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Resumo

O cancro da mama é uma doença amplamente conhecida, principalmente em mulheres. Tem
uma mortalidade consideravelmente baixa comparativamente com outras formas de cancro, no
entanto é a forma mais comum nas mulheres, trazendo graves consequências a nível físico e psi-
cológico. Esta baixa mortalidade deve-se maioritariamente à monitorização desde cedo de mul-
heres que se encontrem no grupo de risco para esta forma de cancro, dada a sua idade ou o seu
histórico familiar, permitindo uma deteção precoce do cancro assim como um tratamento anteci-
pado, que consequentemente será mais eficaz.

A maioria das pacientes necessita de realizar cirurgia mamária para a remoção do tumor, e esta
cirurgia pode ter o propósito de remover a totalidade da mama ou apenas a zona onde o tumor se
encontra e as suas redondezas. Os resultados desta cirurgia nem sempre correspondem ao que era
expectável, e a mama pode de alguma forma ficar deformada após a cirurgia.

A presença de um modelo tridimensional da mama, que é específico à paciente, irá melhorar
a comunicação entre a paciente e o clínico, permitindo uma visualização mais clara do modelo
da mama e da localização do tumor, antes da cirurgia. Esta visualização permitirá uma melhor
compreensão de como será a cirurigia e do que é que a paciente pode esperar desta. Estes mod-
elos podem também ser usados para criar modelos biomecânicos ou modelos criados a partir de
Machine Learning, que irão ajudar a prever as deformações que irão ocorrer na mama também.
No entanto, estes modelos não são fáceis de obter, maioritariamente devido à natureza não rígida
e deformável da mama.

Muitas técnicas de imagem são usadas na atualidade na deteção de cancro da mama, como
ultrassons, mamografias e ressonâncias magnéticas, e esta última será usada na aquisição de ima-
gens deste trabalho, pois fornece a informação interior da mama dividida por fatias que depois são
usadas para construir um volume. Para criar este modelo, imagens de ressonância magnética e de
superfície, e a sua correspondência serão feitas para combinar tanto a informação externa como a
interna da mama. Os dados de ambas as modalidades não são obtidos com o paciente na mesma
posição portanto, primeiramente deve ocorrer uma transformação de pose.

Apesar da mama ter um comportamento não rígido, o registo dos dados obtidos da ressonância
magnética e da superfície irão incluir um registo rígido e não rígido. O registo rígido é um passo
essencial para a boa performance do registo não rígido, tendo em conta que irá aproximar as duas
nuvens de pontos e irá colocá-las no mesmo espaço. O registo rígido incluirá transformações
como rotações e translações e a implementação do algoritmo Iterative Closest Point. O registo
não rígido será feito pela implementação do algoritmo Free Form Deformation.

Pacientes provenientes de dois projetos diferentes serão usados para formar os conjuntos de
dados usados nesta dissertação, que incluirá também um conjunto de dados para validação. Métri-
cas como a distância Euclideana e a distância de Hausdorff são usadas para avaliar a precisão
das transformações, no entanto essas métricas não consideram que os pontos estão na verdade a
representar um objeto tridimensional, não sendo totalmente confiáveis. Para complementar estes
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resultados, a visualização das nuvens de pontos e dos passos intermédios do registo é essencial
para compreender qual será a melhor metodologia a implementar.

Um conjunto de dados de validação foi também criado com a intenção de validar as defor-
mações induzidas na mama. Este conjunto inclui sete pacientes, com pontos de referência marca-
dos com cápsulas de óleo de fígado de bacalhau. Os resultados mostram que a melhor implemen-
tação regista apenas uma mama de cada vez e não o torso completo e usa o paciente na posição
vertical, depois da transformação de pose. O registo rígido inclui duas rotações, uma correção de
orientação através do plano xy, uma translação através da zona do mamilo e a implementação do
Iterative Closest Point. O registo não rígido será realizado usando a Free Form Deformation com
uma grelha de pontos de controlo de [6,6,6].

Os resultados obtidos são bastante promissores para uma futura implementação em ambiente
clínico, providenciando uma excelente ferramenta para ajudar tanto o paciente como o clínico,
para respetivamente compreender e planear melhor as consequências da cirurgia mamária.



Abstract

Breast cancer is a widely known disease, mostly for its appearance in women. It has a con-
siderable low mortality comparing to other forms of cancer, but it is the most common form of
cancer in women, bringing meaningful physical and mental consequences for the patients. This
low mortality is mainly due to the monitoring of the women who are above a certain age, or have a
certain family history, which allows an early detection of the cancer as well as an early treatment,
that is consequently more effective.

Most of the patients need to perform breast surgery to remove the tumour, and this surgery can
be to remove the entirety of the breast or only the tumour and its surroundings. The outcomes of
this surgery do not always match what was previously expected, and the breast can be somehow
deformed after the procedure.

The presence of a three-dimensional breast model, that is patient specific, will improve the
communication between the patient and the doctor, allowing a clear visualization of the breast
and the tumor before the surgery. This visualization will allow a better understanding of how
the surgery will be and what can the patient expect from it. These models can also be used to
create biomechanical models or models created from Machine Learning, which will help predict
the deformations of the breast as well. These models are not easy to be obtained, mostly due to
the non-rigid and deformable nature of the breast.

A lot of imaging techniques are nowadays being used in the detection of breast cancer, as
ultrasounds, mammograms and Magnetic Resonance Imaging, being the last one the one that is
going to be used for the acquisition of breast images since it provides the interior information pf the
breast divided by slices that can then form a volume. To create this model, images from Magnetic
Resonance Imaging and surface data must be combined, and the matching will be done to combine
both interior and exterior information of the breast. The data from both modalities is not acquired
with the patient in the same position, so firstly a pose transformation must be performed.

Even though the breast has a non-rigid behaviour, the registration of the data from the Magnetic
Resonance Imaging and the surface will include a rigid and a non-rigid registration. The rigid
registration is an essential step to the good performance of the non-rigid registration since it will
approximate both point clouds and place them in the same coordinate system. Rigid registration
will include affine transformations such as rotations and translations and the implementation of
a Iterative Closest Point Algorithm. Non-rigid registration is done by performing a Free Form
Deformation algorithm.

Patients from two different projects are used to fill the datasets, that will also include a val-
idation dataset. Metrics such as the Euclidean Distance and the Hausdorff Distance are used to
evaluate the accuracy of the transformations, but these metrics do not consider that the points are
actually representing a three-dimensional object so they are not fully reliable. So, to complement
these results visualizing the final point clouds and the intermediate steps is essential to understand
which is the best methodology.
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A validation dataset was also created with the intention of validating the induced deformations
in the breast. This dataset includes 7 patients, with reference points marked with codfish oil
pills. The results showed that the best implementation registers a single breast at a time, and not
the entire torso, and uses the patient in an upright position, after the pose transformation. The
rigid registration will include two rotations, a correction of the orientation through the xy plane,
a translation through the breast mounds and an Iterative Closest Points algorithm. The non-rigid
registration will be performed using the Free Form Deformation algorithm with a [6,6,6] grid of
control points.

The results obtained are very promising for a future implementation on a clinical environment
providing a great tool to help both the patient and the clinician, to respectively understand and
plan better the consequences of a breast cancer surgery.
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Chapter 1

Introduction

1.1 Context

Breast cancer is a widely known disease, being one of the most common forms of cancer

in women [1]. Its low mortality, compared to its incidence, is mostly due to all the methods of

screening being implemented nowadays [2]. Women start being monitored, around the age of 40,

and campaigns are made to raise awareness of how dangerous the disease is, and inform about

the ways to monitor the breast’s health, so the diagnosis is made early in order to increase the

probability of success of the treatment. This process starts with self breast examination and clinical

breast examination, for younger women, and goes on with the execution of a mammography (X-

ray of the breast), when the patient reaches a certain age (that depends on the country). Considering

some aspects like the clinical history of the patient, the density of the breast or an inconclusive

result of the mammography, the patient may be advised to perform an MRI [2] in order to get a

more accurate result of the breast analysis.

When it comes to the treatment it includes breast surgery to remove the tumour, if chemother-

apy does not prove to be efficient. The surgery may require the removal of the entirety of the breast,

which is called a mastectomy, or just a portion of it, which is called a BCS (Breast-Conserving

Surgery). Mastectomy was previously almost the standard choice for all the patients going through

breast cancer surgery, since the patients felt more safe and less scared of recurrence of the cancer.

Now it is easier to localize the tumour in the breast and remove only that part and the surrounding

tissues, which makes it unnecessary to remove the whole breast. The planning of this type of

surgery and the accomplished result, may not match, which may come from the lack of experience

of the surgeon or the location of the tumour in the breast.

Some deformations caused by breast cancer surgery can go against what was expected by the

patient, and interfere in their personal and social life. The lack of satisfaction with their looks, that

may have come from chemotherapy, will increase after surgery, along with depression, anxiety

and feelings of sexual unattractiveness.

Currently, effort has been made in order to include the patient in the decision-making process,

making her more aware of the risks and capable of deciding some aspects of the surgery, which in

1
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consequence will improve the acceptance of her own body after the surgery.

The next step should include the presence of 3D models of the patient’s breast, combining the

information gathered through radiological exams and data from the surface, to make the changes

and deformations that will occur after breast cancer surgery, more visible to both the patient and the

surgeon, involving the patient in the decision-making process and making them more comfortable

and aware of the process.

1.2 Motivation

The task of creating 3D models of the breast is not easy due to the non-rigid and deformable na-

ture of the breast. But nowadays, this task becomes necessary and useful, not only in the decision-

making process of the breast surgery, but in other types of clinical applications, like in orthodontics

[3] or in preoperative models of the liver [4], for example.

These models can then be used to create biomechanical models or models created from ma-

chine learning, which will help predict the deformations of the breast. This process allows a better

and more clear visualization of the breast deformations after the surgery to the patient, allow-

ing a more informed decision and consequently a more fitting surgery according to the patient’s

expectations.

1.3 Goals

The main goal of this dissertation is to create a 3D model of the breast, by registering images

of different modalities, matching both the interior and the surface data of the breast. The 3D

model could be created from only radiological modalities, but the combination of both radiological

information and surface data, will allow not only a view of the outside part of the breast, but a view

of the interior of the breast as well. This will allow not a generic model, but patient specific models.

This task can be difficult mostly due to the nature of the breast, since when acquiring images

from the interior of the breast, the patient may be standing up or lying down, while in the acqui-

sition of surface data, the patient is normally standing up. In both positions, the breast is shaped

differently. So, for the matching of both radiological and surface data a pose transformation shall

also be done, taking into account all the specifications of the characteristics of the breast.

1.4 Contributions

In this work, the dataset used will include more patients than the previous works, which means

the algorithm will become more universal, since the range of breast sizes, shapes and deformities

will be much wider. When using a larger dataset, problems that might not have been found previ-

ously, might now arise.
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To infer the accuracy of the algorithm, a validation dataset will also be used, avoiding the

problems inherent to the evaluation metrics normally used in Image Registration, such as the

Euclidean Distance.

To approximate the results and the visualization to the reality the breast with the pectoral

muscle on the back will be used, as well as the complete torso, instead of only using the frontal

contour of the breast. The tumour will also be inserted in the breast, and the its behaviour thorough

the algorithm will be analyzed.

The robustness of the algorithm will also be improved, mostly in the rigid registration ap-

proach.

The dataset augmentation, the introduction of a validation dataset and the study of different

methodologies and their different varieties will make it possible to understand what is the best

possible model to register data from different modalities, and which conditions. By understanding

what is in fact the best model to register the breast with the information of different modalities,

it is possible to create a patient specific 3D model and start planning further advances to create

a model that is able to predict the deformations that the breast will go through when performing

breast surgery.

1.5 Structure

The following document is divided in 6 chapters.

The second chapter, Breast Cancer, will refer to the basic principles of breast cancer, including

the statistics (its incidence and mortality), proving that the stakeholder is numerous, how the treat-

ment is performed, including radiological exams and the surgeries performed and how to gather

information from the surface of the breast. This chapter frames the problem treated in this work

in the current reality.

The third chapter, Data Registration, focuses on the current state of the technology, when it

comes to the registration of images, going through all the steps of finding a 3D model of the breast

with all the needed information. It includes the registration of radiological images, the registration

and the reconstruction of the surface data, and subsequently its matching and validation. All the

challenges of these steps are presented as well as some solutions found in the literature.

In the fourth chapter, Methodology, the Methodology used for the acquisition of the datasets

and the image registration process is described..

In the fifth chapter, Results and Discussion, the final results are presented and in the sixth

chapter, some considerations are made about the results and future needed work is defined.
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Chapter 2

Breast Cancer

Among females, breast cancer is the most common form of cancer [1]. Its mortality is not the

highest compared to other forms of cancer, due to all the screening methods and the awareness

of the population that is made. These precautions include screening routines like breast self-

examination, to young women, and clinical breast examination or mammography [2] to women

over 40/50 years old.

There are two types of breast cancer, depending on where the cancer is formed1: ductal cancer,

where cancer starts in the ducts that conduct the milk; and lobular cancer, where cancer starts in

the milk-producing glands. Ductal cancer is the most common type of breast cancer.

2.1 Statistics

According to Globocan 2018 [5] (an online database providing estimates of incidence and

mortality in 185 countries for 36 types of cancer, and for all cancer sites combined) among all new

cancer cases during the year of 2018, 11.6% were breast cancer. That represents 2.1 million newly

diagnosed female breast cancer cases worldwide, meaning that 1 in 4 cancer cases among women,

will be breast cancer. Its mortality represents 6.6% of all deaths caused by cancer. This difference

in the numbers of incidence and mortality, as shown in Figure 2.1, proves that the prevention of

breast cancer using the multiple screening routines that are available, improves the mortality rates

of breast cancer patients.

Yet, among females, breast cancer is the most commonly diagnosed cancer. According to

National Cancer Intelligence Network [6], over 80% of women with breast cancer need to get

through surgery in order to remove the tumour. In Europe, breast cancer occurs most commonly

after the age of 72 [5].

Comparing to the global scenario, in Portugal there are over 6000 new cases per year (in a

population of 5 million women in the country), and in terms of mortality, 4 women die every-

day because of breast cancer2. Only 5-10% of these cases appear to have hereditary or genetic

1https://www.cancer.org/cancer/breast-cancer/about/what-is-breast-cancer.html
2https://www.ligacontracancro.pt/servicos/detalhe/url/programa-de-rastreio-de-cancro-da-mama/
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(a) Number of new cancer cases in 2018. (b) Number of deaths because of cancer in 2018.

Figure 2.1: Statistics from Globocan 2018 [5].

influences, that need an earlier treatment comparing to other asymptomatic patients.

2.2 Breast Imaging

Screening for breast cancer has been proven to improve the mortality rates, by making the

diagnosis and the control of the disease easier and affordable. Since 1990, breast cancer mortality

has decreased by 30% [7] mostly due to the improvement of breast imaging techniques. Screening

techniques come after self breast examination or clinical examination, when the results are positive

or inconclusive for breast cancer. They are also included in some national plans for breast cancer

prevention, for women above a certain age. They can be performed just by routine, in women that

require it, because of their age or their family history.

2.2.1 Radiological Exams

The most common way to screen breast cancer is through radiological exams. Radiological

exams are not as subjective as self breast examination or clinical examination, since they allow the

visualization of the breast tissue and the possible anomalies.

