogram
model was determined using the autofitVariogram function from the
automap package (Hiemstra, Pebesma, Twenhofel, & Heuvelink, 2009)
and later this result used as an input in the krige function (gstat
package). Each of the pollution maps produced for each year has a
343.3 km2 surface (16.8 km east-west x 20.5 km north-south) and are
represented by 437 grid cells (23 cells× 19 cells), each of them cov-
ering approximately an area of 0.8 km2. A general overview of the re-
lationship of background levels of studied air pollutants and its tem-
poral and spatial trends were later obtained by means of multivariate
analysis (Principal Components Analysis -PCA-). PCA was performed
using the dudi.pca function from ade4 package (Dray & Dufour, 2007) in
R.

3. Results and discussion

3.1. Evolution of the ambient and background pollution: 2001–2017

Fig. 3 shows the evolution of average background pollution esti-
mated at monitoring sites illustrated as coloured box-whisker plots, and
compared to ambient pollution as a reference (white box-whisker
plots). Trends are indicated with a joining line through the median of
each box-whisker plot. As it can be seen in this figure, the quantitative
difference between the background and ambient pollution differs ac-
cording to the studied air pollutant. Remarkably, this difference re-
mains practically constant for NO2 and with few differences for PM10

and SO2. Regarding O3, this difference makes clearer from 2009 on-
wards with a downward trend of the background pollution drawing a
distinction with the ambient pollution. The quantitative relation be-
tween the background and ambient air pollution (ratio) is numerically
provided in Table 1. The increase and decrease of this ratio between the
ambient and background pollution concentrations for NO2, PM10 and
SO2 practically remains constant for the 17 years period. With regard
NO2 and PM10, this ratio estimates that background air pollution is on
average about seven times lower (6.9 units) than ambient pollution and
two times lower (2.3 units) for SO2. For O3, it can be distinguished two
epochs (2001–2009 and 2010–2017) with the ratio increasing from 8.5
to 11.6, respectively. Considering all the air pollutants, this ratio is
estimated in 6.2 units.

Except for O3, the studied background pollution trends mimic the
one from the ambient pollution, suggesting that the prevalence of the
former could be likewise affected by meteorological and physical

factors that influence the levels of ambient pollution in Madrid. The
contributions from non-local (regional) sources to the estimated levels
of background pollution is likely to be present, although their study
would require a more detailed investigation. The abrupt decrease of
background O3 from 2009 to 2010 indicates that a lag of one year is
exhibited with respect the beginning of the emission cut downs of O3

precursors due to economic recession (2008). The median location
within the box-whisker plots for all the pollutants is irregularly placed
across years, indicating the departure of the normal statistical dis-
tribution of background concentrations on Madrid sites. In the PM10

case, from 2008 onwards the length of the box-whisker plot indicates
that the PM10 pollution is approximately similar for most of the mon-
itoring sites studied.

Exploration of new threshold values of air pollutants below which
no damage to health is observed have been set as a priority by World
Health Organization (2016; WHO, 2003). To this regard, the presented
levels of background pollution and its spatial analysis (provided in next
section) are proposed as suitable concentrations levels for investigating
their possible association with health outcomes detected in Madrid.
Complementarily, one of the uses of these estimates can be also their
inclusion as inputs or covariates in environmental epidemiological
studies dealing with health outcomes.

3.2. Spatial analysis of background pollution

The choice of spatial unit analysis has important implications for
results of epidemiological studies (Fecht et al., 2016). To better un-
derstand the possible adverse health effects associated with exposure to
background air pollution, maps given in Figs. 4 and 5 for NO2 and O3,
respectively, provide sufficient detail to investigate such associations by
Madrid's geographical zones. The same consideration is valid for PM10

and SO2 maps (Figs. SM.2 and SM.3, respectively). The spatial dynamic
of background pollution for all the studied pollutants is difficult to
assess. Mainly, this is due to the urban heat island effect present in
Madrid (Salamanca, Martilli, & Yagüe, 2012; Yagüe, Zurita, & Martínez,
1991) that affects not only the dynamics of pollutants beyond the me-
teorological and physical factors, but also the regional contributions to
the background pollution originated in adjacent municipalities from the
Madrid metropolitan area. These contributions are strongly dominated
by the road traffic sector (Borge et al., 2014). In these maps, two dis-
tinct pollution nuclei can be differentiated, namely, the Madrid's urban
core delimited by the M-30 ring road (inner position, Fig. 1) and the

Table 1
Ratio between the average and background pollution annual mean values for all the studied sites in Madrid from 2001 to 2017.