2.2.1.1 Mammography

To check the health status of the breast, women are invited to perform mammography when

they reach a certain age. Mammograms are the most common exam when it comes to breast cancer

screening [7] and they can detect impalpable tumours.

In Portugal, the recommended age to start performing mammograms is at 40-45 years old,

when there are no symptoms in the patient3. After the first exam, it is recommended that the

patients repeat it every two years. It is also possible that women start doing mammograms earlier

3https://www.ligacontracancro.pt/servicos/detalhe/url/programa-de-rastreio-de-cancro-da-mama/
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(but not earlier than 25 years old) if they have a history of breast cancer in their family (first degree

family like mothers or sisters) [7].

Although mammograms show great results, women with higher density of breast tissue may

have inconclusive results when performing mammography, and some supposed local cancers, can

have a greater extension that is not seen in the mammography. The accuracy is also lower in young

women and women with mutations that might lead to breast or ovarian cancer [8]. In those cases,

other techniques are recommended in order to achieve accurate results.

Mammograms are also used to quantify the density of the breast [9], which is an indicative

factor for the probability of developing breast cancer. Women with high mammographic densities

have an increased risk of breast cancer, when compared with women whose breasts are composed

mostly of fatty or adipose tissue. In Figure 2.2, there are 6 mammograms represented with dif-

ferent percentages of breast densities. This is an important characteristic when it comes to pose

transformation and in the postoperative results of breast cancer surgeries.

Figure 2.2: Categories of percentage mammographic density estimated by radiologists through
mammograms A=0. B =< 10%.C =< 25%.D =< 50%.E =< 75%.F =≥ 75% [10].
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2.2.1.2 Ultrasounds

Ultrasound exams can be used as an addition to mammograms for women with dense breast

tissue [7]. Ultrasounds are widely used in medical imaging because they have no known risk to

the patient, since they do not use radiation and for that they can be used in pregnant or young

women. Ultrasounds can be performed regardless of the woman’s age, which does not happen in

mammograms [11].

Figure 2.3: Selected images of a 54-year-old asymptomatic woman with dense breasts and no
previous history of breast cancer. a) Craniocaudal digital mammograms are taken the same day
as the ultrasound study. b) Mediolateral oblique digital mammograms are taken the same day as
the ultrasound study. c) Transverse ultrasound image of the right breast; white arrow shows a 7
mm, grade I, stage 1, invasive ductal carcinoma. d) Ultrasound image of the left breast; two white
arrows show 10 mm, grade I, stage 1, invasive carcinoma with lobular carcinoma in situ [12].

The ultrasound uses a transducer, that couples to the body with an acoustic gel. A pulse-

like acoustic wave is produced, propagates through the body, and reflects when it finds reflecting

surfaces and small scatterers. The transducer receives these waves and converts them into an

electrical signal and amplifies, stores and displays them [13].

In Rotten et al.[11], it is shown that by combining both mammograms and ultrasounds, the per-

centage of false negatives is drastically reduced. When used in combination with mammograms,

ultrasounds show great results in women with dense breast tissue since the diagnostic yield4 in-

creases from 3.6 per 1000, when only using mammography, to 7.2 per 1000, when using both

combined. In Figure 2.3, this efficiency is proven since the invasive carcinomas are only shown in

4Diagnostic yield is the likelihood that a test or procedure will provide the information needed to establish a diag-
nosis.



2.2 Breast Imaging 9

the ultrasound, in a patient with high-density of the breast. The ability to find cancers smaller than

10 mm, is also greater when using both techniques combined [12].

2.2.1.3 Magnetic Resonance Imaging

An MRI scanner is composed by five parts, as represented in Figure 2.4:

1. The main magnet: superconducting, with coils of niobium-titanium wire, immersed in liquid

helium around 4oK;

2. A set of coils to provide a switchable spatial gradient in the main magnetic field, placed

inside the bore of the magnet;

3. Resonators for the transmission and reception of radio-frequency pulses;

4. Electronics for programming the mining of transmission and reception of signals;

5. A console for viewing, manipulating and storing images: it allows the selection of the pro-

tocol, setting the gaining to the patient’s electrocardiogram (ECG) and breathing (synchro-

nizing the acquisition to the appropriate physiologic process), selecting the orientation of

the scan plans to image, reviewing the images obtained and changing variables in the pulse

sequence in order to modify the contrast between tissues.

The magnet, the gradient coils and the RF coils must be isolated from electronic noise, so they

are placed in a copper-lined room, that acts as a Faraday cage. The patient undergoing this exam

needs to be lying on a sliding table inside of a cylinder, under the effect of a magnetic field of 1.5

Tesla [13].

Figure 2.4: Block diagram of an MRI scanner [13].

MRI is performed in women with high risk of breast cancer, women who had breast or ovarian

cancer before or neoplasia diagnosed by a biopsy, or in women with dense breast tissue as the

only risk factor. It is used as an adjunct to the standard screening routines, like mammography or
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clinical examination. It can also be used to select the treatment for the patient [8]. It allows to see

not only potential tumours but other kinds of lesions [14].

MRI has a very high sensitivity, but its specificity depends on factors like reader expertise [14],

so it should be performed by someone with great knowledge of the necessary MRI techniques. If

it is known that the woman has a mutation that will lead to a case of breast cancer, MRI shows

greater sensitivity than mammograms, for example, as it is seen in Figure 2.5. But, due to the

limited size of the opening, larger breasts might be compressed during the MRI.

(a) MRI (b) Mammography

Figure 2.5: Multifocal carcinoma detected on MRI from a woman with no family history of breast
cancer, but history of fibrocystic changes, and negative results after a mammography, proving that
the accuracy of MRI is superior to the accuracy of the mammography [8].

Even though the MRI does not use any radiation, it might require the injection of a contrast

agent which can be an inconvenient [15].

There are other imaging techniques being used nowadays, but still not so common, as Positron

Emission Tomography (PET) and Computerized Tomography (CT). PET is currently being used

in the detection of metastatic disease. It uses a radioactive substance that is injected and moves to

places in the body where the cells are most active, especially highlighting cancerous tissue. PET

is normally not used on the first stage of breast cancer since it does not reliably detect tumours

smaller than 5-10 mm [16]. CT is also used to monitor the spreading of the cancer, and uses an

iodinated contrast media in order to study the presence of axillary lymph nodes [17]. Both CT and

PET can be used together to evaluate the staging of metastatic cancer.

2.2.2 Surface Information

Using 2D images of the breast is not the most intuitive way to show the patient how the surgery

will be performed or what part of the breast is going to be removed since they do not allow the

visualization of the deepness of the structures.

On the other side, 3D imaging is defined as any technique for recording visual information or

creating the illusion of depth in an image [18]. A 3D representation also allows the visualization
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of the breast surface from multiple angles. The creation of a 3D model allows not only simple vol-

umetric analysis but also, by using more sophisticated software, to perform quantitative measures

on the breast and simulate post-operative outcomes [19].

The 3D construction that will allow the obtainment of the exterior information of the breast,

can be divided into 3 phases [20] :

1. Data acquisition;

2. Processing;

3. Analysis.

Currently, most of the approaches for acquisition are mainly based on 3D laser scanners [19].

Laser scanning uses the triangulation principle, where a laser beam is projected on the patient’s

torso, and the reflected rays are captured by a detector that is sensitive to the orientation of those

rays. The breast region of interest (ROI) can be marked on the patient before the scan or can be

placed in the 3D image.

More generally, 3D reconstruction and measurement techniques can be divided in: contact

and non-contact. Contact methods include coordinate measuring machines and rulers for example,

while non-contact methods include photogrammetry and laser scanning. The non-contact methods

can be seen in Figure 2.6.

Figure 2.6: Three-dimensional acquisition systems for object measurement using non-contact
methods [21].

Nowadays, the most used methods for 3D reconstruction are the non-contact ones, using active

or passive sensors. The difference between the two type of sensors is mainly due to the time of

processing of the 3D coordinates. While active sensors provide the 3D coordinates, necessary
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for the generation of the mesh, immediately, passive sensors need processing to derive the 3D

coordinates. The collection of these xyz coordinates is called a point cloud.

Considering these two types of sensors, there are four methods that can be distinguished for

object and scene modelling [21]:

1. Image-based rendering (IBR): creates novel views of 3D environments, using input images.

This requires that the exact position of the cameras is known or that automatic stereomatch-

ing is performed.

2. Image-based modelling (IBM): mostly used for geometric surfaces. It uses 2D image mea-

surements to recover 3D object information. Passive methods involve acquiring 3D mea-

surements from multiple views. It uses projective geometry or perspective camera models.

3. Range-based modelling: captures 3D geometric information of the surface automatically.

Uses active sensors and provides a very accurate result. The sensors use artificial lights or

pattern projection.

4. Combination of images and range-based modelling: photogrammetry and laser scanning are

combined in order to produce better results, in particular for large and complex architectural

objects.

Usually, basic shapes use image methods, while more complex, detailed shapes use range

methods.

After the acquisition the object needs to be sampled, being the number of samples directly

proportional to the curvature, for example, a square only needs a few number of points, while the

breast, needs a much higher number of points [20]. The acquired data also needs to be structured

in order to form the polygonal surface of the mesh. To make it more realistic, the surface can be

textured with data from images.

Most of the referenced systems can be bulky and not practical to use in a hospital, so there has

been more investigation in smaller, more portable and cost-effective equipment. One of them is

the Microsoft Kinect Device used for Xbox360, represented in Figure 2.7 [22]. It uses a pseudo-

structured light scanning approach, where the distance to the objects in the field of view is calcu-

lated, possible because of its 3D depth camera, which enables the generation of a 3D colourized

model [23]. Wheat et al. [23] tested the accuracy and repeatability of this system when imaging

the breast. He used two calibrated Kinnects, the minimum number of cameras required to produce

a complete point cloud. With the object in the FoV (Field of View) of both of the Kinnects, data

from the RGB and depth cameras were obtained sequentially from both devices. Another advan-

tage of this system is the acquisition time, which in this case was 2 seconds. After the acquisition,

the point clouds were created, one for each Kinnect, using the depth data and the intrinsic param-

eters from the depth camera and using colour from the RGB camera, which is projected onto the

points of the PCL, originating a coloured model. The software Kinect for Windows is free and

allows the obtainment of the depth maps and consequently the point clouds of the object. Digital

measurements of Euclidean and surface distances between landmarks showed great results when



2.3 Breast Surgery 13

compared to manual measurements. But when more complex objects are being studied, some

problems might arise. In the case of large ptotic breasts, the inframammary fold might not be

captured [24]. A third Kinnect camera in a lower position in an upward view could be used to

work around these problems.

Figure 2.7: Microsoft Kinect Device.

2.3 Breast Surgery

The treatment of breast cancer always depends on the stage of the disease, and factors like5:

• The size of the tumor in relation to the size of the breast;

• The results of specific pathology tests;

• If the woman has gone through menopause already or not;

• The general health of the patient;

• Age;

• Family history.

In general, there are five treatment options, and most treatment plans include a combination of

the following6:

• Surgery: involves removing the tumor and nearby margins;

• Radiotherapy: uses high-energy rays to kill cancer cells; may be used to destroy any re-

maining mutated cells that remain in the breast or armpit area after surgery, beginning 3-4

weeks after surgery;

• Hormone therapy: the pathologist will perform tests on the breast cancer cells to determine

if they have receptors that feed on estrogen or progesterone, stimulating their growth; if the

cells have those receptors, hormone therapy will be performed with blockers or inhibitors

of those hormones;
5https://www.nationalbreastcancer.org/breast-cancer-clinical-trials
6https://www.nationalbreastcancer.org/breast-cancer-treatment
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• Chemotherapy: uses a combination of drugs to either destroy cancer cells or slow down

the growth of cancer cells. It can be used to shrink the tumour before surgery. It will be

administered in short courses with several weeks in between, to allow the normal cells to

recover;

• Targeted therapy: treatments that can attack specific breast cancer cells without harming

normal cells, normally used in combination with chemotherapy; they have less severe side

effects than standard chemotherapy drugs.

Surgery and radiation are considered local treatments, targeting just the area around the tu-

mour, while the others are systemic, targeting the whole body with cancer-fighting agents. The

medical team that is following the patient will choose a combination of treatments that are more

effective for that specific case.

Surgery is likely to be part of any breast cancer treatment and it may also be considered to find

out if the cancer has spread out to the lymph nodes, to restore the shape of the breast after removal

or to relieve the symptoms of advanced cancer.7

Breast cancer surgery is performed with the goal of removing not only the tumor but also

enough of the margin to be able to test for the spread of cancer. For that, the doctor analyses

the results of breast imaging exams that the patient has performed, to decide on what type of

surgery will be done and the amount of tissue that needs to be removed. Women with Stage 2 or

Stage 3 cancer may receive chemotherapy before the surgery, which is known as preoperative or

neoadjuvant chemotherapy8, with the goal of reducing the size of the tumour before the surgery.

2.3.1 Types of Breast Cancer Surgery

When it comes to removing the tumour there are two types of surgery that are currently being

performed, as represented in Figure 2.8 9:

1. Breast-Conserving Surgery (BCS): also called lumpectomy or partial mastectomy.

2. Mastectomy.

The main difference between these two types of surgery is the amount of tissue that is removed.

In the first one, only the tumour and the surrounding tissue are taken out, but the volume of the

breast that is taken depends on the location of the tumour. Lumpectomy is a first treatment option

for some women with early-stage breast cancer. On the other side, mastectomy involves removing

the entire breast (all of the breast tissue, nipple and skin and sometimes the surroundings as well)10.

Very rarely, the muscles of the chest are also removed11.

The surgeon recommends BCS if12:
7https://www.cancer.org/cancer/breast-cancer/treatment/surgery-for-breast-cancer.html
8https://www.nationalbreastcancer.org/breast-cancer-surgery
9https://ww5.komen.org/BreastCancer/Surgery.html

10https://www.cancer.org/cancer/breast-cancer/treatment/surgery-for-breast-cancer.html
11https://www.cancerresearchuk.org/about-cancer/breast-cancer/treatment/surgery/types-surgery
12https://www.cancerresearchuk.org/about-cancer/breast-cancer/treatment/surgery
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(a) Lumpectomy (b) Mastectomy

Figure 2.8: Breast Cancer Surgery.

• The size of the tumour is small, comparing to the size of the breast;

• The tumour is in a suitable position;

• The cancer is only in one zone of the breast.

And recommends a mastectomy if:

• There is a large lump (in a small breast);

• The tumour is in the middle of the breast;

• There is more than one zone where the cancer is;

• The patient has had radiotherapy in the past.

2.3.2 Surgery Planning

A breast surgical oncologist will advise the woman on the type of surgery that should be

performed, but this decision can be discussed between both parts, in the case that both types of

surgeries can be performed. The factors affecting the medical choice of surgery are11:

1. The size of the cancer;

2. The location of the cancer in the breast;

3. The size of the breast;

4. The patient’s wishes.

BCS might sound like the best option since it does not require the entirety of the breast to be

removed, but the patient will need radiation after the surgery. So the patient needs to deal with the

radiation therapy and its consequences, and there is also the possibility that the breast looks too

different or misshapen, particularly if a large portion of the breast is removed, which is the main

factor of women opting to perform a mastectomy instead of a lumpectomy.
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Doing a mastectomy may give the idea that the possibility of the cancer coming back is lower,

but studies show that it does not have an influence13. Women choose to perform a mastectomy due

to enhanced fear, because of family history, and give more value to that factor than to statistics,

even if the doctor informs that both give the same chance of survival [25].

The choice of the patient goes between having only part of the breast removed, but having to

do radiation therapy after, or removing the whole breast, giving the feeling that there is no chance

of recurrence, and performing breast reconstruction surgery after.

2.3.3 Psychological Impact of Breast Cancer Surgery

After surgery, the breast may have a completely different aspect and shape, and that difference

may cause the patient to feel less confident about their body, less attractive and more abnormal. If

this surgery comes after treatment, the consequences of the surgery are added up to the previous

consequences of radiation therapy like loss of muscle strength, depression and anxiety. These

feelings may affect several aspects off the life of the patient, including her sexual life14. The sexual

life of a patient may be affected not only by the lack of confidence, but also because the patient

loses her sensations in the affected area. The social and family well-being deteriorate after the

surgery, until at least six months after it [26]. Studies also show that women who have undergone

mastectomy are more at risk for postoperative sexual dysfunctions, compared to women who have

undergone BCS [27].

Studies show that women that have undergone BCS instead of a mastectomy, feel better about

their body image after surgery [26]. These studies also show that some of the main concerns of

these women are:

• Swollen/Tender arms after surgery;

• Worried-risk of cancer in the family;

• Worried-effects of stress on illness;

• Body image scale.

These concerns are mostly greater in women who have undergone mastectomy, but in a long

term, it shows little influence in the quality of life (QoL) of the patient.

If it did not appear during the treatment, patients may suffer from depression and anxiety, due

to the lack of confidence, the impact of the surgery on the daily life and relationships and the fear

of recurrence [28].

After the surgery, the woman can make a reconstruction of the breast, or can choose to leave

the breast the same way or use a prosthesis.

13https://www.cancer.org/cancer/breast-cancer/treatment/surgery-for-breast-cancer.html
14https://www.cancer.org/cancer/breast-cancer/living-as-a-breast-cancer-survivor/body-image-and-sexuality-after-

breast-cancer.html



2.4 Summary 17

2.4 Summary

Taking into account all the mentioned aspects in this chapter, it is possible to conclude that

breast cancer is a widely known disease, and the way of proceeding with diagnosis and treatment

has been carefully studied through the years, to make the patient’s life the most pleasant and nor-

mal possible. Different methods of diagnosis are done depending on the background and physics

of the patient, and the type of surgery also depends on this. To make this process even more fluent

and easy, with positive results, one of the suggestions is involving the patient more in the decision

making process, suiting the results to the patient’s expectations.
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Chapter 3

Data Registration

In the previous chapter, the need to find a 3D model of the breast surface is explained because

the stakeholder of this problem is numerous. The satisfaction of the patients after breast cancer

surgery is not great and can be improved, using a 3D model of the breast that will be a huge step

to improve the communication between the doctor and the patient. To do this, the breast surface

needs to be registered, using a multiplicity of techniques, that are then combined. These techniques

involve radiological modalities, and surface information, that after registration are matched to form

the 3D model of the breast.

3.1 Overview

Registration is a fundamental task in image processing used to match two or more pictures

taken, for example, at different times, from different sensors, or from different points of view [29].

To obtain a complete 3D model of the breast, several modalities and the information they provide

must be combined. When it comes to breast cancer, data from radiological images and surface

data should be combined since they provide information from both the inside of the breast and

the outside, giving a complete model that is able to help both the patient and the doctor in the

decision-making process. This matching presents some challenges, including:

• Patient change of pose during the acquisition of the radiological images;

• The deformable nature of the breast: its anisotropic and inhomogeneous tissue and its non-

rigid behaviour [30];

• Different times of acquisition;

• Different points of view in theacquisition.

The final objective is to align images from two methodologies, using the same coordinate

system. In order to perform this, some frameworks are normally used, including finding out the

feature space, the transformation that needs to be done, the similarity measure (quality of match-

ing) and defining a search strategy. To perform this, some transformations can be done [31]:

19



20 Data Registration

• Rigid transformations: that include rotations and translations of rigid objects. It is also used

when there are only small changes in the object shape (for example, a sequence of MRI

images) or in its intensity. It is widely used, because it uses few parameters, it is not too

complex and it can approximate both images without having them changing their spatial

relations.

• Affine transformations: that include, not only rotations and translations but scaling and

shearing. It maintains the parallelism between lines, but not their lengths and angles. This

type of transformation has more degrees of freedom (DoF) than rigid transformations.

• Projective transformations: used in tilted images. Straight lines are kept that way, but paral-

lel lines are transformed in order to converge and then vanish. It behaves like a constrained-

elastic transformation.

• Curved transformations: also referred as elastic, deformable, or fluid transformation [32],

they may map a straight line onto a curve [33]. Gefen et al. [34] proposed a planar-to-curved

surface alignment, matching data of 2D images with their corresponding images overlaid on

a curved-surface within a volumetric image.

• Non-rigid transformations: these type of transformations are very challenging because they

require a high number of DoF, being the computation time also high.

Rigid transformations include methods like PCA (Principal Component Analysis), ICP (Itera-

tive Closest Points) and SVD (Singular Value Decomposition) [35].

PCA is a dimension-reduction tool, used to reduce a large set of variables to a small number

of variables, mantaining the same information. It projects data on a new orthonormal basis in the

direction of the largest variance.

ICP is a method proposed by Besl and McKay [36] where the transformation parameters of

two point sets are calculated through the relationship between the corresponding matching points

of two point sets to satisfy the given convergence precision, and finally the translation and rotation

parameters between the two points are obtained to complete the registration process [37]. ICP

uses convergence to the nearest local minimum of a mean square distance metric [35].

The ICP algorithm can be described as follows: Considering the rigid transformation T be-

tween the target point set S and the reference point set M, and assuming that the coordinates of

the target point set S are {Si|Si∈ R3, i=1,2,...,NS} and the coordinates of the reference point set

M are {Mi|Mi∈ R3, i=1,2,...,NM}, in the k-th iteration, the coordinates of the corresponding point

corresponding to the coordinates of the point set S are {Mk
i |Mk

i ∈ R3, i=1,2,...,NM}
The transformation matrix between S and Mk is calculated and the original transform is up-

dated until the distance between the data is less than the given threshold τ . In the following points,

the ICP algorithm will be described:

1. Calculate the Mk
i∈Mk in the reference set M so that

∥∥Mk
i −Sk

i

∥∥=min;
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2. Calculate the rotation matrix Rk and the translation vector T k so that ∑
N
i=1

∥∥RkSk
i −Mk

i

∥∥2 =

min;

3. Calculate Sk+1 = Sk+1
i |Sk+1

i = RkSk
i +T k,Sk

i∈ S ;

4. Calculate dk+1 =∑
N
i=1

∥∥Sk+1
i −Mk

i

∥∥2;

5. If dk+1 is not less than the given threshold, repeat from (1) until dk+1 is under the threshold

or the number of iterations is above k (the preset number of iterations).

Non-rigid transformations include transformations like [31]:

• Splines: splines are functions defined piecewise by polynomials. This type of transforma-

tion uses control points in the target and source images, and uses splines to define points

away from these ones. Some of the most used splines are thin-plate splines and B-splines.

Thin plate splines are used globally, meaning that one small change can introduce a greater

transformation, which is not the desired situation in complex models. B-splines are used

locally, because by changing one control point the transformation is only affected in the

neighbourhood of that point. B-splines are very computationally effective;

• Elastic Models: use the source image as a linear, elastic solid image and deform it by us-

ing forces derived from an image similarity measure, stopping when the forces reach an

equilibrium. It can not handle large deformations;

• Fluid Registration: works with highly localized deformations. Has a vast number of DoF;

• Diffeomorphic Registration: preservse the topology and prevents folding;

• Finite Element Method: widely used in biomechanics. It models the interrelation of different

tissue types when applying displacements or forces. It helps to predict deformations and

from that, derive or quantify tissue properties.

In breast image registration, the most suitable type of transformation is non-rigid, due to the

nature of the breast. Given two images R (the reference image) and F (the floating image), that

are defined in the grid Ω and mapping to the grey values r,f= 1,...,n, then the registration can be

described by the following mathematical formula [38]:

T̂ = argτminS(R,F(τ)) (3.1)

Where τ represents the transformation space and S represents the similarity measure. If

there is a perfect alignment between the two images R(x) is equal to F(τ), x ∈ Ω. The goal is to

find the transformation that maximizes S, the similarity measure.

The framework of a non-rigid registration process is represented in Figure 3.1 [38]. As

the floating image is being transformed, there needs to be an interpolation method, changing the

floating image space into the coordinates of another image space. After that, the similarity between
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Figure 3.1: Framework of non-rigid registration.

the reference image and the floating image is measured, another τ is calculated, in order to improve

the value of the similarity measure. This process is repeated until the value of the difference of

two consecutive τ is lower than a specified threshold [38].

In order to define the model of deformation, there are two possible approaches: space trans-

form models and physical based transformation models [38]. Space transform models include Free

Form Deformation and Markov Radon Field Base Transform, both based on interpolation and ap-

proximation theories, that allow any kind of deformation. Physical based models can recover large

deformations, but they have a high computational cost.

3.2 Registration of Radiological Images

Breast images acquired at the same or different times, or with different modalities are of-

ten combined in order to have a better visualization and diagnostic. This is often done with pre

and post-contrast images of MRI exams [30], but it might be done with images from different

modalities, for example: a mammogram and an MRI. Combining information from more than one

modality, takes advantage of the information given by both modalities.

Registration methods can be classified as intra or inter-modality.

In intra-modality, the images that are suffering an alignment belong to the same modality, but

are from different sessions or points of view, for example. In the case of different sessions, this

task can become challenging because the anatomy of the patient might suffer some alterations due

to the treatment of breast cancer, for example.

In the case of intra-modal registration, registration techniques can be divided into two cate-

gories: feature-based or intensity based, but both can be combined [30].

1. Feature-based: it requires the identification of landmarks in each of the mammograms. That

task becomes difficult due to the nature of the breast and its compressibility (noticeable

during the mammograms), being the landmarks non-rigid [39]. These control points can
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be pointed out manually or automatically by finding, for example, the nipple in the mam-

mograms or other boundaries. There is currently a lot of investigation being done in this

area, for example: Vujovic et al. [40] with the objective of making a detailed comparison

between mammograms of the same patient acquired at different screening to detect changes

that are indicative of cancer, defined a 2 step strategy, being the first one analyzing each im-

age independently in order to find potential control points, like the crossing of two elongated

structures, and the second one being a correspondence between potential control points (a

subset of control points is established using accumulator matrices and signatures, and those

are able to find local patterns). A pair of reference points is used to reduce the number of

false positive control points. Sivaramakrishna [41] proposed a textural approach, to register

mammograms non-rigidly, where they are converted into texture maps where control points

are selected. These techniques are only a small sample of all the approaches that have been

investigated and more techniques are described by Guo et al. in [39].

2. Intensity-based: these techniques operate on the image pixel values [30]. Richard et al.

[42] introduced a matching based on Regions of Interest (ROI), for mammogram registra-

tion, combining both feature and intensity based models and using an energy minimization

problem with free boundary conditions.

Intra-modality registration in MRI is different from intra-modality registration in mammo-

grams, since they provide different types of information. Mammograms show some difficulties in

terms of accuracy due to the inherent compression of the breast during the exam. In the case of

MRI, the entire 3D internal structure of the breast is provided. Firstly, the pre and post-contrast im-

ages need to be aligned or registered. Here the feature based selection has two stages: the selection

of control points and their matching [30]. These points, can be registered manually, automatically

from edges or breast contour, or randomly. Intensity based selection has been thoroughly studied.

In MRI intra-modality registration, non-rigid approaches, like Free Form Deformation (FFD) have

been used through many papers.

FFD is a modeling technique that enables the deformation of objects by deforming the space

around them [43], and it was first described by Sederberg et al. [44]. Free Form Deformation

means that whatever the object is, whatever its description and topology are, deformations are

always possible [45]. Those deformations are defined by 3D splines, whose values are determined

by the location of the control points. Describing the FFD, conventionally, is done by manipulating

the control points. FFD has the advantage of being applicable to any parametric or polygonal

model, not being restricted to any class of objects, since the FFD is based on the notion of deform-

ing the underlying space. The deformation of the control points of an object, starts by assigning

local coordinates to each of its points within the deformation lattice. Those local coordinates

are defined by a parallelepiped-shapped lattice of control points, being their axes the orthogonal

vectors s,t and u, as it can be seen in Figure 3.2 [43]. All object points within the space of the par-

allelepiped are assigned local coordinates through a mapping. Any point X with the coordinates

(s,t,u) can be defined by [44]:
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X = X0 + sS+ tT +uU (3.2)

The (s,t,u) coordinates can be found by:

s =
T ×U(X−X0)

T ×U ·S
, t =

S×U(X−X0)

S×U ·T
,u =

S×T (X−X0)

S×T ·U
(3.3)

Taking into consideration that 0<s<1, 0<t<1, 0<u<1. The lattice can be defined as:

Pi jk = X0 +
i
l
S+

j
m

T +
k
m

U, (3.4)

being Pi jk the grid of control points, that form l+1 planes in the S direction, m+1 planes in

the T direction, and n+1 plates on the U direction.

Figure 3.2: A lattice of control points. The s, t, and u vectors define the local coordinate system

When the control points are moved, it is possible to determine the new location of the object

points, using a weighted sum of the control points. These weights are functions of the originally

assigned local coordinates to the point. So, the positional change of the control points, changes

the locations of the object points.

So, the deformed position can be defined as follows [44]:

X f f d =
l

∑
i=0

li(1− s)l−isi

[
m

∑
j=0

m j(1− t)m− jt j

[
n

∑
k=0

nk(1−u)n−kukPi jk

]]
, (3.5)

Where X f f d is a vector containing the Cartesian coordinates of the displaced point, and Pi jk

is a vector containing the Cartesian coordinates of the control point.

Hsu et al. [43] uses as a deformation function a trivariate B-spline tensor product, since B-

splines are greater in local control properties and desirable for both aesthetic value and for efficient

computation with large control point lattices. B-splines also guarantee continuity when any of its
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control points are moved. Hsu et al. approach also allows both direct manipulation of the object

and manipulation of the control points.

Rueckert et al. [46] found a new approach for the non-rigid registration of contrast-enhanced

breast MRI using normalised mutual information. He proposed a technique that describes the

global motion of the breast using affine transformation models, while the global transformation is

described using spline-based FFD models. Schnabel et al. [47] presented a validation study for

non-rigid registration of 3D contrast enhanced magnetic resonance images. In this work, it was

used a Finite Elements Method (FEM), where biomechanical, physically plausible deformations

are generated in order to simulate a gold standard1 deformation vector field.

Inter-modality registration is used in order to combine information from more than one modal-

ity, information that is complementary. Since no modality is perfect, the ability to detect breast

cancer can be improved when complementing information from more than one modality. The

two most interesting and used modalities are definitely mammograms and MRI. Ruiter et al. [48]

proposed an automatic approach. To overcome the deformation of the breast during the mammog-

raphy it uses a a finite element model. It also imposes a deformation in the MRI images, in order to

adopt the same configuration as in the mammography. After that deformation, a 3D projection of

the MRI images is done, which enables a 3D visualization of the deformation in the breast caused

by the mammography. This method is clarified in Figure 3.3 [48].