Pollutants

Year NO2 O3 PM10 SO2 Average

Ratio Increase Ratio Increase Ratio Increase Ratio Increase Ratio Increase

2001 5.4 – 9.7 – 7.4 – 4.1 – 6.7 –
2002 4.6 −0.8 7.9 −1.8 7.1 −0.3 3.0 −1.1 5.7 −1.0
2003 4.5 −0.1 8.7 +0.8 7.7 +0.6 2.7 −0.3 5.9 +0.2
2004 4.7 +0.2 9.5 +0.8 7.6 −0.1 3.0 +0.3 6.2 +0.3
2005 5.7 +1.0 8.3 −1.2 7.3 −0.3 2.3 −0.7 5.9 −0.3
2006 4.9 −0.8 8.1 −0.2 7.7 +0.4 2.1 −0.2 5.7 −0.2
2007 5.4 +0.5 8.5 +0.4 6.6 −1.1 2.6 +0.5 5.8 +0.1
2008 5.1 −0.3 7.2 −1.3 5.8 −0.8 2.2 −0.4 5.1 −0.7
2009 5.5 +0.4 8.4 +1.2 5.2 −0.6 1.8 −0.4 5.2 +0.2
2010 5.4 −0.1 10.0 +1.6 4.7 −0.5 2.0 +0.2 5.5 +0.3
2011 6.1 +0.7 16.4 +6.4 4.5 −0.2 2.2 +0.2 7.3 +1.8
2012 6.5 +0.4 7.0 −9.4 5.3 +0.8 2.2 0.0 5.3 −2.1
2013 6.8 +0.3 18.3 +11.3 5.0 −0.3 1.7 −0.5 8.0 +2.7
2014 7.0 +0.2 6.4 −11.9 5.4 +0.4 1.6 −0.1 5.1 −2.9
2015 6.8 −0.2 16.2 +9.8 10.3 +4.9 1.6 0.0 8.7 +3.6
2016 6.4 −0.4 14.5 −1.7 9.0 −1.3 2.1 +0.5 8.0 −0.7
2017 7.2 +0.8 3.7 −10.8 8.5 −0.5 2.3 +0.2 5.4 −2.6
Average 5.8 6.0 8.0 2.3 6.2
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Adolfo Suarez Madrid-Barajas airport area (site 27, Fig. 1). The 24 and
58 sites (left side, Fig. 1) correspond to suburban monitoring sites, and
in particular the first one, with the largest public park in Madrid (Casa
de Campo). It is worth to note that the quantitative variations in

background pollution levels (range of concentration values) are lower
than in the ambient pollution case (Fig. 3).

In Fig. 4, two epochs in NO2 maps can be clearly distinguished, from
2001 to 2008 and from 2009 to 2017 years. During the first period,

Fig. 4. Estimation of spatial distribution of background NO2 concentrations, from 2001 to 2017.
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airport and urban core show highest levels of background pollution, in
the first case due to heavily trafficked hot spots, and in the second one,
probably due to the air traffic. From 2008 ahead, the background
pollution shows a steady decrease that determine lowest concentrations

until 2017. From 2012 onwards, the evolution of the background pol-
lution is irregular considering the narrow interval showed (lower than
five or 10 μg/m3).

The background O3 spatial gradients behaviour is approximately

Fig. 5. Estimation of spatial distribution of background O3 concentrations, from 2001 to 2017.
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consistent with higher levels of O3 ambient pollution at city outskirts.
This can be appreciated during most of the years except higher levels of
background pollution at specific monitoring sites from the urban core
(e.g., 2002 and 2005). However, the association between NO2 and O3

background levels cannot be easily established, probably due to the low
concentration levels of the background fraction of both pollutants.

PM10 background concentrations may serve as a proxy for traffic
pollution, as reflected in higher concentrations estimated at traffic hot-
spot sites during 2007, and 2011 to 2014. However, low levels of PM10

are approximately constants during the studied period. Typical con-
tributions in Madrid for PM10 background pollution could also be ex-
plained by dust outbreaks from Sahara desert.

SO2 background concentrations are influenced, primarily by the
industrial sector (including thermoelectric stations) and secondarily by
traffic. Higher concentrations were estimated in 2001, 2005, and 2009.
However, the SO2 concentrations have been decreasing due to the po-
licies and strategic measures applied, such as the burying of the M-30
road and the changing trend of power generation.