Figure 3.3: 1a) MRimage and 1b) Mammogram. 2) Finite element mesh of the patient’s breast. 3)
Definition of the tissue properties and the deformation process. 4) FEM Simulation. 5) Deformed
finite element model. 6) Projection of a generated MR image of the deformed breast.

Kruger et al. [49] presented a method for analyzing 2D/3D intra-individual correspondences

between mammography and MRI datasets, using an ICP-based B-spline registration to approxi-

mate the breast deformation differences.

Mertzanidou et al. [50] proposed an intensity-based image registration framework, where

the biomechanical transformation model parameters and the rigid-body transformation parameters

1Gold standard refers to a benchmark that is available under reasonable conditions. It is not the perfect test, but the
best one available that has a standard with known results
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are optimised simultaneously to determine corresponding regions between an MRI and an X-ray

mammogram.

3.3 Surface Registration

3D spatial information comes in the form of point clouds (PCLs), which is a set of data points

in space. The process of surface reconstruction consists in converting PCLs to 3D surfaces and

it can be more or less challenging depending on the technique used to acquire the 3D data. A

point cloud is impossible to get from only one point of view, because normally the scanners have a

limited field of view, and the structures can be quite complex as well. Another reason to implement

multiple points of view is because there are areas in the breast that stay hidden, like the under

breast area and the position of the patient may change during the acquisition. So, it is necessary

to integrate information from multiple points of view [51]. The first step of reconstruction is

registration and its goal is to find the Euclidean motion between a set of range images of a given

object taken from different positions in order to represent them all with respect to a reference

frame [51].

There are two types of registration, that can be applied to any kind of registration: coarse and

fine registration.

• Coarse registration: searches for an initial estimate of motion between pairs of two consec-

utive 3D views, which leads to a complete registration. The distances between motions are

minimized. Correspondences are made through points, curves and surfaces.

• Fine registration is used when a previous estimation of the motion is known and is used to

start the iterations and converge to an accurate result. The iterations use a distance mini-

mization function.

The second step is the surface reconstruction itself. Some approaches build a network of

triangles over the existing vertices of the PCL, using algorithms like Delaunay triangulation. In

Costa et al. [52] this algorithm is used in a coarse registration method based on tesselation, to

extract robust keypoints from the RGB-D sensor information. For the fine registration an ICP

algorithm is used to align the 3 different views.

3.4 Surface Radiological Matching

It is also necessary to combine the results of the registration of radiological images with the

results of surface reconstruction to obtain a model that combines both the interior information of

the breast and the 3D information of the surface, providing all the information possible which

will improve the communication of the doctor with the patient in the decision-making process. To

overcome this problem, both of the resulting models need to be represented in the same referential,
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that should be able to withstand deformation models. Taking into consideration that MRI provides

3D results, MRI information can be fused with PCLs to form a complete model.

While the acquisition of 3D data is performed with the patient in an upright position, the MRI

is performed in a prone position, which makes it necessary to do a pose transformation in order

to place both results in the same referential. Having the patient in a prone position causes the

images to be mores susceptible to respiratory motion artifacts and it also reduces the visibility of

the lesions, since the breast is more compressed [53].

There are some changes in the breast appearance when the position of the patient is different,

the skin stretches, the ptosis of the breast is more or less visible and the boundaries of the breast

move relatively to the skeletal structure, due to the change of gravity [54]. For example, having

their arms up in an MRI changes the appearance and disposition of the patient’s breast [55]. If it

is possible to predict breast changes from a position to another, the task of predicting the result of

a breast surgery becomes easier as well.

Surface radiological matching methods can be grouped in two types: physical and non-physical.

Physical models are used mostly to model breast deformities or to register volumes of images

obtained in different positions [54].

Khatam et al. [54] uses physical models that are based on 3D stereophotography surface

imaging (able to enhance the illusion of depth in the image) to determine the variation of breast

skin deformation as the subject orientation is altered from supine to upright. In this work the

skin is also considered a deformable and hyperelastic material. The back surface of the breast is

defined by the surface of the chest wall (pectoral muscle), and it can be identified in MRI images.

The breast tissue is considered to be hyperelastic as well. Here a simplified version of the skin’s

anisotropy is applied in order to make the calculations easier. The skin is considered to have little

influence in supporting the breast, being the Cooper’s ligaments and other connective tissues and

the chest wall the main responsibles for that part. The ideal model, should not only predict the

deformation of the breast, but the stretching of the skin as well.

Del Palomar et al. [56] proposes a method based on finite elements to establish a reliable sim-

ulation method that could predict a patient-specific outcome after breast surgery. They assumed

that it can be assigned an average value of mechanical properties to the glandular and fatty tis-

sue into the 3D image volume. They also made an effort to measure the skin deformation, with

the focus of calibrating material properties of the skin, fat and fibroglandular tissues rather than

exploring the inherent stretch variations on the breast surface.

In Eiben et al. [57], patient specific biomechanical models are used to provide an initial

deformation of the breast (prior to registration), to make a prone to supine image registration of

breast MRI. They use models to estimate the zero-gravity reference state, in order to perform the

registration of the position configurations in this space.

There has been some investment in non-physical models, that are less complex, since physical

models are not always suitable due to factors like their high computational cost. Behrenbruch et

al. [55] uses non-rigid registration that is driven by the skin surface, and not by landmarks or
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other features, to make a prone to supine breast MRI registration for surgical visualization, using

a tensor B-spline mesh to compute the deformation.

In Han et al. [53] in order to align prone and supine MRI breast images, biomechanical models

using Finite Elements are used to initialize the subsequent non-rigid, intensity based registration

at each iteration, providing a hybrid method.

These methods are still not common, specially when used to combine the registration of sur-

faces obtained from different points of view, or used in combination with physical models. In

[58], an FFD algorithm is used to match both MRI and surface data. Firstly, the MRI data is repre-

sented in the following way: the Z-axis is positive in the inferior to superior direction, the Y-axis

is positive in the anterior to posterior direction and the X-axis is positive from right to left. The

surface data is represented in a different way when it comes to the Z and Y axis, as it was expected:

Z-axis is positive in the anterior to posterior direction and the Y-axis is positive in the inferior to

superior direction. The data from MRI is downsampled first and biomechanical simulations are

(a) Segmented MRI. (b) Downsampled MRI.

(c) MRI after biomechanical simulation. (d) Surface.

Figure 3.4: Comparison between segmented MRI data, downsampled MRI data, MRI data after
biomechanical simulation and surface data [58].

used in order to transform the pose to the upright position. The described procedure is exemplified

in Figure 3.4. It can be concluded from the results that data from MRI after the biomechanical
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simulation resembles the data from the surface, even though that the referential is still the same

as it was previously. After that, a rigid registration approach is taken, and the data from MRI is

treated in the following way:

1. Rotation: -90o in the X-axis and 180o in the Z-axis.

2. Translation: by detecting the breast mound, both in the MRI data and in the surface data.

3. Application of an ICP algorithm.

Since a rigid approach is not enough due to the deformable nature of the breast, a non-rigid

approach is taken, using an FFD transformation that uses control points around the MRI (both

normal and after the simulation) data to deform and match it with the surface PCL. The compared

(a) After Rigid Registration. (b) After FFD.

Figure 3.5: Result of applying the FFD algorithm to the downsampled MRI (after biomechanical
simulation) PCL of the patient with a [8 8 8] control point grid [58].

results between a rigid and non-rigid registration are presented in the Figure 3.5.

3.5 Validation Methods

In order to clinically implement a method, it needs to be correctly validated. This task is not

easy, due to the lack of a ground truth, which does not allow the comparison of results. The ground

truth that is normally used includes anatomical landmarks and external markers, for example [30].

Validation methods can be divided in subjective and objective methods, and the last ones can be

either real or synthetic. Some of the mostly used tools for validation purposes are:

• Phantom studies 2: since phantoms can be considerably still and can be displaced and rotated

with accuracy, they can be used to calculate the accuracy of the registration. When non-rigid

phantoms are used, it can be hard to calibrate the rotation or the displacement due to its

behaviour, causing the same amount of compression not leading to the same breast image.

Even though the above mentioned problems, phantom studies are widely used, because they

era reusable and easy to access and they allow the control of the movement;
2A phantom is a specially designed object that is scanned or imaged in the field of medical imaging to evaluate,

analyze, and tune the performance of various imaging devices.
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• Calculation of the Euclidean distance: between certain features, like centroids of ROIs,

breast contours or other landmarks;

• Subtraction of images: normally used in intra-modality registration and it can be applied to

mammograms or MRI. Rueckert et al. [46] and Wirth et al. [59] used similarity measures

like SSD (Sum of Squared Differences) and CC (Correlation Coefficient), in combination

with the subtraction of images, for the validation of a non-rigid registration.

Schnabel et al. [60] used a validation method that includes finite elements to simulate phys-

ically plausible, biomechanical tissue deformations. When applying a certain range of displace-

ments to finite elements models of different patients, it is possible to generate model solutions

that simulate gold standard deformations. After that, deformed images are generated with a range

of deformations, that are likely to occur in reality. The accuracy is quantified by co-registering

the deformed images with the original, and comparing the recover voxel displacements with the

simulated ones.

The most obvious method of validation, even though it is not accurate and it is the most

subjective one, is visual inspection of the results by specialists.

3.6 Summary

Image registration is not an easy task and it has been the subject of many investigations due

to the wide range of applications it can have. This task becomes even more difficult in the breast,

where the tissue is non-rigid, deformable and changes appearance according to the position of the

patient. This chapter came with the objective of clarifying the process of building a full 3D model

of the breast, including not only the surface information, but the inside information of the breast.

In order to build this model, there are a lot of steps that need to be made between the acquisition

of the data and the achievement of the 3D model itself.

First, the information from radiological images needs to be registered and combined into the

same referential. It is possible to use information from the same modality, acquired at different

times and different points of view or from different modalities.

The data acquired from the surface, in the form of PCLs, also needs to be registered and

reconstructed.

After that and finally, both data from the radiological images and from the surface can be

combined in order to build the complete 3D model. Since the data is not acquired having the

patient in the same position, there needs to be a pose transformation, using a physical or non-

physical model. Physical models are more precise but have a higher computational cost.

So, in order to make the results clinically relevant and accepted, they need to be validated, a

task that is not easy due to the lack of a ground truth or a gold standard.

Involving all steps, there is a distinction that is made almost through all of them, the difference

between rigid or non-rigid algorithms, being the main difference between the number of DoF and

the linearity of the transformations. The non-rigid algorithms are the less developed, but the most
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wanted ones, since most of the human tissues can be represented by a non-rigid behaviour. There

are several assumptions or decisions made that can affect the final result, for example, when an

initial pair of points is matched in two complementary PCLs, in order to begin an interpolation,

the results can be affected depending on the point that is chosen. These processes need to be more

accurate and similar to reality, as well as more automatic, so the human factor does not have to be

considered.

There is a conclusion that can be obtained from the collected information: there is still no

perfect model to solve the proposed problem, due to all the variables that need to be taken into

account, which makes it necessary to have a deeper research into the subject.
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Chapter 4

Methodology

In this Chapter, all of the datasets used will be presented, including the methods used for their

acquisition and for their processing. The methodology followed to register the MRI and surface

data, divided in rigid and non-rigid registration will also be presented. In the end, the methods

used to process the data from the validation dataset will be explained as well as the evaluation

metrics used to evaluate the process of registration.

4.1 Datasets

In the following subsections, the acquisition of the datasets used in the scope of this disserta-

tion is described.

4.1.1 PICTURE dataset

In Carvalho et al. [58], a dataset with seven patients was used. This was the initial dataset, cre-

ated with a subset of MRI data from the PICTURE project1. The PICTURE project was proposed

with the aim of developing an accurate standardised method for objective cosmetic assessment

that is cost-effective, simple to perform and insensitive to factors such as lighting, environment,

patient position and operator variability.

For the acquisition of surface images a specific protocol was followed, specifying the following

criteria:

• Optical Image Acquisition Camera, using the following methods:

1. 2D Digital SLR Camera: for raw images and an HD video of the patient.

2. Microsoft Kinect - 3DMK: RGB-D camera that is also a sensing system that captures

RGB images along with per-pixel depth information.

3. 3D MD Camera: used as a reference, can only be used by trained professionals with

specialised equipment.
1https://www.inesctec.pt/pt/projetos/picture
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• Patient Positioning: positioned with no jewellery or clothing, at a fixed point with her hands

on her hips. The image must ensure anonymity of the patient.

1. Using the 2D Digital Camera for the still photographs, the patient will stand at a fixed

point and rotate 180◦ between lateral views, stopping for still photography at each 15◦.

2. Using the 2D Digital Camera or the Microsoft Kinect for video, the video images will

be acquired continuously for a full 180◦ rotation between lateral views, performed as

smoothly as possible.

3. For the 3D MD Camera a single 3D frontal acquisition is acquired.

• Camera Mount: all cameras are mounted on a tripod or rig at an appropriate distance from

the patient.

• Lighting and White Balance: no flash and light sources with known colour temperature.

A still photograph and a short video with the patient holding a colour chart of neutral and

standard skin tones will be acquired. An even illumination must be assured, with minimal

asymmetry and production of strong shadows.

• Background: neutral to prevent reflections.

In this subset, 7 T1-weighted2 MRI image sets were used, with 60 axial slides each, and a

voxel resolution of 0.59 x 0.59 x 3 milimeters.

In Figure 4.1, an example of the surface and the MRI of one patient from the PICTURE project

is shown.

From those seven patients, two only had data from one breast in the MRI, while the other five

had both breasts. Testing with only seven patients is not very representative, since it does not

provide a pool of data with a wide variety of breast shapes and densities that are useful to evaluate

the transversality of the algorithm.

4.1.2 BCCT.plan dataset

BCCT.plan is a project that aims on the construction of a 3D tool that will help during the

planning of the conservative treatment of breast cancer, enabling alternative surgical strategies

and reducing the consequences of the current surgical strategies, when it comes to the appearance

of the breast after the surgery. The dataset will contain radiological exams, annotated by radiology

professionals and breast surface information.

2https://www.cancer.net/cancer-types/breast-cancer/stages
TNM system, the “T” plus a letter or number is used to describe the size and location of the tumor.
Tis: carcinoma in situ: the cancer is confined within the ducts of the breast tissue and has not spread into the

surrounding tissue of the breast.
T1: tumor is 20 millimeters (mm) or smaller in size at its widest area.
T2: tumor is larger than 20 mm but not larger than 50 mm.
T3: tumor is larger than 50 mm.
T4: tumor has either grown into the chest wall, the skin or both. It can also be and inflammatory breast cancer.
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Figure 4.1: Scan and MRI data from the PICTURE project.

Patients with a Tis/T1-T3 breast cancer were proposed for Breast-Conservative Treatment

(BCT refers to Breast-Conserving Surgery (BCS; ie, lumpectomy) followed by radiation ther-

apy to eradicate any microscopic residual disease) at the Champalimaud Cancer Center between

April 2017 and January 2019 for the BCCT.Plan project3. Contraindications included T4 cancers,

inflammatory carcinoma and breast cancer recurrence post-BCT.

All patients were proposed for image capturing in the standing position with hands on hips.

The following data was acquired in all of the patients of this protocol:

1. Photographic data (2D images): photos of the patient from different angles using Canon

EOS 1100D digital camera;

2. Surface data (2.5D and 3D images): surface scans of the patient capturing the size and shape

of the breasts using Kinect Recording System by Microsoft R© version 1.0 [61] and GoScan

20 3D by Creaform R©;

3. Age, body mass index, bra and cup size;

4. Routine diagnostic images were collected (mammograms and ultrasound). MRI with gadolin-

ium contrast was performed according to institutional protocols. Annotation, segmentation

and volume computation of the tissue portions were performed and validated by two radiol-

ogists using the Horos R© software v2.4.0. (breast contour, breast tissue including malignant

tumor(s), pectoral major muscle, Latissimus Dorsi muscle anterior border: large, flat muscle

on the back that stretches to the sides, behind the arm; sternum and clavicle).

In the MRI acquisitions, the protocol includes a pre-session acquisition with the patient in

prone position with their arms alongside the body, and the session itself with the patient lying in

3http://medicalresearch.inescporto.pt/breastresearch/
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prone position but with their arms raised. These sessions include the acquisition of T1 and T2

images, along with T2 images with fat suppression, diffusion weighted images and sagittal images

with contrast.

In Figure 4.2, an example of the surface and MRI of a patient from the BCCT.plan project is

shown.

Figure 4.2: Scan and MRI data from the BCCT.plan project.

In the core of this project, an in-house software for annotation of the anatomical structures

mentioned above was created. This software is called MARge and is able to create new labels for

each one of the structures, change the annotation by slice, or use region growing in a set of slices.

The MRI slices are seen in the axial view, but a sagittal and a coronal view are also displayed, as

it can be seen in Figure 4.3.

From this project, ten patients were added to the previous dataset.

4.2 Pre-processing

After the annotations, the 2D slices of the MRI must be transformed into a 3D mesh, so the

3D mesh can then go through a pose transformation and be registered.

This transformation involves the following steps, also described in Figure 4.4:

1. Definition of the contours of the breast

The breast anterior limit is defined by the skin, the posterior limit is defined by the interface

with the pectoral muscle and the lateral limits are defined by the Latissimus Dorsi muscles.

The top, bottom, frontal and back contours are created for each one of the breasts, since

the pose transformation simulation can only be performed with an individual breast. That

division is done vertically by the sternum. After the contours are created, their viability must
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Figure 4.3: MARge Software. Pink: breast contour; Green: nipple; Red: pectoral muscle; Yellow:
beggining of Latissimus Dorsi muscle; Blue: sternum. Axial view in the left, sagittal view in the
top right corner and coronal view in the bottom right corner.

be asserted using the software Meshlab (the 1.3.3 version was used) and if some abnormality

appears, the annotation should be corrected until the breast contours are viable.

2. Point cloud creation

The contours are then merged into a single PCL for each breast by flattening all of the layers

that define the boundaries of the breast. After its creation the number of points should be

downsampled, to ensure that the PCL has less than 2000 points. Some PCLs were not able

to complete the pose transformation step, most likely because the high number of points

led to a high number of interior elements in the mesh, decreasing its size, which after some

iterations would lead the derivatives to approximate to the zero value, ultimately leading to

NaN values. In those cases, the number of points must be lowered.

3. Surface mesh generation

To create the surface triangle mesh that models the skin, the Ball Pivoting Algorithm is used.

The Ball Pivoting Algorithm joins three points in a triangle if a ball of a specified radius ρ

touches them, without containing any other point [62]. After creating the surface mesh,

some holes may appear if the Ball Pivoting algorithm was not able to join some elements

because they were too distant from each other. Those holes can be filled by a tool provided

by Meshlab. After filling those holes, some intersections may appear, and they have to be

removed in order to create the 3D mesh. They can removed manually and filled again using

Meshlab.

4. Generation of the volume files



38 Methodology

Using the software Gmsh (version 4.3.0), a volume is added to the PCL which allows the

3D mesh generation.

5. Creation of the files to the pose transformation

To represent the fat and fibroglandular tissues, a density factor is applied to all the breasts,

in this case a density of 2 in a scale of 1 to 4 is assigned, where 1 is the lower density and 4

is the highest density [63], which corresponds to a b in a ACR breast density scale [64]4.

6. Pose transformation

The MRI is obtained with the patient lying on a prone position, but to register this data with

the data obtained from the scan, the patient must be on an upright position, and for that

a pose transformation must be done. The upright position also allows a more natural and

realistic visualization of the breast. The algorithm for the pose transformation is run on a PC

virtual machine on VirtualBox and it will output the 3D mesh in the supine, unloading and

upright positions. The model in prone position is converted to an unloaded state (a gravity-

free reference state) , from which the supine and upright models are built. This simulator

was provided by Vavourakis et al.[65].

The pre-processing pipeline here described is represented in Figure 4.4.

Figure 4.4: Pipeline of the pre-processing step.

4a: the breasts are almost entirely fatty
b: there are scattered areas of fibroglandular density
c: the breasts are heterogeneously dense, which may obscure small masses
d: the breasts are extremely dense, which lowers the sensitivity of mammography
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4.3 Registration Strategy

The diagram presented in Figure 4.5 shows the entirety of the pipeline for the registration after

the pose transformation of the MRI.

Figure 4.5: Pipeline summary for the registration of MRI PCLs and Surface PCLs.

The registration of the MRI point clouds will be performed in two different steps, starting by

a rigid registration followed by a non-rigid registration. The rigid registration will also be divided

in two steps: a pre-processing step that will place the two PCLs in the same space in order to suc-

cessfully perform the second step, the coarse registration, that will approximate both of the PCLs

through rigid transformations. Rigid transformations include pure rotations and translations, and

these transformations are performed by specifying a matrix that moves the points in one point

cloud to their appropriate positions in a second point cloud [66]. But the breast cannot be consid-

ered a non-deformable shape, so the rigid registration step is not enough to approximate correctly

the shape of the breast obtained by the MRI with the one obtained from the surface, which justifies

the non-rigid registration step. The rigid registration also assures better results in the following

non-rigid registration, by placing the point cloud in the correct orientation and then approximating

it to the target point cloud using points of reference or the distance between those points.
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4.3.1 Affine Transformations

The MRI data comes in a different orientation from the surface, so a rotation is performed,

given the surface as a reference.

Figure 4.6: On the left: original MRI PCL. On the right: surface PCL.

To place the MRI in the same orientation as the surface, a rotation of -90◦ along the X-axis,

followed by a rotation of 180◦ along the Z-axis is done.

Given the fact that some PCLs might come in a slightly different orientation due to the patient’s

position during the data acquisition, it is important to assure that both of the PCLs are oriented

in the same way. For that, after centering them in the origin (0,0,0), both are aligned with the xy

plane.

After the rotation, a translation is done to ensure that both point clouds, MRI and surface, are

close enough before the ICP algorithm is applied. In order to make a translation, a reference point

has to be found in both of the point clouds and in this case the chosen reference point was the

nipple. The nipple is characterized by being the point with the highest curvature in the breast, but

only defining it by that can be incorrect, since points in the abdomen of the surface can be detected

as well. To eliminate the points that are not the nipple itself, only the point in the quadrant of the

breast that has the highest curvature and the minimum value along the Z-axis is selected.

4.3.2 Geometric ICP

The Iterative Closest Point algorithm was proposed by Besl [67] and to use it both point clouds

need to be close so it does not fall into local extremes, justifying the need of performing a rotation

and a translation [37].

This algorithm is used to find the rigid registration between the target point set and the refer-

ence point set so that the two reach an optimal match.

The threshold for the distance between both PCLs was defined as a pair consisting of the Eu-

clidean distance estimated between two translation vectors and the angular difference in degrees.



4.3 Registration Strategy 41

The algorithm stops when the average difference between estimated rigid transformations in the

three most recent consecutive iterations falls below the specified tolerance value.

The results of the ICP algorithm are satisfactory in [58], but this algorithm is inefficient below

the breast mound, which is where there is the highest density of points, by not being able to

approximate this region in both of the point clouds, most likely because the algorithm falls into

local extremes and does not make the correct match. By not making the a good approximation

of the PCLs before the non-rigid registration step, the results will be worst, and those points will

be matched with other surrounding areas that are closer to them, and not to the region below the

breast mound as it should be.

He et al. [37] proposed a modified implementation of the ICP algorithm based on point cloud

features, which includes features such as curvature, surface normals and point cloud density. In

point clouds with irregular shapes, these features can reflect some basic shapes, which are critical

for the correct representation of all of the characteristics of the point cloud.

In this case, the part of the breast that shows a greater inaccuracy is also the one with the

highest curvature in the breast. This curvature reflects the concavo-convex degree of the point

cloud surface. The remaining of the breast has a lower curvature, since it is a flatter zone of the

breast.

This approach of the algorithm values the points with a curvature higher than a defined thresh-

old, so they have more influence in the approximation of both of the point clouds and in the final

result.

In order to calculate the curvature of all the points in the point cloud, a number of neighbours

must be defined for each point. With the number of neighbours a covariance matrix of those

neighbouring points can be calculated, which will indicate how similar the variances of features

are [68]. From that covariance matrix, the eigenvalues (λ ) and eigenvectors can be extracted. The

curvature can then be calculated through the following formula:

Curvature =
min(λ )

∑λ
(4.1)

The number of neighbouring points chosen was 10 as it was recommended in He et al. [37].

To perform the ICP algorithm based on point cloud features, a threshold for the curvature must be

chosen, but since this value can be subjective, all the points were ordered by their curvature value,

and a percentage of those points was chosen and a subset was created.

When choosing that percentage, some values outside of the interest zone, located in the lateral

borders of the breast were also being chosen, so the search for the points with the highest curvature

was limited to the points below the breast mound point, which is the most problematic region.

Since this area is very limited, the rest of the point cloud can have an unexpected behaviour, so a

second subset is built with the rest of the point cloud, but only after applying a high downsampling

to it, so the choice of feature points is not affected. By joining the two subsets of points, a set with

a high density of points in the part with the most features and a low density of points in the part

with the least features is achieved.
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To give advantage to the points with the highest curvature, in the implementation of the ICP

algorithm, the calculation of the error is changed in order to include the difference between the

curvature of the matching points, so points with high differences in their curvatures will not be a

match, avoiding the initial problem of having the points with the highest curvature not approxi-

mated to their correct matches. So, this error can be translated by the following adaptation of the

RMSE error, considering dm,s the module of the distance between each point in the MRI and its

closest neighbour in the surface:

Error =
∑

n
i=1 dm,s(i)

n
+

∑
n
i=1

√
(curvaturemn− curvaturesn)

2

n
(4.2)

Where m represents the MRI point cloud, s represents the surface and n the number of points

that are being evaluated.

The error is used as a stop criteria along with the tolerance (a pair consisting of the Euclidean

distance estimated between two translation vectors and the angular difference in degrees) and the

maximum number of iterations.

4.3.3 Deformable Registration

The breast has a deformable nature with a non-rigid behaviour, and for that it is not enough

to only use a rigid registration approach. The rigid registration works as a preparation step to the

deformable registration, approximating both of the PCLs, providing a better environment for the

deformable registration and leading to better results.

The deformable registration of the breast is performed using the FFD algorithm, explained in

Section 3.2. As mentioned by Carvalho et al. [58], using a 3D grid of 8 points in each dimension

([8,8,8] grid) will improve the results comparing to using a smaller grid or a 2D grid, even though

the computational time is increased by greater grids. To avoid even higher computational times,

the number of points can be downsampled, having no great impact in the final results.

The tumour will also be inserted in the interior of the breast, in its correct position, which

means that it will also be rotated and translated, but it will not go through the ICP algorithm. The

data from the tumour is provided as a PCL for the patients of the BCCT.plan project (including the

patients from the validation dataset). The goal is to understand the impact of the FFD algorithm

on the tumour and to represent the 3D model of the breast with the tumour inside, improving the

certainty of the doctor’s approach on the Breast Cancer Treatment.

4.3.4 Closing the breast

In order to visualize the breast as a closed entity, the pectoral muscle will also be registered

and used to complete the visualization of the breast.

The pectoral muscle has a rather low deformation when compared to the deformation of the

breast itself [69], and for that its behaviour will be considered rigid.

To register this muscle, since its behaviour is considered rigid, a rotation and a translation

will be performed. Unlike what happens on the breast, the ICP algorithm, that is part of the rigid
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registration step, will not be performed, since it would lead to wrong results, centering the pectoral

muscle inside the breast.

4.4 Dataset Validation

A validation dataset is essential to understand the accuracy and validity of all the transforma-

tions that were applied to the breast. Since the evaluation metrics are not always a reliable source

of understanding for the accuracy of the registration, and the visualization of all of the PCLs be-

comes difficult when the dataset has many patients, a solution was found to better understand what

was indeed the best methodology for all of the patients.

The validation dataset was acquired in the same conditions as the BCCT.plan dataset, only

adding 3D landmarks positioned at reference points, as shown in Figure 4.7. Those landmarks

were positioned around the patients breasts with a black permanent marker before surface data

registration (Figure 4.8 (c)). After that, liver cod oil pills were fixed above this reference points

before MRI acquisition (Figure 4.8 (a),(b)). These landmarks can then be used, after the registra-

tion, to measure how further away the reference points are from each other, between the surface

and the MRI, to conclude which of the points have the higher deformation and to understand what

is the best methodology.

Figure 4.7: Reference points for the 3D landmarks, used both for the surface and the MRI.

The process used to annotate the slices of the MRI is almost the same as the one described in

Section 4.1.2, with some changes due to the presence of cod oil pills. Those pills are annotated

differently from the breast, and some caution needs to be made to guarantee they are intersecting

the breast. Some of the pills, may be dislocated during the MRI, and those will not be considered.

This dislocation is easily visible as it can be seen in Figure 4.9 in the pills surrounded by red.
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(a) 3D projection of the MRI. (b) Slice of the MRI.

(c) Surface PCL.

Figure 4.8: MRI and Scan data with breast markers.

The reference points in the surface also need to be annotated. For that, the software Meshlab

was used, and the reference points were selected and saved in a PCL. When selecting the refer-

ence points, there needs to be the least area of skin possible, selecting only the black area of the

reference points. Figure 4.10 shows the selection of the reference points on the PCL.

After the annotation and selection of the reference points in both the MRI and the surface, a

model with an assigned number to each one the reference points is created and the correspondences

between the numbers and the landmarks, represented in Figure 4.7, is made. In Figure 4.11 and in

Figure 4.12 the numbered reference points for the MRI and the surface, respectively, can be seen.

The pre-processing pipeline described in Section 4.2 is also followed for this dataset, but in-

cluding the centroids of the landmarks in the PCL. These centroids are joined after performing the

downsampling to assure that these points are not eliminated. Through all the steps it is important

to verify that all the points of the centroids are being used.
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Figure 4.9: MRI slice with the cod oil pills showing in pink. Normal pills, intersecting with the
skin are surrounded by green. Dislocated pills that show no contact with the skin are surrounded
by red.

Figure 4.10: Reference points selected in the surface.

4.4.1 Evaluation Metrics

To evaluate the accuracy of the rigid registration, some metrics can be used to measure the

distance between the two point clouds. The metrics used are point to point, which means that the

distance is measured from each point in the reference point cloud to the corresponding point in

the target point cloud, or vice versa, even if the two point clouds do not have the same number of

points [70]. For each point in the reference point cloud, the nearest point, with the lowest distance,
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(a) Reference points with the breast contour. (b) Reference points without the breast contour.