3.3. Multivariate analysis using the obtained estimates

In this section, it is presented a general overview of the multivariate
relationships among pollutants, at the different studied sites and dates.
PCA was performed over a dataset containing the background con-
centration estimates obtained in previous sections conveniently iden-
tified in time and location along the whole period of study.

Fig. 6 illustrates the resulting factorial map, in which individual
observations are projected (grey points) over the two first principal
components resulting from PCA (PC1 and PC2), projection of numerical
variables (red arrows) is overlapped, and projection of years (blue) is
given as well. As usual in PCA, the angle between numerical variables
projection's and principal components is related with the correlations
between them and the length of projection with the importance in the
first factorial axis. Also, projection of centroids with years allows to
understand temporal trends. The PCA shows that NO2 and PM10 (in red)
appear with a weak positive association (they project on the same di-
rection with small angle between them), meaning that PM10 tends to
increase together with NO2, as well as O3 tends to grow together with
SO2. The georeference of each observation is represented in variables x
and y, indicating the longitude and latitude where the measurements

were taken. As longitude (red arrow labeled with x) projects in the same
direction of the second factorial axis (PC2), observations in I and II
quadrants (upper part of the figure) tend to be in the Eastern part of the
city (longitude increases to the East), whereas III and IV quadrants are
in the Western part. The figure indicates that the Eastern part of the city
has typically higher O3 and SO2 concentrations. The former one accu-
mulates in city outskirts as a consequence of traffic. The later comes
mainly from power generation and is frequent in industrial areas, like
those present in the metropolitan areas of big cities. In the Madrid's
metropolitan area, NO2 and PM10 levels, mainly produced by traffic
congestions tend to be lower, as opposed to Madrid's city center where
traffic congestion is intense and register higher values.

By projecting the years on top of this factorial map, it is seen that, in
general, background air pollutant concentrations decrease along time
(as years increase towards the right hand side of the map whereas the
variables representing pollutants projects towards the left hand side of
the map). It is also remarkable that between 2010 and 2011 there is a
significant change in pollution. This is aligned with the requirement
that European Commission sent to Spain on November 24, 2010 to
activate measures to comply with the air quality standards from the Air
Quality Directive 2008/50/CE, that caused the elaboration of the
Spanish Royal Decree 102/2011, regarding improvements in quality of
air. Fig. 6 shows that the policies activated by 2011 effectively reduced
the background pollution levels of the studied pollutants in Madrid.

3.4. Daily patterns of background pollution

Existing studies have shown evidences of daily variation in exposure
to ambient PM10, NO2, and O3, to be linked to acute pulmonary and
cardiovascular outcomes. Moreover, levels considered generally safe by
regulatory authorities have been suggested to also increase the daily
and even hourly risk of adverse health outcomes (Lin et al., 2018).
Delfino, Zeiger, Seltzer, Street, and McLaren (2002) predicted that the
next phase of epidemiological research would use better spatially and
temporally resolved data that take into account personal time-place-
activity patterns and hourly exposures. For these reasons, the daily
background pollution trend is briefly studied at selected monitoring
sites in Madrid (Urban-traffic, urban-background and suburban) for all
the considered pollutant. Fig. 7 illustrates the evolution of background
and average pollution at these sites. Remarkably, the daily evolution

Fig. 6. First factorial plane showing global relationships between pollutants, time and space (eigenvectors in red). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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pattern of average and background pollution is similar for the studied
air pollutants, even the typology of monitoring sites is different as well
as the genesis and dynamic of the studied pollutants.

Fig. 8 shows the relation between the average and background
pollution for 2017 considering all monitoring sites and air pollutants.
These results show the similar dynamic experienced by the background
levels with respect the ambient pollution, even the quantitative relation
varies according to the hour of the day. The behaviour of this relation is
less affected in the case of PM10, meanwhile in the case of O3 the
change is evidenced from midday onwards, and from 18 h onwards in
the case of NO2. Background values for SO2 remain practically constant
through the day.

3.5. Limitations and strengths

It is important to consider that during the studied period (2001 to
2017), the AQMN of Madrid has experienced relocation of monitoring
sites and change the focus of the monitored pollutants, according to the
new requirements from European legislation regarding the number of
stations required in urban environments (Directive 2008/50/EC). This
circumstance might prevent to obtain a consistent view of air quality
evolution in the city. However, the spatiotemporal approach presented
in this work is useful to impute all missing values in all locations along
the period of study. The proposed methodology contributes to spatio-
temporal modelling of exposure levels with robustness to possible re-
location of monitoring stations. The single impact of relocation is the
uncertainty associated with the measurements, since the estimated one
has higher variance, but allows integration of a whole geographical
area in the analysis, regardless the continuity and length of the time
series provided by every single monitoring station. It is important to
clarify that, although the background pollution is influenced by local
sources (Moreno et al., 2009), it can be less affected than ambient
pollution when relocation schemes are performed. Secondly, the Ma-
drid's relocation of sites was studied by Montero and Fernández-Avilés

(2018) with regard PM10 ambient pollution. These authors concluded
that the new pollution maps of the city obtained after relocating sites
show a similar pattern that would have been provided by the previous
configuration of sites.

Urban concentration levels depend on atmospheric phenomena that
occur at different spatial scales, from transboundary scales to street
levels of a few meters (Monteiro, Miranda, Borrego, & Vauard, 2007).
Additionally, these levels present complex interactions with a large
variety of chemical in the atmosphere, to not cite few the meteor-
ological conditions affecting their dynamics. Up to now, no single
model can describe the process consistently so a combination of models
is needed to address such description (Borge et al., 2014). The model-
ling results applied in this study could be integrated into other models
in order to avoid failing to explain to what extent local and non-local
sources contribute to the estimated background concentrations.

The background pollution and its spatial analysis can be helpful in
environmental epidemiological studies concerning health effects de-
tected in the studied area. Moreover, the estimation of the background
pollution by this methodology could reduce the necessity of back-
ground monitoring sites. To confirm the levels obtained by this meth-
odology only few of the existing sites would be necessary. This meth-
odology would also provide important information to the population
and can be applied to other forms of pollution as long as it is monitored
at a convenient resolution. Air pollutions maps provide a complete air
quality description, which can be helpful identifying new sources of
emissions located inside of the monitored area.

4. Conclusions

In this study, the temporal and spatial scales of the background
pollution were characterized during the period between 2001 and
2017, in Madrid (Spain). The difference between the ambient and
background pollution between was practically constant for NO2 and
with few significant differences for PM10 and SO2. Regarding O3, this

Fig. 7. Daily evolution of ambient and background pollution at different types (urban traffic, urban background and suburban) of monitoring sites, during 2017 (in
μg·m−3). Bold numbers inside graphics identify monitoring sites.
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difference makes clearer from 2009 onwards with a downward trend of
the background pollution drawing a distinction with the ambient pol-
lution. The ratio between the ambient and background concentration
was constant for NO2, PM10 and SO2. For NO2 and PM10, the back-
ground pollution is on average six times lower and for SO2 is around
two times lower than the ambient pollution. Regarding O3, two epochs
are distinguished (2001–2009 and 2010–2017), where the ratio in-
creasing from 8.5 to 11.6, in each of them. The spatial analysis of
background pollution is difficult to assess due to meteorological and
physical factors and the regional contributions originated in adjacent
municipals. Nevertheless, it can be distinguished two epochs regarding
NO2 background concentrations (2001–2008 and 2009–2017). The
high levels observed in the first period are strongly dominated by the
heavily trafficked M-30 road and by air traffic. The O3 spatial gradients
are consistent and higher levels of ambient O3 in outskirts. With regard
to PM10, higher concentrations were estimated at traffic hot-sites in
2007, 2011 and 2014. Moreover, these events can be affected by dust
outbreaks from Sahara desert. The SO2 background pollution has been
decreasing during the study period, but higher concentrations were
estimated in 2001, 2005, and 2009. The background pollution esti-
mates from the four studied air pollutants were used to build a spa-
tiotemporal dataset to perform a global multivariate analysis. The PCA
showed a significant decrease of background pollutant concentrations
after the activation of measures to comply with the Air Quality
Directive in Spain. Besides, global behaviours of pollutants in the
Eastern city outskirt related to industry and traffic were also identified,
showing the usefulness of getting these estimates for further analysis.

It has been seen that these models provide a comprehensive over-
view, and probably a robust approach, of the complex estimation of
background air pollution, which represents a chronic level of exposure
to which the population is permanently exposed in cities.
Complementarily, it is recommended their combination with other

modelling approaches, as new information inputs in epidemiological
studies or to be extended to other forms of pollution. The performed
modelling approaches are easy to implement and readily accessible at
available R libraries or other commercial statistical software, making it
possible to carry out all these analyses successfully without significant
statistical expertise.

Disclaimer

The views expressed are purely those of the author and may not be
regarded, in any circumstances, as stating an official position of the
European Commission.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.compenvurbsys.2018.12.005.
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