Figure 4.11: Numbered reference points for the MRI.

(a) Reference points with the surface. (b) Reference points without the surface.

Figure 4.12: Numbered reference points for the surface.

is found.

The metrics used are:

• Euclidean Distance: ordinary straight line distance.

• Hausdorff Distance: maximum distance between a point in the MRI and its closest point in

the Surface, between all of the points [71].

Hausdor f f Distance = ∀i ∈Mmax dM,S(i) (4.3)

The value of the Hausdorff distance is not a mean value and for that, it can be more sensitive

to outliers.

In this case, the distance could be calculated in both directions (from the source to the target,

or from the target to the source), but since the surface PCL has a bigger area, if the distance
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calculation is made from the surface to the MRI PCL, the errors will be much higher [72].

However, these metrics cannot be completely reliable, since they do not consider that the points

are actually representing a 3D object surface and they can not fully express the user experience

quality [70].

4.4.2 Target Registration Error

The anatomical landmarks used in the validation dataset can be called fiducial points. The

Target Registration Error (TRE) measured at a given point, relative to some given origin, is the

distance after registration between the anatomical landmark in one space and the corresponding

anatomical landmark in the other space, in this case, between the surface and the MRI [73]. The

TRE works as a method to measure the registration accuracy, as it will measure the difference

between the same landmark, allowing a conclusion about the efficacy of the algorithm.

The final TRE is calculated as the mean square of all the TRE values calculated for all the

fiducial points.

4.4.3 Summary

To summarize, the dataset now has 24 patients, corresponding to 46 breasts, since in the PIC-

TURE project two of the patients only have one breast. Those patients were obtained from 3

different projects, and one of them provided a set of patients for validation using reference points

in both the surface and the MRI that can then measure the validity of the algorithm.

Figure 4.5 summarizes the pipeline followed for the Registration Strategy. The MRI is ac-

quired in prone position, and a Finite Elements Method is used to transform this pose into an

upright pose. Even if the MRI is in the same pose as the surface PCL, their orientation still needs

to be change accordingly. For that, the MRI PCL is rotated 90o in x and 180o in z, and then both of

the PCLs are centered in the origin (0,0,0) and aligned with the xy plane to correct bad positioning

that might have happened during the acquisition of the data. To finish the affine transformations,

a translation is applied after finding the breast mound in the surface and in the MRI, using this

point to perform the transformation. Before the deformable registration is done, and to assure the

closest approximation of the points using a rigid registration, the ICP algorithm is performed, with

a different approach that values the points with the highest curvature. To finalize the pipeline, the

Free Form Deformation is used to register the breast in a non-rigid approach.
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Chapter 5

Results and Discussion

In this section the results of the methodology presented in Chapter 4 will be shown. Tables

for all the patients (5 patients from PICTURE project, 10 patients from BCCT.plan project and

7 patients from the validation dataset) will be presented, but the figures will only be represented

for one patient, the first one, unless told otherwise, for situations when a worst or best case is

worth showing. Distances will be presented in millimeters. The two patients from the PICTURE

project with only one breast will be discarded for this analysis, since they present no relevant

characteristics and they could not be used when comparing the use of the entire torso with the use

of a single breast. For simplification purposes, patients from the PICTURE project will have the

numeration from 1 to 5, patients from the BCCT.plan project will be from 6 to 15, and patients

from the validation dataset will be from 16 to 22. The left and right breast will not defined by their

laterality and they will take the numeration of 1 and 2.

Besides the results obtained from the rigid and non-rigid registration, the influence of some

factors in this registration will be studied, such as:

• Using the complete torso of the patient, comparing to registering only one breast at a time.

Previous results presented by Carvalho et al.[58] only performed the registration for one

breast. The results showed that there was a gap between both breasts at the end of the

pipeline, because they were both registered individually. Using the complete torso will also

provide results that are more close to reality.

• Using the breast with the pectoral muscle in the back. The pectoral muscle has a proximate

to rigid behaviour so it will only go to the rigid registration, but visualizations with the

pectoral muscle will be provided in order to see the breast as a closed entity.

• Inserting the tumour inside the breast and understanding its behaviour.

• The behaviour of the algorithm with the breast in a prone position, with no pose transfor-

mation.

49
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All of the options that are available to perform the algorithm are shown in Figure A.1 in

Appendix A, but only some of them will be performed and analyzed on this Chapter. All of the

results discussed in this Chapter are shown in Appendix A with full description for each patient.

The algorithm used to generate these results was run on Matlab R2019a.

5.1 Rigid Registration

5.1.1 Affine Transformations

As it was mentioned in Chapter 4, to correctly align both the PCLs, some affine transforma-

tions are performed, that are summarized in this list:

• Rotation of -90o along the X-axis, followed by a rotation of 180o along the Z-axis;

• Center in the origin (0,0,0);

• Alignment with the xy plane;

• Translation through the breast mound.

The correct alignment of the breast with the xy plane places the MRI in a more correct

position, aligned with the scan, and consequently closer to it. A representation of this correction

can be seen in Figure 5.1. After the correction of the orientation, the breast is considerably closer

to the scan.

Figure 5.1: Correction of the orientation. The PCL in red represents the scan, while the PCL in
blue represents the MRI after being rotated and centered in (0,0,0) and the yellow the MRI after
the correction of orientation using the xy plane.

The translation through the breast mound can be done using the entirety of the torso to per-

form the translation, eliminating in that way one of the degrees of freedom associated to this



5.1 Rigid Registration 51

transformation. To use the complete torso, the breast mounds of the scan and the MRI are calcu-

lated separately for the left and right breast. After that, the mean value of the breast mounds is

calculated for the MRI and the scan and the translation is made using these two points.

An example of a well performed translation is shown in Figure 5.2(a), where the breast mounds

are correctly identified in both the MRI, in red, and the scan, in blue. Figure 5.2(b) is an example

of a badly done translation, where the breast mounds are detected in the stomach area below the

breast. A bad detection of the breast mounds and consequently a bad translation can lead to wrong

results after the ICP, since the breast is not well positioned.

(a) Patient 15, after translation. (b) Patient 1, after translation.

Figure 5.2: Results after translation.

5.1.2 Iterative Closest Point Algorithm

When comparing the results after the implementation of the rigid registration, it is important

to use both numerical and visual results. The results for the normal ICP are represented in Figure

5.3, divided by each dataset. This implementation was followed by [58], but since the date of his

publication some improvements have been made to the algorithm, and so the results were produced

again.

To understand the relevance of the visual results for the approval of the evaluation metrics,

some visual results will be presented considering the metrics shown in Figure 5.3, with the best

and worst Euclidean distances, respectively. Patient 16 has a great fitting to the surface, which

shows by its low error and by Figure 5.4(a), but both breasts still have a gap between them, so its

orientation could still be improved. On the other side, patient 6 that has a higher error, besides

also having a gap between both breasts, it shows a worst fitting to the surface. The ICP is not able

to correctly orientate the breast after the translation by the breast mound, so the right breast has

almost a 90o difference from what should be its position.
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Figure 5.3: Euclidean distances after the normal ICP.

(a) Patient 16. (b) Patient 21.

Figure 5.4: Results after the normal ICP.

When comparing the results obtained from the implementation of the geometric ICP, shown

in Figure 5.5, with the results obtained from the implementation of the normal ICP, it can be

concluded that the mean Euclidean Error is 1.19mm greater than the error obtained with the normal

ICP.

In Figure 5.6, the best and worst results of the geometric ICP can be seen, respectively in

5.6(a) and 5.6(b).

The goal of this implementation is to give more weight, and consequently more impact, to the

points below the breast mound that do not get proximate enough to the surface PCL. The points

in this area were chosen by selecting the points below the breast mound and joining them with a
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Figure 5.5: Euclidean distances after the geometric ICP.

(a) Patient 16. (b) Patient 6.

Figure 5.6: Results after the geometric ICP.

very downsampled PCL of the MRI to guide the points outside of this zone. This will give a better

approximation for the points below the breast mound and consequently a better orientation to the

points in the superior part of the breast.

This can be proved by comparing Figure 5.7 and Figure 5.6(b) that represent the same patient

after the normal and geometric ICP, respectively. In the case of the normal ICP the points of both

breasts are further apart in the sternum zone, and there can be seen that in the MRI PCL, below

the breast mound the points are not close enough the surface. In the case of the geometric ICP,

the ptosis of the breast is more correspondent to the surface and that will lead to a better fitting of

the MRI, approximating both breasts in the sternum. It is also necessary to keep in mind that the
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geometric ICP will have a greater impact in breasts with a bigger ptosis.

Figure 5.7: Patient 6 after the normal ICP.

The number of points below the breast mound can be arbitrary, so a study was made in order

to understand what number would bring the best results. 4 percentages of points with the highest

curvature below the breast mound were chosen: 40%, 60%, 80% and 100%. Figure 5.6 shows the

results when using 100% of the points below the breast mound, while the Tables for the rest of the

percentages are shown in Appendix A.

When comparing the 4 percentages used, the mean value of the Euclidean error for the 80%

and 100% is the same (7.60mm), but the standard deviation and the minimum and maximum

values are higher for the 80% case. In the 40% and 60% cases, the mean Euclidean error is greater

than in the 80% and 100% case. So, for the geometric ICP, the totality of the points below the

breast mound will be used as weighted points in its implementation.

When performing the ICP algorithm with the complete torso, the breast will no longer get

separated in the sternum zone, automatically preventing greater displacements between the both

PCLs that lead to unrealistic behaviours. An example of the usage of the torso is presented in

Figure 5.8 also for the patient 6. The results are rather similar for the normal and geometric ICP,

but in the geometric ICP the MRI is closer to the surface in the area below the breast mound

especially for the left breast.

Figure 5.9 represents the ideal approximation before the deformable registration, forthe patient

20 after the normal and geometric ICP, mostly in 5.9(b), which will consequently improve the

results after the FFD.
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(a) Normal ICP with complete torso. (b) Geometric ICP with complete torso.

Figure 5.8: Comparison between the normal and geometric ICP for the patient number 6 using the
complete torso.

(a) Normal ICP with complete torso. (b) Geometric ICP with complete torso.

Figure 5.9: Comparison between the normal and geometric ICP for the patient number 20 using
the complete torso.

5.2 Deformable Registration

5.2.1 Free Form Deformation

The non-rigid registration is performed using the FFD with an [8,8,8] grid, with a threshold for

the error of 1×10−7 mm and 250 iterations as stop criteria. When analyzing the final results for

the patients registered using the normal ICP, one breast at a time, five patients present a very high

Euclidean error (high discrepancy when comparing to other values) after the non-rigid registration,

when comparing to other patients.



56 Results and Discussion

The best and worst of these four cases can be seen in Figure 5.10, respectively.

(a) Patient 22, breast number 2. (b) Patient 17, breast number 2.

Figure 5.10: Deformed breasts after the complete registration, using normal ICP and a single
breast.

While in Figure 5.10(a), the shape of the breast is still recognizable, although it has many

dispersed points, in Figure 5.10(b), there is no recognizable shape and the breast is completely

disintegrated. The complete desintegration of these breasts during the FFD algorithm, might be

due to the lack of proximity between both PCLs and the bad positioning of the MRI after the rigid

registration step. The detection of the breast mound is not robust enough and sometimes the breast

mound is mistakenly chosen by some points below the breast mound, namely in the stomach area.

In fact, when looking at the PCL of patient 6, for example, after the ICP algorithm implemen-

tation in Figure 5.11, it is noticeable that the PCL is deviated and in a more lateral position. The

same does not happen to patient 22 and 17.

The reason for the deformation in these other breasts, that belong to the BCCT.plan and the

validation dataset, can be behind the surface PCL. For these datasets, the acquisition was made

with the scanner GoScan 20 3D by Creaform, while in the PICTURE project the acquisitions were

made with the Microsoft Kinect - 3DMK. Even though the GoScan is a more robust and expensive

scanner, it fails to register all the parts of the surface, mostly in the inframammary fold region,

while the Kinect is able to capture all of the surface.

The lack of precision of the GoScan is seen in the surface of patient 18 represented in Figure

5.12. A reconstruction of this hole can be done, using the software Meshlab, which will cover the

hole. But, even after the hole is covered, the point density in the region of the hole will be very

low comparing to the rest of the PCL, making the PCL non-uniform in terms of density.

The results after the elimination of these 4 patients can be seen in Figure 5.13.

Results of the non-rigid registration using the geometric ICP only have one patient with defor-

mations after the pipeline, that is shown in Figure 5.14.
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Figure 5.11: Patient 6, after a normal ICP implementation.

Figure 5.12: Surface of patient 18.

Figure 5.15 shows the Euclidean distance after the FFD when using the geometric ICP, af-

ter eliminating the patient with a deformation. The mean value for this Euclidean Distance is

0.93±0.24mm and is very similar to the one presented in Figure 5.13 of 0.91±0.18mm, although

thislast one does not represent as many patients.

Figure 5.16 shows the difference, after the non-rigid registration, between the implementation

of the normal and the geometric ICP, in the first patient,which has a below the mean error. In

Figure 5.16(a), there is wider gap between the both breasts, while in Figure 5.16(b) there is an

overlap between the both PCLs.

In summary, the results using the normal implementation of the ICP, and a single breast regis-

tration, show some anomalies in 5 of the 22 patients, due to factors such as a bad positioning and

presence of holes in the surface PCL, which in combination with the unpredictability of the FFD
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Figure 5.13: Euclidean Distance after the FFD using the normal ICP.

Figure 5.14: Breast number 2 of patient 18 after the non-rigid registration using the geometric ICP.

algorithm will lead to worst results. To understand if changing the implementation of the FFD

algorithm will have an impact on these results, a trial was made using a smaller 3D grid of [6, 6,

6] instead of the [8,8,8] grid that was previously being used.

The results for the non-registration using the normal ICP and a 3D grid of [6,6,6] points to

the FFD are shown in Figure 5.17, for both the normal and geometric ICP. Even though the mean

value is higher using this grid, there are no exceptions of patients with deformations, which makes

it a safer option than the two options mentioned above.

5.2.2 Algorithm with complete torso

When testing with the complete torso, the resulting PCLs show no deformations such as the pa-

tients with a [6,6,6] grid, although the mean values of the Euclidean distance are higher. PCLs
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Figure 5.15: Euclidean Distance after the FFD using the geometric ICP.

(a) Normal ICP. (b) Geometric ICP.

Figure 5.16: Results after the non-rigid registration for the normal and geometric ICP.

after the non-rigid registration show although a higher density of points between both breasts, as

it is represented in Figure 5.18. This happens if the points are not well aligned with the surface

before the non-rigid registration. Those points will be matched with the surrounding areas since

they are the closest.

The same problem is not so visible when implementing the geometric ICP. When using the ge-

ometric ICP the points are normally closer to the breast in the region of the points below the breast

mound, before the non-rigid registration, and so the results will be better in terms of dispersion of

points, comparing to the normal ICP, as it can be seen in Figure 5.19.
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(a) Normal ICP. (b) Geometric ICP.

Figure 5.17: Results after the non-rigid registration for the normal and geometric ICP using a grid
of [6,6,6] points in the FFD.

Figure 5.18: Complete torso after the non-rigid registration for patient 20 with normal ICP.

5.2.3 Insertion of the tumor

The influence of the FFD algorithm on the tumor was also studied. The tumor does not go through

the pose transformation algorithm and is kept at the same position of the MRI acquisition. In terms

of registration, the transformations applied to the breast will also be applied to the tumor, which

means they will not be accountable when it comes to find what transformations need to be done,

but they will have to go through those transformations.

A schematic of the localization of a tumor done by a clinician involved in the BCCT.plan

project is presented in Figure 5.21 for patient 21.

Figure 5.22, shows the tumor before and after the registration respectively. The registration

will approximate the tumor towards the skin as it can be seen in Figure 5.22(b). Considering that

the data is mirrored in Figure 5.23, comparing to Figure 5.21, it can be concluded that the tumor

also suffers some lateral movement to the right.
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Figure 5.19: Complete torso after the non-rigid registration for patient 20 with geometric ICP.

(a) Normal ICP. (b) Geometric ICP.

Figure 5.20: Results after the non-rigid registration for the normal and geometric ICP using the
complete torso.

5.2.4 Insertion of the pectoral muscle

To visualize the breast as a closed entity, the pectoral muscle was also registered. The pectoral

muscle went through the rigid registration, but it did not go through the non-rigid registration,

otherwise it would deform the points of the muscle towards the breast. It can be considered that

the pectoral muscle has a rigid behaviour, since the pose transformation of the breast will not affect

the pectoral muscle.

Visualizations of the torso before and after the registration with the pectoral muscle are pro-

vided in Figure 5.24 for patient 20. As it can be seen, the pectoral muscle shows a constant

behaviour through the registration and shows no changes or strange behaviours.
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Figure 5.21: Representation of the localization of the tumor of patient 21.

(a) Frontal contour of the breast before the reg-
istration with the tumor.

(b) Breast after the FFD with tumor.

Figure 5.22: Patient 21 with tumor.

5.3 Validation Dataset

The purpose of the validation dataset is to understand the accuracy of the algorithm and to

understand its viability by analyzing the correspondence between the same breast markers in dif-

ferent modalities, in this case the MRI and the surface. The following methodologies will be

tested:

1. Normal ICP, with single breast and a grid of [8,8,8] points for the FFD;

2. Geometric ICP, with single breast and a grid of [8,8,8] points for the FFD;

3. Normal ICP, with the complete torso and a grid of [8,8,8] points for the FFD;
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Figure 5.23: Representation of the localization of the tumor of patient 21 on a frontal view.

4. Geometric ICP, with the complete torso and a grid of [8,8,8] points for the FFD

5. Normal ICP, with single breast and a grid of [6,6,6] points for the FFD

6. Geometric ICP, with single breast and a grid of [8,8,8] points for the FFD

Testing with a [6,6,6] grid for the FFD, using the complete torso was not done, because the

torso has many more points than the single breast, so it should be registered with a bigger grid.

Each one of the breast markers has 11 mm of diameter, but only their centroid will be consid-

ered. When analyzing the distances presented here for the validation dataset, it must be considered

that the distance is to the centroid of the reference and not its borders, which can lead to greater

distances.

The reference points represented in Figure 4.7 of Chapter 4, have different displacements

considering factors such as the size of the breast and the position of the patient. For example, if the

breast is large, the MAP reference point will have a higher displacement, since the compression of

the breast will also be much greater during the MRI. The MRI will also deform the breast towards

the middle of the torso.

The displacement of the more external points such as MAP, AP, LP will be higher than the

displacement of more medial points such as the MP, since the breast will be more compressed on

the sides during the MRI. In the supra-internal part of the breast (points such as I1, I2, O1, O2), the

displacements will be normally inferior comparing to the infra-external part of the breast (points

such as I3, I4, O3, O4). MAP distances can be uncertain due to the difference of the arms position

during the surface data acquisition and MRI.

Graphics in Figure 5.25, show the value of TRE distributed by breast markers and by patient.

The x-axis shows all of the breast markers, while each coloured bar represents one of the seven

patients. In these graphics the mean value for each breast marker is also marked through the red

circles and the mean value for all patients and all breast markers is represented in a black dashed
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(a) Frontal view before the registration. (b) Top view before the registration.

(c) Frontal view after the registration. (d) Top view after the registration.

Figure 5.24: Representation of the torso with the pectoral muscle for patient 20.

line. When analyzing the mean value of all the six different methodologies, it can be concluded

that the lower mean TRE is set for the methodology number 5, using a normal ICP for the rigid

registration and the [6,6,6] grid for the FFD. This methodology’s highest error values are also

considerably lower than in the other methodologies.

In Figure 5.26(b), it can be seen that there is a higher maximum error for the LP comparing

to MP, X and SN, proving that the medial points will have lower displacements than the lateral

points. The same also applies to reference points such as the O4 and Od, more external points in

the nipple, that have a higher TRE than the medial points O3 and Oa, as shown in Figure 5.26(a).

The AP and LVP points do not have any matches for any of the patients, although they can be

found in the surface, they are hard to pinpoint in the MRI. AP is positioned in the armpit, and LVP

is a very low point inserted in the inframammary fold zone.
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(a) Results using a single breast, normal ICP and
a [8,8,8] grid for the FFD.

(b) Results using a single breast, geometric ICP
and a [8,8,8] grid for the FFD.

(c) Results using the complete torso, normal ICP
and a [8,8,8] grid for the FFD.

(d) Results using the complete torso, geometric
ICP and a [8,8,8] grid for the FFD.

(e) Results using a single breast, normal ICP and
a [6,6,6] grid for the FFD.

(f) Results using a single breast, geometric ICP
and a [6,6,6] grid for the FFD.

Figure 5.25: TRE values by breast marker and by patient (Oa, Ob, Oc, Od correspond respectively
to O5, O6, O7 and O8 in Figure 4.7).

Table 5.1 shows the mean values for each breast marker in the breasts 1 and 2, considering all

the seven patients of the dataset.
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(a) TRE values for each breast marker for the
markers around the nipple (O1, O2, O3, O4, I1,
I2, I3, I4, Oa, Ob, Oc, Od).

(b) TRE values for the MP, LP, MAP, X and SN
values.

Figure 5.26: TRE values for each breast marker, when using a single breast, normal ICP and a
[6,6,6] grid for the FFD.

5.4 Prone vs. Upright

The previous results presented in this Chapter were all relative to the patient in an upright

position, but for the best case scenario mentioned in the previous Section, the algorithm was also

performed with the patient in a prone position. Using the prone position has the advantage of

skipping the pose transformation step before the rigid and non-rigid registration, since the MRI

is acquired in a prone position. Although it saves some time, the breast in a prone position has a

very different shape, comparing to the upright position in which the surface is acquired, because

the patient is lying down and the gravity will affect differently in both cases. The compression

applied to the patient during the prone position and the position of the arms are also factors that

will modify the shape of the breast.

Figure 5.27 shows the results for the best methodology in a prone position. The mean Eu-

clidean distance for this case is 1.07±0.22mm, which is higher than the results for the upright

position in the same conditions, and also higher than the cases with an [8,8,8] grid, although in the

case of a [6,6,6] grid there are no cases of deformed PCLS after the non-rigid registration.

Looking at Figure 5.28, it can be seen that the breast in a prone position is more compressed

than in the upright position, and the volume of the breast will be lower at the end of the registration

for the prone position. The breast registered in a prone position also has some points below the

breast that are deviated from the region that corresponds to the volume of the breast, because the

FFD was not able to match these points to region below the breast mound due to their position

after the rigid registration.

5.5 Discussion

The rigid registration is an essential step to the successful performance of the non-rigid trans-

formation. It is impossible to make a good registration when the PCLs are very further apart, and



5.5 Discussion 67

Table 5.1: Mean TRE value for each breast marker using a single breast, with a normal ICP and a
[6,6,6] grid for the FFD.

1 2
I1 14.99 22.52
I2 19.40 19.65
I3 13.10 18.41
I4 13.35 16.26
O1 21.59 25.90
O2 21.67 23.16
O3 12.53 17.27
O4 13.68 13.91
Oa 18.42 21.59
Ob 25.13 19.99
Oc 11.88 21.22
Od 18.73 21.70
MP 25.41 25.14
LP 16.34 86.18

MAP 78.31 74.39
AP NaN NaN

LVP NaN NaN
X 25.17 25.17

SN 45.61 45.61

Figure 5.27: Results for the implementation with the patient in a prone position for a single breast,
using the normal ICP and a [6,6,6] grid for the FFD.

the ideal approach is to approximate the most the PCLs that are going to be registered.

To overcome the problem of the different positioning of the patient through the data acquisi-

tion, the data will be rotated and then aligned through the xy plane, which will place all of the

patients in the same conditions.
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Figure 5.28: Comparison between the results for patient 20 in a prone and upright position. The
PCL in yellow represents the breast in a prone position and the PCL in red represents the breast in
an upright position, both after the non-rigid registration.

Translation through the breast mound is not a very reliable method, due its lack of robustness

and the dependence on factors such as the way the PCL of the scan of the patient is cut, the size

of the breast and the size of the stomach. Although it can perform the translation successfully

most of the times, or with small deviations, some bad detections can occur, which will worsen the

results.

In order to improve the robustness of the algorithm, the detection of the breast mound for the

translation should be improved, by manually indicating the breast mound. This could be done as an

intermediate step, by asking the clinician to validate if the breast mounds detected by the algorithm

were coincident with the real breast mounds. If not, the clinician could manually indicate through

the plot of the PCLs where they should be.

A comparison between the implementation of the normal and geometric ICP was made and

both have similar errors: 6.41±1.28mm for the normal ICP, and 7.60±1.84mm for the geometric

ICP. Using the geometric ICP will be valuable mostly to breasts with a bigger ptosis because it

will give more weight to the points of that region providing a better fitting between the surface and

the MRI PCL.

The number of control points used in the FFD showed to have some influence in the final re-

sults, preventing situations where the breast gets completely deformed after the implementation of

the FFD. Using a smaller 3D grid of [6,6,6] points leads to results where there are no deformations,

even though the mean Euclidean distance is bigger in this case, the TRE distance results show that

the matching between the reference points is better in this case.

The cost function of the FFD will attribute the same weight to every point independent of their

localization in the PCL. When there are holes in the inframammary fold of the breast, and they are

reconstructed, the density of points in that zone is considerably smaller than in the rest of the PCL.

When giving additional degrees of freedom to the FFD, that lack of density will lead to deformities
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that are not plausible.

The registration using the complete torso will lead to some deformations below the sternum,

when the fitting before the non-rigid registration is not well performed. The points that do not

fit with the region of the ptosis of the breast will match with its surrounding areas, resulting in

a higher point density in the region below the sternum. Results using the geometric ICP and the

complete torso will not be so deformed due to the better matching in the region below the breast

mound.

The registration of the tumor could be analyzed through the comparison of a visual result with

a diagram of the real localization of the breast. Even though the results show that the tumor is close

to its real localization after the registration, metrics must be implemented in order to understand

the accuracy of this registration.

Although the geometric ICP showed greater results, since there were less deformations for this

implementation, when testing with the validation dataset the normal ICP showed better results.

Even if this dataset only has seven patients, the implementation of the methodology with:

• Single breast

• Upright position

• Normal ICP

• Grid of [6,6,6] points for the FFD.

will be considered the best methodology in future works due to the results obtained.

The registration made with the PCL in a prone position provides good results, but still not

better than the results with the upright position and for that it will not be considered.
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Chapter 6

Conclusions

Breast cancer is a highly spread disease among women, and although it has a low mortality

rate, its high incidence and the consequences of the treatment can have a big impact on women’s

lives. Its low mortality rate can be justified with the very well set screening program for the

early detection of breast cancer and the available options to remove the tumor in these cases. The

removal surgery can although lead to some deformations in the breast that will impact the personal

life of the patient, leading to feelings of lack of self-confidence and satisfaction that will disturb

the normal life of the patient.

To avoid these complications after the surgery, a tool to help guiding the surgery and to com-

municate better with the patient was built. This tool will match data from the patient coming from

the MRI results and from surface data acquired with the patient in an upright position. This tool

provides a model that only has a 1.11±0.16mmm deviation from the real shape of the breast. This

result is obtained by matching the MRI data with the surface data using a rigid and a non-rigid

registration.

The rigid registration is essential to the good performance of this algorithm because it will

correctly align the data before the non-rigid registration, allowing its correct performance. This

rigid registration consists on the implementation of affine transformations, such as rotations and

translations and an implementation of an ICP algorithm. The non-rigid registration consists on the

implementation of an FFD algorithm. In the scope of this dissertation, many factors were studied

in order to obtain the best of these strategies and the best visualization possible of the breast, to

make the model as close to reality as possible, such as the:

• Implementation of a step to correct the orientation of the breast;

• Usage of a geometric ICP in order to correctly align the points with a higher curvature in

the breast that did not have a great fitting using the normal ICP;

• Usage of the complete torso for the registration comparing to the usage of a single breast;

• Insertion of the tumor inside the breast;

• Registration of the pectoral muscle;

71
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• Registration of the MRI in a prone position comparing to the upright position;

• Usage of different sizes of grids to the FFD implementation.

In the end these strategies are validated using a validation dataset with landmarks both in

the surface and in the MRI PCL that led to the conclusion that the best implementation of this

algorithm will come when using only a single breast for the registration, the normal ICP for the

rigid registration and an FFD with a [6,6,6] grid for the non-rigid registration.

When using this implementation, all of the patients from the used datasets will have great

results, with barely no deformations after the complete registration, providing a reliable tool for

clinical usage. The clinical implementation of this algorithm is not yet viable though, since this is

not yet a completely automatic process.

6.1 Future Work

Although the results are very promising for a clinical implementation, there are still some

changes that could improve the performance of this algorithm.

The translation through the breast mound is the least robust step, that could be improved by

manually selecting the breast mound. An intermediate step that asks the clinician to approve the

choice of the algorithm for the breast mound would guarantee a correct translation for all the

patients.

The impact of the choice of some values used in the pipeline of the algorithm, such as the

number of iterations and the threshold used in the ICP and FFD, should be studied in order to

understand which values provide better results.

The implementation of evaluation metrics to analyze the registration of the tumor is necessary,

since the only way to analyze the current results is purely visual and can be subjective.

The calculation of the volume of the breast is a future step that should be implemented. By

calculating the volume of the breast it is possible to compare the variance of the volume through the

entirety of the pipeline and check if the transformations are still physically plausible, confirming

that larger breasts will have larger displacements in the MAP reference point.
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Table A.1: Results after normal ICP with single breast.

Dataset ID Laterality Euclidean Distance Hausdorff

PICTURE

1
1 7.75 30.70
2 6.88 34.61

2
1 7.05 41.99
2 7.28 39.36

3
1 5.22 18.78
2 4.65 20.54

4
1 7.80 27.97
2 7.38 29.95

5
1 4.92 23.78
2 5.10 19.00

BCCT

6
1 8.45 34.28
2 8.34 34.69

7
1 6.48 20.75
2 6.58 19.51

8
1 7.90 22.86
2 8.40 25.29

9
1 7.47 19.63
2 7.96 19.33

10
1 6.20 17.00
2 6.57 17.34

11
1 5.51 29.04
2 6.45 39.73

12
1 7.43 35.92
2 6.90 32.99

13
1 5.12 17.63
2 5.50 22.02

14
1 4.89 16.20
2 5.42 16.80

15
1 6.07 25.83
2 6.66 28.72

OFB

16
1 4.16 15.22
2 4.64 15.38

17
1 6.43 29.26
2 4.24 19.56

18
1 5.76 17.29
2 6.82 20.53

19
1 4.43 21.74
2 4.64 17.06

20
1 6.60 19.34
2 6.51 25.87

21
1 8.89 32.60
2 8.60 40.65

22
1 5.95 28.43
2 6.17 35.79

Mean 6.41 25.48
Std 1.28 7.76
Min 4.16 15.22
Max 8.89 41.99
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Table A.2: Results after the geometric ICP with single breast and 100% of the points below the
breast mound.

Dataset ID Laterality Euclidean Distance Hausdorff

PICTURE

1
1 9.29 40.94
2 7.44 43.42

2
1 8.66 53.97
2 9.16 45.99

3
1 5.68 20.41
2 6.34 21.82

4
1 8.27 34.46
2 8.09 31.92

5
1 8.61 31.46
2 6.00 23.07

BCCT

6
1 12.71 46.34
2 11.76 37.14

7
1 6.76 24.97
2 6.61 22.50

8
1 8.92 36.51
2 9.16 38.89

9
1 7.91 22.77
2 8.17 26.55

10
1 7.83 33.76
2 7.89 37.12

11
1 6.73 32.11
2 7.88 44.75

12
1 9.24 47.73
2 7.23 36.85

13
1 5.57 20.73
2 6.40 29.72

14
1 5.34 20.07
2 6.17 21.53

15
1 6.92 25.57
2 7.90 39.15

OFB

16
1 4.42 15.49
2 4.67 18.00

17
1 9.09 42.65
2 5.42 27.61

18
1 5.97 18.30
2 7.11 24.05

19
1 4.54 22.58
2 4.86 20.08

20
1 7.92 31.59
2 7.53 32.65

21
1 10.36 45.23
2 9.96 49.71

22
1 7.69 43.16
2 10.36 46.59

Mean 7.60 32.50
Std 1.84 10.23
Min 4.42 15.49
Max 12.71 53.97
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Table A.3: Results after the geometric ICP with single breast and 80% of the points below the
breast mound.

Dataset ID Laterality Euclidean Distance Hausdorff

PICTURE

1
1 8.55 35.70
2 7.52 44.77

2
1 8.87 53.85
2 9.32 45.66

3
1 5.69 19.55
2 5.64 21.07

4
1 8.15 39.50
2 8.16 33.32

5
1 8.21 29.93
2 6.59 25.15

BCCT

6
1 13.71 40.28
2 11.75 38.11

7
1 7.23 24.22
2 6.81 22.39

8
1 8.85 33.10
2 9.01 32.73

9
1 9.33 25.31
2 8.31 22.90

10
1 7.88 36.66
2 8.23 39.70

11
1 6.99 33.80
2 8.05 47.12

12
1 7.70 40.76
2 7.24 38.48

13
1 5.45 20.20
2 6.41 31.55

14
1 5.43 21.50
2 6.28 25.04

15
1 6.44 26.65
2 7.89 38.29

OFB

16
1 4.87 15.19
2 4.69 18.66

17
1 8.74 40.92
2 5.40 26.57

18
1 5.80 19.96
2 7.07 23.01

19
1 4.55 21.79
2 4.83 20.34

20
1 7.83 28.02
2 7.58 32.50

21
1 10.35 42.67
2 9.38 49.51

22
1 7.14 42.45
2 10.57 42.45

Mean 7.60 32.08
Std 1.88 9.65
Min 4.55 15.19
Max 13.71 53.85
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Table A.4: Results after the geometric ICP with single breast and 60% of the points below the
breast mound.

Dataset ID Laterality Euclidean Distance Hausdorff

PICTURE

1
1 8.53 35.75
2 7.62 44.51

2
1 9.14 54.16
2 9.40 45.01

3
1 6.41 21.98
2 5.23 17.69

4
1 8.04 39.77
2 7.91 34.76

5
1 6.57 26.61
2 6.32 25.83

BCCT

6
1 15.09 38.64
2 12.70 41.05

7
1 7.81 22.64
2 7.36 26.90

8
1 9.82 30.76
2 9.06 26.97

9
1 10.04 35.76
2 8.88 23.66

10
1 7.50 34.38
2 8.13 36.86

11
1 7.07 35.83
2 7.80 47.17

12
1 7.75 41.66
2 7.36 40.34

13
1 5.40 22.01
2 6.93 32.38

14
1 5.89 26.85
2 6.41 26.31

15
1 6.56 27.30
2 7.52 34.78

OFB

16
1 4.56 14.55
2 4.84 22.24

17
1 7.40 31.61
2 5.46 27.05

18
1 5.84 18.79
2 7.05 22.70

19
1 4.61 21.49
2 4.91 20.15

20
1 8.07 26.53
2 7.98 32.79

21
1 10.16 40.61
2 10.38 50.09

22
1 7.36 41.18
2 10.75 46.42

Mean 7.72 32.15
Std 2.08 9.42
Min 4.56 14.55
Max 15.09 54.16
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Table A.5: Results after the geometric ICP with single breast and 40% of the points below the
breast mound.

Dataset ID Laterality Euclidean Distance Hausdorff

PICTURE

1
1 8.56 37.14
2 7.70 44.82

2
1 9.76 56.22
2 9.43 44.91

3
1 6.29 23.51
2 5.72 23.11

4
1 9.04 39.33
2 8.64 35.42

5
1 6.37 28.15
2 6.69 26.34

BCCT

6
1 15.83 40.25
2 13.25 40.80

7
1 7.80 26.50
2 8.03 30.63

8
1 9.17 32.55
2 10.79 39.36

9
1 10.17 34.51
2 9.65 37.82

10
1 7.51 30.27
2 9.02 33.35

11
1 7.78 40.41
2 7.51 45.76

12
1 7.77 40.14
2 7.79 42.91

13
1 6.48 26.88
2 7.14 32.30

14
1 5.97 26.36
2 6.70 26.09

15
1 7.47 28.51
2 7.83 33.00

OFB

16
1 4.68 13.44
2 4.94 23.64

17
1 8.29 33.72
2 5.62 26.22

18
1 5.94 17.49
2 8.74 37.84

19
1 4.78 22.03
2 5.30 20.44

20
1 8.84 31.27
2 8.78 34.06

21
1 14.68 54.05
2 10.15 48.19

22
1 9.69 40.83
2 10.76 46.83

Mean 8.25 34.03
Std 2.35 9.33
Min 4.68 13.44
Max 15.83 56.22
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Table A.6: Results after non-rigid registration with normal ICP and single breast.

Dataset ID Laterality Euclidean Distance Hausdorff

PICTURE

1
1 0.92 6.45
2 0.82 4.89

2
1 0.93 3.98
2 0.97 8.69

3
1 0.83 3.56
2 0.74 3.23

4
1 0.75 5.97
2 0.70 2.90

5
1 0.87 5.37
2 0.85 4.12

BCCT

6
1 1.54 19.18
2 34.80 958.01

7
1 0.89 4.61
2 0.77 3.94

8
1 0.84 5.78
2 1.55 21.40

9
1 0.88 5.38
2 0.89 5.00

10
1 0.75 3.88
2 0.81 4.99

11
1 1.14 5.75
2 0.93 6.25

12
1 0.99 5.72
2 0.98 5.18

13
1 0.84 0.85
2 4.50 4.78

14
1 0.93 6.08
2 0.78 4.52

15
1 1.05 5.35
2 1.03 6.21

OFB

16
1 0.78 4.20
2 0.80 4.11

17
1 0.72 0.81
2 1149.63 2318.48

18
1 0.97 5.76
2 16.44 579.37

19
1 0.95 5.34
2 0.90 5.58

20
1 1.04 5.77
2 0.95 7.52

21
1 1.02 4.61
2 0.93 4.31

22
1 2.82 44.57
2 1.98 28.60

Mean 28.30 94.34
Std 171.09 376.64
Min 0.70 0.81
Max 1149.63 2318.48
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Table A.7: Results after the non-rigid registration using geometric ICP with single breast and
100% of the points below the breast mound.

Dataset ID Laterality Euclidean Distance Hausdorff

PICTURE

1
1 0.79 5.90
2 0.80 4.73

2
1 0.59 2.82
2 0.79 3.59

3
1 0.84 6.55
2 0.68 2.97

4
1 0.78 4.81
2 0.67 3.30

5
1 0.94 6.37
2 0.84 4.40

BCCT

6
1 0.79 4.49
2 1.25 8.95

7
1 0.90 4.01
2 0.71 2.50

8
1 0.92 5.85
2 0.85 5.53

9
1 0.82 5.24
2 0.88 4.69

10
1 0.71 3.04
2 0.85 4.31

11
1 1.19 5.94
2 1.03 8.79

12
1 1.14 7.05
2 0.97 5.42

13
1 0.92 4.63
2 0.86 4.08

14
1 1.02 6.13
2 0.77 5.14

15
1 1.03 6.65
2 1.00 6.06

OFB

16
1 0.80 4.31
2 0.86 5.71

17
1 0.80 3.90
2 1.27 9.72

18
1 0.85 4.17
2 22.59 943.36

19
1 0.98 5.49
2 0.87 5.89

20
1 1.11 5.96
2 0.99 6.60

21
1 1.10 7.65
2 0.99 6.11

22
1 2.12 18.06
2 1.03 6.78

Mean 1.43 26.99
Std 3.24 139.77
Min 0.59 2.50
Max 22.59 943.36
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Table A.8: Results after the non-rigid registration, using a single breast and a grid of [6,6,6] points
for the FFD, after a normal ICP implementation.

Dataset ID Laterality Euclidean Distance Hausdorff

PICTURE

1
1 1.16 9.23
2 1.02 6.51

2
1 1.31 8.27
2 1.25 12.59

3
1 0.90 4.21
2 0.81 2.98

4
1 0.96 8.23
2 0.90 4.41

5
1 1.17 7.09
2 1.06 5.06

BCCT

6
1 1.05 7.49
2 1.11 5.27

7
1 1.07 5.40
2 0.88 3.06

8
1 1.11 6.20
2 0.93 5.17

9
1 1.02 5.22
2 1.10 5.49

10
1 1.00 5.64
2 1.14 7.00

11
1 1.48 7.71
2 1.18 6.06

12
1 1.13 5.76
2 1.30 5.86

13
1 1.18 5.26
2 1.03 4.22

14
1 1.16 6.27
2 1.03 4.49

15
1 1.20 6.65
2 1.32 7.90

OFB

16
1 0.99 3.88
2 1.02 3.53

17
1 0.88 4.44
2 0.97 4.64

18
1 1.14 5.34
2 0.90 4.14

19
1 1.31 5.60
2 0.97 5.72

20
1 1.37 7.32
2 1.20 8.28

21
1 1.40 8.81
2 1.42 7.55

22
1 1.22 6.91
2 1.28 5.78

Mean 6.41 25.48
Std 1.28 7.76
Min 4.16 15.22
Max 8.89 41.99
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Table A.9: Results after the non-rigid registration, using a single breast and a grid of [6,6,6] points
for the FFD, after a geometric ICP implementation.

Dataset ID Laterality Euclidean Distance Hausdorff

PICTURE

1
1 1.04 8.55
2 1.03 6.09

2
1 0.48 2.27
2 0.82 4.67

3
1 0.94 4.16
2 0.76 2.98

4
1 1.05 7.86
2 0.95 4.86

5
1 1.16 8.00
2 1.08 5.63

BCCT

6
1 1.19 11.75
2 1.58 11.41

7
1 1.06 4.64
2 0.85 2.32

8
1 1.14 7.47
2 1.11 7.49

9
1 1.00 6.38
2 1.06 5.65

10
1 0.94 3.77
2 1.24 4.95

11
1 1.51 8.55
2 1.26 11.84

12
1 1.16 7.44
2 1.29 5.48

13
1 1.18 5.11
2 1.08 4.97

14
1 1.19 6.24
2 1.04 4.03

15
1 1.27 8.25
2 1.29 7.23

OFB

16
1 1.01 4.81
2 1.03 3.69

17
1 0.99 5.16
2 0.97 4.69

18
1 1.05 5.69
2 0.90 4.02

19
1 1.31 6.02
2 0.97 5.35

20
1 1.44 7.36
2 1.32 9.15

21
1 1.51 11.03
2 1.53 10.25

22
1 1.28 7.03
2 1.41 7.94

Mean 1.13 6.37
Std 0.22 2.43
Min 0.48 2.27
Max 1.58 11.84
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Table A.10: Results after the non-rigid registration, using the complete torso and normal ICP.

Dataset ID Laterality Euclidean Distance Hausdorff

PICTURE

1
1 1.46 10.03
2 1.56 11.79

2
1 2.05 16.60
2 2.22 18.36

3
1 1.19 6.01
2 1.15 5.99

4
1 0.92 7.04
2 1.02 5.02

5
1 1.33 7.40
2 1.30 6.80

BCCT

6
1 1.92 13.21
2 1.61 12.80

7
1 1.40 6.11
2 1.37 5.98

8
1 1.48 9.03
2 1.42 7.44

9
1 1.28 6.71
2 1.38 8.06

10
1 1.34 7.77
2 1.50 8.25

11
1 1.63 12.45
2 1.73 14.42

12
1 1.20 8.99
2 1.59 6.41

13
1 1.21 6.95
2 1.19 6.66

14
1 1.37 6.68
2 1.29 7.75

15
1 1.37 8.95
2 1.76 32.57

OFB

16
1 0.92 4.54
2 0.99 4.09

17
1 0.92 4.41
2 0.98 4.29

18
1 1.41 6.67
2 1.53 6.54

19
1 1.48 7.12
2 1.18 7.50

20
1 1.50 7.54
2 1.51 9.76

21
1 1.34 7.34
2 1.39 8.69

22
1 1.79 11.16
2 1.65 9.16

Mean 1.40 8.89
Std 0.28 4.75
Min 0.92 4.09
Max 2.22 32.57
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Table A.11: Results after the non-rigid registration, using the complete torso and geometric ICP.

Dataset ID Laterality Euclidean Distance Hausdorff

PICTURE

1
1 1.48 10.73
2 1.50 9.27

2
1 2.03 15.61
2 2.23 27.21

3
1 1.15 6.56
2 1.14 5.95

4
1 1.11 7.28
2 1.09 5.82

5
1 1.25 8.29
2 1.25 6.60

BCCT

6
1 1.19 11.75
2 1.58 11.41

7
1 1.44 6.10
2 1.51 5.87

8
1 1.61 10.21
2 1.51 7.99

9
1 1.33 8.09
2 1.43 9.27

10
1 1.41 9.74
2 1.47 10.01

11
1 1.79 12.99
2 1.79 14.49

12
1 1.40 7.65
2 1.38 6.56

13
1 1.19 7.70
2 1.18 7.07

14
1 1.26 6.40
2 1.32 7.77

15
1 1.74 11.33
2 1.72 13.76

OFB

16
1 1.27 5.17
2 1.39 6.29

17
1 1.21 5.19
2 1.14 4.94

18
1 1.15 6.24
2 1.13 6.76

19
1 1.23 6.34
2 1.12 7.27

20
1 1.58 8.22
2 1.48 9.62

21
1 1.72 8.71
2 1.54 9.38

22
1 1.92 11.53
2 1.87 10.91

Mean 1.44 9.00
Std 0.27 3.79
Min 1.09 4.94
Max 2.23 27.21
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Figure A.1: Diagram with algorithm options.
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